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GND-RI: A Normalized Difference Form More
Suitable for Remote Sensing Applications

Linxin Zou and Bo Wei

Abstract— The normalized difference index (NDI) originates
from NDVI, which has been widely used in remote sensing
applications and to guide the development of NDI in other fields
due to its excellent performance; however, injective mapping
from the original bands to NDI leads to information loss in
land cover classification. When NDI is represented as a simple
form, it is, furthermore, prone to premature saturation in specific
change detection and variable inversion tasks. In this study,
we first propose the radius index (RI), a new index to represent
illumination variations by using the missing band information
from NDI. Based on RI, we develop a generalized NDI (GND)
by adding four positive scaling coefficients to NDI foundation,
and the value range and sensitivity of GND are adjusted by
these four coefficients, which are derived from the statistical
information of the study area. The derivation of these four
coefficients is, moreover, reversible, making it possible to interpret
the applicable range of the derived set of coefficients. Our
experiments demonstrate that: 1) GND is more effective in
terms of improving saturation than the traditional indices and
2) mapping the original bands to GND-RI (GND combined with
RI) can guide classifiers to learn more generalized features based
on spectral information and thus achieve higher classification
accuracy both in machine learning and the latest deep learning
semantic segmentation models. The data and code for the article
can be found at https://github.com/Zoulinx/GND.

Index Terms— Feature classification, feature mapping, normal-
ized difference index (NDI), sensitivity function, spectral index.

I. INTRODUCTION

THE spectral index is the most commonly used index to
analyze data in optical remote sensing [1]. Generally, the

spectral index within the solar spectral range is a combination
of the spectral reflectance of two or more spectral bands, which
can indicate the reflective spectral characteristics of various
objects interacting with solar radiation. The spectral index is
a more relevant feature to the research target compared to the
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original spectral band reflectance. The usage of appropriate
spectral indices may, therefore, make achieving remote sensing
objectives easier and more efficient [2].

The normalized difference index (NDI) is the most popular
way to combine bands in the spectral index. NDVI [3] is the
first spectral index constructed by the normalized difference
approach and is the most popular vegetation index thus far [4].
Statistically, there are tens of thousands of papers on NDVI [5].
These papers cover various remote sensing applications, such
as feature classification [6], change monitoring [7], [8], and
biophysical volume inversion [9], [10]. The success of NDVI
has led to the promotion of normalized difference forms in
the field of spectral feature extraction and the development
of a series of spectral indices of dominant features in their
respective fields.

For instance, the normalized burn ratio (NBR) [11] and
its improved form, the dNBR [12], are commonly used for
monitoring vegetation burns. The normalized difference water
index (NDWI) [13] and its improved version MNDWI [14], are
employed for water extraction. Additionally, the normalized
difference building index (NDBI) [15] and the normalized
difference snow index (NDSI) [16] are used for building and
snow extraction, respectively.

The popularity of NDI is generally due to the following
three reasons.

1) The band selection strategy of NDI is to find a group of
high-contrast bands with higher and lower reflectances
for the initial target compared to other targets, which
can strongly highlight the reflectance characteristics of
the initial target.

2) NDI does not contain any constant terms, and the
form of the pure band ratio can weaken the influ-
ences of topographic effects on the illumination
difference [17], [18].

3) NDI has a convergent and symmetric value range
[−1, 1].

In fact, the simple ratio index (SR) possesses the same
advantages as NDI except for the convergent value range. NDI
can be rewritten as a function of SR with SR as the only
independent variable [19]:

NDI = f (SR) =
SR − 1
SR + 1

. (1)

From this perspective, most of the advantages of NDI are
inherited from SR, and its improvement lies in the scaling of
the SR value range; however, this scaling comes at a cost; SR
has an infinite divergence value range and is not initially a
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Fig. 1. Coordinate system representation of features. (Left) Cartesian
coordinate system representation of the feature band group (bx , by). (Right)
Polar coordinate system representation of SR and RI.

saturated function but becomes saturated after being scaled by
NDI [20].

A series of NDI-based scaling schemes have been proposed
in past studies, such as the angular vegetation index (AVI)
that uses an inverse tangent function [6], MNDVI [21], and
WDRVI [22], which adds a constant coefficient, NDVIv mul-
tiplied by near-infrared reflectance [23], and KNDVI that uses
the tanh function [24]; however, there are three problems in
the above schemes.

1) NDI is a function with SR as an independent variable,
and scaling NDI is equivalent to indirectly scaling SR.
In contrast, directly scaling SR more closely resembles
the essence of the problem than scaling NDI.

2) The mapping from the feature bands to NDI involves
information loss.

3) The spectral indices with the coefficients derived from
the statistical information of the study area can mod-
ify the sensitivity of NDI (for example, MNDVI and
WDRVI as the improvements to NDVI), but the deriva-
tion of these coefficients is irreversible, meaning that it
is difficult to infer the applicable range from the derived
coefficients themselves.

In this study, we propose the generalized NDI (GND)
and radius index (RI) to address the above issues. GND-RI
(GND combined with RI) form a bijection with the original
feature bands (bx , by), inspired by the mapping from Cartesian
coordinates to polar coordinates. As shown in Fig. 1, (bx , by)

are first mapped to the polar angle and radius (θ , r), where SR
is the tangent of θ . GND is a scaled version of SR, with its
range and sensitivity to changes in SR adjusted by four positive
scaling coefficients c1, c2, c3, and c4, and RI corresponds
directly to r , representing the information lost in SR.

The rest of this study is organized as follows. In Section II,
we provide a detailed demonstration of the derivation process
for RI and GND. In Section III, we demonstrate how to
use GND to address the saturation of NDVI in vegetation
cover changes and compare it with other vegetation indices.
Section IV presents the impact on classifications after mapping
the original bands to GND-RI. Some discussions are conducted
in Section V, and the entire study is concluded in Section VI.

II. PROPOSED GENERALIZED NORMALIZED
DIFFERENCE INDEX

In this section, we study the complete mapping process from
the most primitive feature bands to NDI. Because SR and
NDI are both multivariate functions with two feature bands as
two independent variables, the scaling process of the feature

bands to NDI can be described as follows. Let bx and by
be two feature bands, and the scatter (bx , by) be the feature
band group in spectral space. Thus, SR maps (bx , by) to a
single-valued output in the interval [0, +∞), and then NDI
maps SR to a single-valued output in the interval [−1, 1]:(

bx , by
)

→ SR → NDI. (2)

In (2), SR to NDI is a bijection with no information loss,
but the mapping of (bx , by) to SR is injective with information
loss, and SR cannot respond to the changes of the scatter
completely (e.g., SR does not respond to equal scale increases
of the feature band); therefore, neither SR nor NDI can
completely describe the changes in (bx , by). To complement
the lost information in SR, a new mapping needs to be added
to SR to make it a bijection for bx and by :

f
(
bx , by

)
=

√
b2

x + b2
y . (3)

The mapping f (bx , by) is equivalent to the distance from
the points in the bx and by feature space to the origin. Con-
sidering that SR can weaken the influence of the illumination
differences caused by the topographic effect and f (bx , by) can
be regarded as a supplement to the illumination information,
we define f (bx , by) as an illumination change index, i.e., RI:

RI =

√
b2

x + b2
y . (4)

The mappings of f (bx , by) after adding RI are expressed as:(
bx , by

)
→ SR(

bx , by
)

→ RI. (5)

According to Fig. 1, the inverse mappings of bx and by to
SR and RI are described as:

bx = RI cos(arctan(SR))

by = RI sin(arctan(SR)). (6)

According to the nature of bijection, any changes in the
scatter (bx , by) can be decomposed into components in SR and
RI directions, which means that the necessary and sufficient
condition for SR to be sensitive to a change is that the change
has a large component in the SR direction; therefore, in the
following discussion of function sensitivity, only changes in
SR component are of interest, and RI is considered a constant.

The sensitivity of SR to changes in (bx , by) is discussed
first. Since the change direction of (bx , by) is arbitrary, only
the most sensitive gradient direction is discussed. The gradient
of SR with respect to (bx , by) can be expressed as:

∇SR
(
bx , by

)
=

{
∂SR
∂bx

,
∂SR
∂by

}
=

(
−

by

b2
x

−→
i ,

1
bx

−→
j
)

. (7)

The sensitivity in this direction is expressed using the
modulus of the gradient:

∥∥∇SR
(
bx , by

)∥∥ =

√
b2

x + b2
y

b2
x

=
1 + SR2

RI
. (8)

According to (8), the maximum sensitivity of SR to changes
in (bx , by) is proportional to the square of SR corresponding
to the point (bx , by), and the saturation point of the function is
at SR = 0. This conclusion is consistent with the application
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Fig. 2. Sensitivity of NDI versus SR, where the sensitivity is replaced by
the modulus of the gradient.

results of the ratio vegetation index (RVI): RVI is insensitive
to changes in low vegetation cover (small SR) and sensitive
to changes in high vegetation cover (high SR). Second, the
sensitivity of NDI to changes in (bx , by) is discussed using the
same approach. The gradient of NDI with respect to (bx , by)

is expressed as follows:

∇NDI
(
bx , by

)
=

(
−

2by(
bx + by

)2
−→
i ,

2bx(
bx + by

)2
−→
j

)
. (9)

Correspondingly, the modulus of the gradient of NDI is
expressed as:∥∥∇NDI

(
bx , by

)∥∥ =

(
1 + SR2)

(1 + SR)2 ·
2
RI

. (10)

According to (10), the maximum sensitivity of NDI to
changes in (bx , by) is no longer monotonically related to SR.
To illustrate the functional relationship more intuitively, RI
in (10) is set as a constant value of 1, and the figure of
the modulus of the gradient as a function of SR is plotted,
as shown in Fig. 2.

It can be seen from Fig. 2 that with an increase in SR,
the maximum sensitivity of SR to changes in (bx , by) first
decreases and then increases, and the minimum point occurs
when SR = 1. This conclusion implies that the saturation
point for the changes in (bx , by) shifts from SR = 0 to
SR = 1 after SR scaling to NDI. This shift of the saturation
point is very important for the design of the spectral index
because we want the spectral index to be sensitive to changes
of interest and saturated with changes of disinterest, and this
can be achieved by adjusting the position of the saturation
point exactly. For example, because NDVI is sensitive to
changes in low vegetation cover and insensitive to changes
in high vegetation cover, the saturation point can be adjusted
to a region away from high vegetation cover if we want to
increase its sensitivity to changes in high vegetation cover.

To investigate the effect of the scaling of NDI to SR on the
position of the saturation point, we propose a parametric form
of NDI, namely, GND:

GND =
c1SR − c2

c3SR + c4
(11)

where c1, c2, c3, and c4 are the four positive coefficients. The
gradient of GND with respect to (bx , by) is expressed as:

∇GND
(
bx , by

)
=

(
−

(c2c3 + c1c4)by(
c3by + c4bx

)2
−→
i ,

(c2c3 + c1c4)bx(
c3by + c4bx

)2
−→
j

)
. (12)

Correspondingly, the modulus of the gradient of GND is
expressed as:

∥∇GND(bx, by)∥ =
(c2c3 + c1c4)(

c2
3 +

c2
4+2c3c4SR−c2

3
1+SR2

)
∗ RI

. (13)

To simplify the analysis, the part of (13) containing SR is
denoted by f (SR):

f (SR) =
c2

4 + 2c3c4SR − c2
3

1 + SR2 . (14)

Accordingly, (12) can be expressed as:

∥∇GND(bx, by)∥ =
(c2c3 + c1c4)(
c2

3 + f (SR)
)
RI

. (15)

According to (14), the sensitivity of GND to changes in
(bx , by) is inversely proportional to f (SR), and further deriva-
tion of f (SR) with respect to SR can be described as:

d f (SR)

dSR
=

−2c3c4SR2
+ 2
(
c2

4 − c2
3

)
SR + 2c3c4)(

SR2
+ 1
)2 . (16)

In (16), the denominator is a constant positive, and
the numerator is a downward opening parabola. When SR
increases, the changes in GND sensitivity are divided into
three procedures.

1) The derivative function is positive when SR belongs
to the interval (0, c3/c4), and the sensitivity of GND
decreases when the value of f (SR) increases.

2) The derivative function is zero when SR = c3/c4. At
this time, f (SR) takes the maximum value, and the
sensitivity of GND reaches the minimum; that is, it is
at the most saturated state.

3) The derivative function is negative when SR belongs to
the interval (c3/c4, +∞), and the sensitivity of GND
gradually increases when the value of f (SR) decreases.

An important conclusion can be drawn from the above
process; that is, the saturation point of GND can be arbitrarily
moved along the interval [0, +∞] by adjusting the ratio of
coefficients c3 and c4. In particular, as mentioned above, the
saturation point of NDI is located at SR = 1 because NDI
corresponds to the special case, where GND takes c3 = 1 and
c4 = 1.

We observe that the sensitivity of GND to the region of
interest, however, does not continually increase when the
saturation point is located far away from the region of interest.
In fact, it shows an initial increase followed by a decrease. For
example, with a step of 0.1 and the value range unchanged,
SR = 5 is selected as the area of high vegetation cover, and the
scaling coefficients are adjusted to move the NDVI saturation
point from SR = 1 to SR = 0. Then, we set RI to a constant
of 1 and calculate the sensitivity of NDVI to SR = 5 at each
movement, and the results can be obtained, as shown in Fig. 3.

From Fig. 3, it can be seen that the sensitivity is the extreme
value, i.e., SR = 0.2, when the saturation point is moved. The
next question is, therefore, how to calculate the location of the
extreme value; furthermore, we need to know whether there
exists a group of scaling coefficients that ensure the maximum
sensitivity of GND with respect to the specified point (bx , by)

in the spectral space.
After derivation, it is found that if the range of GND is

symmetric about the origin, i.e., the four scaling coefficients
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Fig. 3. Relationship between the saturation point location and NDVI
sensitivity, where the sensitivity is replaced by the modulus of the gradient.

satisfy c1 = c3 and c2 = c4. Then, the modulus of the gradient
of GND can be expressed as:∥∥∇GND

(
bx , by

)∥∥ =
2c3c4(

c2
3 +

c2
4+2c3c4SR−c2

3
1+SR2

)
RI

. (17)

To simplify the analysis, let f (c3, c4) = c4/c3 and substitute
it into (17):∥∥∇GND

(
bx , by

)∥∥ =
2
(
1 + SR2)

RI
×

f (c3, c4)

(SR + f (c3, c4))
2 .

(18)

Taking the partial derivative of f (c3, c4) in (18) yields:

∂

∂ f (c3, c4)
∥ ∇GND

(
bx , by

)
∥

=
2
(
1 + SR2)

RI(SR + f (c3, c4))
3 · (SR − f (c3, c4)). (19)

In (19), the result to the left side of the multiplication sign
is a constant positive, and to the right, it is a straight line with
a negative slope. When f (c3, c4) increases, the changes in
sensitivity of GND are divided into three conditions.

1) The derivative function is positive when f (c3, c4)

belongs to the interval (0, SR), and the sensitivity of
GND increases gradually.

2) The derivative function is zero when f (c3, c4) = SR,
and the sensitivity of GND reaches its maximum value.

3) The derivative function is negative when f (c3, c4) falls
within the interval (SR, +∞), and the sensitivity of
GND decreases gradually.

The above condition demonstrates that when the range of
GND is symmetric about the origin, there exists a group of
scaling coefficients that force the sensitivity of GND to have
an extreme value with respect to the specified point (bx , by) in
the spectral space, in which the extreme point is determined
by the ratio of the coefficients c4 and c3.

In summary, we provide a complete explanation of GND
and RI, that is, (GND, RI) is the reversible mapping of the
feature bands (bx , by), which is similar to the mapping of
RGB to HSI and aims to decompose the original feature
band information into spectral feature information and the
illumination difference. GND represents the spectral feature
information in (GND, RI), and its expression is as follows:

GND =
c1by − c2bx

c3by + c4bx
(20)

where c1, c2, c3, and c4 are four positive scaling coefficients,
which determine the value range of GND together:

GND ∈

[
−

c2

c4
,

c1

c3

]
. (21)

As a complement to GND, RI represents the difference in
illumination in (GND, RI), and the contours of RI and GND
are orthogonal everywhere.

Assuming that RI is constant, GND possesses two important
properties.

1) Given a group of definite scaling coefficients, there
exists a saturation point for the maximum sensitivity of
GND to changes in (bx , by), and the saturation point
(bx , by) satisfies:

by

bx
=

c3

c4
. (22)

2) When the value range of GND is symmetric about the
origin, given any point (bx , by) in the feature band
space, there exists a group of scaling coefficients for
which the maximum sensitivity of GND to the change
of the point (bx , by) is maximized, and the relationship
between the scaling coefficients and the point (bx , by) is
expressed as:

c4

c3
=

by

bx
. (23)

In this study, we refer to the ratio of the coefficients c4 to
c3 as the sensitive point of GND.

III. ENHANCING NDVI WITH GND
In this section, we use the leaf area index (LAI) as a proxy

for vegetation coverage and assess the sensitivity of indices
to vegetation changes based on the linear regression results
between the indices and LAI values. Similar to NDVI, the
red and near-infrared bands are set as the feature bands for
GND. We demonstrate how GND addresses the saturation of
NDVI at high vegetation cover changes and how to select the
optimal coefficients for GND based on the study area. It is
worth noting that these improvements in GND are not limited
to the vegetation index.

A. Study Area
The study area is the Longkang farm site in Anhui Province,

China, for which there is the ValLAI_Crop open dataset.
Compared with other sites using Landsat 5 satellite images
before 2007, this site uses the latest data collection time (in
2017) and available satellite images (Landsat 8 images) [25].

In our experiments, the data in the study area are processed
as follows.

1) Four sample plots from March 26, 2017, are discarded
due to excessive cloud cover.

2) The raster drivers of the original data are corrected by
converting from GTiff (.tif) to ENVI (.dat).

3) The sample plots are supplemented with corresponding
Landsat 8 Collection 2 data.

As shown in Fig. 4, the four sample plots Point1, Point3,
Point8, and Point15 with different vegetation coverage levels
on April 23, 2017, are used as our experimental data. Accord-
ing to [25], the average LAIs of these four sample plots are
4.055, 4.457, 2.665, and 3.200, respectively.
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Fig. 4. Linear regression results of NDVI, KNDVI, MNDVI, and GND with LAI in four sample plots.

B. Vegetation Indices

To illustrate the performance of GND in the vegetation
index, we compare GND with NDVI, MNDVI, and KNDVI,
in which the last two indices are the vegetation indices with
adaptive coefficients.

NDVI is the baseline of the vegetation index and is
expressed as:

NDVI =
ρNIR − ρred

ρNIR + ρred
(24)

where ρNIR is the near-infrared reflectance and ρred is the red
reflectance.

MNDVI improves the sensitivity of NDVI by adding a
positive coefficient c to NDVI:

MNDVI =
cρNIR − ρred

cρNIR + ρred
(25)

where c is determined by the standard deviation of the
near-infrared band σNIR and red band σred in the study area
and is calculated as follows:

c =

√
σ 2

red

σ 2
NIR

. (26)

KNDVI improves NDVI by using kernel methods, espe-
cially adopting the RBF kernel, considering the higher-order
correlation between near-infrared and red bands:

KNDVI_rbf = tanh

((
ρNIR − ρred

2σ

)2
)

(27)

where σ is estimated from the region or biome through the
average distance between all N pixels therein:

σ =

∑N
i |ρNIRi − ρredi |

N
. (28)

KNDVI, moreover, has a naive version that simplifies σ as
the mean value of the near-infrared and red bands for each
pixel. In this case, KNDVI can be considered as a function
with NDVI as the unique independent variable:

KNDVI_naive = tanh
(
NDVI2). (29)

Assuming the value range of GND is [−1, 1], which is the
same as that of NDVI and MNDVI, the coefficient c2 should
be equal to the coefficient c4, and the coefficient c1 should be
equal to the coefficient c3 according to (21):

GND =
c3ρNIR − c4ρRED

c3ρNIR + c4ρRED
=

ρNIR −
c4
c3

ρRED

ρNIR +
c4
c3

ρRED
. (30)

In this case, GND is most sensitive to vegetation changes
when the ratio of the near-infrared band to the red band
(i.e., SR) is equal to that of c4 to c3, according to (23).
Otherwise, the ratio of c4 to c3 should be equal to the SR
of most vegetation in the study area to make GND sensitive
to changes in vegetation coverage.

In this study, the maximum likelihood estimation method is
used to estimate the normal distribution of SR, and the mean
value of the normal distribution is used as a proxy for the SR
of most vegetation in the study area. Because the analytical
solution for the mean of a normal distribution is equivalent to
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TABLE I
COEFFICIENTS OF THE VEGETATION INDICES EXTRACTED

FROM THE STUDY AREA

the sample mean, the ratio of c4 to c3 can be estimated as:

c4

c3
=

∑N
i

ρNIRi
ρredi

N
. (31)

Based on the statistical information obtained by (26), (28),
and (31) of the four sample plots in the study area, the
corresponding coefficients for MNDVI, KNDVI, and GND are
calculated, and their results are shown in Table I.

C. Results and Discussion
As shown in Fig. 4, GND exhibits the highest correlation

(Pearson) and goodness of fit (R2) with LAI compared with
those of NDVI, KNDVI, and MNDVI for every sample plot.
For Point 3, the Pearson and R2 of GND are 0.0919 and
0.1703 higher than those of NDVI, respectively, with the
highest average LAI.

GND inevitably exhibits negative values for some vegetation
categories, but it is also beneficial. For example, assuming
NDVI > 0.3 is used to distinguish between vegetation and
nonvegetation, the response range for nonvegetation changes
is [−1, 0.3], while the response range for vegetation changes is
(0.3, 1]. Clearly, the response range for vegetation changes in
the value range of NDVI is smaller than that for nonvegetation
changes.

This problem can, however, be solved by GND. Point 1 is
selected as an example. The expression of GND based on
Table I and (30) is as follows:

GND =
SR − 10.3998
SR + 10.3998

. (32)

According to (1), an NDVI > 0.3 is equivalent to an
SR > 1.86. By substituting SR > 1.86 into (32), we can obtain
the decision boundary for GND at a GND > −0.7, which
means that the response range for nonvegetation changes is
[−1, −0.7], while the response range for vegetation changes
is (−0.7, 1]. Compared with the response range for vegetation
changes, which accounts for 35% of the value range of NDVI,
the response range can reach 85% with GND; therefore, GND
is more suitable for index-based change detection algorithms,
such as LandTrendr [7].

In contrast, the KNDVI loses the decision boundary for
vegetation extraction because the characteristic of higher
near-infrared reflectance than red reflectance in vegetation is
eliminated due to the squaring operation of the KNDVI.

Although NDVI, MNDVI, and GND all share the same
value range and can retain the decision boundary for vegetation
extraction, their differences in sensitivity can still be found
by observing the standard deviation (Std.y) and the linear
regression coefficient (slope).

As shown in Fig. 4, GND has a higher Std.y and slope than
those of NDVI and MNDVI, which implies that GND can
allocate more value ranges to represent vegetation coverage
changes while compressing the representation of nonvegetation
changes within smaller value ranges.

IV. GENERALIZATION CAPABILITY OF GND-RI

In the previous derivation, RI is constructed to represent
illumination difference information. In this section, we inves-
tigate the generalizability of the classification models in terms
of handling illumination variations after mapping the original
bands to GND-RI.

Remote sensing images become surface reflectance data
with physical significance after various preprocessing steps,
such as radiometric calibration, atmospheric correction, and
orthorectification. Theoretically, reflectance data are more gen-
eralizable than ordinary color images in classification tasks;
however, the reflectance data of the solar spectrum still have
illumination difference errors caused by topographic effects,
cloud shadows, object geometry, etc., which cannot currently
be eliminated in the preprocessing steps. It is beneficial, there-
fore, to improve the classification accuracy by enhancing the
generalization of the classification model in the illumination
difference region.

Common algorithms for feature classification can be divided
into two categories: machine learning algorithms based on
the spectral domain and deep learning algorithms based on
the spectral-space domain. This study, therefore, discusses the
above two algorithms.

In the following experiments, a feature band group and an
index group are designed for comparison. The input features
of the index group include the normalized difference indices,
NDBI, NDWI, and NDVI, which are combined with RI. The
input features of the feature band group are those original
feature bands corresponding to the index group. As discussed
in Section III, the decision boundaries of GND and NDI can
be converted to each other; therefore, it is required to select
coefficients for GND in the index group only to maintain
consistency with the form of NDI, as shown in Table II.

A. Spectral Domain Classification

The support vector machine (SVM) [27], [28] and random
forest (RF) [29], [30] algorithms are selected for the exper-
iments. These algorithms are representative of the spectral
domain classification models. Since the above algorithms only
consider spectral information, the classification results can be
used to infer the spectral features learned by the classification
models to explain the influences of GND-RI on the feature
learning of the classification models.

1) Study area: The study area is Guilin city, China, which
is situated upon a karst landscape and has a diverse natural
environment and complex topography. In this region, karst is
distributed over 96% of the landscape. Because of the complex
karst topography, there are large illumination differences in
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TABLE II
INPUT FEATURES OF THE TWO EXPERIMENTAL GROUPS

TABLE III
PARAMETERS USED IN THE SVM AND RF ALGORITHMS

Guilin satellite images, which makes the location beneficial to
test the generalizability of the GND-RI decomposition method
to illumination differences.

2) Data sources: Using the surface reflectance data of
Sentinel2 L2A provided by the USGS, the aerosol band B1,
water vapor band B9, and cirrus band B10, each with a
resolution of 60 m, are removed, and the remaining bands
are resampled to a resolution of 10 m using the CN algorithm
[31], [32].

3) Samples: Building, water, and vegetation are selected as
the study objects. To test the generalizability of the model,
only 64-pixel points of each class object are selected as
training samples.

The specific parameters of the SVM and RF algorithms are
shown in Table III. The kernel is the radial basis function
(RBF) [33], and the hyperparameters of the kernel function
are the reciprocal 1/6 of the number of input features [34] in
the SVM algorithm. In the RF algorithm, the Gini coefficient
is the metric, Max_features refers to the square of the number
of features, and the integration scale is 100. The final obtained
classification results are shown in Fig. 5.

We analyze the SVM classification results of both groups
first, and some of the water extraction results of the SVM are
shown in Fig. 6. From these figures, it can be seen that the
main difference between the extraction results from the two

Fig. 5. Classification results of the two experimental groups. (a) Feature band
group with the SVM. (b) Index group with the SVM. (c) Feature band group
with the RF. (d) Index group with the RF. (e) Original image. (f) Legend.

Fig. 6. Water extraction results of the two experimental groups with the
SVM. (a) Original image. (b) Feature band group. (c) Index group.

Fig. 7. Vegetation extraction results of the two experimental groups with the
SVM. (a) Original image. (b) Feature band group. (c) Index group.

groups is that only a few shadows are identified as water by
the SVM for the index group, while all the building shadows
with generally low reflectivity are identified as water by the
SVM in the feature band group because the identification of
features of water with generally low reflectivity have also been
learned by the SVM.

The partial vegetation extraction results of the SVM are,
moreover, shown in Fig. 7. Similarly, the vegetation areas in
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Fig. 8. Vegetation extraction results of the two experimental groups with the
RF. (a) Original image. (b) Feature band group. (c) Index group.

shadow occlusion are correctly identified by the SVM in the
index group, while they cannot be correctly identified by the
SVM in the feature band group.

Second, the RF classification results of both groups were
analyzed. The partial vegetation extraction results of the RF
are shown in Fig. 8. Contrary to the SVM, the overly illumi-
nated vegetation areas are correctly identified by the RF in the
index group, while they cannot be correctly identified by the
RF in the feature band group.

In summary, in the machine learning algorithms based on
spectral domain classification, the differences between the two
groups of classification results are mainly concentrated in the
areas with illumination differences. With the same amount of
information, better classification results are obtained with the
index group in these areas, and it can be concluded that using
GND-RI as input features enables the classifier to learn more
generalizable features than using only the original bands.

B. Spectral-Spatial Domain Classification
Remote sensing image classification corresponds to the

semantic segmentation tasks of pixel-level classification in
the field of computer vision. Mainstream semantic segmen-
tation algorithms usually use an encoder-decoder architecture.
The encoder part is a feature extraction network, which can
be classified into convolutional networks [35] and ViT-like
networks [36]. The decoder part is an upsampling network
that upsamples the extracted high-level features to the orig-
inal input resolution for pixel-level prediction [37]. Among
the algorithms used in this study, ConvNeXt [38] and the
Swin Transformer [39], which obtained SOTA results in the
2022 convolutional network and in the ViT, respectively, are
chosen for the encoder part, and UPerNet [40], which is a
unified perceptual resolution network for scene understanding,
is used uniformly for the decoder part.

The selected image dataset is the RIT-18 dataset provided
by Ronald Kemker [41], as shown in Fig. 9, which is an
ultrahigh-resolution multispectral image from UAV imaging,
with six spectral bands in the visible and near-infrared range
and a spatial resolution of 0.047 m. Most importantly, the
dataset contains two images of different illumination con-
ditions at the same location, which is suitable for our test
objectives.

Because the original RIT-18 dataset divides the features into
18 object categories with severely unbalanced class distribu-
tions, we reclassify the natural features and remove features,
such as people, vehicles, and parking lines, so that the dataset
only includes natural environment data. The specific categories
and their corresponding sample sizes after reclassification are
shown in Appendix A.

Fig. 9. RIT-18 dataset. (a) Image with shadows. (b) Image without shadows.
(c) Label.

Fig. 10. Prediction results of the two experimental groups. (a) and (b) pre-
diction results of ConvNeXt and the Swin Transformer for the feature band
group. (c) and (d) prediction results of ConvNeXt and the Swin Transformer
for the index group. (e) Label. (f) Legend.

As before, the experiments are also divided into the index
group and the feature band group. Because of the lack of short-
wave infrared bands used in the building index calculation, the
index group only maps four of six bands used by the vegetation
and water indices into the form of GND-RI, and the feature
band group selects all six original bands as the input features.
The specific experimental input features are shown in Table IV.

Since the algorithms in this section consider both spectral
and texture features, it is difficult to explain the influence of
GND-RI mapping on feature learning of classification models
by comparing the classification results. The strategy of these
experiments, therefore, is to use images without shadows [see
Fig. 9(b)] for network training and images with shadows [see
Fig. 9(a)] for validating the model accuracy, which illustrates
the improvement of network generalization in the form of
GND-RI in terms of the classification accuracy, including the
mean intersection-over-union (mIoU) and all-pixel accuracy
(aAcc). The accuracy validation results are shown in Table V,
and the corresponding classification results are shown in
Fig. 10.

From Table V, it can be seen that the accuracy for the
index group is higher than that for the feature band group
with both the ConvNeXt and Swin Transformer algorithms.
More specifically, the mIoU for the index group is increased
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Fig. 11. Linear regression results of NDVI, KNDVI, MNDVI, and GND with LAI in Point15.

TABLE IV
INPUT FEATURES OF THE TWO EXPERIMENTAL GROUPS

TABLE V
OVERALL ACCURACY VALIDATION RESULTS OF THE

TWO EXPERIMENTAL GROUPS

by 14.04%, and the aAcc is increased by 12.06% when the
Swin Transformer is used as the backbone network compared
with those for the feature group, and the mIoU for the index
group is increased by 2.93%, and the aAcc is increased by

2.42% when ConvNeXt is used as the backbone network. From
this, it can be concluded that GND-RI mapping enables the
backbone networks to extract more generalizable features.

It is worth noting that the ConvNeXt and Swin Transformer
networks used in this study have the same FLOPs, and Con-
vNeXt has higher classification accuracy with ImageNet-1K.
In our experiments, mapping bx and by to GND and RI,
however, shows a significant improvement in the verifica-
tion accuracy of the Swin Transformer, much more than
that of ConvNeXt. We show the classification accuracies of
ConvNeXt and Swin Transformer in detail in Appendix A,
and based on this, we believe that a possible reason is that
ConvNeXt may overfit the texture information with a small
sample size.

V. DISCUSSION

First, the proposed GND and RI have achieved convincing
results in remote sensing applications, but the prerequisites for
their application mainly include the following two points.

1) The data source must be atmospherically corrected sur-
face reflectance data.

2) The study target must possess a high contrast reflectance
feature, and its data source also contains the correspond-
ing feature band.

On the one hand, owing thanks to the improvement of
satellite technology and the development of preprocessing
techniques, multispectral surface reflectance data are easier
to obtain, such as Sentinel-2 L2A data and Landsat 8/9
Collection 2 data, are easier to obtain. As shown in Fig. 11,
GND can still achieve the best regression results after replac-
ing the Landsat 8 satellite data in Section III with Sentinel
L2A reflectance data. The Sentinel L2A data closest to the
Landsat 8 data are only at Point 15.

The above data may have negative values or be greater
than 1, and GND-RI mapping is bijective only in the half-plane
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Fig. 12. 3-D function images and contour plots of GND for three groups
with different scaling coefficients.

of the feature bands bx + by > 0 or bx + by < 0, so it
is necessary to remove outliers before using GND-RI. After
removal is completed, the value range of RI is fixed between
0 and

√
2.

Second, finding the high-contrast feature band correspond-
ing to the study target in its data source is a challenge.
For ground objects with unknown reflectance characteristics,
spectral analysis is required to obtain the feature bands. For
example, the study target and background objects are sampled,
spectral profiles are plotted in the data source, and the feature
bands are selected by manual comparison. In fact, traditional
normalized difference indices often use this method for band
selection.

When the data source is multi/hyperspectral data with
a larger number of bands and a wider wavelength range,
the manual band selection method is, however, no longer
applicable. To solve this problem, we explored a machine
learning-based band selection algorithm with the aim of
replacing the manual selection of the feature bands applicable
to GND. The principle of this algorithm is demonstrated in
Appendix B.

Additionally, there are still some limitations to the GND
approach of using scaling coefficients to change index sen-
sitivity. Bounded functions will always face the problem of
function saturation, and our aim is essentially to change the
location of their relatively sensitive points. Fig. 12 shows the
3-D function images and contour maps corresponding to three
different groups of GNDs with different scaling coefficients.
It can be seen that the function of the scaling coefficients is
actually to change the contour distribution of the indices at
the specified location, and the denser the contour distribution
is, the greater the gradient value and the more sensitive the
index. For this reason, we recommend using the mean value
of SR in the study area as the sensitive point of GND to derive
the optimal coefficients for GND.

In summary, we contend that GND, with optimal coeffi-
cients, offers a more accurate representation of the superior
inversion performance compared to the conventional NDI.
We, therefore, recommend employing GND instead of NDI
in works assessing index regression performance (e.g., the
evaluation toolbox of the SI [26]).

VI. CONCLUSION

The functions of GND and RI in remote sensing applications
can be summarized as follows.

TABLE VI
INDIVIDUAL CATEGORIES AND THE CORRESPONDING NUMBER

OF PIXELS AFTER RECLASSIFICATION

1) GND can be regarded as a function of SR, which serves
as the only independent variable, and therefore, inherits
the ability of SR to overcome illumination differences.
As a result, GND exhibits robustness when applied to
satellite imagery.

2) In change detection and variable inversion tasks, if the
variable of interest induces changes in the ratio of feature
bands (e.g., changes in vegetation coverage causing
changes in RVI), using GND instead of NDI allows
adaptive adjustment of the sensitivity of indices based
on the characteristics of the study area, making it better
suited to meet the application requirements. In this case,
the ratio of coefficients c4 and c3 in GND should be set
to the mean ratio value of feature bands by and bx within
the study area.

3) In machine learning classification algorithms based on
spectral information, using GND-RI corresponding to
the study targets instead of the original bands as the
input features can suppress the influence of illumination
differences, thus leading the classifier to learn more
generalizable features.

4) For the deep learning classification algorithms based
on the spectral-spatial domain, the usage of GND-RI
corresponding to the study targets instead of the original
bands as the input features achieves better classification
accuracy. In particular, the improvement is larger for the
ViT, with the mIoU improving by 14.04% and the aAcc
improving by 12.06% in our experiments.

Finally, we need to cautiously state that the usage of GND
and RI presupposes the existence of the high contrast feature
bands of the targets in its data source. When the feature bands
cannot be determined, it is recommended to use our band
selection algorithm proposed in Appendix B for selection.

APPENDIX A
Table VI shows the specific categories and their correspond-

ing sample sizes after reclassification.
Table VII shows the detailed classification results using

ConvNeXt as the backbone network in the two groups of
spectral-spatial domain experiments in Section IV. Except for
low-level vegetation, higher accuracy is achieved with the
index group. It is worth noting that asphalt is completely
unidentifiable in the feature band group, while some accuracy
is noted with the index group.
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TABLE VII
CLASSIFICATION ACCURACY ON CONVNEXT

TABLE VIII
CLASSIFICATION ACCURACY ON SWIN TRANSFORMER

Fig. 13. Neural network architecture diagram.

Table VIII shows the detailed classification results using the
Swin Transformer as the backbone network in the two groups
of spectral-spatial domain experiments in Section IV. The
accuracy for the index group is better than that of the feature
band group in all aspects, and the recognition accuracies of the
index values are higher than those for the feature band group
in every accuracy category. Notably, asphalt in the feature
band group is completely unrecognizable, while the IoU for
the index group is as high as 70.92%.

APPENDIX B
To solve the problem of band selection of GND, we design a

single-layer perceptron to perform band selection by analyzing
the weights. Fig. 13 illustrates the network structure of the
proposed perceptron.

The number of neurons in the input layer X is equal to
the number of bands in the image N , where the j th neuron
is denoted by X j , and the value of X j is the reflectance of
band j after maximum normalization. The number of neurons
in the output layer Z is equal to the number of categories in
sample M , where the i th neuron is denoted by Z i , and the
value of Z i is the value obtained by adding a bias term to the
weighted sum of each neuron in the input layer and entering
the softmax activation function. The loss is calculated between
the output layer and the label using cross entropy. According
to the chain derivation rule, the formula for calculating the
negative gradient of each weight in the network proposed in
this study is as follows:

−∇loss = −
∂loss
∂ Z i

×
∂ Z i

∂Yi
×

∂Yi

∂Wi j
= X j (Z i − Z i ) (B1)

where Wi j is the weight of the connection between the
i th neuron in the output layer and the j th feature in the input
layer and Z̄ i is the value of the ith row in the unique heat code.
After training, the maximum weight Wmax and the minimum
weight Wmin in the weight vector corresponding to neuron
Z i in the output layer are obtained. According to (B1), Wmax
connects the relatively larger X j in the class i sample, and
Wmin connects the relatively larger X j in the nonclass i sample.
At this time, bx connected by Wmax and by connected by Wmin
can be used as the high-contrast feature bands required for the
construction of GND in class i .
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