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Sampling-Free Bayesian Inference for Local
Refinement in Linear Inversion Problems

With a Latent Target Property
Charlotte Semin-Sanchis and Odd Kolbjørnsen

Abstract— We present a sampling-free probabilistic inversion
of latent target property based on the principles of expectation
propagation where we estimate the joint distribution of the
target variable in a local region. The prior model matches the
prior distribution in the local-focused region but integrates our
model parameters outside the focus region using approximate
distributions. The approximate distribution includes large spatial
structure information while maintaining the dimension of the
inversion small. In addition, we map and solve the inversion into
a new feature space where we can exclude components where the
data have little influence, thereby decreasing the dimensionality
of the inversion, and therefore, the inversion runtime. We test
the method on seismic amplitude-versus-offset (AVO) inversion
examples for the prediction of facies classes, as well as on
the estimation of vuggy porosity in computed tomography (CT)
images of core from a carbonate reservoir. We demonstrate that
our method achieves good-quality predictions while significantly
reducing the computational demand, making it particularly
interesting to run large-scale inversion studies.

Index Terms— Bayesian inference, expectation propagation,
Gaussian process, linear inversion problems, rocks, seismic
inversion, variational inference.

I. INTRODUCTION

MANY ill-posed inverse problems that arise through
remote sensing and indirect measurements, such as

seismic and medical imaging, conform to a structure where
the parameters sought have a two-level structure. The acquired
data (d) respond to a particular property of the investigated
media, the intermediate property (m), which itself responds
to another property of the media, the target property (r).
In X-ray tomography, the observations (d) are line integrals
of the absorption (m), whereas the target property (r) is tissue
type [1] or density. In a seismic inversion, the objective is the
estimation of rock properties, such as rock type, porosity, and
fluid filling (r), but the observations (d), the seismic data in
this case, are the response to intermediate properties, such as
sound velocity and density (m) [2].
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Fig. 1. Relation between target property (r), intermediate property (m), and
observations (d).

The objective of inversion problems is to make inferences
about r based on the data d. Thus, the problem formulation
is split into two parts: the first one involves a local rela-
tionship that connects the target property to the intermediate
local property, while the second one is a global relationship
that connects the intermediate property to the observations.
The relations are illustrated in Fig. 1. The first relation
that connects the target and intermediate properties is local,
meaning that there is a point-to-point relationship between
them. This implies that a target property in one location only
affects the intermediate property in that specific location. This
relation might be theoretical or empirical and need not be
unique, i.e., different formulations of this relation may exist.
The parameter may be discrete or continuous. In the case
of the second relation, there exists a physical relationship
connecting the intermediate property to the observations. This
is considered as global as the intermediate property in one
location impacts the observed data within a potentially large
neighborhood around that specific location.

A common way to handle this problem is to use a two-step
approach of inversion. First, an inverse problem is solved
to estimate the intermediate property, next this property is
inverted into the target property. The benefit of this approach
is that it separates the two problems. One that only considers
the physics of the indirect measurements and another that
considers the relationship between properties of the media.
The two fields of knowledge are often just partly overlapping,
and as a result, the separation is dictated by the boundaries of
the respective disciplines which are convenient. The challenge
of the two-step approach is to transfer the knowledge and
uncertainty related to the measurements all the way to the
target property. In this process, the spatial constraints and
allowances are the hardest. The intermediate property has a
point-to-point relation to the target property, but this is in
general not true for the estimate of the intermediate property
obtained by inverting the physics. This estimate lacks the
resolution a point-to-point relation requires, and also the
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uncertainty in the inversion is not well represented using a
pointwise description.

An alternative is to employ a one-step approach, which
estimates the target property r directly from the data d. In such
cases, the Bayesian framework [3] is particularly well suited to
propagate knowledge and uncertainty. Let us use the notation p
to denote a generic probability distribution. Then, the initial
knowledge of the target properties is summarized in the prior
distribution p(r), the link between the intermediate property
and the target property is given by a likelihood p(m | r) and the
link to the physical observation is given by a second likelihood
p(d | m). The posterior information about the target variable
p(r | d) is given by the marginal posterior, through the relation

p(r | d) ∝

∫
p(r)p(m | r)p(d | m)dm. (1)

However, for large-scale problems with spatial interactions,
the models are often complex, and it is a challenge to quantify
the information contained by the posterior distribution. Brute
force methods, such as Markov chain Monte Carlo (McMC),
are time consuming and memory inefficient. The way around
this consists of finding an adequate approximation, which is
computationally feasible.

The general framework we present in this article is built
on the one-step approach, wherein we directly invert the data
into target properties. For seismic inversion, the framework
developed for the direct inversion of seismic amplitudes
into rock properties. Quantitative prediction from seismic is
historically defined through the two-step approach [4], [5].
Grana and Della Rossa [2] and Buland et al. [6] show how
the uncertainty from the seismic inversion can be transferred
into uncertainty about the rock properties for the continuous
and discrete parameters, respectively. Although these methods
transfer the uncertainty correctly in a point-to-point setting,
they do not utilize the spatial structure of the problem.
Reference [7] proposes a model based on state-space mod-
els for unobserved categorical variables [8]. Other authors
improve the approximation of the likelihood model to be used
in this setting [9], [10], and the speed of these methods relies
on efficient computations of model and data utilizing 1-D
dependencies. Models that include 2-D or 3-D dependencies in
the problem either settle for a solution without any assessment
of the uncertainty [11] or utilize a computationally intensive
McMC procedure as an approximation method [12], [13], [14].
An alternative to McMC is the sampling-free Bayesian infer-
ence approach using machine learning, described in [15].
This involves using a trained neural network to estimate
the statistical properties of the posterior distribution directly
from the data. This method assesses one large-scale prop-
erty, while our method focuses on local target properties
that can be aggregated to estimate larger scale properties.
The machine learning approach has fast execution, but the
construction of a training dataset may be computationally
intensive. Finally, another possibility for Bayesian inference
is variational inference, which tends to be faster and easier to
scale to large data to McMC, as discussed in [16] and [17].

In geosciences, [18] uses variational inference to assess
the posterior distribution. A general weakness of variational

inference is that the uncertainty in the estimates tends to
be underestimated [19]. Another sampling-free approach is
expectation propagation presented in [20]. For the problem
of seismic inversion, this philosophy is followed in [21], [22],
and [23]. The aim of these papers is to compute the marginal
posterior distribution of a local property, rather than solving
the full joint posterior distribution, which uses approximate
distributions to perform integrals. In the local approach, a key
factor is that detailed analysis is performed using a neighbor-
hood of the location considered. However, the neighborhood
needs to be large enough to capture all the information
provided by the local property in the observations. This has
a computational cost since such algorithm complexity grows
exponentially with the neighborhood size [24].

The method proposed in this article extends the well-
established Bayesian inversion method [24], a one-step
approach using variational inference for direct inversion of
the data into target properties. Rimstad and Omre [24] have
already demonstrated their capability to estimate high-quality
posterior predictions in seismic inversion, including a com-
parison with examples using McMC methods considered as
the best possible approach. Our contribution focuses on the
computational effort. Therefore, we develop [24] further with
the objective of enhancing computational efficiency while
preserving the same level of quality. In our approach, we intro-
duce three zones of localization—the target region, which
we want to investigate, the neighboring region, where the
distribution of the parameters is influenced by the parameters
of the target region and the rest. We denote the approach
“focused inversion” to highlight the increase of details in the
approximation when zooming in on the target area. In the case
where the prior is stationary, we show that the problem has the
form of convolutional computations, i.e., the same set of com-
putations is utilized in every spatial location. The formulation
enables us to include large spatial structure information into
the inversion process while maintaining the size of the target
region small. Moreover, by combining this with the dimension
reduction of noninformative features, we effectively reduce the
computational runtime.

In Section II, we provide the theoretical framework for
focused inversion. First, we present the likelihood integral
obtained by integrating all intermediate properties in the
neighboring region. Then, we detail how we approximate the
likelihood from intermediate properties to preserve informa-
tion while allowing for dimension reduction. We first use
the expectation propagation principle to capture the spatial
structure information from a wide prior model and then use
the likelihood principle to validate the mapping of the linear
model to a new and more compact representation, facilitating
dimension reduction.

In Section III, we show two synthetic examples: the seismic
inversion for lithology-fluid predictions and porosity predic-
tions in rock computed tomography (CT) images. The first
example uses a relatively uncomplicated model and a small
dataset, such that it becomes possible to invert the data
with benchmark methods within a reasonable time. Thus,
we can compare the performance of the focused inversion
against state-of-the-art methods. The size and complexity of
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the second example do not allow for exact computations.
In this example, we test the sensitivity of focused inversion
parametrizations and evaluate both the runtime speedup and
the quality of the predictions against the approximated ground
truth for a 2-D inversion problem.

II. MODEL SPECIFICATION AND APPROXIMATED
LIKELIHOOD

A. Likelihood Model

The focused inversion method extends the existing, well-
established Bayesian amplitude-versus-offset (AVO) inversion
methods [22], [24], [25] based on multivariate Gaussian distri-
butions. Hence, it is appropriate to make similar assumptions
and employ the multivariate Gaussian distributions. While it
is feasible to relax the Gaussian model assumptions, as shown
in [26], doing so would necessitate using sampling procedures
to estimate the posterior distribution, which can significantly
increase the computational demand in high dimensions set-
tings. This approach contradicts the purpose of the method
presented in this article.

Thus, we use the following notation: N (x; µ, 6) is the
probability density function for a multidimensional Gaus-
sian random variable x with mean vector µ and covariance
matrix 6, while the transpose of a vector x will be denoted xT.
We consider a linear data acquisition model where the link
between the observed data d = (d1, d2, . . . , dLd)

T and the
intermediate property m = (m1, m2, . . . , mLm)T is given by
the modeling matrix G ∈ RLd×Lm , potentially obscured with
an RLm×1 error term e ∼ N (e; 0, 6e) such that

d = Gm + e. (2)

From this relationship, it follows that the likelihood function
of the data given the intermediate variable is

p(d | m) = N (d; Gm, 6e). (3)

On the contrary, the relationship between the target prop-
erty r and the intermediate property m is not necessarily
linear and can either be theoretical or empirical. However,
this relationship is local, meaning that target properties in a
specific location i influence only the intermediate property at
that location. Note that both r and m can contain multiple
properties in one location, as discussed in Section I. Thus,
if we denote by 0 the mapping function from target to
intermediate properties, we have the local relation

mi = 0(ri , ei ) (4)

where ei is additional local parameters considered nuisance
parameters as they will influence the value of the intermediate
variable but are not of interest by themself. Randomizing over
these nuisance parameters, we approximate the likelihood of
the intermediate variable given the target parameter by the
Gaussian distribution

p(m | r) = N
(
m; µm|r, 6m|r

)
(5)

where the conditional mean and covariance matrix are depen-
dent on the target variable in a nontrivial way. We discuss how
these can be assessed in the following.

To calculate the posterior distribution of target proper-
ties in (1), we need to integrate both likelihoods p(d | m)

and p(m | r). In general, we cannot assume that the relation
in (2) is local and that the mapping in (4) is linear. As a
result, the likelihood in (3) cannot be considered local and
the likelihood in (5) cannot be considered linear either. Con-
sequently, the joint problem of integrating both likelihoods
can be considered as both nonlocal due to (2) and nonlinear
due to (5). This implies that the likelihood cannot be deduced
analytically, and sampling approaches are prohibited due to the
nonlocal nature of the problem. If this is the case, a simpler
approach may be preferable. Thus, focusing the efforts on
solving a subset of the target variables makes it possible to
quantify the solution. We denote the focused subset of the
target variables by

rw = (r1, r2, . . . , rw)T (6)

where rk are the unobservable target properties in the selected
set of spatial locations. The subset is often referred to as
the configuration window. The relevant likelihood is then
p(d | rw). This likelihood is obtained by integrating all inter-
mediate parameters

p(d | rw) ∝

∫
p(d | m)p(m | rw)dm. (7)

Here, we introduce a reasonable approximation wherein the
target variable rw impacts the intermediate variable m in a
limited region R larger than w. Thus, if we select R such that
this assumption holds, i.e., p(m | mR, rw) ∼ p(m | mR), then
we use the factorization

p(m | rw) = p(m | mR)p(mR | rw) (8)

to limit the likelihood integral in (7) such that

p(d | rw) ∝

∫
p(d | mR)p(mR | rw)dmR (9)

where mR is the local representation of the intermediate
property in region R. To summarize, the three levels in our
approximation are the window w being the target region, the
region R in which the intermediate variable m is influenced
by the target variable rw, and the rest. Thus, to solve the
integral in (7), we first approximate p(d | mR) and then
the integral (9). This will provide the approximation of the
posterior distribution through the Bayes formula

p(rw|d) ∝ p(d | rw)p(rw). (10)

The current approximation and methodology are common
to other established methods, such as [24]. However, this
article’s contribution lies in the inclusion of a greater level of
detail in the approximation within these regions while reducing
the computational demand. To achieve this goal, we will
discuss how we approximate p(d | mR) and the integral (9)
in Sections II-B and II-C. More specifically, we will provide
an approach, which gives insight into which information is
carried through the different levels.

B. Integration of the Outer Region

In this section, we detail how we approximate p(d | mR)

for any region R. To preserve information, we integrate the
intermediate variables of the outer region, that is set of loca-
tions outside the region R. We use the following procedure: we
first consider the inversion of the intermediate variable. If we
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assume m to follow a multivariate Gaussian distribution such
that m ∼ N (m; µm, 6m), then the posterior distribution of
the intermediate variable, m|d ∼ N (m; µm|d, 6m|d), under the
linear model of expression (2) is Gaussian with the parameters

µm|d = µm + 6mGT(
G6mGT

+ 6e
)−1

(d − Gµm) (11)

6m|d = 6m − 6mGT(
G6mGT

+ 6e
)−1G6m. (12)

With explicit expressions now available for both the prior and
the posterior distributions, we can use them to approximate
the likelihood in region R. We first need to set the prior and
posterior Gaussian parameters for the region R. To achieve
this, we use the principle of expectation propagation and let the
prior and posterior means, µmR

and µmR |d, and covariances,
6mR and 6mR |d, match the means and covariances of the
intermediate variable limited to the region R. Finally, we use
a common technique to estimate the likelihood p(d | mR) that
consists of approximating it by the ratio of the posterior to the
prior like in [7], which gives

p(d | mR) ∝
N

(
mR; µmR |d, 6mR |d

)
N

(
mR; µmR

, 6mR

) . (13)

This is the approximation we use to integrate the outer layer.
This approach also allows us to focus the inversion on a
region R that is narrower than the one affected by the target
variable rw.

Although (13) is well defined, it is convenient to have the
likelihood in terms of a set of independent observations in
later integrations. Therefore, we propose a mapping to a new
feature space.

C. Mapping to a New Feature Space

In this section, we look for a transformation G̃ that hon-
ors the likelihood estimated in (13). Since both the prior
and the posterior in (13) are Gaussian, then the likelihood
principle [27] allows us to compute a set of linear-Gaussian
observations d̃ and the associated error ẽ with the same
information content as (13). Thus, the transformed observa-
tions d̃ also denoted as observed features are related to the
intermediate property in the region R by the relation

d̃ = G̃mR + ẽ. (14)

The local representation of the intermediate property is the
vector mR ∈ RL R , G̃ is a L d̃ × L R feature matrix while the
error ẽ, and observed features d̃ are RL d̃ -dimensional vectors.
The notation .̃ is used for any variable expressed in the feature
space. The error term ẽ follows a Gaussian distribution such
that ẽ ∼ N (ẽ; 0, 6̃e) with 6̃e being a diagonal L d̃ × L d̃
matrix. Note that the error relates to the observed features,
and therefore, the covariance structure differs from the one
in the data domain in (2). Furthermore, expressions for d̃, G̃
and 6̃e, are derived in the Appendix.

Features in the new representation are ordered according
to a decreasing signal-to-noise ratio. We can choose to leave
out the features which bring the least information and thereby
obtain a more compact representation. If no dimension reduc-
tion is applied, the dimension of the observed features matches

the number of elements in the region R, i.e., L d̃ = L R .
Otherwise, the observation representation is more compact,
and 1 ≤ L d̃ < L R , which is typical for inverse problems since
there are often unresolved features.

To summarize, we have derived a set of features d̃ whose
dimension can be chosen smaller than the dimension of the
observations in the data domain, i.e., L d̃ < L R , and whose
likelihood p(d̃ | mR) = p(d | mR). Thus, we have presented an
approximation of the likelihood p(d | mR) where the focused
inversion approach allows for a reduced size of the region R,
as well as for dimension reduction through the mapping to the
feature space. These two parameters control the dimensionality
of the focused inversion problem and therefore, they can both
contribute to the reduction of the inversion runtime.

D. Local Inversion and Approximated Posterior Model

Now, let us consider the approximation of the integral (9).
Having captured the global properties in the feature space,
we are now free to select an improved approximation for
p(mR|rw) that we will denote by p∗(mR|rw). By construction,
we know that the distribution of mR is influenced by rw. For
this reason, we again approximate p(mR|rw) by a Gaussian
distribution

p∗(mR | rw) = N (mR; µR(rw), 6R(rw)). (15)

The functions for µR(rw) and 6R(rw) are case specific. If rw

only contains discrete components, the resulting distribution
of mR is a mixture of Gaussian distributions. Reference [28]
discusses how to merge the modes of the mixture distribution
to provide the optimal distribution for expectation propagation.
A general case is considered in [22]. Current progress in deep
learning would suggest normalizing flows [29] as one option
for approximating µR(rw) and 6R(rw).

Using Gaussian linear computations, we can now derive
the likelihood of observed features given the target properties
p(d̃|rw), which is the specificity of the focused inversion
approach

p
(
d̃|rw

)
= N

(
d̃; µ̃d̃|fw , 6̃d̃|fw

)
(16)

where

µ̃d̃|fw = G̃µR(rw) (17)

6̃d̃|fw = G̃6R(rw)G̃T
+ 6̃e. (18)

Expressions for the observed features d̃ and the features
modeling and error covariance matrices G̃ and 6̃e are derived
in Appendix A. It appears clearly that the lower dimensional
elements d̃, G̃, and 6̃e yield lower dimensional model param-
eters in (17) and (18), and therefore, faster computations of
the likelihood in (16).

E. Approximate Posterior Distribution

Having derived the approximate likelihood, we use rela-
tion (10) to derive the posterior distribution. In the case where
the target variable is discrete, there is an explicit expression
for the prior and the likelihood can be multiplied to provide
the posterior. When the target variable is continuous there are
multiple options since the dimension of the problem is small.
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Fig. 2. Top: seismic wedge data at near-offset (12◦ acquisition angle) consisting of a layer of sand trapped between two layers of shale. Bottom: posterior
probability for sand estimated with three different methods—full-trace inversion (middle top), unfocused reference inversion with R100 (middle bottom), and
focused inversion with R40 (40% of nominal R100) and γ = 90% (bottom).

One option is to sample the prior distribution and use the
approximate likelihood as an important weight.

The methodology detailed in this article focuses so far on
the computation of the properties for one specific window.
A natural generalization is to apply the methodology to a
sliding window that will loop through an entire dataset, thereby
repeating the computations for all windows. Focusing on
the integration of the outer region, we see that the same
global linear inversion can be reused for all windows w and
corresponding regions R.

F. Stationary Case

Many simplifications occur if the problem has stationary
properties. Consider now the case where the linear map G is a
convolution and the random fluctuations around the prior mean
and the error distribution are stationary. Then the prior and
posterior used for three outer regions can be computed using
Fourier analysis, see [30] for details about seismic inversion.

In the stationary case, the feature vectors in (29) and the
error matrix in (36) will not change when the window location
moves, and thus, these need only be computed once. The input
to (33) can be derived for all translations of the window using
convolutions. The transformed data are then derived using the
computation in (33) per location and per feature. Thus, the
full set of operations scales with the number of features times
the number of grid elements.

In the stationary case, the likelihood in (15) is station-
ary as well and we can reuse the full likelihood in (16).
An interesting feature of the approach is that even if the
likelihood is stationary, the prior of rw need not be sta-
tionary. So, we can use stationary computations also to
derive results that are nonstationary. There are, however, some
limitations to this because if there are strong nonstationar-
ities in the distribution of rw as the window moves, the
optimal distribution for expectation propagation will not be
stationary.
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Fig. 3. Two example distributions of acoustic impedance (AI). The three
samples’ lithology configuration rw represented by the boxes in the top right
corner, consisting of shale 1 only (left-hand side) and shale 2 only (right-hand
side). The distance to the window center is given along the vertical axis. The
thick black line is the distribution mean while the uncertainty between 2.5%
and 97.5% is represented by the area in gray.

G. Discussion

Even though the distribution of the nuisance parameters
in expression (4) is unknown, it is possible to estimate the
likelihood p(m | r) using collocated samples of the target and
the intermediate variables. In our work, we estimate the mean
and covariance parameters in expression (5). Note that even
though the relation in expression (4) is local, the covariance
in expression (5) will not be diagonal since the nuisance
parameters most often are spatially correlated.

The question about how to choose the region R given the
window w is essential in the approach. An implicit assumption,
which is frequently made in local computations is R = w,
see [10]. This simplification is not required in a local frame-
work and is in general not true (an example is given in the
following). The important impact of introducing the region R
is that we consider the intermediate property to be influenced
by the target property in a larger region than the window w.
To assess the size of R, it is natural to compare the mean
and standard deviation of the two distributions, p(m|mR, rw)

and p(m|mR). The region R should be then selected such
that there is no applicable difference between the two models
outside R.

To highlight the importance of having R ̸= w, we use an
example from seismic inversion. In this example, we consider
a geological model where a layer of sand simulating the
reservoir is trapped between two layers of shale, as illustrated
in Fig. 2 (top figure). We denote by shale 1 the shale layer
above the sand and by shale 2 the shale layer below the
sand. In our notation, rw is the lithology configuration of
a three samples window, where the potential values rk are
the categorical variables {sand, shale 1, and shale 2}. The
parameter mw contains the rock physics properties of each
lithology rk within the window, located at the center of m
components in Fig. 3. For the sake of argument, we assume
that the distribution of rock physics properties for shale 1 and

Fig. 4. Rock physics parameters scatter plot for shale in black and sand
in gray. Shale and sand rock physics parameters have equal variance, but
different means.

shale 2 is identical but different from the sand one, as illus-
trated in Fig. 4. The distribution in question is p(m|mw, rw).
Consider the components of m which are below the window,
i.e., from 4 to 300 ms in Fig. 3. If rw contains shale 1 (left-
hand side of Fig. 3), then sand can still be expected below the
window. On the contrary, if rw contains shale 2 (right-hand
side of Fig. 3), we have already gone through the transition to
shale at the bottom of the sand layer, and therefore, we can
no longer expect sand below the window. Thus, there is a
difference in the distributions of m, which cannot be explained
by the values of rock physics properties in the window mw.

Even though the likelihood approximation is local, the
results can be integrated into a spatial setting. One such case
is provided in [24]. Another way to integrate the results in a
global analysis is to use the approximation in the framework
for “projection approximation of the joint likelihood” devel-
oped in [10]. The argument of integral approximation through
expectation propagation provides an alternative to the blunt
truncation used in the original formulation.

III. SYNTHETIC EXAMPLES

In this section, we first consider two seismic inversion
examples. By opting for relatively uncomplicated models
and small datasets, it becomes possible to compute within
a reasonable time an ideal inversion based on the exact
likelihood. Thus, we will be able to demonstrate the benefits
of the focused inversion in terms of posterior distribution
quality and reduced computational effort. Then, we consider a
second example where we predict porosity in rock CT images.
An ideal inversion based on the exact likelihood would be too
time consuming, and to the best of our knowledge, there are
no well-established methods for the estimation of maximum
a posteriori probability. For this reason, we do not compare
it with other inversion methods. Instead, we want to test the
sensitivity of focused inversion to different parametrizations
and evaluate the quality of the predictions against the approx-
imated ground truth for a 2-D inversion problem.

A. Assessment of the Posterior Model

As mentioned earlier, the focused inversion method is
controlled by two parameters: the size of the region R and the
amount of dimensionality reduction. In the synthetic examples,
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we test different combinations of parametrization, where the
following holds.

1) Rp is smaller or equal to the nominal region R, where
the subscript p indicates the retained percentage. p is
set to increase from 10% to 100% by a step of 10%
such that R40 corresponds to 40% of the nominal region
R and R100 = R. The choice of the nominal region R
depends on the application.

2) γ , as defined in (38) in the Appendix, is the fraction of
explained variance included in the features. γ is set to
increase from 40% to 100% by a step of 10%. Note that
a full rank (γ = 100%) discards eigenvalues of 1 such
that the dimensionality of the inversion is reduced, which
leads to L d̃ < L R .

The posterior distribution obtained for each (Rp, γ ) combi-
nation will be one of the test distributions p∗. Furthermore, the
quality of these distributions will be assessed by the Kullback–
Leibler divergence score and the average prediction power
defined in (39) and (40) in the Appendix.

B. Seismic AVO Inversion

We apply our methodology to seismic AVO inversion that
consists of lithology predictions from seismic data. In seismic
surveys, a seismic source generates sound waves that travel to
the subsurface and bounce back to the surface after reflecting
off rock layers, where they are measured by receivers. The
acquisition angle which is determined by the distance between
the source and the receiver, and the depth of a target, corre-
sponds to the angle of incidence of the reflected wave. The
amplitudes of the seismic data, which capture the subsurface
response, vary with the acquisition angle and are crucial for
AVO analysis.

For this example, we compare focused inversion against
two other inversion methods. The first one is the full-trace
inversion. To predict lithologies, we set up all the possible
lithologies trace configurations, calculate the likelihood of
a seismic trace given each possible trace configuration and
eventually calculate the marginal posterior probability of each
categorical data of K at any depth for this trace. The full-trace
inversion is the most exact inversion method in the sense that
it does not make any approximations, and therefore, computes
the exact likelihood and posterior probabilities, given the
available data. It requires, however, to loop through and invert
the covariance matrix for a very large number of trace configu-
rations, which gives a very long processing runtime. Therefore,
this method is an unrealistic solution at an industrial scale and
alternatives like focused inversion need to be used. However,
because our test example is a simple test case limited to a small
seismic dataset, it is possible to run the full-trace inversion.
We will use it as our benchmark method and compare the
performance of focused and unfocused inversions against it.
The full-trace inversion will be the reference distribution p
used to evaluate p∗(x) in the Kullback–Leibler divergence
score, D(p(x)||p∗(x)).

The second inversion method is the one presented in [24]
that we will refer to as the “unfocused” method in this article.
This method is already in use in the industry, and therefore,
is a realistic alternative to compare against for industrial-
scale projects. This method also estimates the target properties

contained in a window w and defines the distribution of m for
a region R. For comparison purposes, we choose the same
length for w and test the same intermediate regions Rp as in
focused inversion. Note, however, that there is no possibility
for dimension reduction here. This will be the other test
distribution p∗.

To test the inversion methods, we generate a synthetic
wedge dataset that consists of a sand layer simulating a reser-
voir trapped between two layers of shale for three different
marine acquisition angles 12◦, 20◦, and 28◦. The top horizon
corresponds to the transition from shale to sand at 1300 ms.
The second horizon corresponds to a transition from sand to
shale that gradually moves from 1600 to 1300 ms by a time
increment of 4 ms such that the sand zone thickness gradually
decreases from 300 to 0 ms (i.e., no zone). In this case,
we have two lithologies as target properties, i.e., rk ∈ K =

{sand, shale}, each characterized by rock physics properties
mk like the elastic P- and S-waves velocities Vp and Vs , density
parameter ρ. To generate the dataset, we sample the rock
physics parameters mi and colored Gaussian noise ei at each
time location i such that the signal-to-noise ratio is an average
of 6 at near offset (12◦ angle). Rock physics properties for
shale and sand are chosen to have equal variance but different
means, as shown in Fig. 4. The noise model is the sum of a
white component and a correlated component function of the
seismic wavelet. Finally, we use the forward model in (2) to
generate the synthetic data wedge for acquisition angles 12◦,
20◦, and 28◦ representing the near, mid, and far offset datasets,
respectively. To mimic the earth absorption, we downscale
the wavelet amplitude at a far offset such that the signal-to-
noise ratio is smaller. For each thickness of the sand zone,
100 traces are independently sampled such that a total of
7600 realizations are used as input for inversion. The 2-D
flatten | representation of the nearest offset (12◦) is shown
in Fig. 2 (top figure). The seismic reflections from one layer
to another remain, however, relatively small, and the dataset
relatively noisy.

As a prior model for the inversion, we set up a stratigraphic
model that assumes the top reservoir reflector to be between
1200 and 1400 ms, which corresponds to +/−100 ms around
the true location. The bottom reservoir reflector is assumed
to be between 1200 and 1700 ms which also corresponds
to 100 ms above the shallowest and below the deepest true
location. We choose to use a target property window with
five samples, rw = (r−2, r−1, r0, r1, r2)

T with rk ∈ K , which
makes a total of 25

= 32 possible configurations. This number
is reduced to 21 possible configurations after enforcing a strict
ordering of the stratigraphic layers, e.g., no possibility to go
back to sand below a transition from sand to shale. Finally,
we choose R to be equal to the window w length plus half
wavelet length above and below the window.

We assess the quality of focused and unfocused inver-
sion methods for their respective parametrization with the
Kullback–Leibler divergence score summarized in Table I and
the average prediction power in Table II. In Tables I and II, the
columns show the scores obtained as a function of region Rp.
The top seven rows show the scores for focused inversion
with rank γ ranging from 40% to 100%, while the bottom
row shows the scores for unfocused inversion. Note that the
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TABLE I

KULLBACK–LEIBLER DIVERGENCE (×10−3)

TABLE II

AVERAGE PREDICTION POWER (×10−1)

reference distribution in the Kullback–Leibler divergence is
the full-trace inversion, which is the method that provides
the most accurate probabilities based on the available data.
Therefore, the objective for focused inversion in terms of
prediction quality is to keep the Kullback–Leibler divergence
as small as possible and ensure at least the same level as that
of unfocused inversion.

For unfocused inversion, when the region Rp is reduced
from 100% to 10%, the Kullback–Leibler divergence increases
from 3.37 × 10−4 to 5.81 × 10−4 which corresponds to
a 72% increase and the average prediction power decreases
from 0.894 to 0.879. This is what we expect when the amount
of data to compare with gets smaller. For focused inversion,
we generally observe the same trend but to a smaller extent.
Reducing the rank, γ from 100% to 80% does not degrade
significantly the Kullback–Leibler divergence and hardly cha-
nges the average prediction power. Using smaller regions Rp

correspond to a 20%–34% increase in the Kullback–Leibler
divergence for ranks 100% to 80%. This is exactly what
we aim at when focusing on the most informative features
only.

These numbers indicate that we can use focused inversion
with a smaller region and a reduced rank γ down to 80%,
and still achieve the same level of prediction accuracy as with
the unfocused inversion, with a benefit of a processing speed
up. Note that this is also valid for traces with very thin sand
layers.

The posterior probabilities for the sand layer are shown
in Fig. 2 for the full-trace inversion (middle top), for unfocused
inversion with nominal region R, i.e., R100 (middle bottom)
and for focused inversion with a focused region R40 and
rank γ of 90% (bottom). For the latest method, we choose
this parametrization because the Kullback–Leibler divergence
is equal to the one obtained with unfocused and region R100.
Full-trace inversion, which produces predictions that most
accurately match the data, clearly provides the best sand pre-
dictions with generally well-predicted top and bottom reservoir
reflectors and more certain sand predictions in the reservoir.
We notice, however, a few occurrences, for instance between
realizations 5500 and 6500, and around 7000, where sand is
overpredicted and the full-trace inversion is quite certain about
this. On the contrary, there are other occurrences, around traces
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Fig. 5. Near-offset wavelet used for seismic data sampling and inversion. The
vertical dot lines show which part of the wavelet is used when the region R
is reduced from 100 % (full wavelet) down to 10% by a step of 10%.

79, 100, or 400 for instance, where the probability for sand
is close to 0 in the sand layer. This typically occurs when
the seismic data are heavily corrupted by noise to the point
where reflections at layers interface are no longer discernible
and can be interpreted as noise, even when using a synthetic
data example. For unfocused and focused inversions, sand
predictions are comparable. In general, there have less certain
probabilities than for full-trace inversion, especially for the
first 2000 traces. It also appears that sand is overpredicted
when the sand layer is very thin or nonexistent. Their average
prediction powers are equal to 0.89 which is smaller than that
of full-trace inversion at 0.92, as expected.

Comparison of Kullback–Leibler and prediction power
scores with unfocused inversion at the nominal region R100,
shows that we can obtain the same prediction quality by
choosing a more restrictive parametrization. Thus, in this
example, we can confidently use focused inversion with a
focused region down to 40% and a rank down to 90% as
an alternative to unfocused inversion. In terms of wavelet, this
is equivalent to cutting it down to the limit of the sidelobe,
as shown in Fig. 5.

Fig. 6 shows the inversion runtimes relative to unfocused
inversion runtime at the nominal region R100. In this exam-
ple, going from an unfocused inversion with the nominal
region R100 to focused inversion with a focused region set
to 40% and relative rank to 90% speeds up the inversion by
a factor of 3 without deteriorating the quality of the poste-
rior probabilities. They both obtain similar Kullback–Leibler
divergence and average prediction powers numbers, therefore
making the choice of focused inversion particularly interesting.
In addition, we note the strong impact of rank reduction on
inversion runtime in this example to keep the most informative
features only. When γ incrementally increases from 40%
to 100%, the number of retained eigenvalues in the feature
space corresponds to 11%, 13%, 16%, 19%, 23%, 28%,
and 89%, respectively. More specifically, it illustrates the case,
where L d̃ < L R even though γ = 100%.

We illustrate our methodology with another example, which
is the one used in [24]. In this case, full-trace inversion

Fig. 6. Relative runtimes as a function of the relative region Rp . Unfocused
inversion is the dashed curve, while the other curves are focused inversion
for γ between 40% and 100%.

becomes too computationally intensive and instead, we use
McMC with a limit of 50 000 iterations as a state-of-the-art
benchmark method. The synthetic dataset is a seismic cube of
100 × 100 traces and consists of three layers. The intermediate
layer is the reservoir containing both brine–sand and gas–
sand, trapped between the overburden (top layer) and basement
(bottom layer). Input seismic data are provided for near, mid,
and far acquisition angles. For the inversion, we choose a
prior stratigraphic model and rock physics prior properties
as in [24]. The stratigraphic model allows for these three
layers including uncertainty on the location of the horizons,
thus containing a total of four facies classes. These are the
target properties to be estimated. The rock physics properties
for brine–sand and gas–sand are rather close and may be
challenging to separate from each other.

In addition to McMC that we use as a state-of-the-art bench-
mark method, we invert this dataset with focused inversion
for a focused region set to 20% and the rank set to 100%,
and with the standard unfocused inversion used in [24] for a
window length of five samples. We expect McMC predictions
to be more accurate than the other two but at the cost of an
extreme computational effort which makes it an unrealistic
solution for large-scale projects. Thus, the objective here is to
compare the posterior predictions of the two other methods
against each other. Table III summarizes the Kullback–Leibler
divergence when using McMC as a reference method and the
average prediction power, both calculated for brine–sand and
gas–sand only. Additionally, Table III includes the inversion
runtime. The reason why we only include the reservoir facies
classes to evaluate the inversions is that the brine–sand and
gas–sand classes represent the target properties of primary
interest. Thus, we ensure that the assessment results are not
influenced by the large amount of overburden and basement,
which are comparatively easier to predict.

We first invert a cross section of 100 traces. Focused and
unfocused inversions perform equally well in terms of poste-
rior probabilities and significantly better than the prior distri-
bution. Notably, because of the small size of the cross section
dataset, unfocused inversion is as fast as focused inversion.
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TABLE III
LARGE-SCALE SEISMIC INVERSION EXAMPLE: SAND PREDICTIONS

The gain in inversion time is compensated by the increased
setup time in this case. McMC, however, requires more
than 7 h whereas the other two use less than 1 s. For this
reason, we are only able to invert the full seismic cube of
100 × 100 traces for focused and unfocused inversions, and
the Kullback–Leibler divergence is no longer used to assess
the quality of the posterior distribution. The average prediction
power, however, demonstrates a clear uplift in prediction
quality when comparing prior probabilities to both focused
and unfocused posterior probabilities. Contrary to the cross
section, the posterior probabilities for focused inversion are
slightly better than for unfocused inversion for the full cube.
This suggests that both methods generally perform equally
well, with minor variations depending on the inverted dataset.
However, the main difference lies in the runtime, as focused
inversion significantly reduces the runtime by 38%.

In these seismic data inversion examples, we have compared
unfocused and focused inversions against either full-trace
inversion or McMC inversion, which can be considered state-
of-the-art benchmark methods, as these approaches provide
the best possible achievable posterior probabilities. The huge
computational demand makes it, however, unrealistic for large-
scale datasets, as demonstrated by the later example. This is
why the well-established unfocused inversion is used. We have
developed this method further and proposed focused inversion
as a computationally more efficient alternative. They both
produce posteriors close to full-trace or McMC inversions, but
we showed that focused inversion can significantly reduce the
inversion runtime in this example.

C. Inversion of Carbonate Core Samples CT Images

We now consider a 2-D example, the estimation of vuggy
porosity in CT images of a core from a carbonate reservoir.
For some parts of the rock, ultrahigh-resolution CT images
are available where one pixel corresponds to 7 µm. However,
for most of the rocks, we have a resolution corresponding to

medical CT which is 0.5 mm per pixel. Here, we will test dif-
ferent parametrizations of focused inversion and compare the
quality of the predictions against the high-resolution images.
Thus, we want to demonstrate that using focused inversion to
predict porosity from standard-resolution images is relevant.

In prospect evaluation, the porosity of the subsurface rock is
a key factor in determining the economics. In most subsurface
rocks, the pore space is not visible to the human eye. However,
in carbonate rocks, parts of the porosity are contained in pores,
which are large enough to be seen by the eye, denoted vuggy
porosity. Standard porosity tests often avoid regions with
large pores, because this can potentially create weaknesses
in the samples so that they may break when undergoing the
measurement procedure. Thus, the vuggy porosity must be
accounted for by other means. The vuggy porosity also needs
to be quantified prior to slabbing the rock due to the brittleness
of the rock which may create apparent pore space. This is why
the use of CT of carbonate cores is an important source of
information.

In this example, we use a set of 109 high-resolution
320 × 234 images to generate a semisynthetic dataset of
109 blurred low-resolution images that will be used as input
data for the focused inversion. This gives a dataset, where we
have a controlled experiment but have a realistic resolution.
Blurring is achieved first by the convolution of high-resolution
images with a point spread function and then by adding
Gaussian random and correlated noise. The objective here is
to predict the porosity from the blurred images d. The target
property configuration rw is a 3 × 3 window

rw =

 r−1,−1 r−1,0 r−1,1
r0,−1 r0,0 r0,1
r1,−1 r1,0 r1,1

 (19)

where rk,k ∈ K indicates the presence of porosity, i.e., K =

{“void of rock,” “rock”}. This represents a total of 29
= 512

configurations. The marginal probability for no rock indicative
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Fig. 7. Example of porosity areas prediction for different sizes of R.
Input CT image (top left), ground truth (top right), and posterior probabilities
for regions R set to 9 × 9 (middle left), 11 × 11 (middle right), 13 × 13
(bottom left), and 15 × 15 (bottom right).

of porosity at a given 2-D index is then obtained by integrating
the posterior probabilities of all window configurations rw,
where the central element r0,0 is the “void of rock” state.
In this example, we estimate a stationary prior model of size R
for each window from high-resolution images. The larger the
region R is the noisier, as it is likely that the area includes
rocks even when centered around a window indicative of no
rock. Thus, setting up a good prior model is challenging and
for this reason, we could reasonably expect better predictions
for smaller regions.

We invert the set of low-resolution images to predict the
absence of rock indicative of porosity with the focused inver-
sion method and for different (R, γ ) parametrizations. We test
the region size for R to be 9 × 9, 11 × 11, 13 × 13,
and 15 × 15, and the relative rank γ to increase from 30%
to 100%. Again, γ = 100% means that only noninformative
features are ignored which can still reduce the dimensionality
of the inversion, and therefore, the runtime. A rank γ of 30%
means harsher dimension reduction where the most important
information is kept but high frequencies or details are ignored.
Fig. 7 shows an example of porosity prediction for a CT
image (shown in the top left), where spaces void of rocks
indicative of porosity correspond to the dark areas. Filtering
the high-resolution version of this image provides us with a
ground truth estimate of porosity corresponding to the white
parts, i.e., with probability 1 (top right). Other subfigures show
the marginal posterior probability for porosity for different
regions R and for γ = 100%, i.e., without loss of any
information. We observe a rather good estimation of porosity
in all cases. Smaller regions better capture isolated porosity
spots like in the top right-hand side corner of the images, while
larger regions tend to be more uncertain in thin no porosity
areas that are squeezed between porosity areas, like in the
bottom left-hand side part of Fig. 7.

Fig. 8. Illustration of rank reduction on posterior probabilities for porosity.
In this example, R is set to 9 × 9 and the relative rank γ is 100% (top)
and 30% (bottom).

Fig. 9. Prediction power for porosity (top) and no porosity (bottom) as a
function of relative rank γ , ranging from 30% to 100%.

The effect of dimension reduction can be observed in Fig. 8
which shows the porosity posterior probabilities for the CT
image shown in Fig. 7 and region R set to 9 × 9. The relative
rank γ is set to 100% at the top and 30% at the bottom
of Fig. 8, respectively. In this case, the number of retained
eigenvalues decreases from 64 when γ = 100% to 4 when
γ = 30% out of 81. Keeping the largest eigenvalues ensure
the predictions of large porosity areas, but by ignoring smaller
ones, we lose finer information necessary to accurately predict
transitions between porosity and no porosity, as well as the
detection of isolated porosity spots.

We generalize the inversion results of all images and
quantify the quality of the predictions with prediction power
in Fig. 9 for no rock indicative of porosity P Pnorock(p∗(x))

(top) and for rock P Prock(p∗(x)) (bottom) as a function of
rank γ , ranging from 30% to 100%. As most images mainly
consist of rock cells, it is more relevant to use categorical
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Fig. 10. Relative inversion runtimes for different regions as a function
of relative rank γ in (%). The reference runtime, used to calculate relative
runtimes, is the one for region 15 × 15 without any dimension reduction.

prediction power, rather than the average prediction power in
this case. The prediction of rock is unproblematic with a pre-
diction power always larger than 0.96. In addition, it appears
to be a little sensitive to dimension reduction and regions.
The prediction of porosity is relatively good, around 0.8,
for all tested regions if the rank reduction is limited such
that γ is at least 80%. Below this value, the prediction power
progressively declines as the rank reduction gets harsher. The
impact of region reduction can really be observed from 50%
and below.

Fig. 10 shows the relative runtimes for the different
regions R calculated as the inversion runtime normalized by
a reference runtime. The reference runtime is chosen to be
the runtime for the largest comparison area, 15 × 15, and
without any dimension reduction. As mentioned earlier, this is
different from full rank, γ = 100%, which ignores noninfor-
mative features and thereby reduces the dimensionality of the
inversion. Fig. 10 shows that we obtain the most significative
runtime speedup when going from no dimension reduction to a
relative rank γ = 90%. Using small regions R yields to shorter
runtimes but we also observe that the speedup tends to equalize
as the rank reduction gets harsher. For this example, prediction
powers showed that we could use γ = 80% without impacting
the prediction’s quality, which corresponds to a significative
speed up of 99% when compared with our reference runtime.
Going even further down in rank reduction would start to
impact the quality of the porosity predictions without major
runtime speedups.

All in all, it appears that the best predictions quality—
runtime speedup tradeoff is obtained for the smallest region R,
9 × 9, and by reducing the rank such that γ = 80%.
More generally, this reasonable tradeoff shows the benefits of
focused inversion and makes the choice of focused inversion
to be a serious alternative for 2-D applications.

In this CT image example, we have assessed the sensitivity
of focused inversion to different parameterizations. We have
evaluated the impact on porosity predictions both qualita-
tively, using the prediction power metric, and computationally,
by considering the runtime. Applying the methodology to

images also allows for visual comparisons. Thus, a substantial
rank reduction would affect the level of detail in predictions,
while an excessively large region could pose difficulties in
estimating a good prior model. Good quality predictions can
be achieved with rather small regions and moderate rank
reduction. In addition, another benefit of focused inversion is
demonstrated through a significant speedup in computational
runtime, as observed in this example.

IV. CONCLUSION

We have presented a sampling-free probabilistic inversion
based on the principles of expectation propagation, where
we estimate the joint distribution of the target variable in
a local outer region. The prior model matches the prior
distribution in the local-focused region but integrates model
parameters outside the focus region using approximate dis-
tributions. The approximate distribution includes large spatial
structure information while maintaining the dimension of the
inversion small. In addition, we map and solve the inversion
into a new feature space where we can exclude components
where the data have little influence, thereby decreasing the
dimensionality of the inversion, and therefore, the runtime.
This method has been tested on two examples. First, the
seismic inversion problem of lithologies-fluid prediction using
seismic data and geologic information, where predictions have
been compared with full-trace exact likelihood inversion and
McMC inversion. Second, the estimation of vuggy porosity
in CT images of the core from the carbonate reservoir, with
a comparison to high-resolution images. We demonstrated
through the Kullback–Leibler divergence and prediction power
scores that focused inversion can perform equally well and
reach the same prediction quality as reference methods while
reducing the processing runtime. This makes it to be a realistic
candidate method to run large-scale inversion projects.

APPENDIX

A. Mapping to Features Space

Mapping from inversion results to observations is a key
element of the method to capture spatial structure into a
compact representation of the data. We compute d̃, G̃, and 6̃e
from the prior and posterior means µmR

and µmR |d and from
the prior and posterior covariance matrices 6mR and 6mR |d.

The starting point is the generalized eigenvalue problem that
finds a generalized eigenvalue λ and a generalized eigenvec-
tor c of 6mR and 6mR |d that obeys

6mR |dc = λ6mR c. (20)

The solution to this problem is a set of L R linearly independent
eigenvectors ci and eigenvalues λi such that

6mR |dci = λi6mR
ci for i = 1, . . . , L R (21)

where the eigenvectors ci provide a basis which adheres to the
following properties:

cT
i 6mR |dc j = 0, i ̸= j (22)

cT
i 6mR

c j = 0, i ̸= j (23)

cT
i 6mR |dci = λi cT

i 6mR
ci . (24)
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Thus, (22) and (23) show that the features made by the
generalized eigenvectors are independent in both the prior and
the posterior distributions. Furthermore, in (24) we see that the
generalized eigenvalue indicates how large a fraction of the
variance in the prior which remains in the posterior. We can
order the generalized eigenvalues such that

0 ≤ λ1 ≤ · · · ≤ λL R ≤ 1. (25)

The latter inequality follows from that the prior dominates the
posterior variance. Equation (21) follows the relation:(

6mR − 6mR |d
)
ci = (1 − λi )6mR

ci (26)

where the factor (1 − λi ) is interpreted as the reduction in
variance when going from the prior to the posterior. Since 6mR

is invertible, the generalized eigenvalues and eigenvectors can
be computed as a standard eigenvalue problem

6−1
mR

6mR |dc = λc. (27)

Thus, the feature matrix G̃ we wish to build consists of the
first L d̃ generalized eigenvectors of the equation above where
1 ≤ L d̃ ≤ L R . Starting with the smallest eigenvector we build
the matrix

G̃ =
[
c1, c2, . . . , cLd̃

]T
. (28)

Obviously, the eigenvectors corresponding to λi = 1 should be
excluded since this indicates that there is no difference in the
uncertainty between the prior and the posterior. Furthermore,
excluding eigenvectors corresponding to eigenvalues slightly
less than one means excluding components where the data
have little influence. Let us now consider the feature

fi = cT
i mR. (29)

Since both the prior and the posterior matrices are diagonalized
by the feature matrix, we see that the transformed problem is
diagonal, and therefore, each feature can be treated indepen-
dently. The equivalent observation error can be computed for
each feature independently using the relation

d̃i = fi + ẽi (30)

where ẽi ∼ N (0, σ 2
i ) is the noise component. From (29),

we have fi ∼ N ( fi ; µi , τ
2
i ), where µi = cT

i µR and
τ 2

i = cT
i 6mR

ci .
The posterior expression for this feature is fi |d̃ i ∼

N ( fi |d̃i ; µi |d , τ
2
i |d), where the posterior mean and variance

are known and equal to µi |d = cT
i µR|d and τ 2

i |d = λ
i
τ

2
i
,

respectively.
However, standard posterior computations for Gaussian

variables give

fi |d̃ i ∼ N
(

fi ; µi +
τ 2

i

τ 2
i + σ 2

i

(
d̃ i − µi

)
; τ 2

i

(
1 −

τ 2
i

τ 2
i + σ 2

i

))
.

(31)

Thus, combining the posterior mean and variance with expres-
sions in (31), we can back-compute the observation d̃ i and the
observation error σ 2

i such that

d̃i = µi +
τ 2

i + σ 2
i

τ 2
i

(
µi |d − µi

)
(32)

σ 2
i = τ 2

i ·
λi

1 − λi
. (33)

To summarize, the linearized model for observed features is
given by

d̃ = G̃mR + ẽ (34)

where G̃ consists of the first L d̃ generalized eigenvectors
in (28), 6̃e is the diagonal L d̃ × L d̃ error covariance matrix
with variance defined in (33) such that

6̃e = diag
(
σ 2

1 , . . . , σ 2
L d̃

)
(35)

and d̃ the observed features defined in (32) and given by

d̃ =
(
G̃6mR G̃T

+ 6̃e
)(

G̃6mR G̃T)−1G̃
(
µR|d − µR

)
+ G̃µmR

.

(36)

Furthermore, we introduce the parameter

γ =

∑L d̃
i=1 (1 − λi )∑L R
i=1(1 − λi )

(37)

which should be interpreted as the fraction of explained
variance included in the model and used in this article as an
inversion parameter.

B. Measures for Assessment of the Posterior Model

To quantify the impact of the focused inversion model
approximation on the inversion results, we use two statistical
measures: the Kullback–Leibler divergence score and average
the prediction power.

Let K denote the set of L K categorical target variables
such that K = {rk}k=1,...,L K . The Kullback–Leibler divergence
measures the information lost when the posterior probability p
is approximated by the posterior probability p∗, where p
is nonzero. Then, the Kullback–Leibler divergence score is
calculated by

D
(

p(x)||p∗(x)
)

=

∑
x∈K

p(x) ln
p(x)

p∗(x)
. (38)

The second statistical measure is the prediction power of a
target variable rk . Since we use synthetic data, we have access
to the true configuration of categorical variables from which
the synthetic data have been generated. Thus, if we denote
by Lk a discretized top-down grid along a vertical profile,
where rk exists and by LLk the number of grid elements in Lk ,
then the prediction power of a target variable rk estimated by
posterior probability p∗, P Prk (p∗), is calculated by summing
the posterior probabilities for rk for grid cells where rk exists,
such as

P Prk

(
p∗

)
=

1
LLk

∑
n∈Lk

p∗(x(n) = rk). (39)

Similarly, we define the average prediction power of the
posterior probability p∗, AP P(p∗), as the sum of posterior
probabilities for categorical variables where these variables
exist

AP P
(

p∗
)

=
1∑L K

k=1 LLk

L K∑
k=1

∑
n∈Lk

p∗(x(n) = rk). (40)
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