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Abstract— The occurrence of West Nile virus (WNV) repre-
sents one of the most common mosquito-borne zoonosis viral
infections. Its circulation is usually associated with climatic
and environmental conditions suitable for vector proliferation
and virus replication. On top of that, several statistical models
have been developed to shape and forecast WNV circulation: in
particular, the recent massive availability of Earth observation
(EO) data coupled with the continuous advances in the field
of artificial intelligence offer valuable opportunities. In this
article, we seek to predict WNV circulation by feeding deep
neural networks (DNNs) with satellite images, which have been
extensively shown to hold environmental and climatic features.
Notably, while previous approaches analyze each geographical
site independently, we propose a spatial-aware approach that con-
siders also the characteristics of close sites. Specifically, we build
upon graph neural networks (GNNs) to aggregate features from
neighboring places and further extend these modules to consider
multiple relations, such as the difference in temperature and
soil moisture between two sites, as well as the geographical
distance. Moreover, we inject time-related information directly
into the model to take into account the seasonality of virus
spread. We design an experimental setting that combines satellite
images—from Landsat and Sentinel missions—with ground-truth
observations of WNV circulation in Italy. We show that our
proposed multiadjacency graph attention network (MAGAT)
consistently leads to higher performance when paired with an
appropriate pretraining stage. Finally, we assess the importance
of each component of MAGAT in our ablation studies.

Index Terms— Deep learning (DL), graph neural network
(GNN), Landsat, remote sensing, satellite imagery, self-supervised
learning, Sentinel, West Nile virus (WNV).
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I. INTRODUCTION

ZOONOSES1 are diseases that are transmissible from ani-
mals to humans. Depending on the way of transmission,

they can be foodborne, waterborne, vector-borne, and transmit-
ted through direct contact with animals or indirectly by fomites
or environmental contamination. These diseases represent a
severe threat to worldwide public health by now, constituting
approximately 60% of all the emerging infectious diseases
reported globally [1]. For this reason, considerable efforts have
recently been made to set up integrated surveillance plans [2],
[3] paving the way toward early recognition and intervention
of critical settings.

In such a scenario, West Nile virus (WNV) infection is
one of the most widespread zoonoses in Eastern, West-
ern, and Southern Europe. The disease is caused by the
WNV—a positive-strand ribonucleic Acid (RNA) flavivirus—
and is commonly transmitted by the bite of an infected
mosquito. Incidentally, the transmission cycle can lead to
human infections, where around one in five people present
flu-like symptoms and 1 in 150 may develop a more serious—
sometimes even fatal—illness. Several bird species are the
main hosts of WNV [4], [5], [6], [7], but hundreds of cases
each year concern infections in humans and other mammals
(e.g., horses) considered dead-end hosts. Although most of
these cases are asymptomatic, the evidence of viral circulation
can be associated with clinical symptoms.

The persistence of the virus in nature is favored by various
elements: the vector presence as mentioned, but also climatic
and environmental factors play an important role [8], [9]. For
example, the transmission of the pathogen is highly influenced
by temperature, which determines both the survival condi-
tions [10] and the intensity (i.e., the fractions of vectors that
carry the disease) of virus spread [11]. Incidentally, climate
change has been implicated as a contributing cause for the
changing patterns of WNV transmission [12], [13], [14], [15],
[16], [17], [18].

On top of this evidence, previous works [19], [20], [21], [22]
attempted to model and track the spread of WNV infection by
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examining climatic–environmental variables in an automated
fashion. They typically rely on Earth observation (EO) to
extract indicators that describe the land cover and are based
on land surface temperature (LST), normalized difference
vegetation index (NDVI, and modified normalized difference
water index (MNDWI). Even if these derived indices have
led to satisfactory results, the growth and massive availability
of new satellite data from more recent space missions have
enabled the exploitation of deep learning (DL) techniques for
agriculture [23], or insect population models [24]. Concerning
those problems dealing with animal and human health, the
DL paradigm appears promising for modeling the environ-
mental and climate factors, as these methodologies have the
potential to learn the most appropriate high-level features
directly from raw spectral band satellite images. Notably,
these techniques took a few years to emerge as the state-
of-the-art for diverse remote sensing tasks, including soil
and crop classification [23], image fusion [25], and change
detection [26], [27].

Following this trend, our research interest regards the anal-
ysis of the spread of the West Nile disease directly from
remote sensing data. Specifically, we cast the problem as
binary classification and propose a novel method that extracts
both temporal and spatial cues from satellite imagery. In a
slightly similar vein, recent works [24], [28] have tackled
the issue of detecting not the circulation of the virus, but
instead the presence/absence of the corresponding vector.
These approaches usually examine the satellite imagery cen-
tered on a certain geographical site and attempt to infer the
probability of vector presence. However, as a single point is
considered for inference, the estimation provided by the model
could be susceptible to outliers, obstructions (e.g., clouds, fog),
noisy acquisitions, or other artifacts.

With the aim of obtaining robust predictions, our approach
resorts to taking into account also the relationships between
geographical sites: namely, areas with similar climatic and
environmental conditions are potentially exposed to similar
disease risks, even if they are geographically distant from each
other [29]. On top of that relationship, we mainly contribute
to the field by extending the input of the model and including
a neighborhood of spatially close samples around the point of
interest, thus studying the circulation at a wider geographical
scale.

In methodological terms, we build upon the work of [28]
and extract—for each site independently—a set of high-level
features from raw multiband input. In addition, we aid the
feature extractor to catch the seasonal patterns peculiar to the
WNV circulation: we do so by conditioning [30] the computa-
tions of the internal representations on the month that spectral
bands were captured by sensors. Then, to encompass the
environmental and geographical relationships between nearby
sites, we arrange their high-level representations as the nodes
of a graph spanning multiple geographical locations. Thanks
to such a formulation, we can model the edge between two
sites by considering not only their geographical distance (e.g.,
using the Haversine formula) but also their affinity in terms
of environmental and climatic variables, such as temperature
and soil moisture. We then process the graph through a

modified version of graph attention networks (GATs) [31],
revised to deal with multiple real-valued adjacency matrices.
With the adoption of this architecture, named multiadjacency
GAT (MAGAT), we can aggregate features of near sites by
considering the broad spectrum of information.

For the task at hand, we collect satellite imagery coming
from the Sentinel missions [32] and the Landsat-8 mis-
sion [33]. In particular, Sentinel-2A/2B and Landsat 8 satellites
keep onboard multispectral devices (MSI) capable of acquiring
13 spectral bands for the Sentinel and nine for the Landsat.
We then pair the remotely sensed data with the on-the-ground
WNV circulation dataset described in [34], thus obtaining a
dataset valid for supervised binary classification.

To prove the merits of our proposal, we conduct several
experiments comparing the proposed graph aggregation with a
baseline involving a single multiband image. We also perform
several ablations studies to assess the merits of different inputs,
pretraining stages, and neighborhood aggregation strategies.

II. RELATED WORKS

A. Vector-Borne Disease

In the past years, several studies applied machine learn-
ing methods in the field of vector-borne diseases and
zoonoses. Candeloro et al. [34] used derived indices derived
from remotely sensed data—i.e., LST, NDVI, and surface
soil moisture (SSM)—to identify the areas at risk for WNV
circulation in Italy. The idea was to use data collected during
the 160 days before the infection date to estimate the potential
circulation of the virus two weeks in advance. To this end,
Chen and Guestrin [35] trained a model based on gradient
boosting on epidemic data collected from 2017 to 2019.

In another line of work, Ippoliti et al. [29] identified cli-
matic and environmental eco-regions, defined as areas within
which there are associations of interacting biotic and abiotic
features’ [36]. The authors proposed to split the Italian ter-
ritory into clusters (eco-climatic regions) according to seven
variables, relevant to a broad set of human and animal vector-
borne diseases: this way, they could highlight areas exposed to
similar disease risks. Indeed, by relating the obtained results
with ground-truth data, WN outbreak locations strongly end
up being only a few—four out-of-the 22—eco-regions. Such
a finding is valuable in practice, as it highlights areas where
surveillance measures should be prioritized.

Concerning the applications of DL approaches to vector-
borne diseases, most of them adapt models conceived for
computer vision tasks. The problem in doing so lies in the
large domain shift: while these backbones leverage RGB
inputs, remote sensing data usually come with multiple
spectral bands; therefore, the naive application of popular tech-
niques based on transfer learning could lead to unsatisfactory
results. In this respect, Vincenzi et al. [28] recommended a
colorization pretext task [37] to properly initialize a deep
convolutional neural network (DCNN). The intuition was to
exploit the high correlation between colors and the semantic
characteristics of the environment (e.g., large bodies of water
in blue, chlorophyll-rich leaves in green, and arable lands in
warm tones).
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Similar to our setting, Vincenzi et al. [24] pair satellite
imagery from the Sentinel-2 mission with ground-truth infor-
mation describing the presence of the vector—in their case,
Culicoles imicola, a population of midges responsible for the
transmission of the bluetongue and other orbivirus diseases in
animals—on the ground. Different from our work, their model
focused on a single site at once but spanned across several
days, thus taking into account the temporal evolution of an
area in terms of climatic and environmental variables. They
argued that the temporal cues can help explain the spread of
the vector: in fact, they observed that aggregating features from
a recent temporal window leads to enhanced performance.

It is noted that our work differs from [24] in several aspects.
First, we target virus circulation directly instead of vector
presence (i.e., Culicoides imicola), which is just one of the
necessary conditions influencing the viral cycle. Second, our
analysis discards the temporal axis in favor of the spatial
one: we indeed gather information from multiple nearby
locations around the site of interest. However, we still maintain
sensitivity to temporal cues by providing the model with the
knowledge of the month the input acquisition was carried out
within.

B. Graph Neural Networks

In the past decade, computer vision tasks have greatly
profited from the rise of CNNs [38], [39]; however, these
architectures cannot handle data structured in a nonregular
and complex manner, which can be naturally described as
graphs. For this reason, the generalization of standard CNNs
has recently gained interest, leading to the introduction [40]
of graph neural networks (GNNs). Several works recast con-
volution as a message-passing operation between neighboring
nodes, which propagates features along the edges and then
aggregates them to form the new representation for the pivot
node. Remarkably, several efforts have also been spent on
the design of tailored pooling layers [41], [42], which can
be helpful for graph classification.

Defferrard et al. [43] defined graph convolution in the
spectral domain by applying Chebyshev polynomials to
the graph Laplacian. On top of that work, Kipf and
Welling [44] introduce graph convolutional network (GCN),
which approximates the polynomials with a truncated first-
order expansion, computed on a renormalized adjacency
matrix. Veličković et al. [31] proposed a more sophisticated
approach called GAT, which recovers the attention mechanism
to weigh the contribution of neighboring nodes. In their
proposal, the topological information is injected by masking
the attention coefficients based on a binary adjacency matrix.

Unfortunately, GAT can only handle a single binary adja-
cency matrix: as edges serve to mask the attention coefficients
properly, GAT cannot profit from real-valued edges (such as
similarities between nodes). GCN [44] can instead do it, but its
application regards only graphs with a single adjacency matrix.
As discussed in Section IV, our approach addresses these
limitations; in a similar vein, Gong and Cheng [45]: 1) exploit
graphs with multidimensional and real-valued edges and 2)
update edges one layer after the other. To avoid exploding or
vanishing values, the edge features are normalized by means
of doubly stochastic normalization. Notably, their experiments

on citation networks and molecular datasets show that the
use of multidimensional edge features consistently outper-
forms the state-of-the-art competitors. Unlike their proposal,
we incorporate an initial feature extraction phase, carried by
a convolutional backbone. Our rationale for doing so is to
simplify the graph-based processing using high-level features
instead of raw high-resolution multiband images. In addition,
we improve the learning process by including skip connections
between each graph fusion layer.

Another line of work proposes to extend the message-
passing operation of GCN and GAT to multiple edges by
considering interlayer dependencies in a multigraph structure.
Shanthamallu et al. [46] propose graph attention models for
multi-layered embeddings (GrAMME), in which a special-
ized fusion head combines the representation produced by
different GAT heads (one for each layer of a multigraph
structure) aggregated by specialized fusion heads. Similarly,
Zangari et al. [47] propose multilayer-GCN (ML-GCN) and
ML-GAT to extend the graph convolution with intergraph
connections. These solutions differ from our proposal, as they
cannot take advantage of both GAT- and GCN-based pro-
cessing simultaneously. Moreover, the aggregation mechanism
of [47] is designed for multigraph structures in which both
a separate adjacency matrix and a set of node features for
each layer are defined; instead, our case study provides only a
single set of node features. Nevertheless, for a fair comparison
against our proposal, in Section V-G we introduce a multilayer
GNN baseline inspired by GrAMME-Fusion [46] and ML-
GCN [47].

Application of GNNs to Remote Sensing Data: In the EO
field, GNNs have so far been used in few works. Wu et al. [48]
propose a change detection model combining a multiscale
segmentation technique and a GCN: the former extracts object-
wise high-level features from the multiscale input images;
then, for each scale, the features are arranged as the nodes of
a graph, with the edges representing the spatial relationships
between nearby objects. The graphs are then processed by
GCNs and merged into a single one by a fusion model,
producing the change detection result.

For the task of land cover classification, Censi et al. [49]
propose an [attentive spatial-temporal graph convolutional
Network (STEGON)] to model both the temporal and spatial
aspects that characterize satellite data. Their method involves
an initial 1-D CNN to extract relevant temporal patterns,
followed by a graph aggregation technique via GAT and
self-attention to incorporate the information about the spatial
neighborhood of the target node. With their work, the authors
emphasize the significance of considering both time and space
dimensions when dealing with satellite data.

Ouyang and Li [50] point out that common semantic seg-
mentation approaches overlook the strong correlation between
different classes: for example, bridges tend to be closer to
rivers and far from cultivated fields. On this basis, they
propose to model such relationships through a dedicated graph,
whose nodes are the clusters provided by the superpixel
segmentation algorithm [51]; edge similarities are instead
formulated in terms of average color similarity in input space.
Finally, a GCN module performs the classification of each
superpixel.
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Fig. 1. Distribution of ground-truth data on the Italian peninsula. For better
visualization, the individual occurrences are spatially clustered. We mark the
prevalence of WNV occurrence (positive samples—red) over pseudoabsence
(negative samples—blue). As can be seen, while the negative samples are
spread across the territory, positive cases are more concentrated, indicating a
strong correlation with the local environment (best seen in color).

III. PROBLEM SETTING

We aim to identify the conditions favoring WN virus
circulation, which could enable the implementation of tar-
geted surveillance plans. As mentioned, various works [20],
[22] have already proven the connection between the WNV
circulation and several environmental factors, such as vege-
tation, temperatures, and water coverage. We build upon that
relationship and exploit herein a large amount of satellite data
produced in the past years: different from previous studies
based on classical statistical tools [34], we investigate whether
the presence/absence of the WNV circulation in Italy can be
inferred through DL-based approaches.

In the following, we describe the dataset we have forged to
pursue our aim: basically, it pairs data describing the WNV
circulation on the ground (see Section III-A) with satellite
imagery (see Section III-B).

A. Data on West Nile Virus Circulation

We first gathered the veterinary dataset described in [34],
collecting observations about the virus circulation in Italy
from 2008 to 2019. Briefly, Colangeli et al. [52] collected
ground-truth information regarding the geographical locations
(coordinates) of the virus outbreaks, detected by the National
Disease Notification System of the Italian Ministry of Health.2

Specifically, we focus our analysis on the years 2017–2019
and consider positive sites all those places where the presence
of the virus was observed in equids, birds, or mosquitoes.

2SIMAN, www.vetinfo.it

Fig. 2. Number of recorded cases—positive occurrences and pseudoabsence
data—for each year.

TABLE I
SPECTRAL BANDS SHARED BY SENTINEL-2 AND LANDSAT-8, WITH COR-

RESPONDING WAVELENGTH (µm) AND SPATIAL RESOLUTION (m)

During those years, data have been recorded using the same
methodology; any possible source of inconsistency (geograph-
ical location, sampling date, etc.) was verified and corrected.

This way, we could gather information only about confirmed
positive instances. Since the surveillance activities were not
performed in all Italian territories (but only in those areas
with historical evidence of virus circulation or at higher risk
of WNV introduction), the indication of which places can be
considered as negative sites is not always available [34]. For
this reason, pseudoabsence data were randomly generated and
distributed in areas suitable for the virus presence—such as
places characterized by an altitude under 600 m and located
in medium inhabited centers—where the disease was never
reported in the past.

To sum up, the dataset we collect comprises 2264 cases,
split into 786 positives and 1478 negatives. To provide a visual
description, we show the spatial distribution of positive and
pseudo-negative sites in Fig. 1. Instead, we refer the reader to
Fig. 2 for the temporal data distribution over the years.

B. Satellite Imagery

In the following paragraphs, we describe the main sources
of remote sensing data, which we pair with the aforemen-
tioned information describing WNV circulation. These data
are in the form of raw spectral bands [53], [54] and specific
measurements (e.g., temperature and soil moisture) already
acknowledged to partially explain WNV circulation.

First, we aim to represent each geographical site with a
multiband satellite image depicting that site at a certain time.
In this respect, we get the data captured by both Sentinel-2
and Landsat-8 satellites as follows.
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1) Sentinel-2: The two twin satellites Sentinel-2A and 2B,
launched in 2015 and 2017, respectively, in the frame
of the European program Copernicus, acquire 13 spec-
tral bands at different spatial resolutions (10, 20, and
60 m/pixel), with a revisit time equals to five days.

2) Landsat-8: Landsat-8 satellite, launched in 2013, carries
onboard the Thermal Infrared Sensor (TIRS) and the
Operational Land Imager (OLI), acquiring, respectively,
two and nine spectral bands. The satellite flies in a near-
polar orbit, at an altitude of 705 km, and acquires images
of the same territory every 16 days. For this work,
we consider the nine spectral bands captured by the OLI
instruments, having a spatial resolution of 30 m/pixel.

We limit our analysis to the seven bands these two systems
have in common (see Table I). As in [24], we adopt 20 m
as the default spatial resolution and resize the available tiles
to account for the different resolutions. We collect a total
of 37 876 satellite images, which constitute the basis for
both the train and test sets. Each of these is paired with
the temporally closest ground-truth observation; therefore, the
same observation can be associated with multiple satellite
images.

1) Land Surface Temperature : It represents a fundamental
determinant of the terrestrial thermal behavior, as it controls
the effective radiating temperature of the Earth’s surface. LST
was captured separately during day and night from a dual-
view scanning temperature radiometer, an instrument onboard
the Copernicus Sentinel-3A and 3B satellites [55]. They fly
in low Earth orbit at 800–830 km of altitude, feature a daily
revisit time over the same place, and have a spatial resolution
of 1 km.

2) Surface Soil Moisture : It represents the percentage of
the relative water content of the top few centimeters of the soil,
indicating how dry or wet it is. Moreover, it also provides
insights into local precipitation impacts and soil conditions.
The SSM data have been retrieved from the Copernicus Global
Land Service [56], which includes two polar-orbiting satellites
that operate day and night performing C-band synthetic aper-
ture radar imaging; this ensures the acquisition regardless of
the weather. Similar to Sentinel-3, Sentinel-1 has a daily revisit
time and a spatial resolution of 1 km.

IV. MODEL

Overview: We look for a way to exploit neighbor sites while
analyzing a given infection point. To this aim, we propose a
model composed of three main blocks: a features’ extractor
(see Section IV-A), a graph aggregation module, and a final
classifier (see Section IV-B). An overview of the architecture
is shown in Fig. 3.

A. Features Extractor

The role of the feature extractor is to process the multiband
and high-resolution satellite images to obtain a lower dimen-
sional feature vector. During this step, redundant or noisy
information is discarded, leaving only high-level details that
better summarize the input patch.

1) Architecture: We adopt ResNet18 [39] as backbone,
which comprises four blocks with two residual units each. The
presence of residual connections prevents the representations
from degrading toward the end of the network; moreover,
as clarified in [57], ResNet-based networks are more suitable
for self-supervised representation learning.

2) Pretraining: When dealing with a constrained number
of images, common approaches involve transfer learning tech-
niques to boost the quality of the representations extracted
by the model. Among these, the leading approach usually
involves an initial pretrain stage on a large dataset, followed
by fine-tuning (knowledge transfer) on the target data [58],
[59]. In the former phase, the dataset commonly adopted is
ImageNet [60], a large image classification dataset. However,
since it only features RGB images, its application appears
less appropriate for the task at hand. Indeed, its use discards
potentially meaningful information present in multispectral
satellite imagery.

Instead, we rely on a tailored solution to exploit the addi-
tional information provided by satellite data. Following [28],
we construct a colorization pretext task: we require the model
to reconstruct the RGB spectral bands while taking as input the
other ones. Starting from BigEarthNet [61], [62]—an open-
access dataset containing 590 000 labeled (with land cover
type) Sentinel-2 images—we train a ResNet-based autoen-
coder architecture on the colorization task. Once the model
has reached good capabilities, we discard the decoder and keep
the encoder parameters, which are used to initialize the feature
extractor that will be trained to solve the WNV classification
task.

3) Conditional Batch Normalization: As discussed in [34],
the yearly distribution of WNV infections exhibits a clear
seasonal trend, highly affecting the distribution of positive
occurrences. To capture such a pattern, we include the infor-
mation of the relative timestamp as an additional covariate of
our study. Specifically, we modulate the convolutional feature
maps based on the month in which the input image was
captured by satellites. In practice, we replace each batch
normalization (BN) layer of the feature extractor with its
counterpart conditional BN (CBN) [30].

In practice, while classical BN reckons on a single set of
learnable affine parameters, the CBN layer we use provides
12 sets of parameters, one for each month. Therefore, given
a batch B = {H i

}
N
i=1 of N samples, where H ∈ RC×W×H

denotes a generic feature map produced from a convolutional
layer, CBN on channel c ∈ {1, . . . , C} and location (w, h) ∈

{1, . . . , W } × {1, . . . , H} is defined as

CBNc
(
H i

c,h,w

∣∣γc, βc
)

= γc
H i

c,w,h − EB[Hc,·,·]√
VarB[Hc,·,·] + ϵ

+ βc (1)

where ϵ is a constant that prevents numerical issues, and γc, βc

are the learnable parameters controlling the affine transforma-
tion the normalized feature maps are subject to.

B. Graph Aggregation

As previously mentioned, the density and spread of the
vectors that carry WNV are closely related to climatic and
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Fig. 3. Overview of the proposed pipeline. 1) Target multiband sample and its neighbors are independently passed through a shared convolutional network.
2) Obtained high-level features define the content of each node of a graph; the edges, instead, encode several distances. 3) Information is propagated by means
of our MAGAT, which builds upon an attention function over the nearby nodes. 4) Final decision is obtained by a simple linear projection of the target’s
node features.

environmental characteristics. To model these relationships,
we arrange the features produced by neighboring sites as nodes
in a graph and apply a GNN.

1) Overview: Let N be the number of nodes in the graph,
each with F0-dimensional features. We then indicate with
X0

∈ RN×F0
the input node features and with S0

∈ RN×N×G

its multivalued affinity matrix (G stands for the number of
different input relationships). In our experiments, the following
holds.

1) Nodes: We forge each input graph by sampling a random
location—called pivot node—and then gathering the ten
spatially closest neighbors’ locations.

2) Edges: We provide a stack of three matrices: the geo-
graphical (Haversine) distance and the two other ones
based on LST and SSM (namely, for each band we
compute the mean absolute pairwise distance between
the respective the nodes, thus outlining the average
difference in temperature and soil moisture between the
locations). All those distances are converted into simi-
larities (through a Gaussian kernel with σ = 1) and then
further preprocessed via double-stochastic normalization
(discussed in the next paragraphs).

The building block of our proposed architecture consists
of a multihead residual graph layer—termed MAGAT—which
basically extends GAT [31] for leveraging multiple adjacency
matrices. Briefly, each head operates on a separate adjacency
matrix S0

·,·,g to process the input features X0. The results are
then aggregated to produce two results: a new N × F1 nodes’
representation X1, with F1 ≜ G · F Int, and N × N × G edge
feature matrices S1. We stack multiple of these layers, each
of which is fed with the affinity matrices produced by the
previous layer.

After having applied these transformations, we discard the
neighbors and focus only on the pivot node; this way a
single vector embedding is fed to the final classification layer.
The latter outputs the prediction for the presence of WNV
circulation.

2) MAGAT Layer: In formal terms, let us first review the
similarity between nodes i and j as originally conceived by

the authors of GAT

s(X0
i , X0

j ) = exp
{
LReLU

(
pT [

V X0
i

∥∥V X0
j

])}
(2)

where V ∈ RF Int
×F0

linearly projects the input features to an
intermediate dimension F Int, ∥ stands for the concatenation
operator, and p ∈ R2F Int

is a learnable vector that allows for
a single scalar output. In this simple formulation, the only
way to inject an external adjacency matrix is by zeroing out
the contribution from unconnected nodes. Drawing inspiration
from [45], MAGAT learns a separated similarity on top of
each matrix S0

·,·,g provided as input. Formally, we modify
(2) by introducing an attenuation factor that emphasizes the
contributions from similar nodes in the neighborhood

α̂i, j,g = S0
i, j,g · s

(
X0

i , X0
j

)
(3)

where

S0
=

{
S0

i, j , if j ∈ Neighbors(i)
0, otherwise.

(4)

In our approach, the resulting attention coefficients become
the input affinity matrices for the subsequent layer. How-
ever, the repeated application of (3) may result in severe
numerical instabilities. To avoid such an issue, we apply
double-stochastic normalization on α̂ by means of the
Sinkhorn–Knopp iterative algorithm [63], [64]. This way,
we obtain the final normalized affinity matrices: for each
g = 1, 2, . . . , G we have a square nonnegative real matrix
with columns and rows summing to 1.

Once the final attention coefficients α have been computed,
we perform the node feature aggregation on each affinity
matrix. Specifically, we define a multihead structure in which
the G heads perform a separate message-passing operation.
This strategy ensures an efficient feature aggregation since
each head can compute its output in parallel. In our design,
each g = 1, 2, . . . , G sublayer computes an initial linear
combination of the node features X0, and then scales the result
for α·,·,g . The independent results are then concatenated to
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TABLE II
COMPARISON BETWEEN OUR GRAPH-BASED APPROACH AND A BASELINE

FEATURING ONLY THE INFORMATION AVAILABLE FOR THE TARGET
NODE. THE SUPERIOR PERFORMANCE OF MAGAT INDICATES

THE ADVANTAGES OF ADDITIONAL INFORMATION FROM SUR-
ROUNDING ENVIRONMENT

obtain X1. Formally, we compute

X̂ =

Gn

g=1

(
α·,·,g W g X0) (5)

where W g ∈ RF Int
×F0

is a learned parameter matrix, and
f

defines the concatenation operation.
Finally, we provide a residual connection between the input

node features and the output of MAGAT, whose purpose is
to prevent vanishing gradients thus easing the training of the
model. In practice, if indicating with u : RF0

→ RF1
a single

linear projection layer, the MAGAT layer then computes

X1
= σ(X̂) + u(X0) (6)

where σ is the exponential linear unit (ELU) [65] activation
function.

C. Model Ensemble

Following [28], we further take advantage of both the
spectral bands (i.e., those being outside the visible spectrum)
and the RGB ones. In particular, we set up an ensemble model
that averages the predictions from two models: one is fed with
RGB inputs and is pretrained on the ImageNet dataset; the
other takes spectral bands as input and leverages colorization
pretraining as was proposed in [28].

V. EXPERIMENTS

In this section, we present the results obtained in the
scenario presented in Section III-A about WNV circulation.
We first summarize the choices made to set up the experimen-
tal setting; then, several comparisons are proposed to highlight
the contribution of each introduced component.

A. Experimental Details

1) Preprocessing: For each location included in the dataset,
we sample a squared satellite patch centered around its spatial
coordinates (latitude and longitude). We interpolate each band
to obtain a resolution of 20 m, thus aligning different bands
and obtaining a homogeneous format. All those pixels marked
as invalid, saturated, or related to heavy clouds are set to a
predefined “NoData” value: in this respect, we discard the
examples presenting a ratio of NoData pixels higher than an
acceptance threshold (set to 10% in our experiments).

2) Hyperparameters: We set the batch size to 16 and
optimize for 20 epochs with plain stochastic gradient descent
(SGD). To reduce the impact of overfitting, we use dropout
before the final classification layer (with drop probability equal
to 0.2). We minimize the binary cross-entropy loss during
training.

3) Validation: Due to the class unbalance present in our
dataset (65.3% of the samples are associated with a negative
label), we resort not only to accuracy but also to proper
metrics, such as precision, recall, and F1-score.

We split the dataset into two disjoint sets for training
and inference: the former comprises data from 2017 and
2018, while the test phase performs on observations from
2019. As the split is made on the time dimension, a certain
geographical location may appear in both the train and test sets
due to the periodical nature of satellites’ motion. Finally, all
the results have been obtained by repeating each experiment
five times and then reporting the average.

B. Value of Neighboring Nodes

We start the experimental investigation of our graph-
expanded approach by comparing it with a very simple
baseline, which does not involve graph learning at all and
considers one location at once: this way, we can demonstrate
the benefits of information from neighboring places. The
baseline at stake is ResNet18, which we initialize according to
the same pretrain strategies discussed in Section IV. We refer
the reader to Table II, which reports the results of such a
comparison. As can be observed, we report the performance
for different input modalities.3

We can draw the following conclusions: first, the proposed
approach is better at estimating the presence/absence of the
WNV circulation, reaching a top accuracy of 92.6% and
an F1-score of 90.5% for the ensemble strategy. Such evi-
dence confirms our intuition, according to which the further
consideration of the surrounding environment—embodied by
neighboring nodes in our setting—could prove beneficial for
shaping the trend of WNV circulation.

Second, while exploiting the spectral domain provides a
consistent gain in terms of performance for the baseline
approach, we note that this does not hold for MAGAT.
In fact, when leveraging graph-learning, the results deriving
from the two domains end up comparable. Namely, the extra
information provided by the parts of the spectrum outside the
visible appears less critical when considering multiple adjacent
nodes. We conjecture that the message-passing operation could
indeed mitigate the shortcomings of RGB, introducing novel
sources of information.

Third, our results confirm what was said in [28]: as ensem-
bling the two domains provides the best performance for both
the approaches, the involved pretraining strategies seem to
deliver different but valuable concepts.

C. Benefits of Deep Approaches

As deeply discussed, we rely on DL techniques and multi-
band satellite imagery to address the task at hand. However,

3For the rest of the article the term “Spectral” is meant to indicate the
subset of the bands not including the visible part of the spectrum.
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TABLE III
COMPARISON BETWEEN SHALLOW CLASSIFIERS

AND OUR DEEP PROPOSAL MAGAT

the actual benefits of such a demanding approach could be
argued: could simpler solutions perform comparable or even
better but at lower costs?

We herein attempt to answer these doubts by comparing
MAGAT against several shallow classifiers that leverage hand-
crafted features, such as the following.

1) Logistic regression [66] learns a linear decision
boundary. It does so by maximizing—via gradient
descent—the log-likelihood on the training set.

2) Random forest [67] is a bagging ensemble algorithm:
a set of simple models are trained independently on
subsets of the original data. During inference, the predic-
tions of these models are combined via majority voting.

3) Gradient boosting [68] is based on boosting, an ensem-
ble technique that trains a cascade of models, each of
which focuses mainly on the examples misclassified by
previous ones. The overall prediction is a weighted sum
of the outputs of each model.

These methods cannot be fed with high-resolution multiband
images; therefore, we provide them with the average values of
the spectral bands introduced in Section III-B, along with the
geographic coordinates and the NDVI. The latter is computed
from the B8A and B4 bands (see Table I for reference).

We report the results for such a comparison in Table III.
Among the shallow approaches, gradient boosting leads to
higher performance. However, our approach leads by a margin
of 10% on the F1 score. Such a gap is also clear when looking
at the precision and recall metrics: all the shallow classifiers
tend to overemphasize the positive class, thus presenting a
high recall but at the cost of low precision.

While we focus on finding the best performer for the task,
we still highlight that classical machine learning methods fea-
ture faster inference and less expensive training compared with
their DL counterparts, which could favor them in scenarios
with stricter constraints.

D. Impact of Conditional Batch Normalization

As discussed in [22], in addition to being affected by
environmental factors such as temperature, humidity, and soil
moisture, the WNV circulation is also governed by seasonal
patterns. In light of this, we introduced the CBN layer to
provide the acquisition month to the feature extractor. Fig. 4
shows that such a design choice leads to a higher F1 score;
moreover, the gain is consistent across different choices (i.e.,
backbone and input modality).

Fig. 4. Barplot showing the impact in terms of F1 score CBN over its naive
counterpart (BN).

TABLE IV
IMPACT OF DIFFERENT EDGE CUES ON PERFORMANCE

E. Impact of Different Similarities in MAGAT

Here, we empirically review alternative strategies to build
the input affinity matrices S. In particular, we compare ours
(termed all, which comprises geographic, LST, and SSM
distances) with using only LST and SSM similarities. In addi-
tionally, we also wonder what happens when providing no
informative edges at all: in this respect, we set up a baseline
called uniform that assigns the same importance to every edge
[it ends up using node features solely, as held in (3)].

Table IV reports the results of this investigation for different
modalities. Overall, using all the available information as
advocated by our proposal consistently yields higher F1 scores.
However, we also note that the uniform adjacency leads to
competitive results: in two out of three cases, it even surpasses
the combination of environmental bands (LST + SSM).

Furthermore, considering only the surface temperature or
soil moisture seems misleading for the model. In fact, without
providing any hints about the geographical distance between
nodes, locations sharing similar environmental features may
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TABLE V
IMPACT OF DIFFERENT PRETRAINING VERSUS TRAINING FROM SCRATCH

be suspected of virus transmission even if they are too far
apart for the virus to spread.

F. Relevance of Pretraining

Due to the limited size of the dataset used, our solution
exploits different pretrain strategies (e.g., based on the Ima-
geNet dataset [69]) to mitigate overfitting. We still question
the relevance of that detail, hence evaluating the results of
MAGAT with a randomly initialized feature extractor. Unsur-
prisingly, Table V highlights a clear advantage in using a
pretrained network: when evaluating both colorization and
RGB pretrain (last row), the ResNet18 and MAGAT ensemble
models show an improvement of 6.6 and 9.7, respectively.

We also note that when pretraining is not involved, the
performance of the MAGAT ensemble is inferior to the
average performance of the models trained on the RGB
and B1,8A,11,12 bands separately. Such a result indicates
that—without a proper initialization strategy—there are no
advantages in combining the features learned by the two
models.

G. Effectiveness of MAGAT Against GNN Baselines

Once we have discussed the importance of the various
parts of MAGAT, we now wish to assess its performance
under the light of other established GNN-based approaches.
We consider both GAT and GCN as baselines due to their
widespread use in literature. For the latter, we evaluate all
the choices of single-dimensional adjacency matrix (uniform,
LST, SSM, and geographic distance). Second, inspired by
GrAMME-Fusion [46], we include a multiadjacency extension
of GCN, which we call Fusion-GCN; herein, a fusion layer
combines the contribution of multiple independent GCN layers
as follows:

X =

G∑
g=1

βgzg (7)

with zg being the output of the GCN layer related to the gth
adjacency matrix.

We first propose a quantitative comparison in Table VI: as
can be seen, our proposal MAGAT reaches stronger results
with respect to other GNN-based approaches under all the
combinations of pretrain and adjacency matrix. This find-
ing demonstrates the effectiveness of MAGAT in capturing
the temporal and spatial dependencies of complex graph-
structured data. Interestingly, the poor result of GAT indicates

TABLE VI
IMPACT OF MAGAT AGAINST OTHER GNNS, MEASURED AS F1 SCORE

a clear advantage to using the information regarding the edges,
which is in line with our previous findings of Section V-E.

In addition to the quantitative analysis, in Fig. 5 we provide
a qualitative assessment of the feature spaces generated by
different GNN models. Inspired by other works [31], [44],
[46], we use t-SNE to reduce and visualize the feature spaces
generated by different models. Our observations reveal that
MAGAT produces a feature representation that better separates
the different classes, providing additional evidence for the
effectiveness of our approach in capturing the underlying
structures in the data. In addition, the representation produced
by GAT suggests a poor separation between classes, which
negatively affects the overall performance of the model as
shown in Table VI. This effect is less pronounced in other
GCN-based baselines, highlighting the importance of incor-
porating the environmental and climatic relationships between
nearby locations.

H. Limitations and Future Work

Our evaluation focuses on the Italian peninsula, which
occupies around 300.192 km2 in the middle of Mediterranean
Sea and it is characterized by high climatic variability and
diversity. Concerning the WNV, since 2002 the Italian Min-
istry of Health has implemented a veterinary surveillance
plan to monitor the viral introduction and circulation of
WNV in the whole country. The virus circulation detected
in animals (hereafter veterinary cases) is mandatory regis-
tered by the local veterinary authorities into the National
Animal Disease Notification System (SIMAN) and forms
the ground-truth database used in the analyses III-A. Thus,
our analysis takes into account a wide geographical area,
including many eco-climatic conditions over a long period of
time.

Concerning other diseases, our model is based on the eco-
climatic parameters which significantly influence the vectors’
population density and the amplification of viral transmission.
These modeled conditions can be used for the study of other
vector-borne diseases (e.g., Usutu), but are not suitable for the
evaluation of diseases that operate via a directly transmitted
infection (e.g., Sars-Cov-2 infection).

Finally, our proposal could be applied to other geographical
areas to model WNV circulation. However, it is necessary
that these have the environmental and climatic conditions that
allow the spread of the vector species and hosts.
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Fig. 5. Depiction of the feature spaces spanned by different GNNs after t-SNE [70] compression. As can be seen, the combined aggregation of all the
edge features in MAGAT results in less overlapping between the positive samples (red) over the pseudonegatives (blue) (best seen in color).

VI. CONCLUSION

This work upholds the benefits of multiband satellite images
for shaping the circulation of the WNV. We built upon the
widely acknowledged relation between virus presence and the
suitability of the surrounding environment to host specific
vectors. Our inference schema goes beyond the only con-
sideration of the climatic and ecological cues present in the
geographic location of interest; we also attend to its close
neighboring locations and model interactions through a GNN.
The experimental results and several ablative studies reward
our intuition, providing further insights regarding the relevance
of circulation and seasonality modeling. In future works,
we plan to extend our approach to embrace even multihorizon
temporal dynamics.
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