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Abstract— We investigate the use of Bayesian methods for
hyperspectral subpixel target detection, where the uncertainty
associated with the target fill factor is “probabilized” by a
suitable prior. Specifically, we present a general framework for
Bayesian target detection by employing different models for the
background distribution, comparing different choices for the
Bayesian prior, and investigating different numerical schemes
for evaluating the Bayesian integral. The Bayesian methods are
furthermore compared to their generalized likelihood ratio test
(GLRT)-based counterparts. Experiments performed over real
hyperspectral imagery, with both real and implanted subpixel
targets, show that incorporating prior knowledge by means
of nonuniform priors emphasizing smaller target fill factors
outperforms usage of the “noninformative” uniform prior and
enhances Bayes performance beyond the GLRT, a result observed
for both parametric and nonparametric background models.
We find that even “rough” priors can successfully leverage the
context-based information by emphasizing target sizes that are
of most interest. We further observe that the Gauss–Legendre
numerical integration scheme provides efficient integral approxi-
mation while maintaining the desirable admissibility property of
Bayesian methods.

Index Terms— Bayesian statistics, generalized likelihood ratio
test (GLRT), hyperspectral, kernel density estimation, likelihood
ratio, target detection.

I. INTRODUCTION

SEARCHING a hyperspectral image for a target based on
its spectral signature is a data processing task with many

applications, ranging from forestry and mineral prospecting
to pollution monitoring and public safety. With the richness
of information content offered by hundreds of spectral bands
at every image pixel, hyperspectral imaging has shown great
potential in material discrimination. In many applications,
the targets to be searched for are subpixel, which is to say
that they are smaller than the pixel size on the ground.
Detecting subpixel targets means handling a spectral signal
including not only the target component but also the signal
component pertinent to the background, which is composed
of the nontarget materials in the given pixel [1].
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Among the various approaches proposed to deal with sub-
pixel targets, this article focuses on decision theory-based
statistical algorithms for which the likelihood ratio test
(LRT) [2] between the probability density functions (pdfs)
of the pixel conditioned to the two competing (target present
and target absent) hypotheses is applied at each image pixel.
By modeling the spectral variability of a pixel contain-
ing a subpixel target with the replacement target model
(RTM) [1], [3], the target-present pdf can be expressed as a
function of the background pdf and the target signature and
the resulting LRT becomes a composite hypothesis testing
problem depending on the target fill factor (or abundance),
which is the RTM key parameter. The most widely employed
approach to composite hypothesis testing is to replace the
unknown target fill factor with its maximum likelihood (ML)
estimate, thus obtaining the generalized LRT (GLRT) [2].
Other approaches exist such as penalized LRT and clairvoyant
fusion [4], [5], [6], which result in a “weighted GLRT”
benefiting from a certain degree of design flexibility. Unlike
these GLRT-based detectors, the Bayesian detectors integrate
the likelihood over the range of fill-factor values by weighting
it with a suitable prior pdf for the fill factor itself. An important
advantage of Bayesian detectors is that they are guaranteed to
be admissible [7]. This is an attractive benefit: if a detector is
admissible, then no other detector is uniformly more powerful,
that is to say, for a given false alarm rate (FAR), no other
detector has a higher detection rate (DR) for all target fill
factors. While this does not mean an admissible detector is
unambiguously optimal, it does mean that no other detector is
unambiguously better. Thus, when searching for a detector that
is well-suited to a particular operational scenario, it is desirable
to restrict attention to the class of admissible detectors.

Although the potential of the Bayesian approach for detect-
ing targets in hyperspectral images was acknowledged several
years ago [8], [9], Bayesian detectors are not widely employed
in the hyperspectral detection literature. One reason may be
the difficulty in finding closed-form solutions (mostly due to
the integration they require); another may be that the flexibility
to choose the prior turns out to be a double-edged sword—it is
rarely obvious which prior should be associated with a given
problem. One issue is the very interpretation of the prior. The
traditional interpretation is that it represents the distribution of
fill factors that one expects to see, a priori, in the imagery to
be searched. A slightly different view is provided in [7], where
the prior is seen as a means to express the importance that is
attached to the various values of the fill factor. Despite this
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difficulty, we consider the flexibility of the Bayesian detector
to be more of a blessing than a curse; and combining that with
the built-in admissibility property, we believe the Bayesian
detection of subpixel targets merits further investigation.

In recent preliminary studies [10], [11], [12], we began
exploring the potential of Bayesian detection in hyperspectral
imagery: a basic implementation of a numerical solution to
Bayesian detection with uniform prior was introduced in [10];
by employing a specific prior with fixed parameters along with
certain simplifying assumptions, an approximate closed-form
Bayesian detector was derived in [11]; and the utility of a
single delta-function prior was investigated in [12]. This article
follows the thread outlined by those studies by presenting a
more general and structured framework for Bayesian target
detection: 1) by enabling the use of arbitrary background
models (as demonstrated by experiments using nontrivial para-
metric and nonparametric background models); 2) by enabling
the flexibility to use arbitrary prior pdfs (as demonstrated
by the use of a uniform, a nonuniform, and even a strictly
“improper” prior); 3) by investigating and comparing the
effectiveness of two different numerical integration schemes;
4) by presenting experimental results over both synthetic and
real scenarios featuring rare targets; and 5) by comparing
detection performance of Bayesian detectors with their more
conventional GLRT-based counterparts. We find that Bayesian
detectors represent a valid alternative to the more widely
employed GLRT, offering not only admissibility but also
flexibility with respect to the users’ knowledge and interest
about the scenario, and we observe that this flexibility can
result in improved performance.

The rest of this article is organized as follows. Section II
explains the Bayesian approach to solid subpixel target
detection, with examples of two Bayesian target detectors.
Section III describes the experiments and discusses their
results. Finally, Section IV summarizes the main outcomes
and contributions of this work.

II. BAYESIAN TARGET DETECTORS
FOR SUBPIXEL TARGETS

A. Detection of Solid Subpixel Targets

The LRT between the target-present (H1) and the target-
absent (H0, i.e., just background) pdfs is expressed as follows:

3LRT(x, t) =
fx|H1(x, t)
fx|H0(x)

(1)

where x ∈ Rd is the generic pixel (with d being the spectral
dimension) and t ∈ Rd is the target spectral signature—t
and x are assumed to be radiometrically compatible. Both
conditional pdfs are unknown and need to be estimated from
the data. Because targets are rare in the scene, the number
of available realizations of x|H1 generally does not suffice
to the fx|H1(x, t) estimation. Thus, the target-present pdf
is generally expressed as a function of the background pdf
and the target spectral signature t by means of target spectral
variability models, which specify how the observed pixel
depends on the background pixel in combination with the
target signature and its abundance [3], [13]. One widely

employed spectral variability model that is physically con-
sistent with the phenomenology of subpixel targets is the
replacement target model (RTM) [1], [3], which fractionates
the pixel in two components, the pixel fraction where the target
obscures the background and the residual background-only
fraction, as follows:{

H1, x = α t + (1 − α)z
H0, x = z

(2)

where z ∈ Rd is the generic background spectrum and
α ∈ (0, 1] denotes target fill factor and quantifies the fraction
of the pixel occupied by the target itself.

By the change of variable x = ψ(z), we obtain
fx|H1(x, t) = fz

[
ψ−1(x)

]
|dψ/dx|

−1 and fx|H0(x) = fz(x),
and thus, (1) turns into

3RTM
LRT (x, t;α) =

(1 − α)−d f z
( x−α t

1−α

)
fz(x)

. (3)

If the fill factor α were known, the detector in (3) (known
as clairvoyant) would provide optimal detection [2]. In real
scenarios, α is not known and we need to solve the composite
hypothesis testing problem and produce a detector that does
not depend on α.

B. Bayesian Approach to Subpixel Target Detection

A Bayesian LRT detector can be derived from the composite
hypothesis testing in (3) by posing a prior pdf fα(α) for α

and marginalizing α out as follows:

3RTM
Bayes(x, t) =

∫ 1
α=0 (1 − α)−d fz

( x−α t
1−α

)
fα(α)dα

fz(x)
. (4)

In order to fully specify this detector, not only the prior
fα(α) needs to be specified but also a model for the
background pdf fz(). Here, we specifically investigate two
Bayesian detectors by leveraging two very well-known back-
ground models, namely, a long-tailed (parametric) distribution
and a data-driven kernel-based (nonparametric) model.

1) Parametric Bayesian Target Detector: Invoking para-
metric models means assuming a specific parametric form
for the background pdf and replacing the parameters with
their estimates made from the available data. Long-tailed
distributions have been shown to be particularly suitable
for modeling hyperspectral backgrounds [14] and have been
successfully employed within the GLRT approach to detect
rare weak targets [15], [16]. For the multivariate t distribu-
tion with mean vector µ, covariance matrix C , and number
of degrees of freedom ν, the background pdf is given as
follows:

f (P)z (z;µ,C, ν) = c|C|
−

1
2

[
1 +

(z − µ)T C−1(z − µ)

ν − 2

]−
d+v

2

(5)

where c is a constant (depending on ν and d).
In practice, the parameters (µ,C, and ν) are not known

and need to be estimated from the available data, i.e., from
a sufficiently large set {zn}

N
n=1 of target-free secondary data,
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assumed to be identically distributed as z. Due to the target
rarity assumption, all image pixels are generally employed for
this purpose.

The parametric Bayesian detector based on the multivariate
t distribution can thus be written as

3
RTM(P)
Bayes

(
x,{zn}

N
n=1, t

)
=

∫ 1
α=0 (1 − α)−d h

( x−α t
1−α

;µ̂, Ĉ, ν̂, d
)

fα(α)dα

h
(
x;µ̂, Ĉ, ν̂, d

) (6)

with

h
(
z;µ̂, Ĉ, ν̂, d

)
=

[
1 +

(
z − µ̂

)T Ĉ−1(z−µ̂
)

ν̂ − 2

]−
d+ν̂

2

.

2) Nonparametric Bayesian Target Detector: The nonpara-
metric approach does not rely upon a specific distributional
form for the background pdf but directly estimates it in a
data-driven fashion. Here, we consider the variable-bandwidth
kernel density estimator (VKDE) [17], [18], which has been
successfully employed within the LRT for detecting rare tar-
gets and spectral anomalies in hyperspectral images [19], [20].
More specifically, the background pdf is obtained as follows:

f (NP)
z

(
z, {zn}

N
n=1

)
=

1
N

N∑
n=1

1
rd

k (zn)
κ

[
z − zn

rk(zn)

]
(7)

where κ[] is a kernel function whose bandwidth rk(zn) depends
on the local data density in the feature space and is specifically
evaluated at each zn as its Euclidean distance to its k-nearest
neighbor (k-NN) in {zi }

N
i=1,i ̸=n . The k-NN-based bandwidth

selection allows for an automated tuning of the kernel smooth-
ing with resulting performance weakly dependent on the free
parameter k [17], [18].

The nonparametric Bayesian detector based on the VKDE
can thus be written as

3
RTM(NP)
Bayes

(
x,{zn}

N
n=1, t

)
=

∫ 1
α=0 (1 − α)−d∑N

n=1
1

rd
k (zn)

κ
[ x−α t

1−α
−zn

rk (zn)

]
f
α
(α)dα∑N

n=1
1

rd
k (zn)

κ
[

x−zn
rk (zn)

] . (8)

3) Prior PDFs: Choosing the prior is a classic (and some-
times even controversial) issue in Bayesian statistics. Ideally,
prior choice should be driven by a priori knowledge and,
traditionally, it is set based on the best guess for what the
unknown parameter distribution is likely to be. For instance,
if targets are expected to be much smaller than a pixel, one
should design a prior that puts more weight on small fill
factors.

In principle, if no prior knowledge is available, a non-
informative prior should be used, this is a prior as “flat”
as possible [2]. Because of the bounded domain of the fill
factor α, the most natural choice for a noninformative prior is
the uniform pdf.

In [11], the prior was chosen to simplify the mathematical
derivation of an approximated closed-form solution, thus trad-
ing analytical tractability for the user’s freedom to set the prior
based on the actual available knowledge. Here, by contrast,

we do not impose any constraint on the prior, giving up on
the derivation of (even approximated) closed-form solutions
in favor of providing the user with the maximum flexibility
in designing the prior. In fact, we believe that even when the
available knowledge may be vague, scarce, or somehow not
readily expressible as a pdf, a properly set “rough” prior would
provide benefits relative to usage of a noninformative prior.
In addition, for detection problems, an alternative interpreta-
tion is possible [7], where prior choice should not be limited to
specify how likely some given fill-factor values are expected to
be, but should also specify how important those values of fill
factor are to the user. In this case, for example, putting more
weight on small fill factors aims at enhanced DRs at those
small fill factors, possibly at the expense of reduced DRs at
larger fill factors.

In this work, we will leverage the context-based available
information while at the same time directing the detection
toward smaller target sizes. In doing so, besides proper priors,
we also allow for “improper” priors (not finite or with infinite
integral), as long as they can produce posterior pdfs with
bounded integrals.

4) Integration Schemes: Two numerical integration schemes
are considered in this article, the midpoint (MP) rule and
Gaussian–Legendre (GL) quadrature [21], to numerically
approximate the integral at the numerator of the Bayesian
detectors. For simplicity, let us write q(α) as the integrand
function, and observe that both rules can be expressed in the
form ∫ 1

0
q(α)dα ≈

npts∑
i=1

wi q(αi ) (9)

but with different choices for wi and αi . Since the computation
in (9) is dominated by the npts evaluations of the integrand,
the cost depends on npts, but not on whether the MP or GL
rule is employed.

According to the MP rule, the integration interval is divided
into equally wide subintervals identified by their npts uniformly
spaced MPs {α

(MP)
i = i/npts − 1/(2npts)}

npts
i=1 and the integral

is numerically approximated by the sum of the areas of npts

rectangles of width w(MP)
i = 1/npts and height q(α(MP)

i ).
Approximation of an integral with the GL rule means,

instead, adopting a nonuniform spacing of the npts points
where the function is evaluated. Specifically, the positioning
of the sampling points within the integration domain is given
by {α

(GL)
i = (ξi + 1)/2}

npts
i=1, where {ξi }

npts
i=1 are the roots of the

npts-degree Legendre polynomial Lnpts(ξ), and the weights are
given by

w
(GL)
i =

1

(1 − ξi )
2
[

L ′
npts
(ξi )

]2 . (10)

The roots {ξi }
npts
i=1 can be found with recursive methods

(e.g., the Newton–Raphson method), but both roots and
weights are only calculated once (and have been extensively
tabulated; e.g., [21, Table 25.2]), whereas the integrand eval-
uations are performed for every pixel.

It should be noted that approximating the integral at the
numerator of a Bayesian detector with either the MP or the
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GL rule does not impair the admissibility of the detector itself.
In fact, approximating the integral with a sum over discrete
terms is equivalent to a Bayesian detector with a different
prior (namely, a weighted delta-comb function) and, thus, the
admissibility property is maintained.

III. EXPERIMENTAL RESULTS

This section describes the experimental design and discusses
the experimental results obtained.

A. Experimental Design

1) Algorithmic Comparison: The Bayesian detectors
derived in this article from the RTM are compared in this
section to their RTM-based GLRT counterparts. For the para-
metric background model in (6), the GLRT counterpart is a
closed-form expression, given by the elliptically contoured
finite target matched filter (EC-FTMF) [16], [22]. For the
nonparametric background in (8), the RTM-based NP-GLRT
is not solvable in the closed form [19], but a numerical
solution was implemented here, using the same sampling
points {α

(∗)
i }

npts
i=1 (with ∗ representing either the MP or GL rule)

that were used for the numerical integration in the Bayesian
algorithms. In the experiments with controlled fill factors
(see Sections III-A4.a and III-B1), the clairvoyant versions of
both parametric and nonparametric algorithms were introduced
in the comparison as references. While a large variety of
detectors based on different approaches have been proposed
in the literature (e.g., [23], [24], [25], and [26]), in order to
keep focus, we have circumscribed our attention to statistical
LRT RTM-based detectors. As mentioned, the goal of this
article is to investigate Bayesian methods as a robust, flexible,
and admissible alternative to GLRT. The comparison of Bayes
methods to other different detectors will be the subject of
future work.

2) Methodology Settings: For the parametric Bayesian
detector, ML estimates (µ̂,Ĉ) were used for µ and C,
whereas a simple strategy based on the method of moments
was employed for ν. Specifically, as done in [27], ν was
estimated by the following ratio between moments of the EC-t
distribution:

ν̂ = 2 +
pκ̃ p

κ̃ p − (L + p)
(11)

where κ̃ p = (m̂ p+2/m̂ p) and m̂ p is the sample estimate
made on {zn}

N
n=1 of E{r p

}, with r = [(z−µ̂)T Ĉ−1(z − µ̂)]0.5.
We chose p to be equal to one.

For the nonparametric detectors, because the VKDE in (8)
employs a spherically symmetric kernel, the data were linearly
transformed to have unit variances in all spectral directions
before detector application, as suggested in [28] and in the
KDE literature [17]. The kernel function was taken as the
Epanechnikov kernel function, which exhibits several desirable
properties [17]. The number k of NNs in VKDE was chosen
to satisfy N 1/3 < k ≪ N 1/2, as recommended in [19].

With regard to the integration to be computed in both
Bayesian detectors, we employed the GL quadrature rule with
a number of points npts = 6. The resulting points {α

(GL)
i }

6
i=1

were also employed to sample the likelihood function in the
NP-GLRT detector. Investigations into the integration strate-
gies are addressed in detail in Sections III-A4.c and III-B3.

For the prior pdf functions for the Bayesian detectors, the
uniform prior was employed in all experiments, allowing the
comparison to be carried out at the “integral” versus “peak”
level (see Sections III-A4.a and III-B1) and at the integration
scheme level (see Sections III-A4.c and III-B3). In another
experiment (see Sections III-A4.b and III-B2), Bayes flexi-
bility with respect to context-based a priori information was
explored by testing two further priors, both suitable to model
a subpixel target detection scenario.

The first nonuniform prior function tested was a beta
pdf [21]

fα(α) = f beta
α (α; a, b) = αa−1(1 − α)b−1 0(a + b)

0(a)0(b)
(12)

where a and b are the nonnegative shape parameters and
0() is the gamma function. The beta pdf naturally models
subpixel target detection scenarios because its support is [0, 1].
By adjusting the shape parameters, a variety of configurations
may be obtained, acting not only on the mean value E{α} =

a/(a + b) but also on the entire pdf shape.
We also tested the following prior, which follows a power

law and puts more weight on small fill factors:

fα(α) = 1/αm (13)

where m > 0 tunes the subpixel weighting. Note that even
though this would be an improper prior over a continuous
interval that included α = 0, our finite-sample approach is not
strictly improper since we use a finite sum of delta functions
whose amplitudes scale like 1/αm . Because the finite sum
avoids α = 0, the actual prior has a bounded integral.

3) Performance Measures: Target detection performance is
typically measured by making reference to two main basic
quantities that leverage ground-truth data of target positions
and are evaluated by thresholding the detection test statistic,
namely, the DR and the FAR. DR is the ratio between
the number of target pixels exceeding the threshold in the
detection statistic (correct detections) and the total number
of target pixels in the scene—the higher the better. FAR
is the ratio between the number of nontarget (background)
pixels exceeding the threshold (false detections) and the total
number of background pixels—the lower the better. In our
experiments, we built the empirical receiver operating char-
acteristic (ROC) curves by plotting the DR versus the FAR
and evaluated over the detection statistic while varying the
detection threshold. ROC curves embody the fundamental
tradeoff in target detection performance, i.e., DR and FAR
cannot both be optimized, and provide an overall perspective
on detection performance.

We also extracted scalar-valued summary performance mea-
sures from the ROC curves, specifically the FAR evaluated for
several given values of DR (hereinafter, FAR@DR) and the
area under the ROC curve (AUC), computed in two different
ways. The empirical ROC curve, with DR and FAR plotted for
every possible threshold, is typically a stair-step shape (this is
strictly true if all pixels have distinct detection statistic values)
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Fig. 1. Scheme of the matched-pair method for target implanting. A matched
pair of images is used: the first acts as a background image (embodying
the null hypothesis H0), whereas the second (representing the alternative
hypothesis H1) is a replica of the first image but with targets implanted in
each pixel with a given fill factor αff. The detection algorithm is applied to
the pair of images. A ROC curve is obtained by thresholding the histograms
of the corresponding detection statistics.

and our standard AUC was evaluated as the area under this
stair-step curve. It has been noted in [29], however, that ROC
curves should theoretically be “convex-cap,” so we also report
convex-AUC, which is the area under the upper convex hull of
the empirical ROC curve. While AUC and some of its variants
are widely used in the target detection literature, we consider
the FAR-based statistics as more informative for scenarios
in which the actual targets are relatively rare since it is the
low-FAR region of the ROC curve that is more important in
that case. Besides ROC curves and the scalar-valued summary
performance metrics, we also provide images of detection
statistics as well as their histograms, so as to provide effective
visual evidence of algorithm behavior.

4) Subpixel Target Detection Experiments: Three types of
experiments were carried out, which are described in the
following subsections. The first set of experiments featured
a real hyperspectral image and a subpixel target detection sce-
nario reproduced with controlled fill factors. Then, we further
validated the methods on a real hyperspectral image encom-
passing two ground-truth subpixel target detection scenarios.
Finally, the third set of experiments was aimed at providing
insights about the Bayes integration scheme. All three sets
of experiments were carried out on hyperspectral data fully
available to the scientific community.

a) Experiments with controlled fill factor: In the first
experiment, we reproduced a subpixel target detection scenario
with controlled fill factors by means of the matched-pair
method for target implanting [30], [31]. This allows the
algorithms to be tested on a real hyperspectral image but in a
controlled environment that enables a large number of target
pixels to be tested and, thus, statistically reliable ROC curves
to be drawn. As shown in Fig. 1, the original hyperspectral
image is used as “background image,” producing N instances
of x|H0; then, a second image is obtained by implanting a
given target spectrum in each of the N image pixels with
a user-specified fill factor αff, thus obtaining N instances of

Fig. 2. (a) RGB representation of the hyperspectral image used in the
matched-pair experiments. (b) Reflectance spectrum used for target implant-
ing. (c) Target spectrum superimposed to spectra extracted from randomly
selected image pixels.

the test pixel under the alternative “target-present” hypothesis.
By running the desired set of algorithms on both images and
thresholding the histograms of the corresponding test statistics,
ROC curves can be drawn.

The hyperspectral image employed in this experiment is
shown in Fig. 2(a), and the spectrum used for implanting,
which was measured over a green wooden panel [not present in
the image of Fig. 2(a)], is plotted in Fig. 2(b). Both image and
target spectrum were taken from the SHARE 2012 collection
campaign data [32], [33] acquired over Avon, NY, USA, the
characteristics of which are summarized in Table I. Fig. 2(c)
plots the target spectrum superimposed to spectra extracted
from randomly selected image pixels.

The image consists of 250 × 419 pixels and, based on
recommendations from previous works extensively examining
these data [34], [35], a subset of 50 bands in the 218–643-nm
range was employed for processing.

Target implanting was performed with αff =
{

0.05, 0.075,
0.10, 0.0125, 0.15

}
, producing five different target detection

scenarios.
As noted earlier, the uniform prior was here employed in

Bayesian algorithms. Numerical integration was conducted
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TABLE I
AVON DATA CHARACTERISTICS

with the GL rule with npts = 6. The number of NNs employed
for VKDE was k = 100, fully satisfying the practical recom-
mendation mentioned above.

b) Real subpixel target detection scenario: The
SHARE2012 subpixel target detection experiment [32], [34]
was leveraged for further validation of the methods. We make
specific reference to the hyperspectral image acquired over
Avon, NY, USA, where about 100 wooden panels (each 20”
by 12”) were deployed in two sets of 50 panels—each set
arranged with panels placed in such a way that the target fill
factor resulted in (much) lower than 20%. The first set of
targets consisted of green wooden panels arranged on a patch
of grass, whereas the other set featured yellow wooden panels
arranged on a basketball court. The hyperspectral image with
the two sets of targets is shown in Fig. 3(a), and ground-truth
photographs of the green and yellow targets are shown
in Fig. 3(b) and (c), respectively, while Fig. 3(d) and (e)
shows the target reflectance spectra. The hyperspectral image
consisted of 150 × 400 pixels, and the same band subset
as in the previous experiment [34], [35] was employed
for processing. The image characteristics are summarized
in Table I.

All three priors described above were employed in this
experiment. Context-based a priori information was leveraged
to select prior parameters. Specifically, the beta pdf shape
parameters were selected as a = 0.5 and b = d, whereas
m = d was taken for the power-law prior—both choices
were made to craft pdf functions strongly favoring subpixel
scenarios. Use of these priors allowed us to inject our context-
based a priori knowledge of target size into the Bayesian
approach.

Numerical integration was performed with the GL rule
applied with npts = 6 (see Section III-B3).

The number of NNs in VKDE was taken as in the pre-
vious experiment (k = 100), which totally fits with the
aforementioned practical recommendation. In this article, the
performance will be examined by means of ROC curves, FAR
at given DRs, and AUC metrics.

Fig. 3. (a) RGB representation of the hyperspectral image used. The target
area is highlighted in magenta—an enlarged view is displayed where the areas
including the two types of green and yellow wooden panels are marked in
green and yellow. (b) and (c) Ground-truth photographs (taken from [33]) of
the green and yellow panels. (d) and (e) Reflectance spectra of the green and
yellow panels.

c) Examining different rules for the integration scheme:
In this set of experiments, we examined two strategies for
numerically estimating the Bayesian integral [i.e., the numer-
ator in (4)]. To this end, we used the same data as in the
first experiment, specifically the matched image pair obtained
with a fill factor of αff = 0.05. Bayesian algorithms were
applied with the uniform prior and k = 100 was selected for
the VKDE.

Both MP and GL rules were examined in terms of integral
approximation capability and impact on the detection perfor-
mance. Specifically, we evaluate numerical integration with
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Fig. 4. ROC curves for (a) parametric and (b) nonparametric algorithms,
parameterized with respect to the target fill factor. Solid curves represent
clairvoyant, dotted curves indicate GLRT, and dashed curves denote Bayes.

both rules and for both parametric and nonparametric methods
for npts = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 50}. The approxi-
mation capability performance was evaluated by examining
log-integral curves, plotted with respect to npts, and evaluated
over 150 random pixels extracted from both images of the
pair. Here, we do not seek the most accurate approximation
possible but an approximation good enough to enable compu-
tational efficiency (low npts) and good detection performance.
For the latter, we used the FAR obtained for a DR of 0.5
(FAR@DR=0.5) evaluated over the image pair and plotted
against npts.

B. Results Discussion

Here, we present and discuss the results for the three sets
of experiments.

1) Results for the Experiments With Controlled Fill Factor:
ROC curves for the matched-pair experiments are shown in
Fig. 4(a) and (b) for parametric and nonparametric algorithms,
respectively, where clairvoyant versions of the algorithms
are also displayed. ROC curves are here parameterized with
respect to the target fill factor αff.

The graphs show that the parametric methods exhibit—in
the low FAR region of greatest interest—a larger difference in
performance between Bayes (with uniform prior) and GLRT,
in favor of the latter (e.g., for αff = 0.075 and DR = 0.8, the
GLRT provided a FAR of around one order of magnitude lower

than that of Bayes). In contrast, the nonparametric approach
shows very similar performance for the Bayes (with uniform
prior) and GLRT methods.

As expected, the clairvoyant1 detector acted as a ref-
erence, by mostly representing an upper bound to the
performance for a given αff value and background modeling
approach. Although comparing parametric versus nonpara-
metric approaches is not the scope of the work, clairvoyant
curves show that for the smallest αff values, the parametric
background model was better than the nonparametric model at
low FAR, whereas the nonparametric performed better at high
DR. However, for operational GLRT and Bayes algorithms,
parametric methods obtained on these data generally gave
better performance.

Summary metrics of FAR values obtained at some DR
values, specifically FAR@DR={0.7, 0.8, 0.9}, are reported
in Table II. FAR@DR metrics provide snapshots of the ROC
curves for values of the detection threshold such that DR =

{0.7, 0.8, 0.9} and confirm the behavior observed in the
curves. Specifically, boldface FAR@DR values in the table
represent those FAR@DR values for which (for the same
background model and αff) the difference between GLRT and
Bayes is at least an order of magnitude. This occurs for the
parametric methods in favor of GLRT, mostly for the central
αff values, whereas for the nonparametric case, GLRT and
Bayes provide more similar results. AUC statistics are also
reported in Table II, which summarizes the overall algorithm
performance throughout the entire ROC curve. Boldface AUC
values represent the highest AUC values between GLRT and
Bayes for a given background model and target fill factor αff.
While ROC curves and FAR@DR metrics reveal a generally
better behavior of GLRT in the low FAR region, AUC values
show that, in most cases and especially for the parametric
case, Bayesian algorithms exhibit better overall performance,
though the difference is small.

From this first set of experiments, the Bayes algorithm
with uniform prior provided generally good performance,
comparable to the GLRT. It should be noted that for this
experiment, we have only employed the uniform prior and,
thus, we have not fully explored the potential for leveraging
a priori knowledge through the prior pdfs. In the following
section, prior pdfs are adopted.

2) Detection Performance Validation Results for the Real
Subpixel Target Detection Scenario: Before examining quan-
titative performance for the real subpixel target detection
experiments, we first illustrate the algorithm performance
by showing detection statistic images for both green (see
Fig. 5) and yellow (see Fig. 6) target panels for (a) non-
parametric methods and (b) parametric methods. In order to
improve visual comparison and interpretation of the images,
we rescaled the detection statistics using a log-ranked trans-
form. Specifically, each rescaled statistic shows, for each
image pixel z, the transformed value −log10{(R[3(z)]/N )},

1In a small number of cases, the clairvoyant detector was slightly outper-
formed by another detector, even though the clairvoyant is in principle the
optimal detector. But this principle strictly applies only if the data distribution
exactly follows the background model. For real data, which we used here, this
model may only approximate the true background distribution.
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TABLE II
FAR@DR = {0.7, 0.8, 0.9}∗ AND AUC∗∗ METRICS

where R[3(z)] is the ranking that the generic detector 3()
achieved at pixel z compared to all other image pixels. More
directly, a pixel value σ of the rescaled statistic means that 10σ

other pixels in the detection statistic image are weaker than
it is. Because the transform is monotonic, it has no effect on
the performance of the statistic (the ROC curves associated
with a statistic and a log-ranked transform of the statistic
are identical), but it makes it easier to visualize performance
(since only the strongest pixels will be dark) and to compare
the performance (since the two statistics being compared are
scaled the same way). Log-ranked detection statistics for the
case of green targets for nonparametric methods [see Fig. 5(a)]
provide immediate visual evidence of the benefits of leveraging

the full potential of the Bayesian approach by crafting a
suitable prior—while the targets stand out well for all the
detection statistic images, more false alarms can be seen in the
statistics of GLRT and uniform Bayes, compared to those of
nonuniform Bayes. For parametric methods on green targets,
on the other hand, log-ranked statistics exhibit fewer visual
differences [see Fig. 5(b)]. For the yellow targets detected with
nonparametric methods shown in Fig. 6(a), where the targets
stand out comparably well in all statistics, fewer false alarms
are evident in nonuniform Bayes statistics. Also, for the yellow
targets detected with parametric methods shown in Fig. 6(b),
Bayesian statistics are very similar one to another, whereas
the GLRT statistic is apparently less sensitive to background



MATTEOLI AND THEILER: BAYESIAN TARGET DETECTION ALGORITHMS FOR SOLID SUBPIXEL TARGETS 5516414

Fig. 5. Log-ranked statistics for the green target panels (both local target area and entire image are shown) for (a) nonparametric and (b) parametric
algorithms. Ground truth is depicted on the left; target pixels are black, background pixels are light, and agnostic pixels (which are not counted as target
or background because they are so close to the targets that the ground truth for these pixels is less certain) are gray. Log-ranked statistics correspond to a
rescaling of detection statistics to a common distribution. The highest pixel in the detection statistic (ranking = 1) maps into log10(N/1) ≈ 5.02, where
N = 250 × 419 is the number of pixels in the image. The tenth highest pixel in the detection statistic maps into log10(N/10) ≈ 4.02, and the 100th pixel
maps into log10(N/100) ≈ 3.02. The weakest pixel (with the smallest detection statistic: ranking = N ) maps into log10(N/N ) = 0.

structures but also shows the targets that do not appear to stand
out as well as for the Bayesian statistics.

The quantitative performance can be observed in terms of
the ROC curves plotted in Fig. 7 for the green [(a) and (b)]

and yellow targets [(c) and (d)]. Results for the parametric
algorithms are shown in Fig. 7(a) and (c), while those for
nonparametric algorithms are shown in Fig. 7(b) and (d).
As most of the figures clearly show, using a nonuniform prior
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Fig. 6. Same as Fig. 5, but with the spectrum of the yellow panels (instead of the green) used as the target signature. As in Fig. 5, results are shown for
(a) nonparametric and (b) parametric background models.

with the Bayesian algorithm does improve the performance,
regardless of the background modeling approach. Except for
the detection of the green panels with parametric algorithms
[see Fig. 7(a)]—where all methods provide similarly good
performance—the Bayesian method with nonuniform priors
provided the best performance across the two types of targets
and background modeling approaches. Usage of the uniform
prior led to poorer performance than either of the nonuniform

priors. These results are confirmed by AUC and convex-AUC
values reported in Table III for various algorithms and the two
kinds of targets. In most cases, AUC values (of both kinds) for
the Bayesian algorithms with nonuniform priors are notably
higher than those of GLRT and Bayes with uniform prior.

It should be noted that the two different priors provided
nearly identical performance. This was not surprising for two
main reasons: first, because the same type of context-based
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Fig. 7. ROC curves for (a) and (c) parametric and (b) and (d) nonparametric algorithms for detection of (a) and (b) green and (c) and (d) yellow panels,
using four detectors. GLRT is shown as a red solid line, Bayesian with uniform prior is dashed orange, Bayesian with beta pdf is dotted blue, and Bayesian
with 1/αd prior is dotted-dashed green.

TABLE III
AUC∗ METRICS

a priori information (namely, the small fill factors were
expected) was exploited to craft both prior pdfs; and second,
because a higher number of points than npts = 6 for numerical
integration is likely to be needed to appreciate the differences
in two pdfs with such strong weights toward low α values.

More importantly, this outcome shows that Bayes is worth
applying even if the “optimal” prior cannot be derived—as
long as the available a priori information is injected into the
process, even “rough” priors expressing the importance asso-
ciated with small fill factors can benefit the final performance.

3) Insights Into the Integration Scheme: Results of exper-
iments exploring insights into the integration scheme for
Bayesian algorithms are shown in Fig. 8(a)–(f).

Average log-integral curves are shown in Fig. 8(a)–(d)
where the average natural logarithm of the integral at the
numerator of 3RTM

Bayes in (6) is plotted against the number of
points npts. The integrals are averaged over 150 randomly
selected pixels extracted from the background H0 image
[see Fig. 8(a) and (b)] and the target-implanted H1 image
[see Fig. 8(c) and (d)]. Results for parametric algorithms are
shown in Fig. 8(a) and (c), while those for nonparametric
algorithms are shown in Fig. 8(b) and (d). The MP and GL
rules are identified by the blue and red colors, respectively.

As can be observed, the values of the integrals for para-
metric and nonparametric algorithms are different; this is
not a serious concern, however, because it is the ratio of
likelihoods that defines the detectors. What really matters here
is that the trends of the curves are similar. More specifically,
regardless of the background modeling approach, the MP and
GL integration schemes both produced integrals that converged
to the same value and did so both for background and target-
implanted images. In general, though this happened to a
greater extent for the parametric case, the GL strategy led
to a faster convergence than MP. Also, regardless of the
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Fig. 8. (a)–(d) Logarithm of the integral in the numerator of 3RTM
Bayes, averaged over randomly extracted pixels from the background H0 image in (a) and (b)

and the target-implanted H1 image in (c) and (d)—for (a) and (c) parametric and (b) and (d) nonparametric Bayesian algorithms with uniform prior, evaluated
with both MP (in blue) and GL (in red) integration rules and plotted with respect to the number of points npts. (e) and (f) Negative logarithm of FAR for
a DR of 0.5 is evaluated over all pixels of the matched image-pair, based on (e) parametric and (f) nonparametric Bayesian algorithms with uniform prior.
Both MP (in blue) and GL (in red) integration rules are used, and results are plotted with respect to the number of points npts.

scheme, the convergence was faster for the nonparametric
algorithms. In general, all log-integral curves exhibited a
mostly monotonic increase with npts, although some slight
oscillations can be observed for small npts in the GL-based
schemes, due to the nonuniform point spacing that changes
with npts.

As said before, log integrals should be observed coupled
with some detection performance curves, as those shown in
Fig. 8(e) and (f). Here, the negative base-ten logarithm of
the FAR obtained for a DR of 0.5 (−log10(FAR@DR=0.5)),
which is evaluated from all the pixels in the matched image
pair, is plotted versus npts as summary performance measure
(the higher the better) for parametric [see Fig. 8(e)] and non-
parametric [see Fig. 8(f)] Bayesian algorithms. Also here, both
MP- and GL-based integration schemes led to curves converg-
ing to the same −log10(FAR@DR = 0.5) value. In general, the
nonparametric algorithms exhibited a faster convergence than
the parametric ones. Overall, the GL-based scheme provided

a faster convergence than MP, with npts = 6 almost providing
the convergence value for both nonparametric and parametric
cases. It should also be noted that the GL-based scheme
allowed for higher −log10(FAR@DR=0.5) values than those
obtained with the MP-based scheme.

Accounting for both log-integral and performance curves,
we decided to adopt throughout the experiments the GL-
based scheme, which, with its faster convergence and generally
lower FAR, allowed better performance to be obtained with
smaller npts values than the MP-based scheme. We chose
npts = 6 as a tradeoff between performance and computational
efficiency.

IV. CONCLUSION

Bayesian algorithms were developed and explored for solid
subpixel target detection in hyperspectral imagery. These
algorithms provide admissible alternatives to GLRT-based
solutions to the composite hypothesis testing problem. To fully
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benefit from the flexibility offered by the Bayesian approach,
we have employed numerical integration schemes that main-
tain the admissibility property but do not depend on
simplifying or approximating the likelihood expression, and do
not limit the choice of prior based on considerations of closed-
form integrability. This framework gives the user freedom to
choose the prior, based either upon available a priori contextual
information or upon whatever relevance the user chooses to
attach to given target sizes.

We have specifically developed Bayesian detectors based on
the RTM for a parametric (elliptically contoured multivariate-
t distribution) and a nonparametric (kernel-based data-driven
distribution) background model. Two strategies for numerical
integration have been analyzed and compared in terms of both
their accuracy in approximating the integral as well as their
performance in detecting the targets.

Experimental results over real hyperspectral images featur-
ing both synthetic and real subpixel target detection scenarios
have shown that usage of a suitable prior pdf indeed boosts
the Bayesian detection performance. In fact, whereas usage of
noninformative (i.e., uniform) priors has provided Bayesian
performance similar to that of GLRT, injecting context-based
information through the priors has been shown to considerably
improve the performance and to a major extent with the
nonparametric approach. Very similar performance improve-
ments were obtained using quite different prior pdf functions
(a proper beta-function prior and an “improper” power-law
prior), showing that even rough expressions of prior infor-
mation are still effective and can outperform a noninformative
prior. This great flexibility shown by Bayesian algorithms from
a target detection performance perspective provides impetus to
further research. It is our view, in fact, that substantial benefits
may be obtained by suitably engineering prior functions to
optimize the desired performance criteria.
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