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Abstract— We propose a geodesic distance (GD)-based scatter-
ing power decomposition for compact polarimetric (CP) synthetic
aperture radar (SAR) data acquired over agricultural landscapes.
The proposed technique decomposes the polarized portion of the
total backscattered power in proportion to the normalized target
similarity measures. The measures are derived from the GDs,
which are computed between the Kennaugh matrices of observed
and canonical targets (dihedral or trihedral). We observed a
pseudo-power component in the double bounce power, which
can be attributed to target irregularities. To compensate for
the pseudo-power component, we proposed a compensation
strategy by utilizing the CP radar vegetation index (CpRVI).
The compensation factor assists in readjusting the polarized
power components. The proposed approach was tested with
real (RADARSAT Constellation Mission: RCM) and simulated
(RADARSAT-2: RS2) hybrid CP data over agricultural sites in
Canada. The effectiveness of the approach was demonstrated by
comparing the decomposed powers with a recently proposed CP
scattering power decomposition.

Index Terms— Canonical targets, compact polarimetric (CP)
synthetic aperture radar (SAR) decomposition, geodesic dis-
tance (GD), RADARSAT-2 (RS2), RADARSAT Constellation
Mission (RCM).

I. INTRODUCTION

TARGET decomposition techniques are crucial for under-
standing the scattering mechanisms in polarimetric syn-

thetic aperture radar (PolSAR) observations. Such techniques
are useful for associating a physical scattering mechanism
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to each component of the decomposed backscattered radar
power [1], [2], [3], [4], [5], [6]. Various strategies ranging
from model-based decomposition (MBD) to eigenvector-based
decomposition (EVBD) have been employed for decomposing
the PolSAR data [7], [8], [9], [10].

In the domain of image and signal processing, the idea
of utilizing a distance and divergence measure to assess the
proximity of pixel samples to a reference characteristic is rea-
sonably well known [11], [12]. Classification of PolSAR data
based on the symmetric scatterer space distance measure from
canonical targets was proposed in Cameron’s classification
scheme [13], [14]. Speckle reduction and edge detection in
PolSAR images were achieved using approaches based on the
concept of stochastic distance between complex Wishart dis-
tributions [15], [16]. An investigation employed the Hellinger
distance to estimate the polarization orientation angle for
compensating for the pseudo-decomposition power (in the
volume scattering) arising from rotated urban areas [17]. The
concept of geodesic distance (GD) [18] has been utilized in a
different manner for feature extraction, region discrimination,
and texture retrieval in PolSAR images [19], [20]. Recent
investigations exploited the concept of temporal changes in the
PolSAR scattering mechanisms [21], [22], [23] and utilized
the idea of GD for computing the distance between the
Kennaugh matrices of the observed and canonical/elementary
targets for mapping urban change detection [24]. A gener-
alized radar vegetation index (GRVI) was proposed based
on the concept of GD [24] between the Kennaugh matrix
corresponding to the generalized volume scattering model
(GVSM) (Kv) [25] and the observed Kennaugh matrix
(KTarget) associated with the PolSAR backscattering from the
vegetation [26], [27].

Even though full/quad polarimetric (FP) SAR data has
been repeatedly acknowledged for providing superior-quality
radar observations, such systems are operated at a reduced
swath width due to the large volume of the acquired data.
On the other hand, compact polarimetric (CP) systems provide
a middle ground by covering twice the swath width of FP
systems and greater polarization information when compared
to dual-polarimetric (DP) linear systems [28]. One of the
manifestations of CP, the hybrid CP mode, transmits right-
or left-handed circular polarization and receives in linear
polarization (circular transmit linear receive: CTLR). The
hybrid CP mode demonstrates some engineering advantages
such as the ease of implementation, self-calibration capability,
and lower susceptibility to noise and cross-channel errors,
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which leads to the superior quality of CP data [29]. The CTLR
mode defies the conventional idea of having a dual-circularly
polarized on receive (same sense and opposite sense) for a
circularly polarized transmit. This convention is based on the
traditionally followed design agreement for the transmit and
the receive basis (linear or circular). However, the fundamental
principles assure conservation of the backscattered power from
a target only when the power is split into an orthogonal pair of
polarization. This is possible only if the received polarization
has no like or cross-polarized relationship to the transmitted
polarization. Consequently, this serves as the fundamental idea
of having the received polarization on a linear basis even
though the transmitted polarization is on a circular basis for
a CTLR system. This seemingly contrarian transmit–receive
architecture has been observed to be impartially superior to
other proposed alternatives for a CP system [30], [31].

Although several strategies have been explored with CP
SAR data for decomposing the total backscattered power, the
distance based approach still largely remains unexplored [32],
[33], [34], [35], [36], [37]. In this investigation, we exploited
the concept of GD between the Kennaugh matrices of the
canonical and the observed targets to decompose the total
polarized power. Furthermore, for readjusting the powers in
the polarized components, we proposed a strategy to compute
a pseudo-power compensation factor by utilizing the CP radar
vegetation index (CpRVI) [38]. This was crucial since we
noticed unreasonable levels of double bounce power over
the agricultural fields even under bare field conditions. The
effectiveness of the proposed decomposition was demonstrated
with real hybrid compact RADARSAT Constellation Mission
(RCM) and simulated RADARSAT-2 (RS2) data for vari-
ous crop types. The proposed decomposition powers closely
matched the CP decomposition proposed by [35].

II. TEST SITE AND DATA

A. Test Site and In Situ Measurements

1) Sherbrooke (RCM Data, 2022), Québec, Canada: The
Sherbrooke Research and Development Centre is located in
Sherbrooke, QC, Canada, and serves as one of the Agriculture
and Agri-Food Canada’s (AAFC) network of 20 research and
development centers. The center is surrounded by experimen-
tal agricultural fields growing a variety of crops like soya,
corn, and wheat. We conducted a detailed field campaign
in 2022 and continuously monitored the fields using a soil
moisture sensor network and periodic field measurements of
vital parameters such as crop biomass, vegetation growth
stage, and soil moisture, which were synchronized with RCM,
RS2, and Sentinel-1 (S1) satellite passes.

2) Carman (RS2 Data, 2016), Manitoba, Canada: Carman
is an important agricultural hub in Manitoba, Canada, due
to the presence of a wide variety of agricultural businesses
and services within easy access to national and international
logistics and transportation corridors. The region is located
in the middle of a rich agricultural belt approximately 90 km
west of Winnipeg and 60 km north of the US border at the
eastern edge of the Canadian prairies. This site was part of
the SMAPVEX 2012 and 2016 field campaigns, when the

TABLE I
SATELLITE SAR TIME-SERIES OVER THE TEST SITES. RS2 (FOR

SIMULATED HYBRID CP DATA; FQ15W: 33.78◦–36.37◦) AND
RCM (FOR REAL HYBRID CP DATA; SCANSAR: 17.03◦–21.90◦).

D1, D2, AND D3 INDICATE TEMPORAL PROGRESSION
OF CROP GROWTH

fields were monitored regularly with a variety of field sensor
networks from AAFC, US Department of Agriculture (USDA),
and a variety of manual measurements. We selected fields
planted with soya and corn for our investigation since they
were common crop types between both sites. These fields were
sown in early May and harvested toward late September or
early October.

B. Satellite Data

1) RCM (For Real Hybrid CP Data): RCM is Canada’s
state-of-the-art Earth observation constellation mission con-
sisting of three identical satellites operating at C-band, which
provides near real-time observations over Canada. The hybrid
CP CTLR mode of RCM transmits a right-handed circular
(RHC) polarization and receives in linear polarizations (hori-
zontal: H and vertical: V). The circular transmit polarization
is achieved by simultaneously transmitting H and V polariza-
tions, which are 90◦ out of phase [29]. This imaging mode
enables a wider swath/coverage when compared to FP SAR
systems. The data supplied in the form of 2 × 2 complex
covariance (C) matrices are utilized to compute the Stokes
vectors and Kennaugh matrices. We utilized the RCM data
available over the Sherbrooke test site covering a cropping
cycle in 2022, as listed in Table I. The crop growth over the
soya and corn fields can be observed in Fig. 1.

2) RS2 (For Simulated Hybrid CP Data): RS2 is one of the
world’s most advanced Canadian satellite SAR systems with
FP capabilities operating at C-band. FP SAR systems sepa-
rately transmit orthogonally polarized radar pulses (horizontal:
H and vertical: V) and measure the backscattered signal in both
polarizations [39]. Each pixel of FP data is characterized by a
complex scattering matrix, which relates the incident and the
backscattered wave [40]. In the absence of real hybrid CP data,
the FP data can be utilized to simulate a CTLR Stokes vector
as per the first principles presented in [29]. We employed
the RS2 data available over the Carman test site covering a
cropping cycle in 2016, as listed in Table I. The crop growth
over the soya and corn fields can be observed in Fig. 2.

C. Crop Characteristics

Crop characteristics influence the performance of satellite
data-derived vegetation descriptors such as CpRVI, which are
utilized for capturing the crop growth dynamics at differ-
ent phenological stages. Therefore, clarity on the structural
attributes of the crops is essential. The agricultural fields con-
sidered for this investigation were planted with the following
crop types.
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Fig. 1. Temporal progression of crop growth over a soya and corn field:
Sherbrooke, QC, Canada, 2022. (e) and (f) Vegetation height over the soya
and corn fields in the advanced stage of crop growth, respectively. Site for
RCM real hybrid CP data. (a) Soya: 24th June. (b) Corn: 24th June. (c) Soya:
16th July. (d) Corn: 16th July. (e) Soya: 1st August. (f) Corn: 1st August.

1) Soya: The soya plant develops as a pair of single
blades, which subsequently branches out to matured nodes
with compounded leaves with three blades. These further
mature into trifoliolate leaves consisting of 3–4 leaflets per
leaf, which are 6–15 cm long and 2–7 cm broad. The leafing
stages are followed by flowering, full bloom, beginning and
full pod, beginning and full seed, and physiological matu-
rity [41]. In its matured stage, the plant reaches 50–125 cm in
height [Fig. 1(e)].

2) Corn: A well-developed corn plant is often 3 m or taller
in height [Fig. 1(f)] and the spiked ears (female flowers), with
the corn kernels encased in sheaths of leaves, develop in the

Fig. 2. Temporal progression of crop growth over a soya and corn field:
Carman, MB, Canada, 2016. Fields were sown early in May, which explains
the vegetation-free bare conditions. Site for RS2-simulated hybrid CP data.
(a) Soya: 16th May. (b) Corn: 16th May. (c) Soya: 9th June. (d) Corn: 9th June.
(e) Soya: 27th July. (f) Corn: 27th July.

midsection of the plant. It is composed of leaves sprouting
from the nodes, alternately on opposite sides of the stalk with
the stem divided into several internodes. The growth stages of
corn can be majorly classified into vegetative or reproductive.
After emergence, the development of the leaves with fully
developed collars is followed by the development of tassels
(male flowers), which ends the vegetative leafing stage [42].
The planting density of corn affects multiple factors such as
the number of ears per stalk and plant matter (important for
silage).

III. METHODOLOGY

The hybrid CP SAR observation is expressed as
4 × 1 Stokes vector [see (1)], which is derived from the
2 × 2 complex covariance (C) matrix as

S =


S0
S1
S2
S3

 =


C11 + C22
C11 − C22
C12 + C21

± j(C12 − C21)

 (1)

where ± corresponds to the left-hand circular (LHC: +) or
right-hand circular (RHC: −) transmitted signal in the hybrid
CP mode. The transmitted and the received Stokes vectors are
related to the Kennaugh matrix, which was introduced by [43]
for evaluating the power received in a radar observation.
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The hybrid CP SAR Kennaugh matrix can be expressed in
terms of the elements of the Stokes vector as

K =


S0 0 S2/2 0
0 0 0 S1

S2/2 0 0 0
0 S1 0 S3/2

. (2)

To decompose the polarized component of the backscattered
power, we utilized the concept of GD, which is computed as

GD(K1, K2) =
2
π

cos−1 Tr
(

K T
1 K2

)√
Tr

(
K T

1 K1
)√

Tr
(

K T
2 K2

) (3)

where K1 and K2 are the two Kennaugh matrices for the
canonical (KDihedral or KTrihedral) and real targets (KTarget),
respectively. Tr and T are the trace and transpose operators,
respectively. Factor (2/π) normalizes the distance GD in the
range 0–1. We consider the canonical Kennaugh matrices for
the dihedral and trihedral targets due to their close association
with even and odd bounce scatterings, respectively. A similar-
ity measure between the real and the canonical targets is the
inverse of GD, which was computed as

SIMDB = 1 − GD
(

KDihedral, KTarget
)

(4.1)

SIMS = 1 − GD
(

KTrihedral, KTarget
)
. (4.2)

In the proposed decomposition, the randomly polarized
volume power (PV ) is computed as the fraction of the total
backscattered power that is depolarized (1 − DoP) during the
process of radar signal scattering. This is a popular formulation
followed by past investigations [33], [34], [35]. The degree of
polarization (DoP) [44] is computed as

DoP =

√
S2

1 + S2
2 + S2

3

S0
. (5)

We introduced the idea of distance based decomposition for
dividing the polarized power component into two elementary
scattering mechanisms (surface: PS and double bounce: PDB).
The polarized powers (PDB and PS) were computed by bifur-
cating the total polarized power (S0 × DoP) in proportion
to the normalized similarity measures with respect to the
canonical targets (dihedral or trihedral). The normalized simi-
larity measures [dihedral similarity: (SIMDB)/(SIMDB+SIMS)

and trihedral similarity: (SIMS)/(SIMDB + SIMS)] vary from
0 to 1, spanning the lowest to highest level of similarity of
the observed target to the canonical targets, respectively. The
proposed decomposition powers were computed as

PV = S0 × (1 − DoP) (6.1)

PDB = S0 × DoP ×
SIMDB

SIMDB + SIMS
(6.2)

PS = S0 × DoP ×
SIMS

SIMDB + SIMS
. (6.3)

With the distance based decomposition, we observed unrea-
sonable levels of double bounce power over the agricultural
fields. We hypothesized that there was a presence of a
pseudo-power component due to target irregularities that was
causing this overestimation. Target irregularities play a role
in determining the randomness (between even or odd bounce

and nonspecular scattering contributions) of the scattering
process [45], [46]. While a perfectly smooth surface scat-
ters the incident signal in the specular direction, a surface
(and subsurface) with irregularities scatters the signal in all
directions following the Lambertian law [47], [48]. Under
such circumstances, we realized that a readjustment between
the polarized powers (PDB and PS) was necessary. Therefore,
we proposed to compute a compensation factor (PExtra) from
the double bounce component with an exponentially decaying
function of CpRVI as

PExtra = PDB × exp(−CpRVI). (7)

It is important to note that this randomness in the scattering
of the polarized powers is different from the randomness
that occurs under vegetated conditions, where the latter
causes depolarization (or nonconservation) of the total power
that contributes to the diffused/volume scattering. Therefore,
we utilized an exponentially decaying function of CpRVI to
compute the pseudo-power component in the double bounce,
which is caused as a result of randomness in the scattering of
the polarized powers. The exponentially decreasing nature of
compensation indicates that as the CpRVI increases, the idea
of scattering randomness associated with the surface irregulari-
ties becomes less significant since the scattering tendency over
the fields gradually shifts toward the volume/diffused power
component arising from the signal interaction with the growing
vegetation.

The CpRVI is derived using the concept of GD between
the Kennaugh matrices of the observed target and an ideal
depolarizer (ID), which is a realization of vegetation canopy
[38], [49]. The distance is then utilized for computing a
similarity measure, which is modulated with a scaled quantity
that is derived from signal scattering power ratio of the same
and opposite sense polarization [38]. The sense of polarization
is determined with respect to the handedness (left or right) of
the transmitted circular polarization. We utilized CpRVI as
an indicator of the degree of readjustment/compensation that
was necessary between the polarized components depending
on the similarity of a target to an ID. Therefore, as the GD
to the ID decreased (with the increase in the crop growth),
the compensation requirement of the polarized components
exponentially decreased as the power of CpRVI. The polarized
components of the decomposed powers were readjusted using
the PExtra as

PDB = PDB − PExtra (8.1)
PS = PS + PExtra (8.2)

where PExtra varies from 100% to 36.78% of PDB as the CpRVI
varies from 0 to 1, respectively.

We evaluated the proposed decomposition powers by com-
paring them with the recently proposed nonmodel-based three-
component scattering power CP decomposition utilizing novel
roll-invariant scattering-type parameters [35], which are known
for their robustness under a change of wave polarization
basis [4]. We observed the correlation between the crop growth
information collected over the two agricultural sites and the
change in the decomposition powers.
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Fig. 3. Uncompensated decomposition powers over a soya field: Sherbrooke,
QC, Canada, 2022. D1, D2, and D3 (as listed in Table I) indicate temporal
progression of crop growth. The compensated powers are shown in Fig. 6(a).
The powers are averaged over an agricultural field. Observations for RCM
real hybrid CP data.

IV. RESULTS

We tested the proposed decomposition technique with real
and simulated hybrid CP data over soya and corn fields, which
were common crop types between the agricultural sites. With
the preliminary distance based decomposition of the polarized
powers [see (6.1)–(6.3)] in proportion to the similarity mea-
sures to the canonical targets (dihedral or trihedral), we noted
an overestimation of the double bounce powers, as shown,
for example, in Fig. 3 for a soya field. Upon comparison
of our decomposed polarized powers with [35], we observed
that our double bounce powers were overestimated, whereas
the surface powers were underestimated. We also observed
that the overestimation was higher at the early stage of crop
growth when compared to the more advanced stages. Since
the volume powers were computed with a similar strategy as
proposed in [35], the volume components were equal for both
decomposition approaches.

To understand the growing vegetation scenario, we looked at
the CP data-derived CpRVI and other distance based measures
during the crop growth cycle (D1, D2, and D3), as shown
in Fig. 4 for a soya field. We utilized the Kennaugh matrix
of an ID, a realization of vegetation canopy, as a volume
model to determine the proximity of an observed target Stokes
vector to a randomly polarized wave. In this regard, we looked
at the temporal change in the GD and similarity measure
with respect to ID [38]. The decreasing distance from the
ID (and consequently increasing similarity measure) indicated
the growing depolarizing tendency over the agricultural fields
as a result of the crop growth. At an early stage of crop
growth, when the lower range of CpRVI prevails (nearly
bare field conditions), the polarized surface power component
is expected to predominate. However, under practical field
scenarios, the polarized component of the scattered power
from bare agricultural fields may not originate from a pure
surface (or odd bounce) scattering. An even or odd bounce
scattering is determined by the electromagnetic interaction

Fig. 4. Variation of CpRVI along with GD and SIM to an ID [38] over a soya
field: Sherbrooke, QC, Canada, 2022. The corresponding uncompensated and
compensated powers are shown in Figs. 3 and 6(a), respectively. D1: June,
D2: July, and D3: August indicate temporal progression of the crop growth.
The measures are averaged over an agricultural field. Observations for RCM
real hybrid CP data.

of the incoming radar signal with the target characteristics
matching the order of the incident wavelength.

The compensated powers are presented in Figs. 6 and 8
for both real and simulated hybrid CP data, respectively.
Comparison of pre- and postcompensated powers, as can be
observed in Figs. 3 and 6(a), indicates a significant reduction
in the overestimated double bounce component. In both cases
(real and simulated hybrid CPs) presented in Figs. 6 and 8,
the proposed decomposition closely followed the decomposed
powers obtained from [35]. Under bare field condition (D1 in
Fig. 8), the double bounce power in the proposed decomposi-
tion is slightly higher than [35] for both soya and corn fields.
Samples originating from a single bounce scattering (bare
soil vegetation-free condition) are expected to be concentrated
on the south pole of the Poincaré sphere. On the contrary,
some intrasample dispersion seems to be apparent between
the samples originating from different portions of the bare
soya field in Manitoba, Canada [Fig. 2(a)], which can be
visually appreciated in Fig. 7(a) with the Poincaré sphere
representation. The target irregularities from different sections
of the field appear to be the factor contributing to the increase
in the pseudo-double bounce power. Therefore, the distance
based decomposition approach appears to be more sensitive
to the sample dispersion when compared to the decomposition
utilizing the roll-invariant scattering-type parameters [35]. This
explains the necessity for the inclusion of a compensation
factor in the proposed decomposition.

Investigations proposing/utilizing CP decomposition tech-
niques have predominantly presented the averaged values of
decomposition powers over a region of interest for high-
lighting the effectiveness of the decomposition in captur-
ing the temporal change in the target scattering. However,
such investigations have seldom reported any visual nuances
between the real and simulated hybrid CP data. Therefore,
we utilized the Poincaré sphere representation [50], [51]
for observing the changes in the scattering scenarios occur-
ring over the agricultural fields as a result of the temporal



2004412 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Fig. 5. Poincaré sphere representation of changing scattering scenario with
the temporal progression of crop growth over a soya field in Sherbrooke, QC,
Canada, 2022. (a) June (D1). (b) July (D2). (c) August (D3). The corre-
sponding decomposition powers are shown in Fig. 6(a) and (b), respectively.
Each point in the Poincaré sphere represents a field pixel. Observations for
RCM real hybrid CP data.

progression of the crop growth. Moreover, the idea of GD
aligns well with the spherical representation of the CP data.
By virtue of this representation, we noticed unique visual

nuances between real and simulated hybrid CP data in terms
of the trend of temporal changes in the scattering behavior,
as shown in Figs. 5 (with the corresponding decomposition in
Fig. 6) and 7 (with the corresponding decomposition in Fig. 8).
The sample dispersion is more evident over the Sherbrooke site
(RCM) when compared to the Manitoba site (RS2). Differing
ranges of incidence angles for RCM (ScanSAR: 17.03◦–
21.90◦) and RS2 (FQ15W: 33.78◦–36.37◦) data can possibly
influence this observation.

This representation effectively captures the overall scatter-
ing scenario over a region of interest since each sample point
on the surface/within the Poincaré sphere essentially defines
the state of polarization of a single pixel [52], [53].

With real compact data, the scattering mechanism evolves
from nearly circularly polarized (where the samples are clus-
tered at the south pole of the Poincaré sphere) to elliptically
polarized waves that skim along the curvature of the sphere.
During the very early stage of the growing season, while the
leaf development and stem elongation are still in progress,
a left-handed circular response (sample cloud is concen-
trated on the south pole) dominates. As the crop growth
progresses, the dominant component of the surface scatter-
ing decreases [54]. The sample cluster traverses from the
south pole toward the equator and eventually disperses within
the Poincaré sphere, inducing a diverse range of ellipticities
and DoPs. The sample cloud movement within the sphere
illustrates the variation of ellipticity, orientation, and hand-
edness of the backscattered wave as crops undergo changes
in phenology. The presence of ellipticity in the backscattered
wave indicates the occurrence of budding and flowering. When
a certain orientation of polarization (H or V) is selectively
attenuated, the backscattered wave develops linearity. The
orientation of the elliptical or linear component depends on
the arrangement and dimension of the canopy element. The
growing vertical canopy orientation within the vegetation
volume results in the increase in the double bounce scatter-
ing component [55]. In the advanced stage of crop growth,
canopy element arrangement can be represented by the random
distribution of dipole scatterers contributing to the volume
scattering component [56]. The complex canopy arrangement
is reflected by the randomness in the wave scattering param-
eters (like orientation). Due to the rising volume scattering
contribution and limited penetration capability of the C-band,
the signal contribution from the surface decreases [54], [57].
Upon crop harvest, the sample cloud is expected to return to
the left-handed circular wave scattering. Such variations are
sensitive both to the crop phenology (its stages of evolution)
and crop type [58]. In the case of the simulated hybrid CP
data, this trend of the cluster of points skimming along the
curvature of the Poincaré sphere appears to be absent (Fig. 7).
On the contrary, samples from the field at an early growth stage
are located around the pole with some intrasample dispersion,
similar to the real hybrid CP data, and as the crop growth
progresses the cluster moves toward the equator in a vertical
manner (rather than bending along the curvature of the sphere).
This movement depicts the increasing level of randomness
between the points in the sample cloud as the crop growth
progresses. Therefore, as the vegetation grows, the cluster
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Fig. 6. Comparison of decomposition powers: proposed versus Dey et al. [35] IEEE TGRS, 2020. D1: June, D2: July, and D3: August indicate the temporal
progression of crop growth over Sherbrooke, QC, Canada, 2022. (a) and (b) Soya. (c) and (d) Corn. The powers are averaged over an agricultural field.
Observations for RCM real hybrid CP data.

appears more dispersed due to the differences in the vegetation
characteristics at different sections of the agricultural field.
Thus, the observed randomness within the Poincaré sphere is
caused due to unique differences, introduced as a result of crop
growth, in the scattering mechanisms within an agricultural
field of the same crop type.

At an early stage (D1), the placement of the sample cluster
within the sphere (near the poles with almost zeros ellipticity
or between the poles and the equator with finite ellipticity)
is sensitive to the state of the bare field (lightly vegetated),
which can be appreciated by comparing Fig. 1 with Fig. 2 and
Fig. 5 with Fig. 7. Furthermore, it is interesting to note that
crop growth and movement of the sample cluster within the
Poincaré sphere are strongly correlated until the fields attain a
certain stage of crop biomass beyond which further transition
of the sample appears to be relatively random. CP return
from the bare fields is expected to be nearly circular with the
sample cloud clustering around the south pole. As the veg-
etation develops, the transmitted polarimetric phase between
the horizontal and vertical components is perturbed and the
amplitude of each polarization channel is selectively attenuated

as per the orientation and dielectric state of the scattering
elements. An increase in the randomness/deviations in the
ellipticities in the sample cloud contributed to an increase
in the volume scattering power, which can be observed in
the advanced stages (D3) of crop growth in Figs. 6 and 8.
Thus, an increase in the volume power can be attributed to
an enhanced level of randomness/dispersion of the samples
within the Poincaré sphere. It is also interesting to observe
that higher percentages of volume powers, as can be observed
in Fig. 8 as compared to Fig. 6, corresponds to clustering
of the sample cloud around the origin of the Poincaré sphere
indicating the presence of strongly depolarizing targets, which
is apparent in Fig. 7. In both cases (real and simulated
hybrid CPs), despite the nuances in the scattering behavior,
as observed in the Poincaré sphere representation, the decom-
positions (proposed and [35]) were able to reliably capture the
progression of the crop growth through the scattering powers.
These nuances can be attributed to the inherent differences
in the imaging architectures followed by FP and hybrid
CP systems with regard to transmit and receive polariza-
tion basis.
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Fig. 7. Poincaré sphere representation of changing scattering scenario due
to temporal progression of crop growth over a soya field in Carman, MB,
Canada, 2016. (a) May (D1). (b) June (D2). (c) July (D3). The corresponding
decomposition powers are shown in Fig. 8(a) and (b), respectively. Each point
in the Poincaré sphere represents a field pixel. Observations for RS2 simulated
hybrid CP data.

V. DISCUSSION

In this investigation, we demonstrated the potential of
GD (between the Kennaugh matrices of the observed and
canonical targets) to decompose CP SAR data acquired over

agricultural landscapes. The RCM CP radar architecture trans-
mitted a right-circularly polarized SAR signal, so a bare
surface or odd bounce scattered wave was returned in the
opposite sense as a left-circular polarized wave. We decom-
posed the polarized portion of the total power in proportion to
the similarity (or proximity) measure to the canonical targets
(dihedral or trihedral). The technique was observed to be
effective for monitoring the temporal changes in the scattering
powers occurring as a result of progression in crop growth.

Since we proposed a GD-based CP decomposition in this
investigation, it was necessary to obtain the CP form of
the target Kennaugh matrix to be able to characterize the
polarimetric scattering information (via geodesic proximity to
the canonical scatterers). It is possible that a Kennaugh matrix
constructed with a limited number of elements may not be the
ideal way to fully characterize a target scattering scenario.
However, it is important to note that the Kennaugh matrix
representation in terms of the elements of the Stokes vector
utilized the complete information present in the Stokes vector.
Although the target characterization abilities of CP data is a
matter of constant debate in the Earth observation community,
the CP system enables enhanced swath observations (better
spatial and temporal coverages) when compared to FP SAR
sensors.

With a preliminary distance based decomposition,
we observed an overestimation of the double bounce powers
and an underestimation of the surface powers. Therefore,
we introduced the idea of a pseudo-power component arising
from the interaction between the target irregularities and inci-
dent signal, prominently under bare field (lightly vegetated)
conditions. Furthermore, we proposed a polarized power
(surface and double bounce) compensation/readjustment
factor to resolve this issue. The compensation factor was
estimated by utilizing an exponentially decaying function
of CpRVI to retrieve the pseudo-power component from the
double bounce power. The CpRVI was utilized as an indicator
of the prevailing vegetation condition over the agricultural
fields and the degree of readjustment/compensation that
was necessary. The effectiveness of the CpRVI in the
compensation process demonstrated its potential to reliably
capture the different phenological stages of crop growth.
Moreover, we also tested the proposed technique by replacing
the distance to the dihedral with the distance to the helix.
However, this did not resolve the issue of pseudo-double
bounce power. The proposed compensation factor based
on the CpRVI was still necessary. In addition to the target
irregularities, there may be several other factors (like an
imbalance in the Stokes vector-derived Kennaugh matrix)
contributing to the observed scattering bias.

It is important to reemphasize that the scattering bias
(or pseudo-power) is not assumed to be arising from the
vegetation but from the surface irregularities. The polarimetric
vegetation indicator (CpRVI) was only utilized to quantify
the progressively obscuring effect of the growing vegetation,
which gradually concealed the surface irregularities from the
imaging signal as the crop growth progressed. Therefore,
we exponentially decreased the amount of compensation for
the pseudo-power as a function of CpRVI since we associated
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Fig. 8. Comparison of decomposition powers: proposed versus Dey et al. [35] IEEE TGRS, 2020. D1: May, D2: June, and D3: July indicate the temporal
progression of crop growth over Carman, MB, Canada, 2016. (a) and (b) Soya. (c) and (d) Corn. The powers are averaged over an agricultural field. Observations
for RS2 simulated hybrid CP data.

the extra power component with the surface irregularities and
not with vegetation randomness. The important thing here
was to adopt a decaying power function that attenuates the
interaction between the target irregularities and the incident
signal as a result of the temporal progression of vegetation
growth. This occurs due to the progressively decreasing trans-
mittivity of the incident signal through the fresh growing
vegetation volume. Moreover, the rate of growth of vegetation
is not linear over the cropping cycle. Therefore, we introduced
an exponentially decreasing function to simulate the idea
of decreasing signal–surface interaction. This is the physical
justification that we would like to put forward for our assump-
tion. Furthermore, in the advanced stages of crop growth,
when the interaction between the target irregularities and the
incident signal is limited, the CPRVI can be modulated by
a constant (exp(−AVegetation ∗ CpRVI)), which is sensitive
to the vegetation characteristics and prevailing biomass. This
will effectively reduce the pseudo-power extracted from PDB
(beyond the 36.78% limit) under dense vegetation condi-
tion when the volume scattering is directed toward the soil,
reflected by the soil, interact with the vegetation, and is then
attenuated by the vegetation layer before reaching the sensor.

For the first time, we presented the visual nuances between
the real and simulated hybrid CP data in the Poincaré sphere
representation. While the real CP sample cloud largely fol-
lowed the curvature of the sphere (Fig. 5), the simulated
cloud indicated a vertical movement (Fig. 7) with the samples
concentrated around the S3-axis. The difference in the range
of incidence angles for the two sensors (RS2 acquisitions
were at higher incidence angles when compared to RCM)
possibly influenced this observation. The use of Poincaré
sphere to demonstrate such differences are limited in the
PolSAR literature [50], [59]. We explained the relationship
between the dynamics of the sample cloud within the sphere
and the decomposition powers. Such visual representations are
necessary for a comprehensive and intuitive understanding of
the target scattering dynamics while decomposing the total
backscattered power over a region of interest. The perspective
is otherwise incomplete when only the averaged values of
the decomposed powers are presented, as is often the case in
the literature. We observed that despite the nuances in the scat-
tering behavior, both the decomposition techniques (proposed
and Dey et al. [35] IEEE TGRS, 2020) were reliably able to
capture the progression of crop growth in terms of temporal
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change in the scattering powers. We observed that the proposed
GD-based decomposition approach indicated a higher sensitiv-
ity to the nuances in the scattering behavior when compared
to the other decomposition technique (Dey et al. [35] IEEE
TGRS, 2020) that utilized the roll-invariant scattering-type
parameters. Overall, the decomposition results were compara-
ble for both cases (real and simulated hybrid CPs) considered
in this investigation. During the early stage of the crop growth
cycle, we observed relatively higher percentages of surface
power over the soya fields when compared to the corn fields
for both cases. This can be prominently attributed to target
irregularities and, to a lesser extent, to the obscuring effect of
higher crop biomass (at advanced stages) and crop height (as
can be observed in Fig. 1), which consequently limits radar
signal penetration and surface interactions [44], [60], [61].

It is important to appreciate the close proximity of compen-
sated decomposition powers (in Figs. 6 and 8) obtained using
fundamentally different decomposition approaches, which sup-
ported our assumption and demonstrated the effectiveness
of the compensation. Although the acquisition of surface
irregularity information would have been useful, it is not
only challenging due to the manual efforts involved, but
also impractical for operational applications and infeasible to
measure at advanced stages of crop growth without destructing
the crops. Detailed analysis and synchronization between the
field measurements and satellite acquisition are necessary to
establish such complex relationships. The authors are investi-
gating the impact of various field conditions over the observed
polarimetric response through their ongoing field campaign
over the agricultural test site in Sherbrooke, QC, Canada.

VI. CONCLUSION

The following key observations can be concluded from this
investigation.

1) We proposed a GD-based scattering power decom-
position technique for CP SAR data acquired over
agricultural landscapes. The technique incorporated a
compensation factor that utilized the CpRVI to compen-
sate for the pseudo-power (attributed to be arising from
the target irregularities) observed in the double bounce
component.

2) We presented the unique visual nuances between the
real and simulated hybrid CP data in terms of temporal
changes in radar scattering occurring as a result of
crop growth. The Poincaré sphere representation was
introduced as the quintessential visualization tool for
providing a comprehensive overview of the nuances
between the CP cases considered in this investigation.

3) Our proposed decomposition powers closely followed
the recently proposed nonmodel-based three-component
scattering power CP decomposition, which utilizes
novel roll-invariant scattering-type parameters [35]. It is
noteworthy that even though the two decomposition
techniques followed different mathematical approaches
to decompose the scattering powers, they indicated
strong resemblance both in terms of the temporal trend
(increasing or decreasing powers) and the proportion

of distribution of the scattering powers between the
decomposed components. Furthermore, the effectiveness
of both decomposition techniques in capturing the pro-
gression of crop growth was not impacted by the nuances
observed in the Poincaré sphere representation between
the real and simulated hybrid CP data.
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