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A Spectrum-Aware Transformer Network for
Change Detection in Hyperspectral Imagery
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Abstract— Change detection in the hyperspectral imagery
(HSI) detects the changed pixels or areas in bitemporal images.
HSIs contain hundreds of spectral bands, including a large
amount of spectral information. However, most of deep learning-
based change detection methods did not focus on the spectral
dependency of spectral information in the spectral dimension
and just adopted the difference strategy to represent the cor-
relation of learned features, which limited the improvement
of the change detection performance. To address the above-
mentioned problems, we propose an end-to-end change detection
network for HSIs, named spectrum-aware transformer network
(SATNet), which includes SETrans feature extraction module,
the transformer-based correlation representation module, and
the detection module. First, SETrans feature extraction module is
employed to extract deep features of HSIs. Then, the transformer-
based correlation representation module is presented to explore
the spectral dependency of spectral information and capture
the correlation of learned features of bitemporal HSIs from
both the perspective of difference and dot-product operations,
so as to obtain more discriminative features. Finally, the decision
fusion strategy in the detection module is utilized to the learned
discriminative features to generate the final change map for
better change detection performance. Experimental results on
three hyperspectral datasets show that the proposed SATNet is
superior to the existing change detection methods.

Index Terms— Change detection, deep learning, hyperspectral
images, transformer.

I. INTRODUCTION

CHANGE detection of remote sensing images (RSIs) aims
to detect changes of bitemporal RSIs at different times,

and then make necessary analysis of changed regions from the
quantitative and qualitative perspectives. It has been widely
used in many fields: city management [1], [2], nature disaster
monitor [3], [4], forest management [5], [6], and so on.
Hyperspectral image (his) is a typical RSI with hundreds or
even thousands of spectral bands. These images contain rich

Manuscript received 19 November 2022; revised 7 March 2023 and 19 June
2023; accepted 15 July 2023. Date of publication 28 July 2023; date of current
version 11 August 2023. This work was supported in part by the National
Natural Science Foundation of China under Grant 62001378 and in part by
the Shaanxi Province Network Data Analysis and Intelligent Processing Key
Laboratory Open Fund under Grant XUPT-KLND(201902). (Corresponding
author: Wuxia Zhang.)

Wuxia Zhang and Yuhang Zhang are with the Shaanxi Key Laboratory
of Network Data Analysis and Intelligent Processing, School of Computer
Science and Technology, Xi’an University of Posts and Telecommunications,
Xi’an 710121, China (e-mail: zhangwuxia@xupt.edu.cn).

Liangxu Su is with the College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

Xiaoqiang Lu is with the College of Physics and Information Engineering,
Fuzhou University, Fuzhou 350108, China.

Digital Object Identifier 10.1109/TGRS.2023.3299642

spectral and detailed information, which can be used to detect
or identify targets. Hence, hyperspectral change detection
attracts more and more attention and has become a hot topic
in the field of RSI processing.

Change detection methods of RSIs can be roughly classified
into traditional change detection methods and deep learning-
based methods. The traditional change detection methods
mainly include algebra-based methods (such as image differ-
ence [7], image rationing [8]), transformation-based methods
(such as change vector analysis (CVA) [9], principal compo-
nent analysis (PCA) [10]), classification-based method [11],
and other methods (Markov model [12], fuzzy clustering [13]).
Most traditional change detection methods rely on manual
features or shallow features that cannot represent targets very
well, which leads to the low-change detection accuracy.

Deep learning techniques have been widely used in the field
of computer vision due to their ability to extract abstract,
hierarchical, and high-level features. Hence, deep learning
techniques have already been applied to the remote sensing
change detection task. Various deep learning structures have
been utilized to process HSIs, such as feature pyramid network
(FPN) [14], [15], Siamese network [1], [16], [17], Unet [18],
[19], and so on. However, these change detection methods do
not pay attention to the regions of interest (changed areas), and
the features extracted from these regions are more important
to improve the detection performance. Hence, attention-based
change detection methods [20], [21] are presented to address
this problem. They can focus on the regions of interest and
extract more representative features through the generated spa-
tial or channel attention maps. Long-range dependencies have
been proven to improve the detection performance. Therefore,
the transformer has been introduced to process RSIs since
it can easily focus on long-range dependencies. Transformer-
based change detection methods [22], [23] [24], [25] [26], [27]
can interact with long-distance information, and capture the
relationship between HSIs to obtain discriminative features.

Although the above-mentioned transformer-based change
detection methods have already achieved good performance
in the change detection task, most of these methods only
introduced the transformer mechanism to explore the position
dependency of spatial information in the spatial dimension
and did not employ the transformer mechanism to mine the
spectral dependency of spectral information in the spectral
dimension. However, due to a large number of spectral bands
in HSIs, the spectral information of HSIs is more important for
detecting changes. Moreover, most deep learning-based change
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detection methods only performed the difference operation to
calculate the correlation between learned deep features and
did not explore the correlation between the bitemporal images
from other perspectives.

To address the above-mentioned two problems, we propose
an end-to-end change detection network, named spectrum-
aware transformer network (SATNet). The proposed SATNet
includes SETrans feature extraction module, the transformer-
based correlation representation module, and the detection
module. The SETrans feature extraction module uses a series
of squeeze units and expand units to extract the deep spatial
features and fuses the transformer encoder to interact the
spectral information. The transformer-based correlation rep-
resentation module extracts the correlation of his information
at different times from two standpoints of difference and dot-
product operations. The transformer encoder is employed in
both branches to fuse the spectral information in each band
to obtain the correlation of the spectral features. Finally, the
detection module presents a novel decision fusion strategy to
make full use of learned features by weighted summing the
obtained change maps, which can improve the accuracy and
robustness of change detection.

The main contributions of our article are summarized as
follows.

1) We propose a novel SATNet fhisHSI change detection,
which uses the transformer mechanism in the spec-
tral dimension to explore the spectral dependency of
spectrum.

2) We design a transformer-based correlation representation
module to capture the correlation of learned features
from the SETrans feature extraction module from the
perspective of differential and multiplicative streams,
so as to extract more discriminative features.

3) We present a new decision fusion strategy to obtain a
more accurate change detection map by weighted inte-
grating the detection results of the differential stream,
multiplicative stream, and their corresponding concate-
nating stream.

The rest of the article is structured as follows. Section II
reviews the related literatures of change detection methods.
Section III describes the proposed SATNet in detail. The
effectiveness of the proposed SATNet is verified on three real
datasets in Section IV. Finally, Section V is the conclusion.

II. RELATED WORK

A. Deep Learning-Based Change Detection Method

Deep learning-based change detection methods have
become the mainstream for the change detection task due
to their strong feature representation. Deep learning-based
change detection methods can be roughly classified into two
groups: supervised learning-based methods and unsupervised
learning-based methods.

Supervised learning-based change detection methods [17],
[28], [29], [30], [31], [32] refer to training a network with
labeled data and transforming the change detection task into
a classification problem through the design of loss functions.
Yang et al. [17] proposed a transferred deep learning-based

change detection framework, which reduced the distribution
discrepancy between source and target domains. Many net-
work structures are used or improved in the change detection
task with the supervised learning strategy. Zhang et al. [28]
independently trained a fully convolutional two-stream archi-
tecture to extract features from the high-resolution bitemporal
RSIs. Seydi et al. [29] performed a multidimensional convo-
lution structure to extract deep features, which includes three
types of convolution kernels: 1-D-, 2-D-, and 3-D-dilated-
convolution. Li et al. [30] used multiscale convolution kernels
to extract the detailed features of land covers. Zhang et al.
[31] presented a supervised method based on deep Siamese
semantic network, which is trained by the improved triplet loss
for optical aerial images. Wiratama et al. [32] combined dense
connection convolution layers into the dual network to reuse
preceding feature maps and better measure the dissimilarity of
two temporal images.

Since the supervised learning-based change detection
method requires a large amount of labeled data, it is time-
consuming and laborious to tag RSIs. To address this prob-
lem, many semi-supervised and unsupervised learning-based
change detection methods [33], [34], [35], [36], [37] have
attracted more and more attention. Yu et al. [33] developed
a band selection approach to choose a salient subset implied
sufficient information, and a low-rank representation model
and a cluster algorithm are used to acquire the change detec-
tion map. Yu et al. [34] introduced the unsupervised domain
adaptation strategy with dense feature compaction to migrate
the model trained in the labeled samples of the source domain
to the unlabeled target domain. Sadeghi et al. [35] proposed an
unsupervised fuzzy measurement approach for multitemporal
and multispectral RSIs based on the asymmetric thresholding
and fuzzy logic. Li et al. [36] presented a noise modeling-
based fully convolutional network for HSI change detection,
which is trained by the existing unsupervised change detection
methods and then removed the noise during the training
process.

B. Attention-Based Change Detection Method

Attention mechanisms have been widely used in the field
of computer vision to emphasize the feature representations
of important areas while suppressing features of unnecessary
areas. This is achieved by learning the weight distribution of
features through generating a mask that highlights the key
parts of an image. The main difference between the attention
mechanism and the receptive field of convolutional neural net-
works (ConvNets) is that the attention mechanism is typically
used to selectively weight different regions of an image or
feature map, rather than simply adjusting the receptive field of
individual neurons. Attention-based change detection methods
for RSIs can be divided into three categories: spatial attention-
based change detection method [20], channel attention-based
change detection method [21], and spatial-channel attention-
based change detection method [38], [39], [40], [41], [42].

Chen and Shi [20] proposes a spatial–temporal attention-
based change detection method for RSIs, which partitioned
the image into multiscale subregions and introduced a
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Fig. 1. Structure of the SATNet. (a) Framework of the SATNet. (b) Structure of SETrans feature extraction module and the corresponding number below
each feature is the spectral dimension. (c) Structure of the detection module.

spatial–temporal attention module to capture spatial–temporal
dependencies at different scales. Peng et al. [21] presented a
semi-supervised CNN for change detection, which introduced
the channel attention mechanism to refine the Unet++ model,
to generate finer initial change maps for RSIs. Shi et al. [38]
proposed a deeply supervised attention metric-based network
(DSAMNet), which designed a metric module to learn change
maps by means of deep metric learning and the convolutional
block attention module (CBAM) was integrated to provide
more discriminative features. Lv et al. [39] introduced the
spatial–spectral attention mechanism and multiscale dilation
convolution strategy to reduce the pseudo changes and further
enhance the detection performance. Wang et al. [40] designed
a new adaptive spatial and channel fusion attention mechanism
to enhance the changed features in the spatial and channel
dimensions, which can completely obtain the relationships and
differences between the features of bitemporal images. Jiang
et al. [41] designed a co-attention module to emphasize the
correlation among the input feature pairs, and integrated the
attention module into the pyramid structure to obtain richer
target information.

C. Transformer-Based Change Detection Method

Transformer was first applied in the field of natural language
processing and has achieved good performance. Recently,
transformer was introduced into the computer vision field. It is
widely used in many tasks of the computer vision field, such
as image segmentation [43], object detection [44], image gen-
eration [45], and image classification [46]. Unlike CNN which
extracts information by constantly deepening the network and
expanding the receptive field, the transformer interacts with
the global information through the self-attention mechanism
and can handle long-distance dependence problems. Hence,
the transformer has a preliminary application in the task of
RSI change detection.

Zhang et al. [23] designed a pure swin transformer network
with a Siamese U-shaped structure, which was not limited by

the intrinsic locality of convolution operation and can capture
global information in the space-time dimension. Li et al.
[25] introduced the transformer into the Unet structure, and
encoded the tokenized image patches from the CNN feature
map to model the context and obtain rich global context
information. To tap the potential of integrating CNN and
transformer, Feng et al. [27] shifted the design paradigm
from series to parallel in order and proposed a dual-branch
structure, in which CNN branch is used to extract local
features and transformer is performed to capture the global
dependencies. However, these transformer-based methods only
consider the information in the space-time dimension and
ignore the importance information in the spectral dimension.
Therefore, these methods are not suitable for processing HSIs.

III. METHOD

The proposed SATNet consists of three modules: SETrans
feature extraction module, the transformer-based correlation
representation module and the detection module, as shown
in Fig. 1. SETrans feature extraction module performs a
series of squeeze units and expand units to extract deep
features of HSIs. Transformer-based correlation representation
module aims to explore the correlation of learned deep features
between two HSIs from the perspective of difference and
dot-product operations. Moreover, the transformer encoder
in the transformer-based correlation representation module is
employed to capture the long-distance dependence of spectral
information. Finally, the detection module adopts the decision
fusion strategy to weighted fuse the change detection map
acquired from the differential stream, multiplicative stream,
and their corresponding concatenating stream to generate the
final change map.

A. SETrans Feature Extraction Module

The SETrans feature extraction module consists of two
components: the squeeze and expand (SE) block and the
transformer encoder.
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TABLE I
STRUCTURE OF THE SE BLOCK

1) SE Block: The SE block is composed of a series of
squeeze units and expand units, which is a simplified structure
of dense connection [47]. In the process of feature extraction,
it gradually reduces and restores the spectral features to
remove noise and obtain representative features.

The structure of the SE block is shown in Table I. The SE
block consists of four squeeze units, four expand units, and
two Conv layers. The kernel size of both Conv2d layers is
3 × 3 with a stride of 1 and a padding size of 1.

The squeeze unit contains two sets of convolution layer
(Conv2d): batch normalization layer (BN) and Relu activation
layer (ReLu). Given an input image with the size of 7×7×Cin,
the size of the output feature is 7×7×Cout, where 7×7 is the
patch size. The kernel size of both Conv2d layers is 3×3 with
a stride of 1 and a padding size of 1.

The expand unit is composed of a concatenating layer and
two Conv2d+BN+ReLU layers. Given two input features of
identical size (7×7×Cin), the size of the input features in this
unit is 2(7×7×Cin), and this unit outputs a feature map of size
7 × 7 × Cout. The details of the Conv2d layers in the expand
unit are identical to those in the squeeze unit. In addition, the
expand unit includes a concatenation operation to recover the
details of features.

It is noteworthy that the SE block includes only convolution,
not pooling operations. Each pixel in HSIs can generally
represent an area of several meters or even tens of meters on
a side, which contains rich information. However, the pooling
operation randomly discards pixels, which will lead to the
loss of region information. Hence, we use convolutions to
transform features in the spectral dimension, without changing
the corresponding feature size under the spatial dimension. For
the input bitemporal HSIs T 1 and T 2 ∈ RH×W×C , we can
obtain the deep-level features FT 1 and FT 2 ∈ RH×W×C ,
respectively.

In addition, the transformer encoder is added to the SE
block in the proposed SATNet to extract more representative
features in the spectral dimension. The features obtained after
the third and fourth squeeze units are more abstract and global.

Fig. 2. Structure of the transformer encoder.

Therefore, the transformer encoder is only added to these two
features to interact the spectral information with less noise,
to better represent the regions of interest. The transformer
encoder will be described in detail in the following.

2) Transformer Encoder: Transformer is based on self-
attention mechanism, which interacts information through dot-
product operation, and comprehensively considers all context
information when processing a sequence. It can well address
the problem of long-distance dependence because a self-
attention operation can learn the global information obtained
by multiple convolutions and poolings of CNN.

Transformer encoder is composed of L identical blocks
connected in series. Each block mainly includes layernorm
(LN), multi-head self-attention (MSA), multilayer perceptron
(MLP), and residual connection, as shown in Fig. 2. For the
input feature F ∈ RB×HW×C (B is the batch size), each block
will get an output Zk ∈ RB×HW×C (1 ≤ k ≤ L), and the final
output of the transformer encoder Y ∈ RB×HW×C is the output
of the last layer (i.e., ZL ). The operations in a block can be
expressed as

Z ′

k = MSA(LN(Zk−1)) + Zk−1 (1)

Zk = MLP
(
LN

(
Z ′

k

))
+ Z ′

k . (2)

The calculation formulas of self-attention are written as
follows:

Attention(Q, K , V ) = σ

(
QKT

√
d

)
V (3)

where Q, K , V ∈ RC×d are the learnable parameters which
can be obtained from the input, and d is the channel dimen-
sion. σ represents the activation function.

Then, MSA can be formulated as

MSA(Q, K , V ) = concat(head1, . . . , headh)W O (4)

head(i) = Attention
(

QWQ
i , KWK

i , VWV
i

)
(5)

where W Q
i , W K

i , W V
i ∈ RC×d , W O

∈ RHd×C are the linear
projection matrices, and h is the number of heads.

It can be seen that the transformer encoder in the proposed
SATNet is the same as the transformer encoder in vision trans-
former (ViT) [48]. But the transformer encoder in the proposed
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SATNet focuses on mining the long-distance dependence in
the spectral dimension of HSIs. HSIs have more than a dozen
or even hundreds of spectral bands, containing rich spec-
tral information, which provide the possibility for detecting
changes from the spectral perspective. Since the transformer
encoder used in the proposed SATNet aims to explore the long-
distance dependence in the spectral dimension of HSIs, it does
not need to do position encoding and generate the class token.
However, since ViT deals with natural images that only contain
red-green-blue (RGB) channels, the transformer encoder in
ViT focuses on solving the long-distance dependence in the
spatial dimension.

B. Transformer-Based Correlation Representation Module

The change detection of HSIs aims to explore the correlation
of bitemporal HSIs or extracted corresponding features, and
then generate change maps by measuring the similarity of
extracted features of bitemporal HSIs. The difference and dot-
product are two methods to calculate the correlation. The
smaller the value achieved by the difference operation of
two vectors, the two vectors are more similar. The larger
the value obtained by dot-product of two vectors, the two
vectors are more similar. However, the simple difference or
dot-product operation is affected easily by noise. In this
article, both difference and dot-product operation are used to
construct the differential and multiplicative streams to explore
the correlation of the learned features from the SETrans
feature extraction module to alleviate the effect of noise.
Moreover, the transformer encoder is adopted to explore
the underlying information of the difference features and
the dot-product representations to obtain more discriminative
features.

In the transformer-based correlation representation mod-
ule, we perform pixel-by-pixel subtraction and multiplication
operations on the feature maps FT 1 and FT 2 extracted
from the SETrans feature extraction module to obtain the
difference map and the dot-product map. Then, the dif-
ference features and the dot-product features are fed into
the transformer encoder to acquire difference features based
on transformer encoder F ′

DS and dot-product features based on
transformer encoder F ′

MS, which can mine the effective infor-
mation in the spectral dimension to extract more discriminative
features. The transformer encoder structure is the same as that
in the SETrans feature extraction module.

The process of this module can be written as follows:

F ′

DS = TE(α1 × (FT 1 ⊖ FT 2)) (6)
F ′

MS = TE(α2 × (FT 1 ⊗ FT 2)) (7)

where TE represents the transformer encoder, α1 and α2 rep-
resent the weights of the two substreams, respectively. The
output of this module FDS and FMS ∈ RH×W×C can be
obtained from F ′

DS and F ′

MS after the reshape operation.
Because the results after subtraction and multiplication

have significant numerical differences, so they need to be
balanced by multiplying them with the appropriate weighting
parameters α1 and α2. The features obtained after difference
and dot-multiplied operations can represent the correlation,
which is an important basis for the change detection task.

C. Detection Module

Two corresponding change features are generated by the
differential and multiplicative streams, respectively. How to
fuse these two change features is very important because it
determines which information will be used more for the final
change detection.

To make full use of the information learned from the
differential and multiplicative streams and further explore
the correlation of two streams, a decision fusion strategy is
presented in our proposed SATNet to obtain the final change
detection map, which focuses on fusing the change maps
rather than deep features. The decision fusion strategy not
only has stronger representation ability to obtain more useful
information, but also can improve the robustness of the model.

We first perform a softmax function to generate the change
maps of the differential stream and multiplicative stream,
which are called CMDS and CMMS ∈ RHW×2, respectively.
Then, the change map of the concatenating stream CMcon
∈ RHW×2 is obtained by a series of operations for learned
features FDS and FMS, which can be written as

CMcon = σ(FC(concat(FDS, FMS))) (8)

where concat(a, b) represents the concatenating operation of
the feature a and feature b, FC represents the fully connected
network, and σ represents the softmax function.

The change maps detected from the differential stream,
multiplicative stream, and concatenating stream are weighted
and summarized to generate the final change map, which can
be written as follows:

Dtotal = w1 × CMDS + w2 × CMMS + w3 × CMcon (9)

where wi (1 ≤ i ≤ 3) are penalty parameters and represents
the weights of the components and

∑3
i=1 wi = 1.

D. Loss Function

The loss function used in this article is a compound loss
function that mainly includes two terms: binary cross entropy
loss (BCE) and contrastive loss (CL). The total loss can be
written as

Loss = λ1LBCE + λ2LCL (10)

where λ1 and λ2 are penalty parameters that represent the
weight of the BCE loss and CL, respectively.

BCE loss is the cross entropy loss for binary classification
problems and is used when the label is zero or one. Unlike
multiclass problems that require predicting a probability vec-
tor, only two classes of probabilities need to be predicted for
binary classification problems. The BCE loss formula can be
simplified

LBCE = −
1
N

N∑
i=1

[
yi log

(
ŷi

)
+ (1 − yi )log

(
1 − ŷi

)]
(11)

where the yi and ŷi (1 ≤ i ≤ N ) represent the ground truth and
the prediction, respectively. N is the total number of samples.
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Fig. 3. Santa Barbara dataset. (a) HSI acquired in 2013. (b) HSI acquired
in 2014. (c) Ground truth.

The mathematical expression of CL is written as follows:

LCL =
1

2N

[
yd2

+ (1 − y)max(margin − D, 0)2] (12)

D = ∥X1 − X2∥2 (13)

where y is the label, indicating whether two samples are
similar. D is the Euclidean distance of features of two samples.
The margin is the artificially set threshold, which is set to
1.5 in the experiment.

The aim of CL is to shorten the distance between similar
samples and increase the distance between dissimilar samples.
In the proposed SATNet, CL of FT 1 and FT 2 is calculated to
measure the similarity of change maps. When two samples
are unchanged, CL penalizes a large distance between them
to ensure that similar samples are still similar after the feature
extraction. When two samples are changed, CL punishes
a small distance between them, as the larger the distance
between them, the more dissimilar they are.

IV. EXPERIMENT

In this section, we will validate the effectiveness of the
proposed SATNet on three real hyperspectral datasets. First,
we will introduce three real datasets, the parameters setting
in our experiments in detail and the evaluation criteria. Then,
the comparison methods are introduced. The change detection
performance of these comparison methods and our proposed
SATNet are analyzed both quantitatively and qualitatively.
Finally, we will conduct the ablation study to discuss the
effectiveness of the two-stream structure and the transformer
encoder.

A. Datasets

Three bitemporal real hyperspectral datasets are Santa Bar-
bara, Bay Area, and Hermiton City, which are acquired from
airborne visible infrared imaging spectrometer (AVIRIS) sen-
sor or HYPERION sensor.

Santa Barbara dataset was taken in Santa Barbara area
(California) in 2013 and 2014 via AVIRIS sensors. The size
of HSI is 984 × 740 pixels with 224 bands. Two images and
the ground truth are shown in Fig. 3.

Bay Area dataset was acquired in Paterson area (California)
in 2013 and 2015 by AVIRIS sensors. The size of HSI is
600 × 500 pixels with 224 bands. Two images and the ground
truth are shown in Fig. 4.

Hermiston City dataset was taken in Hermiston area (Ore-
gon) in 2004 and 2007 through HYPERION sensors. The size

Fig. 4. Bay Area dataset. (a) HSI acquired in 2013. (b) HSI acquired in
2015. (c) Ground truth.

Fig. 5. Herminston City dataset. (a) HSI acquired in 2004. (b) HSI acquired
in 2007. (c) Ground truth.

of HSI is 390 × 200 pixels with 242 bands. Two images and
the ground truth are shown in Fig. 5.

In the pre-processing stage, we directly split the image into
7 × 7 × C patches pixel by pixel. The specific steps for the
dataset generation are as follows: first, the specular reflection
is performed on the original image to generate patches for edge
pixels, and then a sliding window operation with a stride size
of one is used to obtain patches for all pixels. Specifically,
if the size of HSI is H × W × C , we can obtain H × W
patches of size 7 × 7 × C . The reason for splitting HSI into
patches of size 7 × 7 is that each pixel of HSI contains rich
spectral information, and a patch with a larger patch size tends
to contain more land covers because of low spatial resolution
characteristic of HSIs.

Since the number of unchanged samples is much larger
than that of changed samples in the dataset, the changed and
unchanged samples are selected at the ratio of 1:1 to construct
a sub-dataset to better reduce the impact of class imbalance.
Eighty percentage of samples in the constructed sub-dataset
are selected to build the training set. The remaining samples
in the whole dataset were used as the testing dataset, and the
whole dataset was utilized to calculate evaluation metrics and
display qualitative results.

B. Experiment Setup

1) Parameter Setting: The proposed SATNet is imple-
mented by the Pytorch framework, using a single NVIDIA
GeForce GTX 3080Ti GPU with 12G memory for training
and testing. In this article, Adam is selected as the optimizer
to optimize the loss. The learning rate is 1E-5. The batch size
is 32, and the training epoch is 50.

The weighted parameters α1 and α2 in the transformer-based
correlation representation module are designed to balance the
contributions of features acquired from difference and dot-
multiplied operations to the change detection performance.
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Fig. 6. Experiment result on Santa Barbara dataset. (a) CVA. (b) RCVA. (c) DSAMNet. (d) SSAN. (e) PA-Former. (f) BIT. (g) SATNet(ours). (h) Ground
truth.

Since it was found experimentally that the feature values
obtained by the dot-multiplied operation are about ten times
higher than that obtained by the difference operation, so we
set α1 = 10, α2 = 1 to equalize their contributions.

In the detection module, since the concatenating stream
contains information from both the differential stream and
multiplicative stream, we set w3 ≥ 0.5. Moreover, the dif-
ference operation is a commonly used method to measure
similarity in the change detection task, so we set w1 ≥ w2. The
best performance is achieved based on experimental results
when w1 = 0.4, w2 = 0.1, and w3 = 0.5.

Since the change detection task is essentially a binary
classification task, the penalty parameter of BCE loss λ1 is
set to one. The penalty parameter of CL λ2 was adjusted to
seek the best combination of penalty parameters λ1 and λ2.
The best change detection performance is obtained based on
experimental results when λ1 = 1 and λ2 = 0.25.

2) Evaluation Criteria: There are four evaluation indicators
used in this article: OA, kappa coefficient, precision, and F1.

OA is the overall accuracy and the proportion of the
correctly predicted pixels to the number of pixels in the whole
image. The formula is written as follows:

OA =
TP + TN

TP + TN + FP + FN
(14)

where TP represents true positive, TN represents true negative,
FP represents false positive, and FN represents false negative.

Kappa coefficient is an accuracy measure of the classifica-
tion task. The calculation of the coefficient is based on the
confusion matrix, and the value is between −1 and 1. The
closer the result is to one, the better the consistency of the
classification. The formula can be written as follows:

Kappa =
OA − Pe

1 − Pe
(15)

Pe =
(TP + FP)(TP + FN) + (FN + TN)(FP + TN)

(TP + TN + FP + FN)2 .

(16)

Precision and Recall can well reveal the problem of false
detection and miss detection of algorithms. The calculation
formulas of the precision and recall are written as follows:

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
. (18)

F1 score is the harmonic mean of the precision and recall,
so this criterion can balance the impact of precision and recall,

and reflect the average performance of the model. The formula
can be written as follows:

F1 =
2

1
Precision +

1
Recall

=
2 × (Precision × Recall)

Precision + Recall
. (19)

C. Comparison Results and Analysis

1) Competitors:
1) CVA [49]: The CVA method generates a new differ-

ence hyperspectral image by calculating the difference
between bitemporal images, and then sets a threshold
value for the intensity of changes according to specifics
of the region.

2) RCVA [50]: Robust CVA is based on the CVA method,
which considers neighbors of the target pixel to enhance
the robustness to differences in viewing geometries or
noise from registration.

3) DSAMNet [51]: DSAMNet performs the CBAM module
to learn more discriminative features from the backbone,
and generates the change map through a change decision
module using the metric learning strategy.

4) Spectral and spatial attention network (SSAN) [52]:
SSAN extracts spectral-spatial features through a joint
attention network with a recurrent neural network (RNN)
attention branch in the spectral dimension and a CNN
attention branch int the spatial dimension. Then, a fusion
module is performed to obtain the final change detection
results.

5) Prior-aware Former (PA-Former) [24]: PA-Former
designs a prior-feature extractor to obtain prior and
deep features from bitemporal images, and a prior-
aware transformer module is performed to capture cross-
temporal and long-range contextual information.

6) Bitemporal image transformer (BIT) [22]: BIT uses
visual words (semantic tokens) to represent high-level
concepts of changes of interest and leverages the trans-
former structure to efficiently and effectively model
contexts within the spatial and temporal domains.

2) Experiment on Santa Barbara: The detection results of
the Santa Barbara dataset are visualized in Fig. 6. It can be
seen that traditional change detection methods (i.e., CVA and
RCVA) have a lot of noise, especially at the top of the change
map. Compared with traditional methods, the top of change
maps acquired from two attention-based methods DSAMNet
and SSAN have few noises. However, in the middle and lower
parts of change maps, DSAMNet, and SSAN have a serious
problem of miss detection and false detection, respectively.
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Fig. 7. Experiment result on Bay Area dataset. (a) CVA. (b) RCVA. (c) DSAMNet. (d) SSAN. (e) PA-Former. (f) BIT. (g) SATNet(ours). (h) Ground truth.

TABLE II
QUANTITATIVE RESULTS OF THE FOUR CRITERIA ON THE

SANTA BARBARA DATASET

The transformer-based methods PA-Former, BIT, and the pro-
posed SATNet have lower false and missed detection rates
compared with the attention-based methods. The proposed
SATNet achieves the best detection result because it uses the
transformer mechanism in the spectral dimension to explore
the spectral dependency of spectrum.

The quantitative evaluation of the performance of the pro-
posed SATNet on Santa Barbara dataset is shown in Table II.
The performance of traditional methods in hyperspectral
change detection task is not good enough, the indicators kappa,
precision and F1 score are far lower than other methods. The
performance of deep learning-based methods is much better
than that of traditional methods. One important reason is that
they all use neural networks to extract deep features that are
representative. Two attention-based methods DSAMNet and
SSAN have better results on OA, kappa, and F1 score, because
they use the attention mechanism to focus on the change areas.
But the precision of SSAN is only 0.5769, which is the lowest
among deep learning methods, indicating that this method has
the high false detection rate. SATNet has achieved the best
results in all indicators, reaching 0.9839, 0.8883, 0.8302, and
0.8969, respectively. This is because SATNet performs the
decision fusion strategy to make full use of learned features,
which can obtain more accurate change maps and reduce the
impact of noises.

3) Experiment on Bay Area: The final change detection
results of the competitors and the proposed method on the
Bay Area dataset are shown in Fig. 7. CVA and RCVA have
poor performance due to their manual features. DSAMNet
and SSAN generate the weight mask of features by the
spatial attention or spectral attention module to enhance the
importance of specific regions to obtain more representa-
tive features. Transformer conducts global interaction through
the self-attention mechanism, so that each patch contains
global features, which further improves the detection results.

TABLE III
QUANTITATIVE RESULTS OF THE FOUR CRITERIA ON THE

BAY AREA DATASET

However, the dataset contains many small change areas and
these change regions are scattered, PA-Former and BIT did
not achieve good results on this dataset. SATNet performs
the transformer-based correlation representation module to
capture the correlation of learned deep features from the
perspective of difference and dot-product operations, obtaining
more discriminative features and achieving the best detection
results among these methods.

Table III shows quantitative results on the Bay Area dataset.
SATNet performs best in four indicators, and the kappa,
precision, and F1 score are more than 0.82. The precision of
CVA and RCVA only reach 0.4673 and 0.5520, respectively.
Although attention-based methods have greatly improved in
OA (greater than 0.92), they still perform poorly in Kappa
and F1 score. PA-Former and BIT are significantly lower
than SATNet in three indicators, with an average decrease
of 0.03, indicating that the prediction results of these two
models are not accurate enough. It is because they ignore the
importance of spectral information and lack the interaction
between spectral information.

4) Experiment on Hermiston City: Fig. 8 depicts the change
detection results for the Hermiston City dataset. The traditional
methods CVA and RCVA have a relatively high false detection
rate and perform poorly compared with deep learning-based
methods. The attention-based method DSAMNet has a high
false detection rate, while SSAN has a high miss detection rate.
This indicates that the attention mechanism does not perform
well in this dataset and is inadequate for hyperspectral image
feature extraction. The results of PA-Former, BIT, and SATNet
based on transformers are good. However, there is a small
amount of noise in the PA-Former result, and the edge part
of the BIT result is not smooth enough. SATNet can well
alleviate these two problems, because PA-Former and BIT
extract features in the spatial dimension, while SATNet inter-
acts information in the spectral dimension. Since the spectral
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Fig. 8. Experiment result on Hermiston City dataset. (a) CVA. (b) RCVA. (c) DSAMNet. (d) SSAN. (e) PA-Former. (f) BIT. (g) SATNet(ours). (h) Ground
truth.

TABLE IV
QUANTITATIVE RESULTS OF THE FOUR CRITERIA ON THE HERMISTON

CITY DATASET

information of hyperspectral images in spectral dimension
is rich and very important for the change detection task,
interacting spectral information can achieve better results.

The quantitative results for Hermiston City dataset are
shown in Table IV. OA, kappa, precision, and F1 score values
of SATNet are 0.9929, 0.9690, 0.9556, and 0.9731, respec-
tively. The quantitative performance of traditional methods
is unsatisfactory, and the quantitative results of DSAMNet
and SSAN via the attention mechanism are improved but still
limited. Compared with the other two datasets, Hermiston city
dataset is simpler, and three transformer-based methods have
achieved better results. SATNet has achieved the best result
due to its sensitivity to spectral information, which is obtained
through the global interaction and the long-range dependencies
of spectral information.

D. Ablation Study
1) Effective of Two-Stream Structure: To verify the effec-

tiveness of the two-stream structure in the transformer-based
correlation representation module, the following ablation
experiments are designed. We remove the differential stream
or multiplicative stream, denoted as “wo Diff stream” and “wo
Mul stream,” respectively, leaving only one branch to generate
the final change map. The ablation experiments are carried out
on the Bay Area datasets, and the results are shown in Fig. 9.

It can be seen that after removing the differential stream
or multiplicative stream respectively, the performance of
the model decreases by 0.0712 and 0.0381 on kappa, and
0.1022 and 0.0575 on precision. It fully illustrates the effec-
tiveness of the two-stream structure, which can better mine
the correlation and relationship of learned deep features from

Fig. 9. Ablation results of different streams used in the transformer-based
correlation representation module.

difference and dot-product operations, and increase the repre-
sentation ability of the proposed SATNet.

2) Effective of Transformer Encoder: To verify the effec-
tiveness of transformer encoder, we design other two struc-
tures to process features after subtraction and multiplication,
as shown in Fig. 10. Fig. 10(a) shows that no operation is
performed after the two-stream structure, and features are
directly fed to the detection module for the change detection.
Fig. 10(b) represents that a CNN structure is designed to
replace the transformer encoder, the structure contains two
CNN blocks. Each block contains two convolutional layers
and a maximum pooling layer, and then features extracted by
CNN are fed to the detection module. Fig. 10(c) is the structure
used in the proposed SATNet.

The ablation experimental results on the Bay Area dataset
are shown in Fig. 11. The results of structure (a) on kappa
and precision only reach 0.4212 and 0.4478, indicating that if
features are not further processed after the two-stream struc-
ture, the final detection results are not good. If CNN structure
is used to extract features, the performance can be greatly
improved, but it is still lower than that of the transformer
encoder. The kappa and precision values of structure (b) are
0.8076 and 0.7371, which are lower than that of structure
(c), respectively. It is because CNN only extracts features in
the spatial dimension, without considering the correlation of
learned features in the spectral dimension. The transformer
encoder can fully interact spectral information and improve
the discriminability of features.

In addition, we also conducted corresponding ablation
experiments on the transformer encoder in the SE block to
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Fig. 10. Three structures to process features after subtraction and multiplication. (a) No operation is performed after the two-stream structure. (b) CNN
structure is designed to replace the transformer encoder. (c) Structure used in the proposed SATNet.

Fig. 11. Ablation results of three structures used in the network.

TABLE V
EXPERIMENT RESULTS OF THE DIFFERENT STRUCTURE

ON THE BAY AREA DATASET

explore that adding transformer encoder to which layer can
make the model achieve the best performance. Hence, we use
two other structures without the transformer encoder in the SE
block and with the transformer encoder after all the squeeze
blocks to accomplish the ablation study. The results on Bay
Area dataset can be shown in Table V.

It can be seen from Table V that when transformer encoder
is not added to the SE block, OA, kappa, precision, and F1
score values decreased by 0.0171, 0.057, 0.0934, and 0.0472,
respectively, indicating that adding transformer encoder to the
SE block can improve the model performance. However, when
the transformer encoder is added after all the squeeze blocks,
the performance of the model decreases slightly. It means that
if spectral dimension information has interacted in all squeeze
processes, it may lead to insufficient extraction of features
in the spatial dimension, and ultimately reduce the detection
performance. When the transformer encoder is added to the
third and fourth layers, the high-level features already have
large receptive fields and contain more spatial information.
Then, better results can be obtained by mining the spectral
information.

TABLE VI
ABLATION RESULTS WITH OR WITHOUT SETRANS

FEATURE EXTRACTION MODULE

3) Effective of SETrans Feature Extraction Module: To
verify the effectiveness of the SETrans feature extraction
module, two ablation studies are carried out. First, the entire
SETrans feature extraction module is removed, and the change
detection results on three datasets are shown in Table VI.
In Table VI, “with SETrans” means that the structure of SAT-
Net incorporates the SETrans feature extraction module, while
“wo SETrans” denotes the absence of the SETrans feature
extraction module in the structure of SATNet. The term “wo
SETrans” also implies that the differences and dot-products
of image pairs are directly fed into the transformer encoder.
Second, some layers within the SE block are removed, and the
change detection results of the different numbers of SE units
in the SE block for the Bay area dataset are shown in Fig. 12.

It can be seen from Table VI that the SETrans feature
extraction module positively influences the overall perfor-
mance of our proposed method. The removal of this module
led to a decline in performance with respect to OA, kappa,
precision, and F1 values. This indicates that the SE operation
is crucial for the proposed method as it effectively captures
the interdependencies among channels. Furthermore, Table VI
reveals that while the transformer encoder can act as a feature
extraction module, its performance is inferior compared to
the original SATNet design. This suggests that the features
extracted by the SETrans feature extraction module, which
are learned via CNNs, provide more useful information for
the change detection task.

It can be seen from Fig. 12 that all detection indicators,
including OA, kappa, precision, and F1, have declined, with
the reduction in the number of SE units in the SE block.
This indicates that the proposed SATNet requires a sufficient
number of SE units to achieve the optimal performance. When
the number of SE units is four, the proposed network achieves
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Fig. 12. Experiment results of the different numbers of SE units for the Bay
Area dataset.

the best change detection results. Therefore, the number of SE
units is set to four in our experiment.

V. CONCLUSION

In this article, we propose a SATNet for HSI change
detection, which can explore the spectral dependence of the
spectrum to extract more discriminative features. SATNet
includes three components: SETrans feature extraction mod-
ule, transformer-based correlation representation module, and
detection module. The SETrans feature extraction module
uses the SE block as the backbone and adds the transformer
encoder after the squeeze layer to extract deep features. The
transformer-based correlation representation module performs
pixel-by-pixel subtraction and dot-multiplied operations to
learn deep features, and then the differential and dot-product
features are fed to the transformer encoder to extract more
discriminative features in the spectral dimension. The detec-
tion module employs a new decision fusion strategy to obtain
a more accurate final change detection map by weighted sum-
ming the detection results of differential stream, multiplicative
stream, and their corresponding concatenating stream. The
effectiveness of our proposed SATNet was validated on three
real hyperspectral datasets. The experimental results show
that the proposed DATNet achieves the best detection results
compared with other existing methods.
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