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Abstract— Choosing how to encode a real-world problem as a
machine learning task is an important design decision in machine
learning. The task of the glacier calving front modeling has often
been approached as a semantic segmentation task. Recent studies
have shown that combining segmentation with edge detection can
improve the accuracy of calving front detectors. Building on this
observation, we completely rephrase the task as a contour tracing
problem and propose a model for explicit contour detection
that does not incorporate any dense predictions as intermediate
steps. The proposed approach, called “Charting Outlines by
Recurrent Adaptation” (COBRA), combines convolutional neural
networks (CNNs) for feature extraction and active contour (AC)
models for delineation. By training and evaluating several large-
scale datasets of Greenland’s outlet glaciers, we show that this
approach indeed outperforms the aforementioned methods based
on segmentation and edge-detection. Finally, we demonstrate that
explicit contour detection has benefits over pixel-wise methods
when quantifying the models’ prediction uncertainties. The
project page containing the code and animated model predictions
can be found at https://khdlr.github.io/ COBRA/.

Index Terms— Active contours (ACs), edge detection, glacier
front, Greenland, uncertainty.

I. INTRODUCTION

ECENT years have seen rapid warming in the polar
regions, which has led to an exceptionally large mass
loss of the Greenland ice sheet [1]. This loss of ice mass
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translates into global sea level rise and can cause feedback
effects that further increase the warming of the Arctic [2].
Closely monitoring the Greenland ice sheet is therefore of
paramount importance. About half of this ice mass loss is
generally attributed to glacier dynamics, like dynamic imbal-
ance and increased discharge. The remaining half is attributed
to negative surface mass balance, which mostly stems from an
increase in surface melt [3].

Following the rapid changes in air and sea temperature,
glacier dynamics in these regions are changing quickly. One
essential indicator for dynamic changes of marine-terminating
glaciers is the calving front, which is the boundary line
of the glacier from which ice bergs calve off. In order to
better understand the glaciological processes and provide more
accurate constraints for glacier modeling, detailed monitoring
of the glaciers’ calving fronts is necessary. With the ever-
growing availability of satellite remote sensing data, monitor-
ing glaciers at a large scale with high temporal frequency has
become possible, but requires automated methods. Therefore,
recent years have seen rapid advances in applying machine
learning for glacier monitoring, which will be explored in more
detail in Section II-A.

With the rise of deep learning methods in remote sensing,
the predominant method of approaching this task has been
via semantic segmentation. In this formulation, each pixel is
assigned a label that corresponds to either the glacier class or
the sea class. Given the large number of studies on semantic
segmentation in computer vision, the methods and models for
this task are well understood and provide decent results when
applied to calving front detection. However, these methods
require postprocessing steps to extract the actual calving front
from the segmentation masks.

Noting that segmentation is only a proxy for the actual task
of calving front detection, and neither the sea nor the inward
glacier area is of actual interest for calving front detection, the
field has seen a recent trend toward edge detection methods.
By combining computer vision methods for pixel-wise edge
detection with the aforementioned segmentation task, predic-
tions are thus greatly improved [4], [S].

The goal of this study is to provide a new angle on this
task. Picking up the trend toward edge detection, we pro-
pose to completely move away from pixel-wise prediction
architectures and rethink the task from the ground up. The
desired final prediction format for calving front detection is a
vectorized polyline, which is a data format that is well-suited
for downstream analysis and modeling applications. Therefore,
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Fig. 1. High-level overview of our deep AC model for delineating calving
fronts. (a) First, the backbone network takes the input image and derives
feature maps. (b) Then, a sample is taken from these feature maps at the
position of each vertex. (c) These features are evaluated by the Snake Head
which predicts offsets for each vertex. (d) Finally, the offsets are applied to
update the contour. This process is repeated multiple times.

we are looking to build a model that directly outputs the
calving fronts in this desired format instead of recovering the
vectorized contour from intermediate predictions. By radically
redesigning the neural network architecture, we are able to
move away from pixel-wise classifiers and instead arrive at a
model that directly predicts the calving front as a polyline.
This approach has several theoretical benefits over repre-
senting the desired output by a dense, pixel-wise mask.

1) As the predictions are already in a vector format, there
is no need for complicated postprocessing pipelines like
with pixel-wise approaches.

By its very design, the model will learn to focus on the
actual object of interest, the calving front.

Looking closer into the application, explicit contour
prediction provides a natural way of encoding prior
knowledge into the network. In pixel-wise detection
frameworks, the network may predict undesired outputs
like disconnected line segments. By directly predicting
an explicit contour, such issues are eliminated.

Explicit contours make more efficient use of compu-
tational resources. A sequence of vertices takes fewer
parameters than a dense mask.

Finally, the vectorized representation allows for better
quantification of model uncertainty as the joint proba-
bility distribution of a sequence of vertices is easier to
model than that of pixel-wise masks.

2)

3)

4)

5)

Convinced by these theoretical considerations, we set out to
develop a calving front detection model that directly predicts
the desired contours, as shown in Fig. 1. Contour-based
approaches for the segmentation of regions in natural images
have been extensively studied in the form of active contours,
which are also called Snakes [6].

In order to provide robust and stable calving front pre-
dictions for downstream applications, such as glaciological
studies and models, it is important to quantify the reliability of
the model’s predictions. Therefore, we also explore the ques-
tion of uncertainty quantification in calving front detection.
Experimental results using the Monte Carlo (MC) dropout
method [7] across different models suggest that uncertainty
quantification with contour-based models can indeed bring
benefits over pixel-wise models.

Overall, we summarize the goals and contributions of this
study by the following points.
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1) We rephrase the task of the automated glacier calving
front detection from a segmentation task to a contour
detection task and show that deep active contour (AC)
models are a feasible approach to solving this task.
We develop a specialized deep AC model for the delin-
eation of glacier calving fronts which outperforms both
pixel-based approaches as well as existing deep AC
models. The effect of the design decisions is validated
through extensive ablation studies.

We explore the benefits of contour-based methods
for uncertainty quantification compared to pixel-wise
methods.

2)

3)

II. RELATED WORK

In order to place our work into the context of existing
research, we provide a brief overview of existing calving front
detectors, as well as methods for explicit edge predictions.

A. Detecting Calving Fronts in the Deep Learning Era

Given the strong performance of deep learning-based meth-
ods for calving front detection, traditional vision methods
have largely become insignificant for this task [5], [8]. There-
fore, this section focuses on deep learning-based methods.
Here, most approaches formulate the task as a variant of
sea—land segmentation. In this formulation, a semantic seg-
mentation network is used to separate the image into land and
ocean classes [8]. There is a considerable number of well-
tested segmentation architectures, like UNet [9], which is a
strong baseline for most segmentation tasks. Even without
any changes to the network itself, this approach can yield
satisfactory results for calving front detection, which has been
shown in previous studies for both the Greenland ice sheet [10]
and the Antarctic ice sheet [11]. Seeing this strong baseline
performance of the UNet, Periyasamy et al. [12] show that
the performance of such a model can be greatly improved
by tweaking network components, like normalization layers,
the loss function, or dropout rate.

Further progress in this field was made by extending the
UNet model or exploiting the advances of more recent seg-
mentation model architectures. For example, Loebel et al. [13]
add more layers and thereby increase the number of down- and
upsampling steps. This enlarges the spatial context that the net-
work can consider for its decisions and therefore leads to better
predictions. Following recent advances in transformer-based
model architectures, Holzmann et al. [14] enhance the UNet
model with attention gates to improve the interpretability of
the model and better understand the learning process. Another
newer neural network architecture that has successfully been
adopted for calving front detection is DeepLabv3+ [15].
Zhang et al. [16], Cheng et al. [4], and Gourmelon et al. [17]
bring in ideas from this architecture to obtain more accurate
delineations of glacier calving fronts. Finally, it is also possible
to combine image classification and segmentation [18], which
can lead to more robust results.

Recently, there appears to be a trend toward models
that approach calving front detection by extending or even
replacing semantic segmentation with edge detection methods.
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By focusing on the boundary between the two classes rather
than the areas of sea and glacier, these models are encouraged
to learn features that are informative of the calving front rather
than features of the sea and glacier areas.

Wavelet transforms are one possible approach that makes
use of the abrupt changes in texture between glacier and
sea to determine the location of the calving front [19].
Davari et al. [20] use a different transformation, namely the
Euclidean distance transformation, and train a network that
predicts each pixel’s distance to the calving front instead of a
binary class. Great potential lies especially in the combination
of segmentation and edge detection. Both HED-UNet [5] and
the calving front machine (CALFIN) [4] choose this approach
to outperform models that focus on only one of these two
aspects.

Contrary to these models, our approach is not to predict
pixel-wise segmentation or edge masks, but instead to explic-
itly predict a contour parameterized by a fixed number of
vertices.

B. Explicit Edge Prediction

The idea of explicitly parameterizing contours in an image
was pioneered quite early in the history of computer vision
by Kass et al. [6]. They proposed active contours or Snakes,
which evolve from an initial contour by iteratively minimiz-
ing an energy functional. By design, this functional takes
its minimum when the contour coincides with the desired
boundary in the image. Using Radarsat data, this approach
has been shown to work for the delineation of the Antarctic
coastline on a coarse scale [21]. The main drawback of
conventional AC methods is the fact that they are limited
to single-channel imagery without any natural extension to
multichannel imagery. Furthermore, they are sensitive to local
image contrast and the results depend highly on the initializa-
tion of the contour.

As automatic feature extraction is a strong suit of deep
learning models, the idea of combining ACs with deep learning
is not a new one. Rupprecht et al. [22] introduced a deep AC
model that works by first predicting a 2-D offset field that
points from each pixel toward the closest boundary point.
An initial contour will then evolve along this offset field until
it converges. However, this method is not end-to-end trainable
as it relies on the intermediate offset field and no gradients
flow through the actual curve evolution. While this approach
can work on multichannel imagery, it still suffers from a strong
dependence on contour initialization.

In an effort to introduce an end-to-end trainable deep
AC model, Peng et al. [23] proposed to make not only the
feature extraction part learnable, but the contour evolution
step as well. Their model, termed Deep Snake first derives
feature maps using a convolutional backbone network and
then samples the features at the position of each vertex. From
these sampled features, a 1-D convolutional neural network
(CNN) then predicts the offsets for each vertex. Like with
conventional AC models, this process is then iterated to refine
the predictions.

As one of the most recent models in this line of research,
deep attentive contours (DANCE) [24] improves on the Deep
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Snake idea by introducing an “edge attention map,” which
influences the speed of the snake evolution. While vertices
far from the target boundary are evolving quickly, the update
speed for points closer to the boundary is slowed down.
Inspired by these advances, our goal is to develop an AC
model for the task of calving front detection. The existing
models address the computer vision task of instance segmen-
tation, where objects in an image are locally segmented. For
calving front delineation, however, one global line between
glaciers and the ocean is needed. This disparity and further
differences, like the general shapes of the objects of interest,
call for a completely different network architecture as well as
changes to loss functions and the network training protocol.

III. DEEP ACTIVE CONTOUR MODELS FOR CALVING
FRONT DELINEATION

When approaching the task of calving front detection,
we first take a look at how a human would proceed in solving
the task. In discussions with experts and when annotating
calving fronts ourselves, one central observation is the order
in which different areas in the scene are addressed.

To a human annotator, it does not make much difference
whether they are told to trace the edge between two objects in
an image or fill in the areas that both objects occupy. In both
cases, they will usually start out by tracing the boundary area
between the two classes with minute attention to detail. When
asked to perform segmentation, the remaining areas are then
filled in with broad strokes in a second step. So while humans
will approach both tasks in a similar fashion, a focus on the
boundary appears to be the more natural way to formulate the
task of calving front detection.

For a neural network model, the way a task is formulated
changes everything. As these models are trained to minimize
some loss function, the final performance is determined by
how well a low loss value translates to good performance
on the actual task. For instance, it has been observed that
the cross-entropy loss used for training semantic segmentation
models can lead to blurry edges between the classes due to
the fact that each pixel contributes equally to the final loss,
no matter its position in relation to the objects in the image.
This implies that a model can minimize most of its loss by
correctly classifying the simpler pixels that lie in the interior
of the objects of interest. In turn, the model will spend less
attention on the pixels near the boundary, which are much
more important for solving the task [5], [25].

Phenomena like these are likely the reason that calving front
delineation has recently seen a shift toward improving these
segmentation models by including pixel-wise edge detection
tasks. By putting more focus on the edges, the model is forced
to learn how to better distinguish the classes in these critical
areas [4], [5]. Instead of combining segmentation with edge
detection in a pixel-wise framework, we take a more radical
approach in this study. By completely eliminating the semantic
segmentation aspect and focusing only on the edges, it is
possible to reformulate the task in such a way that it does
not require pixel-wise classifications. Instead, the model will
directly output a vectorized contour.
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Fig. 2. Architecture overview of our model. Note that while this diagram
shows only two iterations of the Snake Head, the number of iterations is
actually an arbitrary hyperparameter, which we set to four for our experiments.
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A. General Model Architecture

Inspired by the ideas of Peng et al. [23], we develop a
deep contour model for the delineation of glacier calving
fronts. As is common in many recent computer vision models,
our model consists of two main components which perform
different subtasks in order to solve the overall task together.
The backbone is a general-purpose 2-D CNN which is used to
extract semantically valuable features from the input imagery.
The second component is a prediction head, which makes
use of the backbone’s features to derive the final network
predictions. In our model, the prediction head takes the role
of the AC iteration. Therefore, it will take a contour and the
backbone’s feature maps as its inputs, and update the contour
to better match the desired boundary. Due to this functional
similarity, we call this component the Snake Head. The overall
architecture of the network is visualized in Fig. 2. Notably, this
framework can be trained end-to-end, as all components are
fully differentiable.

For the backbone, multiple feature extractors were eval-
vated. Initial experiments with standard ResNet backbones
produced unsatisfactory results. This leads us to believe that
while ResNets are a strong backbone for many vision tasks,
they are likely not optimal for deep AC models. In search of
a better-suited backbone network, the Xception backbone [26]
used by Cheng et al. [4] in their study of Greenland’s glaciers
proved to be a very capable backbone for remote sensing of
glaciers that transfers well to deep AC models.

B. Snake Head

The central challenge in predicting contours from an image
is the fact that input and output are represented in different
dimensionalities. While the input image is represented by a
2-D grid of pixels, the contour that the model should output
is given as a sequence of vertices, which is 1-D. The idea
of AC models is to start with an initial contour and then
iteratively update this contour based on the image values at
each vertex. Conceptually, deep AC models do nearly the same
thing. However, they do not directly sample the image values
but instead, sample the values from the feature map derived
by the backbone network.

After sampling the backbone features at the vertex positions,
the Snake Head predicts an offset for each vertex, which
represents how the vertex needs to be shifted so that the entire
sequence of vertices can better represent the true contour. This
is achieved by using a 1-D CNN. While conventional, 2-D
CNNs pass information between adjacent pixels, the 1-D CNN
used in the Snake Head passes information between adjacent
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Fig. 3. Detailed view of the Snake Head. After the feature maps are sampled
at the vertex positions, the vertex coordinates are concatenated to the vertex
features. The 1-D CNN then predicts offsets for each vertex. These offsets
are added to the input coordinates to obtain the Snake Head’s output.

vertices of the contour. In order to enable the passing of
information between vertices that are far away from each other,
we stack multiple such convolutional layers. The receptive
field of the Snake Head is further increased by using dilated
convolutions. In our model, the Snake Head is therefore given
as a stack of dilated convolutions. We set the sequence of
dilation rates to 1, 3, 9, 9, 3, and 1, as similar setups have
proven to be successful at capturing low- and high-frequency
features in signal processing tasks [27].

In order for the Snake Head to gain some spatial reasoning
capabilities, we also include the vertex coordinates as addi-
tional input features for the Snake Head CNN. This allows
the model to not only ensure a homogeneous spacing of the
output vertices but also to learn some prior assumptions on the
shape of the calving fronts. The overall working mechanism
of the Snake Head is shown in Fig. 3.

To translate the iterative nature of the AC method, we apply
the Snake Head multiple times with the shared weights
to obtain more refined predictions. Starting with the ini-
tial contour, the Snake Head samples features at the vertex
positions, calculates and applies the offsets, and repeats the
process. Compared to conventional AC models, which can take
dozens [21] or even hundreds [28] of iterations to converge,
the deep AC model converges to satisfactory results after a
small number of iterations. For our experiments, we set the
number of iterations to four.

In the context of deep neural networks, the Snake Head can
also be regarded as a recurrent neural network. The locations
of the vertices then represent the hidden state of the network,
which is updated throughout the iteration steps until the final
output is achieved.

C. Loss Function

The loss function is a crucial element of any deep learning
model, as it measures how well the model is performing
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and gives feedback for improving the network via backprop-
agation. When predicting contours, the loss function should
therefore measure the similarity between the predicted contour
p, represented by vertices p; with 1 < i < V, and the true
contour ¢, given by the vertices ¢; with 1 < j < V.

Common loss functions for polygon regression are based
on the L and L, losses, which, following the above notation,
are defined as follows:

1
Lip.0y= 3> llpi =l e

1
La(p,y = 5> lIpi = il )

These loss functions have a fundamental issue when pre-
dicting glacier front lines. By only computing the distance
between the vertices of p and ¢ at the same index, they tacitly
assume that each predicted vertex corresponds to exactly one
vertex in the true contour. However, the model has no way
of knowing how the ground truth vertices were placed along
the true contour. In the setting of Deep Snake and DANCE,
the vertices were placed equidistantly along the contour of
objects that were largely convex, so this assumption did not
have much negative impact there.

When predicting glacier frontlines, however, this issue
becomes much more prominent due to the irregular and
jagged shape of these contours. As the model essentially tries
to minimize the L; or L, loss for a number of possible
parameterizations of the true contour at the same time, the
resulting predictions lack sharp edges and instead follow a
smoothed version of the true outline.

Naturally, contour prediction is not the first task to face
challenges like these. For example, in the context of time-
series analysis, slight variations in timing are often less
important than the general shape of the time-series. Dynamic
time warping (DTW) is a method that was proposed by Sakoe
and Chiba [29] in order to address this very issue. Given
two sequences, they not only compare the pairwise differences
but instead, first, find an optimal alignment between the two
sequences and then calculate the distances based on that
alignment.

In our setting, the parameterization of a contour takes the
role of time in the original DTW. Formally, we define the
DTW loss for two contours p and ¢ to be

> lpi =il 3)
k

where X denotes the set of all possible realignments
(i, ji)ke(k) that satisfy the following three conditions.

min

Lprw(p, 1) =
(i Jikerk1EX

1) For any i € {1,..., V}, there is a k with i, =1i.

2) For any j € {1,..., V}, there is a k with j; = j.

3) The sequences i; and j; are nondecreasing in k.
Under these conditions, the DTW loss can be efficiently
calculated using dynamic programming [29].

A possible issue with the use of DTW as a loss function
in deep learning is the fact that it is not smooth due to the
minimum operator applied in (3). Seeing this, Cuturi and
Blondel [30] replace the minimum with a soft minimum which
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they define as
softmin, (xy, ..., x,) = —y log Z exp — @)
14
k=1

with a smoothness parameter y > 0. In the limit y — 0, the
conventional minimum operator is recovered.

D. Implementation Details

A central issue with naively backpropagating the loss
through the snake iteration is the fact that the early iterations
show poor convergence to the target contour. This is easily
fixed by stopping the gradient from flowing through the
coordinates at the beginning of each snake step. To still
encourage quick convergence of the contours during inference,
we leverage deep supervision by including an additional loss
term for each intermediate step. During training, the current
contour is compared to the ground truth after each snake step,
and the resulting loss is added toward the final loss for the
gradient calculation. Unless otherwise stated, all models use a
contour parametrization by 64 vertices.

All models in the study were trained for 500 epochs on the
training dataset. We used the Adam optimizer [31] with an
initial learning rate of 10> decaying to 4 - 107> on a cosine
decay schedule [32].

Our models are implemented in JAX [33] using the Haiku
framework [34]. The training was conducted on a single
NVIDIA RTX 3090 GPU with 24 GB of VRAM. Training an
instance of the model, took around 25 h, and had an estimated
energy consumption of 8.1 kWh.

1V. EXPERIMENTS AND RESULTS
A. Datasets

In order to thoroughly evaluate our model and compare
it with other approaches, we choose two large-scale datasets
of marine-terminating glaciers in Greenland for training and
evaluation purposes, namely the CALFIN dataset [4] and the
calving front dataset from TU Dresden (TUD) [13]. Both of
these datasets include respective testing data. Furthermore, the
Baumhoer dataset [11] consists of synthetic aperture radar
(SAR) data of Antarctic glaciers, thus serving as a bench-
mark for the models’ ability to generalize to a different data
modality and a different ice sheet.

1) CALFIN Dataset: The CALFIN dataset consists of near-
infrared data from the various Landsat missions and is most
notable for the long time span of acquisition times, ranging
from 1972 to 2019. Its spatial coverage is 66 Greenlandic
glaciers, which amount to 1541 Landsat scenes. In an effort
to improve generalizability to different sensors, the train-
ing dataset also includes 232 single-polarization Sentinel-1
scenes of glaciers in Antarctica. The corresponding test dataset
consists of 162 Landsat near-infrared scenes. For all of the
mentioned scenes, the calving fronts were manually delin-
eated.

2) TUD Dataset: In contrast to this, the TUD dataset
puts its focus on the eighth iteration of the Landsat mis-
sion, providing a dense time-series of recent acquisitions of
Greenland’s marine-terminating glaciers. The captured scenes
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range from 2013 to 2021 for a total of 1127 tiles. For studies
related to feature importance and data fusion, it includes the
full multispectral imagery, as well as topography data and
texture information derived using gray-level co-occurrence
matrix statistics. For interoperability with the other datasets,
only the panchromatic imagery is used in this study.

3) Baumhoer Dataset: Another test set for evaluating the
generalization of the trained models is given by the Baumhoer
dataset [11]. This dataset is vastly different from the other
datasets, as the imagery is not from Greenland, but from
Antarctica instead. Furthermore, it consists of Sentinel-1 SAR
imagery, which marks a second challenge in generalization.
While the original dataset is not openly available, an evaluation
subset is distributed along with the CALFIN dataset [4].
In order to keep this study fully reproducible, we only use
this publicly available subset of the Baumhoer dataset. The
used testing set consists of 62 Sentinel-1 scenes of glaciers in
Antarctica from the year 2018.

B. Evaluation Metric

As there is no uniquely defined distance metric between two
curves, many different metrics are being used for evaluating
the accuracy of predicted glacier frontline positions [8]. In our
work, we adapt the Polis metric [35], which was originally
proposed for measuring the dissimilarity between building
footprints. For two polylines v and w, with I and J vertices,
respectively, it is defined as the average distance of any vertex
to the respective other polyline

1< 1<
p.w) = ;jd(vi, w) + 7;d(wj, v)

where d(v;, w) denotes the distance between vertex v; and the
closest point on the polyline w. Note that this closest point
w does not need to be a vertex, but may be a point between
vertices as well.

Compared to other existing metrics, like the Fréchet dis-
tance [36], which is defined as the solution to a min-max
problem, the Polis metric is more easily interpretable as
the “average” distance between the two curves. Furthermore,
it was chosen due to its symmetry and the fact that it takes
all predicted points into consideration.

C. Comparison With Other Models

For our comparison study, we train a number of different
models in order to compare their performance on the test
datasets. To compare with the state of the art in calving front
detection and contour-based outline detection, we include both
pixel-wise and contour-based models.

1) Pixel-Wise Models: This first group of methods consists
of pixel-wise segmentation models that are known to work
well for calving front detection.

a) UNet [9]: This model is a popular semantic seg-
mentation model that serves as a strong baseline for many
segmentation tasks. It has been successfully applied to calving
front detection [11].
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b) DeepUNet [13]: The model developed and used by
Loebel et al. [13]. Its main difference from the original UNet
model is the addition of two down- and upsampling steps,
which make the model deeper and more aware of spatial
context.

c¢) HED-UNet [5]: A combination of the UNet model
with an edge detection model, HED-UNet was originally
developed to detect glacier frontlines on the Baumhoer
dataset [11].

d) CALFIN [4]: This model was introduced by
Cheng et al. [4]. The model is based on the segmentation
architecture DeepLabv3+ [15]. It is the first to leverage the
potential of the Xception network for calving front detection.

2) Contour-Based Models: For a comparison to existing
contour-based models, we also include models from this group
in the comparison. It should be noted that unlike the pixel-
wise models above, they were not developed for calving front
detection.

a) Deep AC [22]: One of the first works to combine
AC models with deep learning, this model uses a 2-D CNN to
predict an offset field that points toward the nearest contour
point from each pixel and then evolves a contour along this
offset field.

b) Deep Snake [23]: Originally proposed as a contour-
based model for instance segmentation, we have made slight
changes to this model to perform calving front detection.
Specifically, the circular convolutions in the network were
replaced with regular 1-D convolutions, as the predicted con-
tours for calving fronts should be open polylines and not
closed polygons. Furthermore, the object detection head of
the model was removed as with calving fronts, there is always
exactly one contour to be predicted. For a fair comparison,
we train and evaluate this model not only with the ResNet-50
backbone but also with the Xception backbone.

c¢) DANCE [24]: An iteration of the Deep Snake [23]
model, DANCE introduces an edge attention map that speeds
up the evolution for vertices far from the true edge and slows
the evolution for vertices on the true edge. We applied the
same adaptations to this model as to the Deep Snake model.

As CALFIN provides the largest and longest record of
glacier observation, we train all models on the CALFIN
training set and then evaluate them on the CALFIN, TUD,
and Baumhoer test sets. The numerical evaluation results for
this comparison study are displayed in Table I, and some
visual results are displayed in Fig. 4. For the proposed
Charting Outlines by Recurrent Adaptation (COBRA) model,
we train three randomly initialized models and report mean
and standard deviation across these three runs.

Comparing the pixel-wise models, we can reproduce the
increased performance of the calving front-specific models
over the baseline UNet. All three of these models, namely
DeepUNet, HED-UNet, and the CALFIN cut down the average
prediction error from UNet’s 224 m to the range of 130-138 m
on the CALFIN test set. There is, however, a difference in
generalization to the other datasets, where the DeepUNet
seems to generalize best to SAR imagery, and the CALFIN
generalizes better than others on the TUD dataset, which is
also based on Landsat imagery.
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Fig. 4.

Visualization of prediction results (blue) for the different models and corresponding ground truth (red) on the test datasets. For the iterative,

contour-based models intermediate results are displayed as blue dashed lines. Best viewed in color.

Looking at the contour-based models, the Deep AC model
falls behind the competition and performs the worst out of all
the models in our experiments. The bad performance of the
Deep AC model is easily explained when looking at the visual
results in Fig. 4. It stems from the fact that its predictions tend
to only represent a part of the desired curve, as there is no
regularization term that forces the prediction to cover the entire
calving front.

With the exception of the Deep AC model [22], the contour-
based approaches perform considerably better on the CALFIN
evaluation than their pixel-based counterparts, especially when
using the Xception backbone network.

On the other hand, generalizing to the Antarctic Baumhoer
dataset is particularly hard for contour-based methods.
We attribute this to the presence of jagged floating ice-tongues
(see Fig. 4, last row), which are not observed in the same
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TABLE I

MEAN DEVIATION (POLIS METRIC) OF THE TRAINED MODELS ON THE
EVALUATED TEST SETS

CALFIN TUD  Baumhoer
UNet [9] 224 m 288 m 122 m
DeepUNet [13] 138 m 241 m 92 m
HED-UNet [5] 130 m 231 m 122 m
CALFIN [4] 138 m 159 m 99 m
Deep Active Contours [22] 515 m 699 m 652 m
Deep Snake RNS50 [23] 289 m 467 m 247 m
Deep Snake Xception [23] 123 m 316 m 130 m
DANCE RN50 [24] 118 m 290 m 131 m
DANCE Xception [24] 103 m 272 m 102 m
COBRA (mean of 3) 99 m 144 m 99 m
COBRA (standard deviation) +10m =+ 2Im +12m

way during training. Such features lead to more complex
outlines, which need more vertices for their representation,
as can be seen from the results of the study on vertex numbers
in Section IV-E2.

Overall, our proposed network outperforms both the pixel-
based and other contour-based models by a considerable
margin on the CALFIN and TUD evaluations. Even when
generalizing to the radically different Baumhoer dataset, our
model still maintains a respectable performance.

Inference results from the COBRA model for the three
testing datasets are available for online viewing and as a
shapefile download at https://github.com/khdlr/COBRA/tree/
master/inference_results.

D. Quantifying Uncertainty With Contour Models

With deep learning models growing ever more complex,
quantifying the uncertainty of their predictions at inference
time has become an important consideration when working
with such models. Deep learning models being over-confident
in their predictions is a common issue [37]. As the models are
usually trained on definite ground truth, the models are never
taught to concede their uncertainty in ambiguous cases.

One elegant method for the quantification of network uncer-
tainties is known as MC dropout (MCD). In their seminal
study, Gal and Ghahramani [7] demonstrated that a deep
learning model trained with dropout layers can be interpreted
as approximated Bayesian inference in a deep Gaussian pro-
cess. Samples from the posterior distribution approximated
by such a model can be recovered quite easily by enabling
the dropout layers not only at training time but also at
inference time. It has been shown that MCD can quantify
model uncertainties well for remote sensing tasks like aerial
image segmentation [38]. Recently, Hartmann et al. [39] also
successfully applied a Bayesian UNet for the segmentation of
glaciers in SAR imagery.

As the MCD method is simple to implement and eval-
uate compared to other uncertainty quantification methods,
we choose this approach for quantifying uncertainties in
the model predictions. In order to estimate the hardness of
samples at inference time and get an estimate for the model
uncertainty, we calculate the original, deterministic model
prediction, as well as multiple additional predictions using
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TABLE I

UNCERTAINTY QUANTIFICATION: PEARSON CORRELATION BETWEEN
MODEL UNCERTAINTY AND ACTUAL PREDICTION
ERROR (POLIS METRIC)

Dataset CALFIN TUD  Baumhoer
UNet [9] 0.3603  0.3864 0.1873
DeepUNet [13] 0.2762  0.3726 0.4191
HED-UNet [5] 0.3391  0.5518 0.3989
CALFIN [4] 0.1790  0.3449 0.2337
Deep Active Contours [22] 0.0842  0.2190 0.1759
Deep Snake Xception [23] 0.2009  0.4959 0.4508
DANCE Xception [24] 0.2972  0.3346 0.3589
COBRA 04811 0.4414 0.6031

the MCD technique. If these predictions all line up well with
the original model prediction, the model can be assumed to
be quite certain of its prediction. On the other hand, a large
deviation between the original model prediction and the MCD
predictions corresponds to ambiguity in the model output,
implying a potentially higher prediction error.

Taking the ten MC samples and the model’s deterministic
prediction, we estimate the model uncertainty as the average
Polis-distance of each MC sample from the deterministic
prediction.

Our hypothesis is that the explicit edge parameterization by
vertices lends itself much better to uncertainty quantification
from these posterior samples than dense pixel-wise predic-
tions, due to the fact that the explicit representation requires
much fewer parameters. With fewer parameters, the covariance
between the parameters becomes more tractable, and therefore
easier to approximate for any model.

For our uncertainty quantification study, we apply MCD
with a dropout rate of 20% to the aforementioned models.
After training the models, we draw ten predictions with
enabled dropout (posterior samples) per model for each test
scene in order to assess the quality of the uncertainty quan-
tification.

Fig. 5 shows the posterior samples obtained using the MCD
models. It can be observed that the pixel-wise calving front
detectors can collapse completely on hard scenes. All the
evaluated pixel-wise methods suffer from this phenomenon,
suggesting that it is indeed related to the mode of repre-
sentation. Inspection of the underlying segmentation masks
suggests that this is due to the fact that when working with
segmentation masks, small changes in the segmentation can
completely change the topology of the prediction as previously
connected regions can become disconnected and vice-versa.
Due to this effect, estimating the model uncertainty using
MCD can overestimate the hardness of the samples for these
models on easy scenes.

By their design, contour-based methods do not have this
limitation, as they predict the frontline directly. Among these
models, the DANCE architecture seems affected by similar
issues as the pixel-wise models, which we attribute to the fact
that DANCE incorporates an intermediate dense prediction.
Overall, both Deep Snake [23] and our proposed model appear
to be best suited for uncertainty quantification using MCD,
with very similar samples on easy scenes, and deviating
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the CALFIN test set.

samples in areas that are harder to delineate. Among the
pixel-based methods, HED-UNet [S5] appears to be the best
at quantifying its uncertainty.

In an effort to numerically evaluate the uncertainty quan-
tification, we then calculate the Pearson correlation coefficient
between the model uncertainty and the actual prediction error.
A high correlation between these two variables corresponds
to better uncertainty quantification, as the model should only
be certain when its prediction is actually correct, while a
high model uncertainty should be indicative of the prediction
possibly being far from the ground truth.

The results of this evaluation are displayed in Table II.
Our model is leading the evaluation for the CALFIN and
Baumhoer datasets, reaching respectable Pearson coefficients
of 0.4811 and 0.6031, respectively. On the TUD dataset, HED-
UNet and the classic Deep Snake outperform our model on
the uncertainty benchmark, achieving Pearson coefficients of
0.5518 and 0.4959. Still, our model scores decently with a
Pearson coefficient of 0.4414.

These observations support our hypothesis that the contour
representation is better suited for uncertainty quantification.

E. Ablation Studies

In order to better understand how the design decisions help
our proposed model to improve upon the existing contour-
based methods, we conduct a number of ablation studies to
quantify the value of the network’s components.

1) Loss Function: The rationale for implementing Soft-
DTW loss for our model was the assumption that the model
cannot always correctly guess the placement of the vertices

CALFIN Deep AC Deep Snake DANCE

5615912

Contour-based

QOurs

Visualization of posterior samples obtained using MCD (blue) from the different models overlaid on top of the ground truth (red) for scenes from

TABLE III

RESULTS OF THE LOSS FUNCTIONS ABLATION STUDY. DEVIATIONS
CALCULATED USING THE POLIS METRIC

Loss Function = CALFIN TUD  Baumhoer

Lo 114m 312m 119 m

Ly 102m 296 m 111 m

DTW 90O m 236m 91 m

Soft DTW 9 m 144 m 99 m
TABLE IV

RESULTS OF THE STUDY ON THE NUMBER OF VERTICES. DEVIATIONS
CALCULATED USING THE POLIS METRIC

Vertices 16 32 64 128 256
CALFIN 120 m 98 m 99 m 98 m 116 m
TUD 252m 209m 144 m 214m 26l m
Baumhoer 128 m 102 m 99 m 8 m 128 m

along the ground truth contour. Indeed, we observe better
performance when using a time-warping loss, as can be seen
in Table III. Surprisingly, the difference between DTW and its
smooth SoftDTW variant is rather small, which suggests that
the theoretical advantage of Soft DTW’s smoothness does not
matter much in practice for this application.

2) Number of Vertices: When choosing the number of
vertices to represent the contours, a balance needs to be taken
between too few vertices and too many vertices. Too low a
number of vertices will not allow the model to sufficiently
approximate the true contour, while too many vertices should
lead to overfitting and issues in communicating information
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TABLE V

RESULTS OF THE STUDY ON THE NUMBER OF ITERATIONS. DEVIATIONS
CALCULATED USING THE POLIS METRIC

Iterations 2 3 4 5 6 7
CALFIN 193m 147 m 9Om 157m 152m 157 m
TUD 318m 262m  144m 271m 267m 278 m
Baumhoer 148 m 119 m 9m 110m 111lm 106 m

between vertices far apart in the sequence. In order to exper-
imentally find a good setting for the number of vertices,
we train COBRA configurations with different numbers of
vertices. For computational efficiency, we always set the
number of vertices as a power of two, choosing 16, 32, 64,
128, and 256 as possible vertex counts. The results of these
experiments are displayed in Table IV.

For all three datasets, we observe that with increasing
vertex count, performance decreases toward both ends of the
tested range, which suggests that there is indeed a sweet spot
around the middle of the evaluated range. For the CALFIN
dataset, there appears to be an optimal performance plateau
from 32 to 128 vertices while for the TUD dataset, 64 vertices
are optimal. Interestingly the Baumhoer dataset seems to
require a higher number of vertices for the best performance,
reaching the best performance at 128 vertices. We attribute this
to the aforementioned higher complexity of calving fronts in
Antarctica. In practice, we recommend choosing the number
of vertices accordingly to the complexity of the calving fronts
of the region of interest. In general, setting it to 64 offers
overall good performance across all study areas concerned in
this study, the selection of which could be quite representative
for large-scale applications.

3) Number of Iterations: A fundamental hyperparameter of
our network is the number of iterations of the Snake Head.
When given too few iterations, the model will likely not have
enough capacity to converge to the right contour. On the
other hand, given a large number of iterations, we expect
the model to overfit the training set and generalize worse to
unseen scenes. In order to find evidence for these hypotheses,
we conduct a study on the number of iterations where we
retrain COBRA models with iteration numbers from two to
seven. The results in Table V suggest that there is indeed
a sweet spot at four iterations. Starting from two iterations,
performance improves considerably on all evaluation datasets
up until four iterations. After that, increasing the number of
iterations decreases the performance again. Therefore, we set
the number of iterations for our model to four.

4) Coordinate Features: Including the vertex coordinates as
additional features allows the Snake Head to take the distance
and relative position of the vertices into account, but could
also introduce a source of overfitting. In the ablation study (see
Table VI), we observe that these coordinate features improve
performance slightly on the CALFIN test set and drastically
improve performance on the TUD dataset, where the average
deviation is more than halved. For the Baumhoer dataset,
performance degrades slightly when including coordinate fea-
tures. This suggests that the coordinate features help the model
to learn implicit shape priors for Greenlandic glacier calving
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TABLE VI

RESULTS OF THE BINARY ABLATION STUDY. DEVIATIONS CALCULATED
USING THE POLIS METRIC

Ablation CALFIN TUD  Baumhoer
Full Model 9m 144 m 99 m
No Coordinate Features 95 m 30lm 100 m
No Gradient Stopping 397m 285 m 531 m
No Deep Supervision 102m 207 m 118 m
No Shared Weights 8 m 294 m 141 m

fronts, which are not helpful when transferring the model to
the Antarctic calving fronts in the Baumhoer dataset.

5) Gradient Stopping: Originally, the idea of stopping the
gradients from flowing through the vertex coordinates between
iterations was introduced to improve the convergence of the
model. However, the “No Gradient Stopping” ablation in
Table VI shows that this choice is essential for the perfor-
mance of the model. Without gradient stopping, the model
predictions deteriorate to a degree where they are worse than
the predictions of the baseline UNet model. We attribute this
to numerical instabilities in the texture sampling procedure
that is used to translate between the feature maps and vertex
features, which can arise from letting gradients flow through
the vertex positions.

6) Deep Supervision: During training, we calculate a loss
term after each snake iteration and sum up these individual
loss terms for the final loss. To quantify the contribution of
this deep supervision, we also evaluate a model trained without
intermediate loss terms, displayed as “No Deep Supervision”
in Table VI. While the in-distribution samples from the
CALFIN test set do not improve much with deep supervision,
generalization on TUD and Baumhoer is improved by this
change.

7) Weight Sharing: The underlying hypothesis for shared
weights in the Snake Head iterations was the assumption that
a single set of weights would lead to better generalization
results than applying a series of multiple distinct Snake Heads.
The ablation results for “No Shared Weights” in Table VI
support this hypothesis. On the CALFIN test set, the pre-
diction accuracy is nearly constant between the model with
shared weights and the one with distinct weights. However,
on the other test sets, the performance improves consid-
erably when sharing the weights between the Snake Head
iterations.

V. CONCLUSION

We proposed an approach to detecting calving fronts that
directly predict the desired contours instead of predicting
dense masks as an intermediate output. By training our method
and existing methods on the CALFIN dataset, we showed
that this new approach outperforms previous methods both
on the CALFIN and TUD test sets, and exhibits competitive
performance on the Baumhoer test set. In our ablation study,
we showed the importance of network elements like the loss
function, stopping gradient flow in the Snake Head, and
sharing the weights between iterations.
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Furthermore, we showed that deep AC models not only
provide accurate delineations of calving fronts but also are
naturally suited for the quantification of the prediction uncer-
tainties.

We hope that this study can inspire new ways of approach-

ing

similar tasks in remote sensing where boundaries are

studied, like grounding line detection or firn line detection.

Finally, we believe that the shift in representation from
pixel-wise masks to GIS-native data structures like polylines
will not only reduce the computational burden but also allow
for exciting new approaches like enforcing physical constraints
and temporal consistency or analysis across different coordi-
nate reference systems.
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