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Abstract— Mariculture is an important offshore economic
activity, and excessive farming can lead to the deterioration of sea
ecology. The concentration of nutrients [mainly dissolved inor-
ganic nitrogen (DIN) and orthophosphate-phosphorous (PO4)]
is the main factor characterizing the health condition of farmed
seas. Conventional field monitoring methods are spatiotemporally
limited, and remote sensing technology has the advantages of
high spatial coverage and long time series monitoring. Thus, the
Sentinel-3 reflectance data and the in situ measured data for the
offshore waters of Wenzhou were matched simultaneously. Then,
the matched dataset between the Sentinel-2 band and the in situ
measured data were obtained through spectral correspondence
conversion between Sentinel-2 and Sentinel-3, and a machine
learning algorithm was used to build the inversion model with
an independent validation process. The correlations between the
concentration of nutrients, area of rafts, and precipitation were
assessed, and a strong positive correlation was found between
the concentration of nutrients and the area of rafts, and a
weak negative correlation was found between the former and
precipitation.

Index Terms— Environmental monitoring of nori culture,
Gaussian regression machine algorithm, nutrients, remote sensing
monitoring, support vector machine (SVM).

I. INTRODUCTION

CHINA is the world’s most advanced country in terms of
mariculture based on area and total production [1], [2].

The mariculture area includes inshore netting, deep-water
netting, cages, rafts, and bottom-seeded aquaculture, among

Manuscript received 29 March 2023; revised 30 May 2023; accepted 30 June
2023. Date of publication 11 July 2023; date of current version 1 August
2023. This work was supported in part by the National Key R&D Program of
China under Grant 2022YFC3104901 and Grant 2017YFC1405300, in part by
the Key Research and Development Plan of Zhejiang Province under Contract
2017C03037, and in part by the National Natural Science Foundation of China
under Contract 41476157. (Corresponding author: Difeng Wang.)

Jingjing Huang is with the Ocean College, Zhejiang University, Zhoushan
316021, China (e-mail: 12234028@zju.edu.cn).

Difeng Wang, Fang Gong, Xianqiang He, and Yan Bai are with
the State Key Laboratory of Satellite Ocean Environment Dynamics,
Second Institute of Oceanography, Ministry of Natural Resources,
Hangzhou 310012, China (e-mail: dfwang@sio.org.cn; gongfang@sio.org.cn;
hexianqiang_hxq@hotmail.com; baiyan@sio.org.cn).

Shuping Pan is with the Zhejiang Ecological Environment Monitoring
Center, Hangzhou 310012, China (e-mail: panshuping@zjemc.org.cn).

Hongzhe Li is with the School of Oceanography, Shanghai Jiao Tong
University, Shanghai 200030, China (e-mail: dzyzlhz@163.com).

Haoyan Hu is with the Zhejiang Marine Ecology and Environment Moni-
toring Center, Zhoushan 316021, China (e-mail: hhy1210@163.com).

Zhuoqi Zheng is with the Geography and Ocean Science College, Nanjing
University, Nanjing 210023, China (e-mail: zzq@sio.org.cn).

Digital Object Identifier 10.1109/TGRS.2023.3294436

other types. Mariculture generates revenue but also pollutes the
sea, and unreasonable and unplanned aquaculture expansion
will lead to the deterioration of the ocean’s ecological environ-
ment, especially with increasing nutrient concentrations [3].
To prevent the ecological crisis caused by mariculture,
we need to monitor the water quality of aquaculture areas
dynamically.

Conventional monitoring of water quality factors, generally
through navigation, buoys, offshore monitoring station sam-
pling, or field measurements, provide accurate data; however,
the cost is high, and it is difficult to achieve a large range
of spatial measurements. Satellite remote sensing has the
advantages of synchronous observation of large areas and
dynamic and long-term observations, and the cost is relatively
low [4], [5], [6].

To study the impact of mariculture on water quality,
scholars previously used field sampling and analysis of
farming areas. After data accumulation, some scholars used
data from public sources, such as the statistical bulletin
yearbook. Xiong et al. [7] and Xiao et al. [8] combined pub-
lished literature data and data collected in their studies to
quantify the amount of nutrients that can be removed by
seaweed aquaculture, revealing that 1 ha of seaweed farming
reduces nutrient inputs equivalent to 17.8 ha of nitrogen and
126.7 ha of phosphorus in China’s coastal waters. In addi-
tion, Racine et al. [3], Wu et al. [9], Kim et al. [10], and
He et al. [11] also evaluated the ability of seaweed aquacul-
ture to remove nutrients from water bodies by conducting
experiments, which demonstrated that biosorption has greater
economic and environmental benefits than industrial absorp-
tion. In recent years, the development of remote sensing
technology has also played a key role in water quality mon-
itoring of marine waters, and more mature water quality
monitoring includes chlorophyll a, suspended matter, and so
on [12], [13]. These optically active water parameters have
clear optical response characteristics [6]. Nutrients that do not
have optically active components are generally established by
empirical algorithms, which are relatively simple to construct
and implement [14], [15]. Chang et al. [16], Liu et al. [17],
Yu et al. [18], and Yuan et al. [19] used different algorithms
to invert nutrient concentrations in different areas. Their study
used different satellite data, such as MODIS, Landsat8, HJ-1,
and other satellites, to monitor dissolved nonoptically active
components, including total phosphorus, total inorganic nitro-
gen, nitrate, and total nitrogen, using direct and indirect
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Fig. 1. Framework for assessing nutrient concentrations in Dayu Bay using remote sensing technology.

Fig. 2. Geographical location of the study area [(a) Cangnan County in Zhejiang Province. (b) Dayu Bay in Cangnan County. (c) Dayu Bay real color image.
Regional variation was studied according to the average value on the red line in (c)].

methods. Machine learning algorithms, such as random forest,
and genetic planning models were used to improve the inver-
sion accuracy. However, remote sensing monitoring of marine
nutrients uses mostly medium-spatial resolution satellite data,
with less use of high-spatial-resolution data and a relative lack
of mariculture area monitoring.

The Sentinel-2 satellite has a high spatial resolution and
provides clear surface images, while the Sentinel-3 satellite
has a high temporal resolution and frequent revisits over the
same areas. In this article, we integrate the advantages of
the dual satellites by first downloading L1-level Sentinel-2
images and preprocessing them with atmospheric correction
and then selecting Sentinel-3 satellite images with the same
date and area coverage to process and establish a map of
the spectral correspondence between the dual satellites. Next,
the Sentinel-3 data are matched with the measured data,
and the matched dataset is mapped with Sentinel-2 images
to obtain the modeling dataset, which is nearly ten times

larger than the dataset of direct matches with Sentinel-2;
thus, the data will be more representative. Based on the
machine learning algorithm, which has advantages in nonlinear
regression fitting, an algorithm for nutrients in Dayu Bay is
built. Based on this algorithm, a discussion of the spatial and
temporal distribution characteristics of the aquaculture scale
and water quality of the aquaculture area in Dayu Bay is
provided, and the relationship between aquaculture quantity
and the spatial-temporal distribution of nutrients is explored.
The research framework is shown in Fig. 1.

II. MATERIALS AND METHODOLOGY

A. Study Area

Dayu Bay is located between 120.49◦E and 120.65◦E and
27.29◦N and 27.42◦N (see Fig. 2). The sea area of 46.98 km2

is one of the five major bays in Wenzhou, the largest marine
aquaculture area in Cangnan County, and one of the largest



HUANG et al.: NEW HIGH-RESOLUTION REMOTE SENSING MONITORING METHOD FOR NUTRIENTS 4206315

Fig. 3. Distribution of the measurement stations.

natural seaweed farms in China [20]. The bay shoreline is
winding, and the mouth of the bay is home to the large island
of Guanshan, as well as other islands that form a barrier. The
winds are calm, the waves are relatively small, there are large
streams that empty into the bay, and the water is nutrient-rich
and suitable for shallow aquaculture (mainly seaweed and
green crabs). In recent years, the scale of seaweed farming
has grown rapidly, the density of farming has increased, and
the economic value created has also increased on a yearly
basis. To promote a win-win situation of providing economic
benefits and protecting the ecological environment, monitoring
the ecological environment of Dayu Bay is also important.

B. Satellite Data

The series of Sentinel satellites is dedicated to the space seg-
ment of the European Copernicus Program (GSC). Sentinel-3
is a global ocean and land monitoring satellite that is mainly
used for global monitoring of the land, ocean, and atmospheric
environment with a spatial resolution of 300 m [21]. The
Ocean and Land Color Instrument (OLCI) onboard Sentinel-3
has 21 bands. Sentinel-2 is a high-resolution multispectral
imaging satellite carrying a MultiSpectral Instrument (MSI)
divided into two satellites, 2A and 2B, with a revisit period of
ten days for one satellite and five days for two satellites [22].
The tile identifier of Sentinel-2 covering Dayu Bay is 51RTL,
which acquired a total of 138 images with less than 50%
cloud coverage from 2015 to 2022, is subject to rainy cloud
coverage images in the summer, and the amount of available
remote sensing images data is greater in autumn and winter

(see annual and seasonal distributions of Sentinel-2 data in
Table AI in the Appendix for specific dates).

C. In Situ-Measured Data

The in situ measurement data cover the 2011–2021 period,
with only 15 stations in Wenzhou waters during 2011–2015,
16 stations in 2016–2019, and 36 in 2020–2021. The specific
station distribution is shown in Fig. 3. The measured values
covered the concentrations of dissolved inorganic nitrogen
CDIN and orthophosphate-phosphorous CPO4. The actual mea-
surements had the advantage of high accuracy but were limited
by the disadvantages of discrete stations, a noncontinuous time
distribution, and the presence of only one station in Dayu
Bay, which could not reflect the nutrient distribution; however,
remote sensing could compensate for this disadvantage and fill
in the missing data gaps.

D. Machine Learning-Based Supervised Classification
Method to Identify Rafts

The spectral signatures of raft frames and water are differ-
ent. First, to exclude the interference of multisource signals
on land, water, and land separation was performed according
to the water body index modified normalized difference water
index (MNDWI) [23]. The formula of the MNDWI is shown
in (1). When MNDWI > 0, the feature is identified as a water
body, and when MNDWI < 0, the land is masked

MNDWI = (BANDSWIR − BANDGreen)

/(BANDSWIR + BANDGreen). (1)
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Fig. 4. Heatmap of the correlation between different wavebands.

Fig. 5. Scatter plot of the spectral relationship between Sentinel-2 and Sentinel-3. (a) Test set (N = 58 534). (b) Verification set (N = 14 633).

The MNDWI images could distinguish between land and
water, and the MNDWI values of raft shelves and seawater
also had large differences. To further extract raft shelves, the
images were cropped to the minimum study area. Taking
the MNDWI thresholds of 0.3 and 0.7, raft shelves and
highly turbid water bodies were easily misclassified, and the
manually supervised machine learning algorithm based on
the classification results could be optimized and corrected by
manual recognition.

E. Spectral Response of Sentinel-3 and Sentinel-2

Sentinel-3 data were derived from atmospherically corrected
surface reflectance data with a spatial resolution of 300 m,
while Sentinel-2 downloaded L1-level data, using sen2cor
for atmospheric correction [24]. The data of Sentinel-2 and
3 from the same day were selected for a total of 18 days
(see Table AII in the appendix for specific dates), and to
ensure that both datasets had the same spatial resolution, the
Sentinel-2 data were resampled using the nearest neighbor
method. In total, 73 167 valid matching points were obtained,
and the matched data were divided into test and validation sets.
Since the two satellites have different band settings and the

central wavelengths are not exactly the same, the correlation
between all bands was determined, which is shown in Fig. 4.

The bands with correlation coefficients (R2) greater
than 0.70 were retained, and the bands with similar central
wavelengths were finally selected. Bands b3, b4, b5, b6, and
b8 of Sentinel-2 corresponded to bands b6, b8, b11, b12,
and b12 of Sentinel-3, respectively; the central wavelengths
corresponded to 560, 665, 705, 740, and 842 nm; and the
spectral data were matched.

The mapped scatter plot is shown in Fig. 5(a). The five
bands (b3, b4, b5, b6, and b8) of Sentinel-2 were highly
correlated with those of Sentinel-3, and, thus, the spectrum
of Sentinel-3 could be mapped to Sentinel-2 by a linear
relationship.

Sentinel-3 and 2 images from another day were selected to
validate the map relationships obtained above. The results are
shown in Fig. 5(b). The validation accuracy was high, and the
mapping relationship was stable.

F. Model Construction and Selection

When matching the actual data with the remote sensing
data of Sentinel-2 and Sentinel-3, we obtained only ten sets
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Fig. 6. True-color remote sensing image and raft frame extraction results of Dayu Bay. (a1)–(a6) True color images. (b1)–(b6) Results of raft extraction.

TABLE I
STATISTICS OF MATCHED DATA

of effective matched data for Sentinel-2 and 112 sets for
Sentinel-3 in the offshore waters of Wenzhou. The two-day
reentry date of Sentinel-3 greatly increased the amount of
matched data. Statistical modeling datasets and the distribution
of each measured water quality factor concentration are shown
in Table I.

Based on the spectral correspondence between Sentinel-2
and Sentinel-3 (see Section II-E), the Sentinel-3 reflectance
response matching that of Sentinel-2 was developed and
modeled based on various machine learning algorithms.

Support vector machine (SVM) was first proposed in 1964.
SVM is a sparse and robust classifier that uses a hinge loss
function to calculate empirical risk and adds a regularization
term to the solution system to optimize structural risk [25].
SVM can perform nonlinear classification by kernel methods
and is one of the common kernel learning methods [26], [27].
SVM models are supported by rigorous mathematical the-
ory, are highly interpretable, and do not rely on statistical

methods, thus simplifying the usual classification and regres-
sion problems. They can identify key samples and support
principal component analysis; the use of kernel functions
can allow nonlinear regression problems to be addressed
and are suitable for regression operations on small sample
datasets [28], [29].

The Gaussian process regression (GPR) model is a non-
parametric kernel probability model with a finite set of
multivariate distributed random variables. Each linear com-
bination is uniformly distributed. The Gaussian process
is named after Carl Friedrich Gauss, as it is based on
the Gaussian distribution, which is an infinite dimensional
extension of the multivariate normal distribution. Gaussian
processes are used for statistical modeling, regression to
multiple objective values, and mapping in high-dimensional
analysis. Gaussian models include Matern 5/2 GPR, expo-
nential GPR, rational quadratic GPR, and squared exponential
GPR [30].
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Fig. 7. Graph of changes in the area of rafts.

TABLE II
SINGLE-BAND CORRELATION OF MEASURED DIN AND PO4 WITH SENTINEL-2 DATA

III. RESULTS

A. Identification Results for Breeding Raft Frames

According to the extraction method for farming rafts pre-
sented in Section II-D, the area of rafts in different periods in
Dayu Bay from 2015 to 2022 was obtained, and the extraction
results are shown in Fig. 6.

The identification results correspond to the culture cycle of
nori [31]. Usually, rafts appeared at the end of September-early
October of each year and disappeared by the end of
March of the following year, and there were no rafts
from April to August. From 2015 to 2022 (see Fig. 7),
the overall area of rafts showed a decreasing trend on a
yearly basis, with the peak occurring on November 27,
2017, when the statistical area reached a maximum of
2076.96 ha, and after 2019, the farmed area was below
1500 ha.

B. Accuracy of the Water Quality Algorithm

The modeling dataset was analyzed to calculate the corre-
lation between the measured DIN, PO4, and five bands and to
try multiple band combination forms to obtain the best input
signal for modeling. The single-band correlations are shown
in Table II.

As seen in the above table, the correlation between the
measured nutrients and single bands was low, and attempts

were made to improve the correlation in the form of band com-
binations. Band combination included using multiple bands
directly as input, as well as creating different combina-
tions between bands before using them as input (see results
in Table III).

The correlation with the measured nutrients could be
improved by combining the bands as inputs. The strongest
correlations with measured nutrients were found for the com-
bination of the wave ratio X1 form: B3/B4 and B8/B5,
which were comparable to the X8 form in which each of
the five bands was used as an independent input, so these
two forms were used as inputs to the machine learning
model.

The modeling dataset was divided into modeling and val-
idation sets according to the ratios of 80% and 20%, and
fivefold cross-validation was implemented to prevent overfit-
ting. Attempts were made based on multiple models, and the
results are shown in Table IV.

The SVM model algorithm, based on the quadratic kernel
function (quadratic SVM), performed best for CDIN, with
R2 reaching 0.67 for the modeling set and 0.69 for the
validation set. The GPR model, based on the exponential
kernel function (exponential GPR), performed best for CPO4,
with R2 reaching 0.97 for the modeling set and 0.6 for
the validation set. The scatter plots of both models are
shown in Fig. 8. The inversion results were close to the
1:1 line.
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TABLE III
STATISTICAL ANALYSIS OF THE CORRELATION BETWEEN MULTIPLE BAND COMBINATIONS AND MEASURED NUTRIENTS (BRIEF VERSION:

X1–X8 REPRESENT THE FORMS OF BAND COMBINATION; BX AND BY REPRESENT DIFFERENT BANDS OF SENTINEL-2)

TABLE IV
ACCURACY EVALUATION OF DIFFERENT MODELING SETS AND VALIDATION SETS

C. Results of the Spatial and Temporal Distributions of
Nutrients

Overall, the average CDIN in Dayu Bay was 0.41 mg/L and
the average CPO4 was 0.033 mg/L during the nearly eight-year
period from 2015 to 2022.

Regarding the spatial distribution of nutrients in Dayu Bay
(see Fig. 9), the inner bay had higher nutrient levels than
the outer bay, and the northern corner was influenced by
river input from Chixi town and sediment siltation, so the
concentration of nutrients was high; the southwest corner
had river input from Chixi town, so it was also a source
of nutrients, and the concentration of nutrients in Chixi port
was also high [the locations of Chixi town and Chixi port are
marked in Fig. 2(c)]. To explore the seasonal characteristics
of nutrients in Dayu Bay, the average nutrient concentration
was statistically analyzed for different seasons. This article
considers March to May to be spring, June to August to be
summer, September to November to be autumn, and December
to February of the following year to be winter. There was little

spatial difference in nutrients in winter compared with sum-
mer, especially in the bay filled with a large area of breeding
rafts, where the mobility of the water body was reduced, the
river input into the winter was lower than the input in the
summer, the flow speed was slower, the scouring was poorer,
and the accumulation of high nutrient concentrations in the
estuary was weakened.

To avoid the interference of rafts, the nutrient concen-
trations in the outer bay were monitored over a long time
series from 2015 to 2022 (see Fig. 2). To further avoid the
interference of rafts, a monitoring line was established in the
outer bay (see Fig. 10), and the mean value on the line was
used to characterize the trend of nutrient changes in Dayu
Bay in the long time series. Between 2015 and 2022, CDIN
and CPO4 showed oscillating fluctuations, with the highest
CDIN occurring on October 21, 2017, with a concentration
of 0.76 mg/L, and the lowest value occurring on August 4,
2018, with a concentration of 0.15 mg/L; the highest value of
CPO4 also occurred on October 21, 2017, with a concentration
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Fig. 8. (a) Accuracy of the C_DIN model. (b) Accuracy of the C_PO4 model.

Fig. 9. Spatial distribution characteristics of remote sensing monitoring of nutrients in Dayu Bay [(a) Spring. (b) Summer. (c) Autumn. (d) Winter. The
locations of Chixi town and Chixi port are marked in Fig. 2(c)].
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Fig. 10. Long time series monitoring results of nutrients in Dayu Bay.

Fig. 11. Statistical plot of the nutrient concentration and area of rafts.

Fig. 12. (a) Comparison of nutrient concentrations in the culture cycle and nonculture cycle. (b) Comparison of nutrient concentrations during the netting,
seeding, and harvesting periods.
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Fig. 13. Average monthly nutrients, area of culture rafts, and rainfall data (2015–2022).

Fig. 14. Scatterplot of monthly average nutrient concentrations versus the area of rafts and rainfall.
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of 0.045 mg/L, and the lowest value occurred on March 17,
2019, with a concentration of 0.015 mg/L. The CDIN and CPO4
of Dayu Bay varied significantly within seasons during the
last eight years, with peak nutrient concentrations occurring
in approximately October–November and with less variation
between years.

IV. DISCUSSION

A. Exploration of the Relationship Between Nutrient
Concentrations Changes and the Culture Cycle

According to the raft area statistics described in
Section III-A, the area of rafts in autumn 2017 was the highest
in recent years, which coincided with the year in which the
highest nutrient concentrations occurred (see Fig. 11). In the
same way, within a year, the months with elevated nutrient
corresponded to the culture cycle (approximately October =

March of the following year).
Statistical comparison of nutrients during the culture cycle

and nonculture periods showed that nutrient concentrations
were higher during the culture cycle than during the nonculture
cycle, with CDIN being approximately 1.5 times higher and
CPO4 being approximately 1.29 times higher during the culture
period than during the nonculture period. However, there was
also a seasonal effect.

In the culture cycle [see Fig. 12(b)], the average concen-
tration of nutrients also differed between October and early
December of each year, when the netting and seeding periods
were used for nori culture, and between late December and
early April of the following year, when the harvest period
occurred. The concentration of nutrients was lower in the
netting and seedling stages than in the harvesting stage, where
the CDIN in the harvesting stage was approximately 10% higher
than that in the netting and seedling stages, and the CPO4 was
more similar.

During harvest, there are multiple reasons why nutrient
concentrations may be higher. One of the main factors is the
vigorous growth and dense population of laver. As laver grows
rapidly, some parts of it become overgrown and eventually rot,
falling off into the seawater. This process releases nitrogen
into the water, which can contribute to increased nutrient lev-
els [32]. In addition, farmers may choose to add nitrogen- and
phosphorus-containing nutrients to the aquaculture area during
the harvesting process. However, the use of such fertilizer can
also lead to an increase in nitrate and phosphate concentrations
in seawater, further contributing to higher nutrient levels [33].
Overall, these multiple factors can result in higher nutrient
levels during the laver harvest season.

B. Discussion of the Mechanism Influencing Nutritional
Change

For coastal bays, nutrient sources are described as follows:
1) land-based rivers; 2) atmospheric deposition; 3) benthic
sediments; 4) submarine groundwater discharge; and 5) mar-
iculture [34]. This study focused on precipitation driving
atmospheric deposition and mariculture in Dayu Bay. The
month-by-month precipitation data of Wenzhou City were

obtained and averaged on a monthly basis, while the same
calculations were performed for the nutrient concentrations
and the area of raft culture, as shown in Fig. 13.

According to the statistical results, the nutrient in Dayu
Bay showed significant seasonal characteristics that mainly
manifested as lower concentrations in late spring and summer
and high concentrations in winter; the seasonality of raft
rack culture corresponds to the culture cycle of nori, and
the quantity reaches the maximum in December; the rainfall
in Wenzhou was mainly concentrated in the summer (June–
August), and the average monthly precipitation was above
250 mm. The correlations between the monthly average nutri-
ent and the area of rafts and rainfall were calculated from
the statistical results. Fig. 14 shows that the overall nutrient
concentration was positively correlated with the area of culture
rafts and negatively correlated with rainfall, and the correlation
with the area of culture rafts was stronger than that with
rainfall.

V. CONCLUSION

In this article, the representation of the matched dataset
was improved by using the two satellites, and a highly
accurate nutrient inversion model was obtained through exper-
iment. Thus, the nutrient inversion model provides support
for future similar studies in offshore waters and provides an
example for monitoring the quality of aquaculture waters.
Based on the advantages of the Sentinel-2 and Sentinel-3
satellites, this article draws the following conclusions through
experiments:

1) We integrated the advantages of the dual satellites
(Sentinel-2 and Sentinel-3). Sentinel-2 had a high spatial
resolution, and the two-day reentry date of Sentinel-3
greatly increased the amount of matched data, which
made the matching dataset more representative. Remote
sensing monitoring of the inversion model was obtained
through various machine learning algorithms. Finally,
the R2 of the CDIN model reached 0.60, and the R2

of CPO4 was 0.58 with high accuracy, indicating high
applicability.

2) Based on the above information, the spatial and temporal
changes of nutrients in Dayu Bay were monitored, and
the area of rafts in this sea area gradually decreased
from 2015 to 2022. The concentrations of nutrients
showed a fluctuating trend, with significant seasonal
characteristics and small interannual changes, and the
changes were relatively slow in the last eight years.

3) Combined with the culture cycle of nori, the concen-
trations of nutrient in the culture cycle were much
higher than that in the nonculture period. During the
culture cycle, CDIN was approximately 10% higher in
the harvesting period from late December to April than
in the hanging and seeding periods from October to
early December, and CPO4 was more similar. Analysis
of the combined precipitation data showed that nutrient
concentrations in Dayu Bay were negatively correlated
with precipitation and more positively correlated with
the area of culture rafts.
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APPENDIX
TABLE AI

ANNUAL AND SEASONAL DISTRIBUTIONS OF SENTINEL-2 DATA [SPRING (MARCH–MAY), SUMMER (JUNE–AUGUST),
AUTUMN (SEPTEMBER–NOVEMBER), AND WINTER (DECEMBER–FEBRUARY)]

TABLE AII
DATES OF REMOTE SENSING IMAGES USED FOR SENTINEL 2 AND SENTINEL 3 SPECTRAL RESPONSES (n = 18)

TABLE AIII
STATISTICAL ANALYSIS OF THE CORRELATION BETWEEN MULTIPLE BAND COMBINATIONS AND MEASURED NUTRIENTS (COMPLETE EDITION)
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TABLE AIII
(Continued.) STATISTICAL ANALYSIS OF THE CORRELATION BETWEEN MULTIPLE BAND

COMBINATIONS AND MEASURED NUTRIENTS (COMPLETE EDITION)
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