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Abstract— Synthetic aperture radar (SAR) satellite images are
used increasingly more for Earth observation. While SAR images
are useable in most conditions, they occasionally experience
image degradation due to interfering signals from external
radars, called radio frequency interference (RFI). RFI-affected
images are often discarded in further analysis or preprocessed to
remove the RFI. However, few on-ground radars can cause RFI
in SAR images and such information can thus increase domain
awareness greatly over both land and sea, where, e.g., localizing
and characterizing RFI signals in the ocean could help classify
otherwise overlooked ships. The aim of the current study is to
detect and localize RFI signals automatically in Sentinel-1 level-
1 images and further characterize the on-ground radar. The
spatial structure of RFI signals vary greatly. A convolutional
autoencoder (CAE) was therefore developed to reconstruct RFI-
free Sentinel-1 images. Conversely, RFI-affected images could
not be well reconstructed. Anomalous heatmaps were then
developed to automatically detect and localize RFI anomalies
in the images under varying environmental and geographical
conditions, whereafter the external radar characteristics were
extracted manually from Sentinel-1 level-0 data. We could con-
sequently classify and localize RFI signals believed to originate
from both stationary radars and ship-borne radars. We further
argue that the calculated ship-borne radar characteristics corre-
spond to those of air-surveillance radars. Empirically, the method
showed better detection results than those of previous studies.
Our study shows that more information can be extracted from
certain detected objects, such as ships, from SAR images.

Index Terms— Anomaly classification and localization, con-
volutional autoencoder (CAE), deep learning, radio frequency
interference (RFI), synthetic aperture radar (SAR).

I. INTRODUCTION
EW surveillance methods applicable for maritime
domain awareness are essential for monitoring and con-
trolling maritime traffic safety, piracy, smuggling, invasion of
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foreign navy, and more. Dark ships are noncooperative vessels
with nonfunctioning transponder systems such as the auto-
matic identification system (AILS) for ships. Their transmission
may be jammed, spoofed, sometimes experience erroneous
returns, or simply turned off deliberately or by accident.

Foreign navy, in particular, rarely broadcast, e.g., identifica-
tion or location information. Other noncooperative surveillance
systems are therefore required, such as satellite or airborne
imaging systems; electronic warfare support measures; or
coastal radars. Furthermore, knowing that a detected vessel
carries, e.g., an air-surveillance radar provides valuable infor-
mation to decision makers and gives important insight to the
vessel characteristics.

Satellite-borne synthetic aperture radar (SAR) imaging sen-
sors have all-weather, all-hours imaging capabilities, and can
therefore be used to image, e.g., noncooperative ships [1].
However, emitted pulses from external active radars with
similar center frequency as the SAR can cause interference in
the SAR images. This is called radio frequency interference
(RFI) [2], [3] and is caused by, e.g., wireless communi-
cation such as radio and television in the P- or L-band
spectrum [4], or by air-surveillance radars in the C-band
spectrum. Furthermore, mutual RFI can occur between two
SAR satellites [5], [6], [7]. However, the location of the
mutual RFI between two satellites can be predetermined by
the orbits of the satellites [6]. Alternatively, by analyzing the
RFI, it can be determined to originate from mutual RFI, due to,
e.g., the periodical structure of the mutual RFI in the entire
image caused by the superimposing of the two images [5].
Shao et al. [8] analyzed the impact of RFI signals in SAR ship
detection, and concluded that RFT signals pose a serious threat
in automatic ship detection algorithms. More importantly, few
on-ground radars are capable of causing RFI signals in C-band
SAR images mid-sea. Localizing the RFI signals in an SAR
image would therefore enhance maritime domain awareness
by: increasing the amount of detected noncooperative ships,
since detection schemes developed for several polarizations
might fail when an image is contaminated by an RFI [8];
providing valuable information on the detected vessel, since
only few types of vessels carry air-surveillance radars, with
some warships being among them.

The few published studies of RFI signals in SAR images
focus on detecting images containing RFI signals [9], [10],
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or to remove the RFI signal using different mitigation
techniques [11], [12], [13], [14], [15]. In particular, Monti-
Guarnieri et al. [9] implemented a global Sentinel-1 RFI-
contaminated probability map. Instead of using the processed
SAR image or full level-0 data, Monti-Guarnieri et al. [9]
exploited the noise measurement of the rank echoes in the
level-0 Sentinel-1 data. Monti-Guarnieri et al. [9] implemented
a Fisher’s Z test and the Kullback-Leibler divergence to find
RFIs using the statistical measurement of the noise in the rank
echoes. Since March 2022, their RFI detection and mitigation
schema has been applied to all Sentinel-1 image to remove
RFI [16]. However, their method assumes that all external
contributions will be present in the rank echoes. Meyer et al.
[17] used a conventional incoherent notch-filtering algorithm
for the later RFI mitigation applied to L-band SAR data
acquired from the PALSAR instrument. They furthermore
extracted RFI information such as the RFI type and RFI range
bandwidth. In [18], they used the Sentinel-1 quick-look images
to find and flag images containing RFI. They transformed all
three RGB values of the Sentinel-1 quick-looks to a single
gray-scale image. In their preprocessing procedure, they had to
empirically find a threshold for each image that removed low-
intensity pixels, whereafter they used a convolutional neural
network as a reference classifier. Likewise, Artiemjew et
al. [10] implemented a convolutional neural network as a
supervised binary classifier. Artiemjew et al. [10] and Chojka
et al. [18] find images with RFI signals without localizing
the signals and are dependent on manually decided thresholds
specific for each image. Most importantly, most RFI deep
learning algorithms in the literature are supervised, and are
thus heavily dependent on the manually labeled training data
or simulated data [10], [12], [14], [18], [19]. RFI signals have
very different spatial structures and supervised models cannot
capture the variability of RFI signals. It is therefore a necessity
to use either out-of-distribution deep learning, or unsupervised
anomaly detectors.

Lately, research has been conducted on detecting and local-
izing RFI signals from stationary RFI sources. In [20], they
detected and localized RFI signals using location-specific
threshold and tolerance values applied in a combination of the
Sentinel-1 VV and VH polarizations. While they did find an
approximate location using both the ascending and descending
orbits, they also assumed that an RFI was present in each
analyzed image, and they did not determine any characteristics
of the radar. In [21], they detect RFI signals in Sentinel-1
quick-looks using an advanced deep learning model trained
on labeled, segmented RFI anomalies. Similar to, e.g., autoen-
coders, their network compressed the images into a bottleneck
that they then up-sampled. They furthermore added atrous
convolutions, separable convolutions, and attention layers etc.,
and showed very good results compared to other models, such
as U-Net and MobileNet-V2. They labeled 100 training and
100 validation images and trained their model using the ground
truth images. They showed that their model could detect RFI
signals from both on-ground radars and from mutual RFL
While their model and results are very impressive, they used
positively labeled images for training, meaning it is necessary
to label RFI images for each geographical location.
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We argue that RFI signals provide valuable information.
Likewise, we argue that a mitigation strategy performed on
Sentinel-1 level-0 data reduces the information, since RFI
affected values oftentimes are replaced by, e.g., the nearest
unaffected value.

In this study, we present an unsupervised RFI localization
method using deep learning. By training a convolutional
autoencoder (CAE) on RFI-free Sentinel-1 interferometric
wideswath (IW) quick-look images, anomalies can be detected
in SAR images. The anomalies are then localized and clas-
sified as RFI anomalies using domain knowledge on the
structures of RFI signals. By analyzing the Sentinel-1 level-
0 data corresponding to the location of the RFI signals,
we extract information about the ground-based radars.

The novelty of this study lies in a workflow that can be
used to find and extract on-ground radar characteristics using
data from the Sentinel-1 SAR constellation without explicitly
labeling RFI signals in the images. The workflow can be
summarized in three steps.

1) Detect large-scale anomalies in
quick-look images using deep learning.

2) Classify the detected anomalies as RFI signals using
domain knowledge of the processed level-1 images.

3) Analyze the corresponding level-O Sentinel-1 image
burst and characterize the ground-based radar.

Sentinel-1 IW

Section II describes the localization methodology and the
extraction of RFI information. Section III shows our results
followed by a discussion in Section IV.

II. METHOD AND MATERIALS

Anomalies were detected in Sentinel-1 quick-look images
with an unsupervised CAE, whereafter the anomalies were
localized and classified as either RFI signals, or other anoma-
lies using knowledge on the characteristics of the anomaly
types. The Sentinel-1 level-0 data for the respective RFI
signal were then used to extract information of the on-ground
radars. The methodology therefore initially describes the RFI
formation in Sentinel-1 data. Autoencoders will further be
described, whereafter the dataset and reconstruction model is
introduced.

A. Sentinel-1

An RFI signal is an external contribution to the received
signal of the SAR, caused by an external radar with a similar
center frequency, emitting a signal toward the receiving SAR
antenna. The total received signal, P,, under the influence of
an external RFI signal, P;, and other noise contributions, Py,
is then given by

P.= P+ Py + Py (D

where P, is the contribution of the received signal derived
from the transmitted SAR signal. The external RFI contribu-
tion, P, travels a distance dependent on the external source;
if the source is ground-based, it travels half the distance
of P,; and can therefore oversaturate P,, resulting in very
high-intensity pixels in the SAR data.
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The Sentinel-1 SAR instrument transmits microwave pulses
and receives the echo from each pulse. In the IW mode, the
data are acquired in bursts of approximately 1500 echoes,
corresponding to =1 s satellite flight time, during which
the elevation beam pattern is kept constant and the azimuth
beam pattern is swept from looking slightly aft to looking
slightly ahead, thus imaging an azimuth extent longer than
the distance traveled by the satellite during the burst. This
allows the elevation beam pattern to be cycled from burst to
burst between three different swaths (IW1-IW3), increasing
the ground coverage at the expense of azimuth resolution and
a more complicated processing. The level-0 echoes received
by the radar in each burst are downlinked from the satellite,
and are provided by the European space agency (ESA) as the
level-0 product. This product is not relevant for most users,
as the resolution in both range and azimuth is in the order
of kilometers and an SAR focusing must be carried out to
retrieve useful images.

1) Sentinel-1 IW Processing: For the IW mode, the pulses
transmitted by Sentinel-1 are linear frequency modulated with
a length, Tsar, of approximately 50 us and a bandwidth, BW,
from 42-56 MHz, depending on the swath.

The first step of focusing is the pulse/range compression,
which is carried out individually on each echo, and is a cross
correlation of the received pulse with a replica of the trans-
mitted pulse [22], [23]. This has the effect of “compressing”
the received pulse echoes to a width of ~1/BW, resulting in
a range resolution (¢/2BW) =~ 3 m, with ¢ being the speed
of light. RFI signals from an external radar using a different
pulse modulation will not be compressed and may even be
extended beyond their original length dependent on the RFI
pulse modulation, and will therefore often be as long as the
swath in the range direction.

SAR focusing in the azimuth direction works in a sim-
ilar way by exploiting the approximately linearly chang-
ing Doppler frequency arising from the relative motion
between the satellite and a stationary target on the ground.
Focusing is achieved by cross-correlating the range com-
pressed signal matrix in the azimuth direction with an linear
frequency-modulated correlation kernel. In the azimuth direc-
tion, an RFI signal from a single echo is a delta function, and
will thus be smeared over all focused image lines to which
the RFI-affected pulse contributes. For IW mode images, the
smearing is changed by the beam sweeping and the net effect
is that a single RFI signal should, in IW level 1 images, extend
over 3-5 km in the azimuth direction.

B. Convolutional Autoencoders

In deep learning, algorithms are used to automatically find
nonlinear functional relationships between an input and an
output using a model trained with dataset. In an autoencoder,
a model is trained to reconstruct the original input using an
encoder and decoder, respectively, by parameterizing the input,
x, into a latent space, z. For a good z, the autoencoder learns
how to reconstruct a noise-free sample, x, and can therefore
be used to automatically and unsupervised find anomalies by
comparing a single input x with the reconstructed x, i.e.,
a sample is anomalous when x % X. An autoencoder finds
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TABLE I

COMPARISON OF SENTINEL-1 IMAGE PRODUCTS. PRODUCTS COMPARED:
SLC IW, GRD IW, AND QUICK-LOOK

Parameter SLC IW | GRD IW | Quick-look
Range resolution [m] ~ 3.1 ~ 20.4 ~ 1020
Azimuth resolution [m] ~ 21.7 ~ 21.7 ~ 1062
Bits per pixel 16 I/Q 16 8
Pixel spacing [m] NA 10x10 500x490
Radiometric Resolution 3 1.6 NA
File size 7.31 GB 1.75 GB 351 kB

all anomalies in the data, but does not classify the type of
anomaly as, e.g., an RFI signal.

An encoder maps an input, x into a smaller latent space, z,
as follows:

8¢ X € RI® 5 7z ¢ RY® 2)

where the latent space dimension is smaller than the input
dimension, i.e., d(z) <« d(x). A decoder then makes a
reconstruction, X, of the original input

go 7 € RI@ 5 3 € RY™, 3)

The objective of a CAE is to reconstruct an input array
using convolutional operations. Increasingly more complex
patterns can be found by placing several layers consecutively.
Hence, the encoder in a CAE uses convolutional layers to
parameterize x using the latent space, z. Conversely, the
decoder uses inverted convolutions, called deconvolutions, and
aims to reconstruct the original input using z, i.e., X ~ x. For
R4@ ~ RY™) a CAE likely overfit the training data and make
a perfect reconstruction of the training images. Conversely,
a too small RY® does not allow for the decoder to reconstruct
an image.

C. Dataset

SAR images from the regions shown in Fig. 1 were obtained
from the Sentinel-1 SAR satellites. The first two bands from
the quick-look images, corresponding to the VV and VH
polarizations, were acquired from the Sentinel-1 IW ground
range detected (GRD) VV/VH images.

Since it was predominately the large-scale spatial features of
the RFI signals that were used to characterize the RFI anoma-
lies, the quick-look resolution was deemed sufficient for both
RFI detection and localization. From Table I, we see a com-
parison between the different Sentinel-1 image products. The
spatial resolution for the quick-looks are 50 x 50 times lower
than, e.g., the GRD images. Consequently, the co- and cross
polarization file sizes are more than 2000x smaller, and the
quick-looks reduce the computational cost correspondingly.

The dataset for training and validation was constructed such
that it contain images without RFI signals. Conversely, a test-
ing dataset was constructed such that it contains images both
with and without RFI signals, but was not further annotated.
A third dataset was manually labeled with both 45 RFI-free
and 40 RFI-affected SAR images. This dataset was not used
for neither training, nor testing of the CAE, but instead for
determining global thresholds. Table II illustrates the regional
data distribution of the different datasets.



4704215

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

< rg

60°N -

%

40°N

&
h

¥

-
T

A

B, |

.
20°E 40°E 60°E 80°E
Fig. 1.

of Dubai, UAE, showing nine different image acquisition areas.

TABLE I

DISTRIBUTION OF TRAINING QUICK-LOOKS AND TESTING QUICK-LOOKS
IN THE DIFFERENT REGIONS. TRAINING DATA WERE RFI-FREE,
WHEREAS TESTING DATA WERE UNANNOTATED

Region Training | Testing Annotated Combined
RFY/ No RFI

Denmark 86 26 10/12 134

Israel 96 422 13/12 543

UAE 171 247 12/12 442

Japan 272 72 5/9 358

Total 625 767 85 1477

As illustrated in Fig. 1, data from four different regions
were acquired. The images, and corresponding metadata,
were retrieved from the Alaskan Satellite Facility Distributed
Active Archive Center and processed by ESA. Sentinel-1 SAR
images are often affected by RFI from sources in the regions
near the United Arab Emirates (UAE), Israel, and Denmark.
Similarly, Sentinel-1 data are occasionally affected by targets
mid-sea near Japan. The areas thus illustrated the capability
of the method to detect and localize RFI signals in different
regions.

All images where subsequently normalized with the
min—max normalization using the values from the train-
ing data, i.e., all training images were within the range
of {0,1} and were center-cropped to the same size of
340 x 500 x 2 with the last two channels corresponding to
the VV and VH polarization, respectively. Fig. 2 illustrates
a subset of the testing data with the VV polarization (top)
and VH polarization (bottom). Both images had RFI signals
in their VH polarizations, while the image from UAE also
had RFI in its VV polarization. We see that the images in
the range extent of the RFI signals is the length of a swath
with the RFI near UAE covering many swaths, and that the
azimuth extent is approximately 3-5 km, as explained in
Section II-A.

D. Image Reconstruction and RFI Localization

A CAE was made to reconstruct all input SAR images. The
model was trained on a dataset consisting of RFI-free SAR
images and the CAE consequently reconstructed normal SAR
images. Conversely, RFI-affected SAR images were poorly
reconstructed and the differences between the original and
reconstructed images were therefore used to find anomalies.
The CAE found all types of anomalies, not only RFI signals,
and a secondary classification schema was therefore made

100°E  120°E

(Left) Geographical locations of the four regions where the Sentinel-1 quick-look images were acquired from. (Right) Zoomed-in view on the region

to determine if the anomalies were RFI signals. In short as
follows.

1) A single CAE model reconstructed SAR images for all
regions, excluding the RFI signals and other large-scale
anomalies.

Similarity heatmaps, H, were made between x and X to
find anomalous regions.

The reconstruction errors, i.e., the anomalies, A, were
calculated only in the anomalous regions in H.

If the anomaly for the individual Sentinel-1 RFI region
in A was large enough, it was defined as an RFI signal.

1) CAE Image Reconstruction: The CAE model is
described in Fig. 3 and was implemented using Tensorflow
2.10. Each layer was followed by a batch normalization with
a momentum of 0.99 and ¢ = 0.001 [24] and the first two
layers of the encoder were likewise followed by a2 x 2 kernel
max-pooling layer. The hyperparameters (kernel size, number
of filters, the latent space size, if dropout was used, L1 and
L2 regularization, gradient clipping value, initial learning rate)
were found with a discrete hyperband parameter search [25]
using the KerasTuner [26]. For each hyperparameter, sev-
eral different discrete steps were allowed, with a total of
147 different trails in the first iteration and a termination
after 150 epochs. For instance, the latent space was allowed a
minimum value of 25, a maximum of 350, and a step size of
25. Similarly, the initial learning rate was logarithmic sampled
between 1072 and 107°. The model was trained anew with
the found hyperparameters using a fivefold cross-validation
with a reducing learning rate and the Adam optimizer. The
weights corresponding to the lowest validation loss was saved
and used.

The cost function for the reconstruction error was made
with the mean structural similarity measure (MSSIM) as the
loss function, £. The MSSIM is maximizing the perceptual
similarity between x and X applied on each polarization
and averaged [27]. The MSSIM use local mean, variance,
and covariance calculated on sliding boxes and compares the
differences between the two images. The MSSIM for a single
reconstructed image is given by the mean of the similarity
between all local regions, r = 1,..., R

2)
3)

4)

MSSIM(x, x)

1K
:EZ

r=I1

Qpx, 3, + C1) 20,z + C2)
(o2 + g2+ C1) (sz, +op + CZ)

“
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Fig. 2. Subset of the test data with (top) VV polarization and (bottom) VH polarization from (left) UAE, United Arab Emirates with strong RFI stripes, and
(right) Island of Shikoku, Japan with a single RFI stripe in its VH polarization in the upper right burst.

The mean and variance of a local region x, in x are given
by

N=112
g Wi Xy
i=1

N=112
o = 2 w; (x,.; — f1,)%, and likewise for & (5)
i=1
and the local covariance
N=11?

D il = i) G — 1)

i=1

O'X,J?, -

they are calculated using a sliding 11 x 11 weighted Gaus-
sian matrix, w, to reduce blocking patterns in the similarity
map [28]. Wang et al. [28] found that 11 x 11 gave good
results visually while experimenting with smaller and larger
sizes. Each local region is then defined by a 11 x 11 moving
kernel, whereafter the similarity measure is averaged over the
total number of local statistics calculated. C; and C, are small
numbers added to avoid numerical instability as in [27].
The cost function is thus given by

(Y]
L(x,%) = Z 1 — MSSIM(x, %) (6)
g=1

where @ is the number of SAR images used to update
the weights of the model, formerly called the batch size.
Consequently, £(x,x) — 0 for x ~ x and L(x,x) — 1 for
X % x. The MSSIM metric is often used in perceptual image
processing [29] and outperforms, e.g., the mean-squared-error
loss function for image comparisons by minimizing the lumi-
nance, contrast, and structure of two images [30]. We likewise
experimented with, e.g., the multiscale SSIM (MS-SSIM) [27]
and root-mean-square-error. MS-SSIM showed comparable
results, and both MSSIM and MS-SSIM are easily imple-
mented through the Tensorflow framework. MS-SSIM is more
complex and the MSSIM was therefore chosen [31].

T
| 2@34v()x500 |
| 120@340x500 |
5 | 120@1v70x250 |
' | 60@8v5x125 |

T T
z

i
: Deconvolutional : Convolutional

Fig. 3. Diagram of the CAE reconstruction model.

A batch size of 1 was too slow to train, and a batch gradient
descent used too much memory. For very large batch sizes,
we saw that the model had difficulties reconstructing parts of
the input image and empirically, a batch size of 6 showed good
results and Q = 6 was therefore used.

2) Find Anomalous Regions: The CAE image recon-
struction model was implemented in Tensorflow with
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Phyperparameters determined using a hyperband optimization
scheme, and the model could consequently reconstruct normal
scenes. However, anomalous patterns in the input image, x
could not be well reconstructed.

Only large-scale anomalies were found where ¥ % x.
Due to the spatial resolution of the SAR quick-look images,
we expected only anomalies such as, e.g., RFI signals, varying
ocean states, or poorly reconstructed regions. Poorly recon-
structed regions were reduced by having a sufficiently large
training set.

Reconstruction error heatmaps, H, were made to determine
if regions were anomalous using a MSSIM running kernel of
size 10 x 30, thus showing regions with large reconstruction
errors

J+10 k430
H* =" MSSIM(x/*, #7°%)

=i K=k

(7

with j and k being the row and column pixel indices, respec-
tively. The MSSIM kernel size should be large enough to
capture some spatial structure, but a too large kernel would
increase the computation time correspondingly, i.e., for each
pixel pair, two J x K subsets are compared with an arithmetic
time complexity of O(JK N) pr. band with J and K being
the rows and columns of the MSSIM running kernel and N
the size of the weighted Gaussian matrix. It thus increases
quadratically for the size. RFI signals were empirically shown
to be more visible in elongated running kernels and the size of
10 x 30 was selected empirically. A symmetrical padding was
thereafter used on H to get the original size of the images. The
heatmaps, H, were only used to determine anomalous regions,
and not to extract the anomalies.

3) Extract Anomalies in Anomalous Regions: Large pixel-
wise anomalies, A’ were then extracted in regions with large
anomalous errors where H/* > 0.15 thereby removing small,
insignificant local reconstruction errors, such as the blocking
structure explained in [28], i.e.,

(®)

Ak — Iyxf’k —R7K[,if B > 0.15
0, otherwise.

The conservative, global noise threshold was made by
comparing the values in H from the annotated RFI-affected
and RFI-free images (see Fig. 4). The RFI-free images have
low H values, whereas the RFI-affected images have much
higher H values. By setting the threshold at 0.15, RFI signals
were preserved while most regions with background noise
were removed, some background noise not originating from
RFI signals was still expected.

4) Classify Localized Anomalies as RFI Signals: Elongated
anomalies were grouped in A by calculating the mean of errors
in image subsets divided column-wise into approximately three
swaths, 500 columns /3(swaths/image) ~ 166 columns, sim-
ilar to the swaths of the Sentinel-1 satellites. The quick-look
images have a resolution of 490 m/row, and the theoretical
height of the RFI signals are 5 km (see Section 1I-A), and
the anomalies were therefore found row-wise according to the
approximate height of an RFI signal, [5 km/0.49(km/row)] =
11 rows, which in turn can be used to determine approximately
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Fig. 4. Pixel-wise values in H of (red) RFI-free images and (gray) RFI-af-
fected images. The dotted black line illustrates the global noise threshold of
0.15.
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Fig. 5. AJ* of (red) RFI-free images and (gray) RFI-affected images. The

dotted black line illustrates the RFI threshold of 0.09.

which burst the RFI anomaly was located in. We then analyzed
the anomaly in each “RFI signal subset” of size 11 x 166. RFI
anomalies were defined where the mean of the anomalies in
a subset was larger than 0.09, i.e., for each swath, for each
consecutive subset of 11 rows, we now average the boxes of
size 11 x 166 in A/*.

This gives the “average” anomaly, ATk of size 31 x 3,
ie., [340/117 x 500/166 = 31 x 3. We then define an RFI
anomaly where A/* > 0.09.

Hence, if the mean reconstruction error of a single “RFI
height” in a single “swath,” a subset of 11 x 166, was larger
than 0.09, it was defined as an RFI anomaly independent on
both geographical region or location, given that H defined the
region as being anomalous. Otherwise, it was classified as
another type of anomaly. Likewise to the threshold for H, the
threshold for A was found by comparing A7* for the RFI-free
and RFI-affected annotated images, as seen in Fig. 5.

E. RFI Radar Characterization in Level-0 Data

In few examples, the spatial structure of RFI signals in
level-1 data could be used to determine radar characteristics.
However, it was observed that in cases where the ground-based
radars use, e.g., interleaved pulse repetition frequencies (PRFs)
as to the left in Fig. 2, it was not possible. Furthermore,
while the PRF could be estimated in some level-1 quick-looks,
other characteristics like the pulse modulation could not. It is
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therefore preferred to use the level-O data when analyzing the
interfering ground-based radar’s characteristics.

The level-0 data provided by ESA are not affected by
the RFI signal smearing due to the SAR focusing, and thus
the individual RFI signals from an external radar could be
resolved. This allowed us to estimate basic pulse parameters
like pulselength, PRF, and, in some cases, pulse modulation.

To identify pulse groups, we extracted a burst affected by
RFI from the level-0 Sentinel-1 data, based on the RFI analysis
of the quick-look images in A/*. We then manually picked a
prominent individual RFI signal, a reference pulse, extracted
it from the level-0 data and cross-correlated each echo line
with the extracted pulse in order to enhance pulses with a
similar modulation. We then identified the maximum in each
enhanced echo line and identified the presence of a pulse in
an enhanced line if the maximum value exceeded 10% of the
peak value of the autocorrelation of the reference pulse.

See Appendix A for a detailed explanation of the radar
characterization in level-O data.

III. RESULTS

The RFI signals were classified and localized by a two-
stage workflow. First, a CAE, trained on a Nvidia Tesla
A100 80 GB GPU, was used to reconstruct the original
SAR images. Regional reconstruction errors were used to
make reconstruction heatmaps to find anomalous regions.
The anomalies were then defined as either RFI anomalies or
other using the elongation of the signal. By analyzing the
corresponding Sentinel-1 level-0 data, the characteristics of
the RFI sources were found.

A. CAE Reconstruction

The CAE was trained such that the same model can be
used to find anomalies in all scenes illustrated in Fig. 1. Fig. 6
illustrates the fivefold cross-validation loss for the CAE recon-
struction model. The fourfold training and onefold validation
images did not have any RFI signals, since this would have
allowed the model to reconstruct RFI signals. Less represented
images in the dataset, i.e., images acquired from scenes with
relatively few images, had higher MSSIM loss. The folds were
created randomly, and so for each fold, both the training and
validation sets differed geographically. The model learned the
underlying distributions of each training fold similarly while
the validation data had several spikes. These spikes were due
to, e.g., less represented acquisition scenes. However, after
100 epochs the CAE learned to reconstruct them as well.

To compare the reconstruction capabilities of CAEs,
we conducted experiments with a masked autoencoder (MAE)
that used a 60% masking [32] of the input image. In con-
trast to CAEs, MAEs use transformer blocks [33], which
replace convolutional layers with fully connected and mul-
tihead self-attention layers [34]. This results in a significant
increase in computational complexity compared to CAEs,
especially for large images but generally need less training
data. We constructed a simple CAE and MAE reaching
validation MMSIMs of 0.043 and 0.044, respectively, for the
validation data, thus giving similar qualitative results. The
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Fig. 7. Training, validation, and testing mean pixelwise reconstruction errors.
A high error corresponds to images not well reconstructed, possibly stemming
from an RFI signal.

MAE was better at reconstructing images with a high spatial
correlation across the images but not as good at reconstructing
images with less spatial information, i.e., near shore or islands.
The MAE could therefore be slightly better for detecting
RFI on land, while the CAE is better for RFI on the ocean.
However, the MAE is more computationally expensive and
requires a quadratic increase in the number of parameters
relative to the input size. With an emphasis on RFI signals
caused by ships, the CAE is argued to be better.

Fig. 7 illustrates the mean pixelwise reconstruction error of
all the training and testing images inferred from the model
with the lowest validation loss from the cross-validation,
ie., 2112340 F=0(x ik — £7*)/(J - K). The testing errors
were higher than the training and validation errors due to
the RFI-affected SAR images, and were not caused by an
overfitting of the training images. The images mostly had
low reconstruction errors due to the combined score for the
entire image pair. For instance, while a geographical region
of image x,, was affected by an RFI signal, other regions of
image x, were not. The resulting reconstruction error for the
entire image x,, was thus comparatively low. However, since
the CAE was unsupervised it could not, by the reconstruction
error alone, be verified if the high reconstruction errors were
due to RFI signals or from other anomalies.
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In the top of Fig. 8 we see three VH images, in the middle
their reshaped latent space, and below their reconstructions.
Two of the images were acquired near Dubai with one having
a clear RFI signal and the other without. The images have
similar latent space with minor differences resulting in both
images being reconstructed without RFI signals. The bottom
figure was acquired mid sea and has an RFI signal. The
latent space has very little activation due to the spatially
homogeneous sea. The RFI signal mid sea was likewise not
reconstructed. The CAE could consequently reconstruct SAR
images without RFI signals under varying conditions, even
under strong winds causing much higher backscatter than the
normality.

Other studies have argued that autoencoders can generalize
well enough to reconstruct anomalies. Our CAE did not learn
to reconstruct the RFI signals, and it was consequently not
necessary to implement, e.g., a memory addressing unit as
was done in [35]. But, we saw that some RFI-free images had
relatively high reconstruction errors. This could possibly be
mitigated by using the radiometric calibrated images, similar
to [18], or generally by having more representative training
data to better reconstruct the varying sea state.

The CAE model was therefore capable of reconstructing the
general, normal structural, and spectral patterns in the input
images including both stationary land features and some high
intensity patterns on the oceans. Conversely, the model had
high image reconstruction errors for the RFI-affected images.

B. RFI Localization

The CAE reconstructed the SAR quick-look images without
large-scale anomalies. The difference between the recon-
structed and original images were thereafter used to classify
the anomalies as either RFI signals or other anomalies. Fig. 9
illustrates the results from six different acquisition from the
test set. The figure shows the VV and VH polarizations,
along with the heatmap after the 0.15 noise threshold with
the resulting detected RFI anomaly highlighted to the right.

We see that the images, and their RFI signals, have very
different spatial characteristics. The RFI signals near UAE and
Israel are all very visible in both the VH and VV polarizations
corresponding to what is expected from different stationary
radars transmitting in both polarizations. The RFI signals near
Denmark and Japan are only visible in the VH polarization
which is expected if the on-ground radar only transmits in the
horizontal polarization. Generally, we see that the RFI signals
have high MSSIM heatmap errors while the neighboring
non-RFI affected regions have lower MSSIM errors. Especially
the non-RFI affected regions near Dubai and Japan had low
reconstruction errors. Conversely, we see that the acquisition
near Denmark had high reconstruction errors on land. These
findings correspond with what was expected from the training
data distribution seen in Table II. More training data reduce
the reconstruction error and vice versa. Furthermore, the region
near Israel is greatly affected by RFI signals in most bursts
in the third subswath. The method found RFI in all regions,
independent of environmental conditions and was therefore
generalizable for many scenarios, given enough training data.
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TABLE III

ACCURACY AND F1-SCORE OF THE 85 MANUALLY
LABELED SAR IMAGES

Region Proposed Method | Ref. [21] Method
Accuracy% /F1% Accuracy% / F1%

Denmark 69/77 52/70

Israel 100/100 50/67

UAE 100/100 50/67

Japan 93/89 38/53

Overall 91/92 48/64

Nevertheless, in complex regions with little training data,
other anomalies are classified as RFI signals, such as near
Denmark. By changing the global threshold the number of
false positives could be reduced. However, a high false positive
rate is preferred over a low true positive rate when assuming
that the RFI signals are caused by targets of interest. Instead,
more training data should be added to the training.

Our RFI classification results were compared to that in [20]
with the 85 annotated images using classification accuracy,
= (TP + TN)/(TP + FP + TN + FN), and second the F1-
Score, = (TP)/(TP + 1/2(FP 4 FN)), where TN and FN are
the true and false negatives, respectively, and FP and TP the
false and true positives, respectively. The method described
in [20] defined RFI anomalies pixel-wise by the condition

0 0
[of — O,
Cross Co H 0
0 (UCross

-y T) >0

(©))

- Ogo)H(Ggross -

where 00, and o2, are the radiometric calibrated cross and
copolarizations of the multilooked SAR image, respectively,
and H(-) the Heaviside function. The threshold, 7 has to be
fit for each region manually contrarily to our method in which
global thresholds were used. The threshold 77 = 0.005 was
in [20] found empirically for a region around UAE and was
used in this study (see Fig. 1). The results are shown in
Table III. The rather low accuracy near Denmark stems from
the high false positive rate due to the high reconstruction
errors, as seen in Fig. 9.

The method in [20] classified all annotated images as con-
taining RFI signals, independent of locations and true labels.
Leng et al. [20] used a pixel-wise score, meaning all pixels
with a certain value were labeled as RFI signals resulting
in a very high false alarm rate, illustrating the problem
of detecting RFI signals in SAR images by setting local
thresholds manually for each scene. Conversely, the method
in this study correctly classified anomalies with an accuracy
of 91% and an F1 score of 92%, and further localized them
automatically (see Table III). The method in the current study
used the CAE to exploit the spatial signature of RFI signals
to find a region in the SAR image containing an RFI signal,
whereafter the RFI signal was localized in that region alone,
thereby reducing the false alarm rate greatly while having the
same high true positive rate.

However, our method has few shortcomings. The method
struggled to locate RFI signals in very high-intensity regions
such as cities, as seen to the left in Fig. 10. This was expected
since cities themselves had intensities close to 1, and there
were therefore no differences between the RFI signal and the
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(Top) Original VH quick-look images, x (middle) their latent space illustrated as 25 x 5 images, z and (bottom) their reconstructions, x. (Left

middle) UAE. (Right) Open sea near Denmark. The images were reconstructed without the RFI signals as intended.

cities. This could possibly be remedied by using the multilook
images with larger dynamic range. Furthermore, empirically,
some RFI signals were not extending throughout the entire
swath in range or 3-5 km in azimuth. This caused few false
negatives. Fig. 10 (right) shows a VH quick-look with an RFI
signal that was not found. However, it was detected as an
anomaly from the heatmap.

Stationary RFI signals could be localized in several images.
By geolocating the localized RFI signals it was consequently
possible to determine the approximate location of external,
stationary radars as in [20]. This is illustrated in Fig. 11, where
the RFI signals from two descending orbits and one ascending
orbit were localized and illustrated. The corresponding VH
quick-looks are shown below. We see the two RFI signals
from the descending orbits are very similar and have the same
intersection with the RFI signal from the ascending orbit.

It was possible to somewhat localize the RFI signals
under varying geographical and environmental conditions. The
heatmaps compared x with ¥, and by removing the back-
ground noise, large anomalies were found. The anomalies were
caused by varying phenomena, and the RFI signals were found
by calculating the average anomaly in a region the size of an
expected RFI signal. Our method could localize RFI signals
mid ocean and on land. Localized RFI signals on land could
further be used to determine the location of stationary radars.
Visual inspection of the original image showed a correlation
between the expected anomalies and the detected anomalies.

C. RFI Characterization

Once RFI signals were detected and localized in the
SAR quick-look images, it was possible to characterize the
on-ground radar characteristics using Sentinel-1 level-O data.

TABLE IV
RADAR CHARACTERIZATION CORRESPONDING TO FIG. 12

Parameter Left image Right image
Pulse width [us ] 1 1
Phase modulation None None
PRF [Hz] 1000 400 / 500
Approx. blind speed [m/s] 679-k 272-k / 340-k

Fig. 12 illustrates two VH quick-look images, classified with
RFI anomalies with our method. The RFI signals in the two
images had similar spatial structures and were both located
mid ocean.

The corresponding radar characteristics are shown in
Table IV. The radars causing the RFI signals in Fig. 12 had
very similar characteristics, and it was therefore hypothesized
that they originate from the same type of radar.

It was found that the interfering radars near, e.g., Japan
were often not employing a single pulse and PRF, but instead
transmitting groups of, e.g., 16 pulses during which the
pulselength, modulation, and PRF were kept constant, after
which these parameters were changed. This is consistent
with radars employing pulse-Doppler/Moving target indicator
techniques to measure both target position and speed, i.e.,
to accommodate the blind-speed problem in which targets
moving at the doppler frequency cannot be observed by the
radar [36]. The approximated blind speeds for the radars in
Table IV, v,, were calculated as follows [36]:

k -c-PRF

Vp = —
2fe

where ¢ is the speed of light, f, the center frequency,

here approximated as the carrier frequency of the SAR
and k=1,2,... the blind speed order. Using only a PRF

(10)
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Fig. 9. Qualitative results of the RFI localization. (Left) Original VV quick-look image and (middle left) Original VH quick-look image, (middle right)
Heatmap following a global, static, noise threshold of 0.15 with the color-bar illustrating the heatmap values and (right). The classified and localized RFI
signals, highlighted on the VH quick-look images with the color-bar corresponding to the pixel-wise anomalies. The localized RFI signals had a mean
reconstruction error of 0.15 within its burst.

of 500 Hz, it would not be possible to detect moving targets The RFI-affected level-O data near Israel and UAE had
with a speed of approximately 340 m/s corresponding to similar structures. However, each level-0 image had very
Mach 1, or 679 m/s and thus motivating the use of staggered complicated radar characteristics with several different pulse
PRFs. lengths and several interleaved PRFs within each image,



SORENSEN et al.: FINDING GROUND-BASED RADARS IN SAR IMAGES: LOCALIZING RFI

Short RFI

!

0.0 0.2 0.0 0.1

Fig. 10. (Left) Anomaly classified as an RFI signal. However, the RFI signal
on the city was not localized. (Right) Small RFI signal that was found and
classified as a non-RFI anomaly.
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Fig. 12.  Two quick-look images near the Island of Shikoku, Japan, both
containing a single RFI signal originating from mid-sea ground-based radars.
Images were acquired on (left) June 28, 2018 and (right) March 25, 2020.

complicating the characterization greatly. This might be caused
by, e.g., a varying PRF.

For some RFI signals, we could likewise estimate the PRF
using only the level-1 quick-looks. In Fig. 13, we see five
VH quick-looks all acquired from the ocean near Japan. The
signals all have periodical structures where two adjacent pulses
are displaced horizontally after each other. This could be used
to characterize both the PRF and the pulselength. However,
for RFI signals like the ones near Dubai or Israel in Fig. 9 it
was not possible to do so, since there was no clear periodicity
in the signal. All RFI signal sources in Fig. 13 are believed
to be ship-borne radars.

We detected the RFI signals in the level-1 quick-look images
and extracted the information from the corresponding bursts
in the level-0 data. From the level-0 data, we could determine,

4704215

Fig. 13.
structures.

Five RFI signals located near Japan. All signals have comparable

e.g., the pulselength, bandwidth, and PRF as described in
Appendix A. For “simple” RFI signals as the ones observed in
the ocean, this method worked well. For complex RFI signals
as the ones near Israel it was very difficult.

IV. DISCUSSION

In this study, we demonstrate the possibility of localizing
RFI signals in Sentinel-1 SAR quick-looks images automat-
ically using a CAE. We first find anomalies in the images
whereafter we classify them as RFI anomalies. The method
consequently classifies and localizes RFI signal from several
different geographical regions under varying environmental
conditions with a mean accuracy of 91%. We furthermore
show that the Sentinel-1 level-0 data can be used to determine
specific characteristics of the RFI source.

Prior work has demonstrated the possibility of finding RFI
signals in both level-0 and level-1 Sentinel-1 SAR data.
Finding RFI signals in level-0 data is highly computational
although it provides detailed information on the RFI sources.
Conversely, finding RFI in, e.g., quick-look images reduces
the needed computational power. Earlier studies classified
both quick-look and Sentinel-1 IW GRD images into either
a no-RFI or RFI class. But, such methods cannot be used
to localize the RFI signals, and are used mainly to discard
RFT affected images and is dependent on a large, representa-
tive manually created dataset. For instance, Chojka et al. [18]
implemented a CNN to classify images with RFI signals,
whereafter they could remove them in further analysis.
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Nonetheless, a binary CNN classifier cannot handle out-of-
distribution RFI signals, nor can it localize the RFI signals
in the images. Chojka et al. [18] was further dependent on
a highly limited labeled dataset, limiting the geographical
regions. Hence, motivating our implemented methodology that
handles both out-of-distribution RFI signal detection and local-
ization in previously seen regions. Leng et al. [20] localized
RFT signals in multilook images under the assumption that an
RFI signal was present, by implementing a manual threshold-
based method. They localized the RFI signals in few images.
However, static threshold methods are not generalizable and
thresholds must be found empirically for every region and
cannot be used for images under varying geographical or
environmental conditions. The technique described in [9] uses
the rank echoes of the level-0 data. It can therefore not detect
RFI signals if the external contribution was not present in the
rank echoes, while our method has no such restriction.

We found that, given enough training images, our CAE
can reconstruct SAR images in all geographical regions while
excluding large anomalies, such as RFI signals. The RFI sig-
nals from complex regions are adequately localized. Likewise,
RFI signals from spatially simple regions are easily localized
owing to the large structural and spectral discrepancy between
the RFI signatures and the image backgrounds. Our model
thus localizes and highlights RFI over land and water bodies
alike under different conditions.

As our model is implemented on SAR quick-look images,
information on the RFI source is lost. Even so, test time for the
CAE is of the order of seconds for an image, which means the
CAE can be used efficiently on many images. By exploiting
the power of deep learning methods, our model is generaliz-
able to very different RFI structures on a global scale given a
sufficiently large RFI-free training dataset, as opposed to [20].
However, if the model were to be used on larger scale, changes
must be made to accommodate the varying latent space.

In this study, we furthermore determine the characteristics
of the RFI source radar by analyzing the interference in the
Sentinel-1 level-0 data. From the level-O data, it is possi-
ble to determine radar characteristics such as the PRF and
pulselength. We therefore exploit the advantages of both the
quick-look images and the level-0 data.

While our model performs well in regions with enough
training data, it struggles in regions with little training data.
Some regions have little training data, such as near Denmark
or Israel, as a result of the high frequency of RFI-affected
images. This increases the total reconstruction error in com-
plex regions, even when no RFI is present. The customized
localization method tries to handle both situations by consid-
ering the known structures of RFI signals.

Satellite-borne SAR sensors have center frequencies in the
microwave part of the electromagnetic spectrum, whereas few
on-ground radars have similar frequencies, which means they
do not have the ability to cause RFI signals in SAR images.
However, few examples capable of causing RFI signals include
stationary antimissile systems or antiaircraft warfare radars
placed on-board warships and some weather radars. With our
model, we can localize the different RFI signals. For instance,
monitoring RFI activity in, e.g., the ocean might increase
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Fig. 15. Amplitude and phase modulation of a single RFI pulse.

maritime domain awareness by giving decision makers infor-
mation on foreign navy vessel activity, while also increasing
vessel detection [8]. Navy vessels rarely transmit location and
voyage information, and such RFI activity will hence add
information on the vessel type and potential threat.

Radars have different frequencies depending on the objec-
tive of their missions. The Sentinel-1 satellite has a C-band
SAR sensor and can, therefore, only monitor RFI originating
from on-ground C-band radars. Several different frequencies
must subsequently be observed to monitor RFI activity fully,
although the method developed in this study can be used
for all frequencies given a representative dataset. The method
developed in this study exploits the quick-look images for RFI
localization and the level-O data for RFI radar source charac-
terization. Our method can detect stationary RFI signals and
by exploiting the ascending/descending orbits of the Sentinel-1
satellite we can further estimate the corresponding geographi-
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to the first sample of the first echo in the full burst.

cal locations. Likewise, our method detects nonstationary RFI
signals, e.g., mid-sea, hypothesized to originate form ship-
borne air-surveillance radars. While the method cannot be used
to detect the actual ships, it can be combined with other vessel
detection methods to improve maritime domain awareness
greatly (see [1]).

Future work could combine and compare RFI detection and
ship detection automatically. Either such that after an RFI sig-
nal has been detected mid ocean, the corresponding Sentinel-1
single look complex (SLC) image could be analyzed for ships,
or vice versa. Furthermore, more work could be done on RFI
classification. By analyzing more structures in the level-0 data
and correlating the structures to the level-1 images, it could be
possible to further classify the radar type and characteristics
using only the level-1 images followed by an analysis of, e.g.,
where the different radar types are observed. On land and or
ocean.

APPENDIX A
DERIVING RFI PULSE CHARACTERISTICS FROM
LEVEL 0 DATA

The Sentinel-1 level-0 data provided by ESA contain the
raw data packets downlinked from the SAR instrument on
the satellite. The packets contain the raw echoes received
by the radar, as well as annotation information required to
unpack and accurately time the individual echoes. We used
an open source software package [37] to unpack the level-
0 echoes. As described in Section II-A, data are acquired in
burst of approximately 1 s, switching every second between
the three swaths IW1-IW3, so the natural unit of analysis is
one burst. In the following, we will explain how the RFI in
Fig. 12 (left) was characterized from the raw data. First, the
swath and burst containing the RFI was inferred. Then, the
raw echo matrix for the identified burst was extracted from
the corresponding level-0 dataset. This matrix contains the
complex I/Q-demodulated echoes (a superposition of echoes of
the Sentinel-1 radar pulses and RFI from interfering sources).
By plotting the raw data matrix (see Fig. 14), we can identify
groups of RFI pulses with the same PRF, as they occur along

straight lines in the raw data image. Note that Sentinel-1 does
not receive continuously, which means some RFI pulses of a
constant PRF pulse group may be missed.

In the following section, we proceed by analyzing pulse
group 2 from Fig. 14. First, a single pulse is extracted man-
vally from the raw data by visual inspection of an echo line.
In Fig. 15, the amplitude and phase of the complex samples
covering the pulse is shown. The phase modulation is inferred
by unwrapping the phase across the pulsewidth and removing a
linear trend, that could result from the Sentinel-1 receiver and
the RFI radar employing different center frequencies. In this
case, we see a negligible phase modulation, suggesting that
the RFI transmitter employs simple constant frequency pulses.
The pulsewidth can be directly determined from the amplitude
plot, and is measured to be 1 us. Note that in general, RFI
pulses are not so well-defined if, e.g., they are linear frequency
modulated, as parts of the pulse frequency sweep may fall
outside the analog bandwidth of the Sentinel-1 receiver, and
also they may be further distorted by the decimation filter
employed online in the SAR instrument to reduce the sampling
rate of the raw data from 300 MHz to a swath-dependent value
between 47 and 64 MHz before downlink.

APPENDIX B
DERIVING THE PRF OF THE RFI RADAR FROM LEVEL-0
DATA

To derive the PRF of the pulse group under investigation,
we first do a matched filtering (cross correlation) of each echo
in the pulse group with a copy of the (complex) extracted
pulse that was found in Appendix A (see Fig. 15). This results
in a more well-defined peak at the pulse leading edge, and
optimizes the signal-to-noise ratio for detecting replicas of that
pulse. In case of multiple interfering radars using different
pulse modulations, this also makes it easier to distinguish
between them. For each of the matched filtered echo lines,
we then find the peak and median amplitude, and if the peak
value is at least 5x the median, we interpret this as the
presence of an RFI pulse at the sample corresponding to the
peak position. Note that a more advanced method is required
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in case the RFI radar PRF is so high that more than one pulse
is received in an echo line, specifically if Techo > 1/PRFgrp,
where T.. 1S the duration of a received echo line. For each
peak, we determine the exact time of reception, T}, referenced
to the first sample of the first echo line in the examined pulse
group, by

M N

Top = ———+ — 11
pk PRFS1 + fx ( )

where M is the number of the echo lines containing the peak,
PRFyg; is the PRF employed by the Sentinel-1 SAR, N is the
sample number of the peak within the echo line, f; is the
sampling frequency employed by Sentinel-1 to sample each
echo, and it is assumed that the Sentinel-1 sampling window
start time (SWST) does not change during the acquisition of
the pulse group. We then calculate the difference between
successive peaks, and select the minimum as the RFI pulse
repetition interval, PRIgg, related to the PRF by PRFgp =
1/PRIgg;. The reason for using the minimum is that Sentinel-
1 does not sample continuously, so all RFI pulses may not
arrive within the sampling windows. To illustrate this, we plot
in Fig. 16 the amplitude of all the SAR echoes covering pulse
group 2 on a continuous time scale. The estimated PRIgg of
2.00 ms (corresponding to a PRFgg; of 500 Hz) is illustrated,
and we indicate also the expected pulse positions using the
estimated PRF. From the illustration, it is clear that 4 out of
16 expected pulses fall outside the sampling windows, and we
hypothesize that the radar did send groups of 16 pulses, even
though we only observe 12 of them. An analysis of pulse group
1 using the same approach led to an estimated PRF of 400 Hz,
and a pulse group length of 16.
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