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Automatic Detection and Identification of Floating
Marine Debris Using Multispectral Satellite Imagery

Miguel M. Duarte and Leonardo Azevedo

Abstract— Floating plastic debris represent an environmental
threat to the maritime environment as they drift the oceans.
Developing tools to detect and remove them from our oceans is
critical. We present an approach to detect and distinguish suspect
plastic debris from other floating materials (i.e., driftwood,
seaweed, sea snot, sea foam, and pumice) using Sentinel-2 data.
We use extreme gradient boosting trained with data compiled
from published works complemented by manual interpretation
of satellite images. The method is trained with two spectral bands
and seven spectral indices computed from the Sentinel-2 spectral
bands. We consider three application scenarios. The first uses
the database created under the scope of this work. While the
classification achieved a 98% accuracy rate for suspect plastic
debris, we acknowledge the need for ground-truth validation.
The second, to enlarge the training dataset, uses synthetic data
generated through a Wasserstein generative adversarial network.
A supervised model trained exclusively with synthetic data
successfully classified suspect plastic pixels with an accuracy of
83%. The third comprises an ensemble model that quantifies
uncertainty about the predictions obtained with the classifier.
We correctly classified 75% of the suspect plastic pixels. However,
while the classification accuracy decreased, with the integration
of uncertainty in the predictions, the number of misclassifications
also significantly decreased when compared to the model with the
highest accuracy of the previous scenarios. Due to the mixed
band nature of the sensor and subpixel coverage of debris
within a pixel, the application to other datasets might not be
straightforward.

Index Terms— Floating plastic debris, marine pollution, remote
sensing, Sentinel-2.

I. INTRODUCTION

GLOBAL plastic production has been steadily increasing
in the last decades, reaching 380 million tons produced

only in 2015, which represents around 190 times the value
of 1950 [1]. The largest market sector for plastic resins is
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packaging [2]. While plastics are durable over time, most
of these products are designed for immediate disposal. Thus,
plastic makes up a significant percentage of all solid waste
generated and, since none of the commonly used plastics
is biodegradable and only a small portion may be recycled
or incinerated, they accumulate in landfills or the natural
environment [3]. Consequently, in countries where waste
management infrastructure is lacking, or poor, plastic waste
is likely to enter water bodies and end up in the ocean.

Approximately, 65% of the synthetic polymers included
in plastics have a lower density than seawater [1]. Hence,
because of their durability, these buoyant objects tend to accu-
mulate on the ocean’s surface and travel worldwide through
ocean currents. The most well-known proof of substantial
marine plastic accumulations is in the North Pacific Gyre. The
so-called Great Pacific garbage patch is estimated to comprise
almost 79 000 tons of accumulated plastic [3], including not
only macroplastics (plastic particles >5 mm in size), such
as abandoned fishing nets, bottles, and containers, but also
microplastics (plastic particles <5 mm in size), which usually
result from the fragmentation of larger plastic items over time
due to degradation resulting from the harshness of the ocean.

These plastic debris affect marine ecosystems in multiple
ways. One of its most visible effects is the entanglement of
organisms, such as birds, turtles, mammals, and fish, often
resulting in death by drowning, suffocation, or strangulation.
If not instantly fatal, it might cause injuries and wounds,
leading the animal to starvation through reduced feeding
efficiency and making it difficult to escape predators [4].
Many marine creatures mistake plastic for food and ingest
it. Ingestion of plastic can cause lacerations in the digestive
system, and its retention in the organism has potential negative
consequences for reproduction and growth [5]. Since animals
carry these debris in their bodies, plastic is already part of the
human food chain and might be detrimental to human health.

The impact of floating plastic debris is not limited to
maritime wildlife. Marine plastics present a range of nega-
tive economic impacts. Beaumont et al. [6] estimate that the
economic costs of marine plastic, as related to marine natural
capital, are conservatively conjectured at between U.S. $3300
and U.S. $33 000 per ton of marine plastic per year, based on
2011 ecosystem service values and marine plastic stocks. For
these reasons, industries, governments, and communities, espe-
cially in coastal regions, must take immediate action to prevent
plastic waste from entering the hydrosphere. However, even
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if the world stopped generating plastic waste, macroplastics
would persist on the ocean’s surface for the next decades.
Therefore, there is a prominent need for floating plastic debris
to be detected, captured, and removed from the oceans.

Earth observation data have shown early promising results
to detect marine plastic debris accumulations (e.g., [7], [8]).
Satellites are a reliable data source, thanks to their spatial
and temporal resolution and efficiency in covering exten-
sive areas over time without human interaction and their
cost-effectiveness. However, the automatic classification and
identification of floating plastic debris from satellite data is not
straightforward and is still currently a challenge. This objective
depends on the characteristics of the sensor considered and the
percentage of debris inside a given pixel for a specific spectral
band (see [9], [10]).

In this work, we investigate the feasibility of using statistical
learning classification algorithms in combination with satellite
imagery to automatically detect and identify floating marine
debris in coastal waters. Marine debris is a broad term that
refers to any human-made or natural object that is floating at
the sea surface or suspended in the water column and includes,
for example, wood, seaweed, fishing nets, and plastic items.
Our primary objective is to differentiate these floating debris,
with a specific focus on distinguishing plastic debris from
other debris that share similar spectral reflectance, including
sea snot, sea foam, and pumice. In addition, we propose a way
to augment the training data available, by creating synthetic
data with deep generative models [i.e., generative adversarial
networks (GANs)]. These synthetic data approximate the mean
statistical spectra estimated from the multispectral instrument
(MSI) of each type of debris considered as retrieved from
the training dataset. These spectra do not correspond to true
endmembers of each floating material due to the mixed band
nature of the MSI and the percentage of debris inside a given
pixel for a given band.

To acknowledge the need for independent and in situ valida-
tion of the detected plastic debris, we refer to them as “‘suspect
plastic”’ throughout this article. This term also reflects the
current limitations of the proposed approach and its extension
to alternative datasets, and underscores the importance of
further validation. The proposed classification algorithm is
suitable for the dataset considered, but, since Sentinel-2 has
mixed bands resolution and the ratio of debris inside a given
pixel might be small, the applicability to other types of sensors
and datasets might be limited [9], [10].

We start by introducing prior work on the detection of float-
ing plastic debris using Earth observation data in Section II.
In Section III, the characteristics of the satellites used to
collect data and the features of the satellite imagery are
described, as well as the steps taken to collect and process
the data before classification. Additionally, it also describes
the proposed approach to generate synthetic satellite pix-
els. Section IV introduces spectral indices, the classification
algorithm, and the uncertainty quantification method proposed
herein. Section V shows and discusses the results obtained
under the several scenarios considered. In Section VI, we draw
the main conclusions of this work and potential research paths
for future work.

II. RELATED WORK

In the past years, research on floating plastic debris
detection and monitoring using data from ship-based visual
surveys [11], unmanned aerial vehicles (UAVs) [12], numerical
models [13], and cameras deployed at beaches [14] have
revealed promising results. Despite the relative success of
these methods, they do not provide an option for large-scale
ocean monitoring as they are sparsely distributed in the ocean
and represent local observations [15]. The use of Earth obser-
vation data has great potential to surpass these limitations and
allow the automatic identification of floating plastic debris in
extensive areas even though being affected by: physical and
technical limitations, namely, cloud interference; atmospheric
and sea-surface effects; the instrument’s spatial resolution [16];
different band resolutions; different water–debris mixing; and
band-to-band registration errors [9], [10].

In 2018, Topouzelis et al. [16] created the Plastic Litter
Project (PLP) to explore the feasibility of detecting man-made
plastic targets in the aquatic environment using data from
UAVs and the Copernicus Sentinel-2 satellites. Direct compar-
ison of the UAV data with the Sentinel-2 satellite images led to
the conclusion that the spectral reflectance of floating plastic
positively correlates with the percentage pixel coverage of each
target. These findings are in line with the numerical predictions
of Hu [10]. The following year, the PLP 2019 [17] concluded
that marine litter can be detected with at least 25% of the
Sentinel-2 pixel covered in plastic. The potential causes for the
misidentification of plastic pixels were also identified: clouds,
shadows, vessels, fumes, sun glint, and bottom reflectance on
the coastline and a mixture of the spectra from water and other
debris. In PLP 2020, the same research group created large
reference plastic targets to be deployed in the following year,
during the PLP 2021. These targets were deployed in Gera
Gulf, Greece, and, despite no studies published yet related
to these last two PLPs, all information and main results are
available online [18]. These studies represent a substantial
source of information on what concerns marine plastic debris
accumulations and satellite data. Recently, Kikaki et al. [19]
published marine debris archive (MARIDA), a benchmark
dataset to assess the potential of Sentinel-2 and automatic
classification algorithms to detect floating debris in remote
areas.

Similar to the PLPs, Themistocleous et al. [20] investigated
the detection of a three-by-ten-meter artificial target made of
water bottles. This target was deployed nearshore in Limassol,
Cyprus. Seven spectral indices were examined to assess the
ability to detect floating plastics from satellite images. Two
new indices were proposed: the plastic index (PI) and the
reversed normalized difference water index (RNDWI). The
authors found that the target was easier to be detected in
the near-infrared (NIR) wavelengths (Table I), and the PI was
the most effective index in identifying floating plastic debris.
However, when the PI was applied to the coast of Limassol,
several misclassifications were reported, mainly related to
boats with plastic surfaces. This application example illustrates
the difficulties in obtaining a true spectral endmember of float-
ing debris that can be generalized to other regions of the globe,
other data sets, and sensors. Hu [9] addresses this question
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TABLE I
SENTINEL-2 SPECTRAL BANDS, THEIR CENTRAL WAVELENGTHS,

AND SPATIAL RESOLUTIONS

and shows that distinct nonalgae floating matters show relative
flat reflectance spectral shapes in the vis–NIR range, so it
appears difficult to separate them spectrally. Also, the remote
detection of floating microplastics seems impossible based on
the sensors’ characteristics. Therefore, Hu [9] suggests that
future research should focus on frontal zones or windrows that
may aggregate microplastics. Furthermore, the identification of
macroplastic debris appears possible from MSI, but additional
work is required to modulate the pure spectral endmember of
each material. Finally, after referring to the need for a more
complete spectral library of various floating debris, this study
recommends the development of more robust algorithms for
automatic debris identification from Earth observation data.

Kikaki et al. [21] investigated the capability of satellite sen-
sors in detecting marine plastic debris over the Bay Islands and
Gulf of Honduras between 2014 and 2019. In situ data were
collected through vessels and diving expeditions. The detection
of plastic litter was performed manually by comparing the
spectral responses of the pixels for that specific MSI with
the ones reported in the literature. While the proposed method
accuracy was not quantified, it provides a validated data library
for future studies. This study highlights the need for automated
methods capable of detecting marine plastic pollution.

Biermann et al. [7] assessed the capability to distinguish
plastic from other floating debris, such as timber and seaweed,
using Sentinel-2 imagery. Two spectral indices were used: the
normalized difference vegetation index (NDVI) and the newly
developed floating debris index (FDI). When FDI and NDVI
were examined together, all the floating materials studied (i.e.,
seawater, seaweed, timber, plastic, sea foam, and pumice)
showed distinct clustering. Then, they tested a Naïve Bayes
classifier trained with 53 pixels corresponding mainly to
plastic, 48 to seaweed, 60 to timber, 17 to spume, and 20 to
seawater with data from PLP 2018 [16] and PLP 2019 [17].

The proposed approach correctly classified suspect plastic with
an accuracy of 86%, whereas 3% of suspect plastic pixels
were classified as seawater and 11% as sea foam. This study
concludes that the spatial and spectral resolution of Sentinel-2
is sufficient to distinguish macroplastic accumulations from
water and other floating debris. However, the percentage
of misclassifications reflects the challenging nature of the
task, as the spectra obtained depend on different factors that
interact between themselves (e.g., the characteristics of the
MSI installed in the sensor, the ratio between water and plastic
debris, and the classification algorithm).

The previous studies boosted the amount of literature
regarding the automatic identification of floating plastic debris
from satellite imagery. Multiple scientific reports were pub-
lished recently using machine learning algorithms along with
both the NDVI and the FDI. For example, Basu et al. [8] used
two supervised and two unsupervised classification algorithms
to detect floating plastic in coastal waters. Five Sentinel-2
images from previous studies [16], [17], [20] were considered
to create a dataset, which resulted in 59 pixels with floating
plastics. Then, a combination of six spectral bands, the NDVI,
and the FDI were selected to develop the models. The super-
vised classification outperformed the unsupervised clustering
algorithms. The best model had an accuracy of 96.7%.

Despite the differences, these studies highlight the need for
more data related to marine litter to be collected globally and
a better understanding of the true spectral response of different
types of material. Nevertheless, the classification models that
showed the best results rely on supervised classification meth-
ods, which highly depend on the amount and quality of the
supplied training samples. Qi et al. [22] showed that preparing
these samples is critical for the success of the predictions.

III. DATA

Building upon the studies mentioned in Section II, we use
freely available satellite data products from the Sentinel-2
mission. This mission comprises a constellation of two iden-
tical satellites, Sentinel-2A and Sentinel-2B, developed and
operated by the European Space Agency (ESA) under the
Copernicus Programme. It provides systematic coverage (five
days at the equator and two–three days at mid-latitudes) over
all coastal waters up to 20 km from the shore. Each satellite
has an MSI aboard that works passively, and its optical data
are of high spatial resolution (10, 20, or 60 m, depending
on the spectral band) (Table I). Each MSI has 13 spectral
bands that range from the visible and NIR to the short-wave
infrared (SWIR), allowing for a 12-bit radiometric resolution
and enabling the image to be acquired over a range of 0–4095
potential light intensity values [23]. All these features make
Sentinel-2 a preferential option for acquiring multispectral
floating plastic data debris nearshore.

A. Data Preprocessing
Unlike UAVs data, where the atmospheric effects are dis-

missed because of the negligible path from the sensor to the
target, satellite images require a correction method to remove
the contribution of the atmosphere from the MSI measure-
ments. Satellite data of coastal waters are also challenged
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by continental aerosols, bottom reflectance, and adjacency of
land [24], which increases the water’s reflectance. Therefore,
land masking is necessary in maritime satellite studies since
it removes unnecessary pixels that could be misinterpreted
as floating materials while reducing the computational cost
related to processing the image dataset.

To perform the atmospheric correction of the satellite
images, we applied the dark spectrum fitting (DSF) algorithm
from the atmospheric correction for OLI “lite” (ACOLITE)
v.20210802.0 software [25]. This method assumes that the
atmosphere is homogeneous and that the scene contains pixels
with zero or very close to zero surface reflectance in at
least one of the sensor bands (i.e., dark pixels). The spectral
signature of the dark pixels, or dark spectrum, is then used to
determine the best-fitting combination of the spectral band and
aerosol model for the atmospheric correction. With the most
appropriate combination selected, the parameters required for
the “path-corrected” reflectance computation are then chosen
from a lookup table. Due to low atmospheric transmittance,
bands 9 (B9) and 10 (B10) are excluded from the output of
the corrections.

Land masks were created using the spectral index proposed
by McFeeters [26]. The normalized difference water index
(NDWI) is a mathematical formula that combines the third
and eighth Sentinel-2 spectral bands [see (3)] to delineate
open water features and enhance their presence in remotely
sensed digital imagery. It varies between −1 and 1, depending
on the quantity of water in the pixel. Therefore, setting a
threshold close to 0 allows the differentiation of water bodies
from land and vessels depending on the size of the feature
of interest and the spatial resolution of the sensors. However,
sometimes, it identifies floating natural debris as a nonwater
body, and although the same did not happen with plastic
pixels, it is something to watch out for. Satellite images used
in this work were preprocessed using the ESA open-source
SNAP 8.0 software [27].

B. Data Acquisition
Complementary to most previous studies that focus on

differentiating plastic debris from the water, we aim at distin-
guishing floating plastic debris from other maritime floating
materials. Thus, data from seven different types of floating
debris were collected to build a training dataset for our
classifier. The nature of these data was confirmed by scientific
reports, news articles, and social media posts. While we
assume these data as in situ observations of different floating
debris with sufficient size to be detected by the sensors, it is
necessary to exercise caution in interpreting the results due to
the need for ground-truth validation.

The spectral response of each material shown below repre-
sents a statistical average of the manually interpreted pixels
given the nature of the floating material as well as the
MSI used. These average spectra do not precisely represent
the true endmember spectrum for each type of material.
Hu [9] and Hu [10] discuss in detail the practical implica-
tions of estimating endmembers and the difficulties associated
with mixed band resolutions and band-to-band registration
errors.

All data were manually inspected in terms of their spectral
responses (Table II). The data collected under the scope of
this work are freely available through the Copernicus Open
Access Hub [28], and the datasets used in this study are
available at https://github.com/miguelmendesduarte/Floating-
Marine-Debris-Data.

In the following, we describe the main characteristics of
the data collected under the scope of this work for different
floating debris considered herein: water, plastic, driftwood,
seaweed, pumice, sea snot, and sea foam. It is, however,
worthwhile to note that this description is valid for our dataset;
discrepancies might be found as the spectral response depends
on the floating debris-to-plastic ratio and the percentage of
the pixel occupied by a given material, which will impact, for
example, the sensor band-to-band registration. None of the
spectra describe in the following represent a true endmember
spectrum of the material considered.

C. Water
Fifteen satellite images were used to collect 150 pixels of

ocean water in two distinct areas: the Caribbean Sea and the
Gulf of Gera. Of the 150 pixels, 121 are from Sentinel-2A,
and the remaining are from Sentinel-2B images. Also, 25% of
the water data are from shallower waters where the bottom
of the ocean is visible from the original satellite images,
thus resulting in brighter pixels. However, the reflectance of
shallower waters is not considerably different from the deeper
waters’ reflectance. Therefore, there is no need to create two
distinct categories, and all the data were grouped into a single
class.

D. Plastic
Validated data related to floating plastic debris are scarce.

We gathered 206 pixels of suspect plastic that were previ-
ously reported by scientific reports, news articles, or pictures
on social media posts. Every pixel’s spectral response was
manually inspected and compared to the expected spectra in
the literature [7], [29]. We followed a conservative approach,
and data samples that did not meet the requirements were
rejected and removed from the training dataset. From the
206 pixels, 102 were taken from Sentinel-2A images and
107 from Sentinel-2B imagery. Forty-two percent of the data,
corresponding to 88 pixels, are from artificial plastic targets
deployed in the ocean in the Gulf of Gera [18], Tsamakia
beach [16], [17], and Limassol [20]. The remaining 58% result
from observations and reports of floating plastic debris in the
marine environment. In April 23, 2019, substantial quantities
of plastic covered the Durban harbor, in South Africa, after
a flood event [30]. The debris eventually washed out to the
sea, and a Sentinel-2 image from the following day allowed
the detection of 72 pixels with spectral reflectance similar to
plastic. The remaining pixels were collected from the work of
Kikaki et al. [21] and their observations over the Bay Islands
and Gulf of Honduras.

In our spectral library, the mean spectrum for plastic
computed from the 206 individual pixels is characterized by
two reflectance peaks, one centered at B3 and the other at
B8, and one absorption peak centered at the fifth Sentinel-2
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TABLE II
ALL DATA COLLECTED TO TRAIN AND TEST THE MACHINE LEARNING MODELS PROPOSED IN THIS WORK

Fig. 1. Mean spectra computed from all pixels identified in this work after
the atmospheric correction process. Despite the Sentinel-2 satellites’ spectral
bands having slightly different central wavelengths (Table I), this figure uses
the same central wavelengths to facilitate interpretation. B9 (945 nm) and B10
(1375 nm) were removed in the atmospheric correction process.

spectral band (B5). Also, these plastic-like debris have higher
reflectance values in all spectral bands compared to the water
spectral response (Fig. 1).

E. Driftwood
Driftwood is wood that has been washed into the ocean

through the action of natural occurrences such as winds or

flooding or because of logging. However, it is challenging
to find these pixels in Sentinel-2 images since significant
accumulations of driftwood are not common. PLP 2021 [18]
allowed the collection of 62 pixels of driftwood on 13 different
days since they deployed an artificial wooden target. Around
55% of these pixels were taken from Sentinel-2A images and
the remaining from Sentinel-2B.

In our data library, the mean spectral response for driftwood,
computed from the 62 pixels, is characterized by substantially
more reflectance when compared to water or plastic (Fig. 1),
and it has two main reflectance peaks at B4 and B8.

F. Seaweed
Seaweed is the common name for countless species of

marine plants and algae that grow in the ocean [27].
Its presence in the ocean is essential since it provides nutrients
and shelter for many marine organisms. Nevertheless, large
quantities of seaweed can be harmful since it may block
sunlight, preventing the seagrass below from growing and,
when decomposing, its organic matter removes oxygen from
the water. This work does not focus on differentiating between
seaweed species, as considerable variations in the various
seaweed reflectance are not expected (see [22]). One single
Sentinel-2B image from October 2018 was used to collect
150 pixels of seaweed in the coastal waters of Accra, Ghana.
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The mean seaweed’s spectral response shows a sharp
increase in reflectance in B4 (Fig. 1), followed by a fall in
band 8A, being very distinct from the spectral responses of
water, plastic, and driftwood.

G. Pumice
Pumice is a light-colored volcanic rock with a foamy

appearance. It is formed when super-heated and highly pres-
surized molten rock (i.e., magma) is ejected from a volcano
into the ocean waters and rapidly cools down. In October 2021,
a large underwater volcanic eruption spewed massive amounts
of floating pumice stones that littered coastlines in Okinawa,
Japan, damaging dozens of fishing vessels and forcing a large
percentage to remain stuck at ports. A Sentinel-2A image from
October 26, 2021, reveals thousands of bright pixels containing
large quantities of floating pumice stone and was used to
collect 31 098 pixels of this floating material.

In our library, the average spectrum of these pixels (Fig. 1)
is close to the plastic mean response. However, in our data
library, plastic presents an absorption trough in B5, which does
not happen with pumice.

H. Sea Snot
Marine mucilage, also known as sea snot, is a thick slimy

organic substance that floats on the ocean. It forms when algae
are overloaded with nutrients because of global warming and
water pollution that results from industrial waste dumped into
the seas. Warmer and slower moving waters also increase the
production of sea snot and allow its accumulation. Marine
mucilage surge poses severe threats to public health since it
contains bacteria, transports diseases, and has adverse eco-
nomic and environmental consequences. There are several
reports of sea-snot outbreaks in the last few years, however,
none of them in the level of the one in the Marmara Sea
in 2021. One Sentinel-2B image from the Marmara Sea, on
June 6, 2021, showed thousands of pixels containing sea snot.
From those, 26 403 pixels were selected.

Fig. 1 is an example that shows why Hu et al. [31] con-
cluded that remote differentiation of sea snots and floating
plastic debris using multiband sensors is problematic. Both
materials have similar absolute reflectance values for the bands
considered. The largest discrepancy happens for band B8,
where plastics exhibit a reflectance peak. Also, there is a
difference between the gradients between bands B3 and B4
and B4 and B5 for sea snot and plastic, respectively. The
reflectance differences between these types of materials might
be related to pixels with mixed materials (i.e., nonpurity
pixels).

I. Sea Foam
The model proposed by Biermann et al. [7] showed some

difficulties in distinguishing floating plastic from sea foam,
bubbles, and froth. A Sentinel-2A image from Vigo Ria, Spain,
was used to gather 2735 pixels of sea-foam accumulation.

In our data library, the mean sea-foam reflectance curve
exhibits a similar pattern when compared to the one from
plastic (i.e., the reflectance peaks and troughs are in the same
bands) but with different absolute reflectance values (Fig. 1).

In summary, we collect 60 807 pixels in total. However,
around 98% of these pixels are from pumice (51%), sea snot
(43%), and sea foam (5%), culminating in an imbalanced
dataset, which might bias the training process of the automatic
classifier. Automatic classification models trained on imbal-
anced data sets usually have poor results when they need to
generalize (i.e., classify unseen samples) since they cannot
fully model the underlying patterns of the data and are prone
to overfitting the majority class.

Multiple methods can be adopted to mitigate this problem
and improve the performance of the automatic classification
algorithm. One is to collect more data from the minor-
ity classes, which, in satellite data, might be challenging.
Alternatively, models that penalize misclassifications from the
minority classes more than the majority classes can be used.
However, reaching the most suitable penalization values is
difficult, might be subjective, and time-consuming. Another
solution for imbalanced datasets is to resample the data (i.e.,
undersampling or oversampling). Undersampling balances the
class distribution by removing samples from the most rep-
resented classes. Oversampling generates more observations
(i.e., synthetic data) of the minority classes. This can be carried
out, for example, with generative models (e.g., variational
autoencoders, GANs, and synthetic minority oversampling
technique (SMOTE) [38]).

In the application example shown herein, we used the
random technique because of its implementation simplicity.
Despite removing samples randomly, this method allows the
user to select the ratio of each class in the data. After
its execution, we confirmed that the statistical properties of
each class were preserved. The training set distribution is
shown in Table II and includes 156 pixels of suspect plas-
tics, corresponding to around 22% of the data. Both pumice
and sea-foam classes have 105 pixels (14.7%), sea snot has
114 pixels (16%), driftwood has 39 pixels (5.5%), seaweed
has 97 pixels (13.6%), and water corresponds to 13.7% of
the training data, with 98 pixels. There is still a considerable
difference between the number of driftwood pixels and other
classes as it is difficult to collect pixels associated with
driftwood accumulations, as these are not common in the
ocean. On the other hand, the mean spectral curve in our
data library is very distinct from the others (Fig. 1), which
facilitates its automatic detection.

J. Synthetic Data
Despite the efforts in gathering public domain samples of

different floating materials, the number of validated satellite
pixels obtained is relatively small for automatic classification
algorithms. To overcome this limitation, we apply data aug-
mentation methods. Data augmentation methods enable the
classification models to learn from a variety of data that could
not be gathered in the data acquisition step, making them more
robust and reducing the time-consuming process of collecting
and labeling data. In this work, applying classical techniques
to the original data, such as rotating, cropping, zooming,
or grayscaling, is not possible, and slightly changing the values
of the spectral bands may create spectral responses that are not
realistic for the floating debris considered. We opted to use
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GANs [32] to create synthetic pixels that replicate patterns
and features of the actual data, while adding variability to the
dataset.

Briefly, a GAN comprises two deep adversarial neural
networks: the generator and the discriminator. These networks
are trained on a set of training samples. The generator’s goal is
to create samples that are indistinguishable from the training
data. On the other hand, the discriminator tries to distinguish
real data from the data generated by the first model (i.e.,
distinguish between true and fake data). Due to the widespread
of this generative model in remote sensing and geosciences,
we do not show a detailed description of both networks.

To avoid mode collapse (i.e., the generator produces a single
type of output, usually close to the mean of the original data),
we opted for a Wasserstein generative adversarial network
(WGAN) [33]. A WGAN uses an alternative way of training
the generator network to better approximate the generated data
distribution to the training dataset and offers higher stabil-
ity in the training process. Instead of using a discriminator
to predict the probability of the input being real or fake,
it uses a critic that scores the “realness” or “fakeness” of the
data, which, by using an improved loss function, provides a
clearer stopping criteria during the training stage. The loss
function [see (1)], the Wasserstein distance, evaluates the
distance between the distribution of the training data and the
generated one. The critic’s goal is to maximize the distance
between real and synthetic data scores [i.e., maximize (1)].
Inversely, the generator’s goal is to minimize the distance
between real and fake data scores [i.e., minimize (1)]. In the
loss function [see (1)], fω acts as a critic and satisfies the
Lipschitz constraint [see (2)], where the Lipschitz constant,
K , represents the maximum value for the critic’s gradients, m
is the batch size, ω are the parameters of the critic, function
gθ acts as a generator, θ are the parameters of the generator,
and z corresponds to the latent space (noise vector)

1
m

m∑
i=1

fω
(
x (i))

−
1
m

m∑
i=1

fω
(
gθ

(
z(i))) (1)

| f (x1) − f (x2)| ≤ K |x1 − x2|, ∀x1, x2. (2)

WGAN was used to generate 50 000 pixels from each class
(i.e., 350 000 pixels in total). We decided on this number of
synthetic pixels after trial and error. During these experiments,
the main objective was to ensure enough variability and
represent the observed standard deviation within the ensemble.
Since the water, plastic, and driftwood datasets were identified
from images acquired by both Sentinel-2A and Sentinel-2B
satellites, the synthetic pixels for these classes reproduce both
sensors’ characteristics. The remaining classes were generated
based exclusively on a single sensor: Sentinel-2A for pumice
and sea foam, and Sentinel-2B data for seaweed and sea snot.
Fig. 2 shows the comparison of the class-dependent reflectance
between original and synthetic data in each class.

IV. METHODOLOGY

A. Spectral Indices

Biermann et al. [7] demonstrated that using the NDVI
together with the FDI allows a distinct clustering of water,

Fig. 2. Comparison between mean (lines) and standard deviation (shaded
areas) of the spectral reflectance values from every class of real pixels and
synthetic pixels generated from a WGAN (in red).

Fig. 3. Combination of the NDVI and the FDI of all real data collected
under the scope of this work.

plastic, driftwood, and seaweed. In this 2-D domain, simple
classification algorithms such as Naïve Bayesian classification
can be applied successfully to automatically detect these
floating materials from satellite images.

Nevertheless, using exclusively these indices does not
enable a clear distinction between sea snot, sea foam, pumice,
and suspect plastic (Fig. 3). This conclusion emphasizes the
need for alternative combinations of spectral indices and bands
that maximize the differences between these four classes.
Including more variables for classification requires simultane-
ously advanced classification algorithms and a larger training
dataset.
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Besides the original spectral bands of the Sentinel-2 sensor,
we compared 24 indices to verify which ones allow a
distinct clustering of all the classes gathered in the data
acquisition process: FDI, PI, NDVI, reversed normalized
difference vegetation index (RNDVI), green normalized dif-
ference vegetation index (GNDVI), pan normalized difference
vegetation index (PNDVI), NDWI, modified normalized differ-
ence water index (MNDWI), normalized difference moisture
index (NDMI), normalized difference snow index (NDSI),
water ratio index (WRI), normalized burn ratio (NBR), auto-
mated water extraction index (AWEI), simple ratio (SR),
also known as ratio vegetation index, anthocyanin reflectance
index (ARI), modified anthocyanin reflectance index (MARI),
chlorophyll red-edge index (CHL Red-Edge), red edge posi-
tion index (REPI), enhanced vegetation index (EVI), enhanced
vegetation index 2 (EVI2), modified chlorophyll absorption
reflectance index (MCARI), moisture index (MI), soil-adjusted
vegetation index (SAVI), and oil spill index (OSI). The equa-
tions of the most relevant indices in this study are shown in
the following equations. In each equation, BX represents the
reflectance value for the Sentinel-2 spectral band X, and in
(4), λBY represents the central wavelength of the Sentinel-2
spectral band Y

NDWI =
B3 − B8
B3 + B8

(3)

FDI = B8 −

(
B6+(B11−B6)·

λB8−λB4

λB11−λB4
·10

)
(4)

MNDWI =
B3 − B12
B4 + B12

(5)

NDSI =
B3 − B11
B3 + B112

(6)

WRI =
B3 + B4

B8 + B12
(7)

MARI =
1

B3
−

1
B5

· B7 (8)

OSI =
B3 + B4

B2
. (9)

B. Extreme Gradient Boosting Classifier

Several supervised learning models were tested for the
automatic classification of processed satellite images in a pilot
area (e.g., random forest and k-nearest neighbor algorithm).
Extreme gradient boosting (XGBoost) [34] was selected
because of its relative easiness of implementation and the
quality of the results obtained in these tests.

XGBoost is a tree-based ensemble machine learning
algorithm trained using the boosting technique. During train-
ing, trees are grown sequentially so that each new tree
corrects the classification errors of the previous one iteratively.
Gradient descent [see (10)] establishes each new tree’s param-
eters or weights.

The gradient descent algorithm is an optimization method
used to minimize a function (i.e., the loss function) by itera-
tively computing the next point [x(n+1)] using the negative of
the gradient at the current position [−∇F(xn)]. The learning
rate, γ , is the parameter with the most influence on the success
of this method. It scales the gradient and, therefore, controls

the step size. The steps should not be too big because the
algorithm may not converge to the optimal point or too small
since it will make the algorithm very slow. In summary, this
method starts by selecting a starting point (x0), computes the
gradient at this point, and moves in its opposite direction based
on its learning rate. It repeats these last two points until it
converges, i.e., finds the optimal values where the function is
minimum

xn+1 = xn − γn∇F(xn), n ≥ 0. (10)

XGBoost is a specific implementation of the gradient
boosting method. Two of the most important differences
are that it computes the second-order gradients of the loss
function, which provides more information on how to reach
the minimum of the loss function and uses both L1 and L2
regularizations to penalize the values of the weights. Both
features aim to prevent the models from overfitting.

C. Uncertainty Quantification
XGBoost is a deterministic classification method and thus

predicts a single solution for a given input data set. Due to the
lack of spatial and spectral resolution of the satellite sensors,
floating debris and water mixing, and band-to-band registration
errors, there is uncertainty in the spectral responses obtained
and consequently in the predictions. These uncertainties should
be included in the final output of the predictor. Assessing
uncertainty is critical in many Earth-related problems as it
improves the information’s reliability, which leads to better
decision-making.

Uncertainty can be caused by the data (aleatoric uncertainty)
and the model (epistemic uncertainty) [35]. In this study,
we assess uncertainty through ensemble methods. Ensemble
methods evaluate uncertainty based on the predictions of
multiple models (i.e., ensemble members). These models are
trained independently of each other using different techniques
to increase their variety. Then the predictions’ mean, variance,
and standard deviation are computed to estimate the uncer-
tainty. This approach has a high computational cost. However,
ensemble methods were proven more reliable and applicable
to real-world applications than alternative methods [35].

D. Outline
Fig. 4 summarizes the steps developed to reproduce the

proposed classification model capable of detecting and dis-
tinguishing different types of floating materials. The first task
is to collect in situ data (i.e., pixels with validated presence
of floating materials). Second, the satellite images need to be
preprocessed to remove the contribution of the atmosphere
from the reflectance measured by the MSI. Also, a land mask
needs to be applied to remove unnecessary pixels. The next
step is to ensure that the data used to train the classification
models is balanced. This can be done by undersampling the
most represented classes in the training set or generating
synthetic data to create samples of undersampled classes.
Then, we compute the features that help separate different
floating materials (i.e., spectral bands and indices). The classi-
fication model uses these features in its training process. Apart
from the feature selection, the training of the classification
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Fig. 4. Flowchart of the steps adopted to automatically identify floating
debris on the ocean using satellite imagery.

model also involves hyperparameter tuning. Contrary to model
parameters learned in the training process, hyperparameters
define how the model is structured. Hyperparameter tuning
comprises finding parameter values that optimize the model’s
performance. In the application example shown below, select-
ing the optimal combination of hyperparameters was based
on the grid search algorithm [36]. This algorithm tests every
combination of hyperparameters in a user-defined list and
returns the one that has produced the best performance. This
method has a high computational cost, but it is effective as
long as the prior range of hyperparameters is within reasonable
ranges. After training, the models are tested, and the one that
delivers the best results is ready to generate predictions from
Sentinel-2 images.

Finally, to improve the information provided by the model
and help the decision-making process, we tested an uncertainty
assessment method.

V. RESULTS

A. Classification With Spectral Bands and Spectral Indices
We start by assessing the most relevant spectral bands

and indices that boost the differences between the classes’
reflectance with the proposed classification algorithm.
XGBoost was trained with all spectral bands and indices
described in Section IV-A, and the training and testing datasets
are shown in Table II. The model achieved high accuracy
(>90%) in every class except sea foam. However, the goal of
this application example was to determine how each feature
(i.e., spectral bands and indices) affects the overall accuracy
of the model. This was accomplished through permutation
importance [37]. This method focuses on answering one
question: if one input feature, in this case, a spectral band or
a spectral index, is randomly shuffled while all the other input
feature stays intact, how would that affect the overall accuracy
of the predictions? Therefore, the importance of each feature
is measured by how much the loss function is affected by

Fig. 5. Permutation importance of each feature in the XGBoost model trained
with all spectral bands and the spectral index described in Section IV-A.

shuffling that feature. The results obtained from permutation
importance are shown in Fig. 5.

With this information, the irrelevant features in the model
(i.e., features with nil or negative permutation importance such
as GNDVI, SR, NDMI, RNDVI, PI, B3, B8, B6, CHL, SAVI,
MSI, EVI, or NDVI) were removed from the training process
as they have little impact on the final predictions. The goal is to
assess which combination of the remaining features maximizes
the overall accuracy and minimizes the number of false plastic
positives. Fig. 5 shows that the NDSI is the most important
feature (i.e., with the highest permutation importance score),
followed by the MNDWI and spectral band B1.

We summarize the results obtained in our application sce-
narios through a confusion matrix. A confusion matrix allows
for quantitatively evaluating the performance of a classification
algorithm. Each row of the matrix represents the samples in
an actual class, while each column represents the samples
in a predicted class. In this application example, since we
are considering seven classes, the matrix is of size 7 × 7.
In a confusion matrix, the diagonal elements denote correctly
classified samples. On the other hand, all the nondiagonal
elements represent the misclassified samples.

Fig. 6 shows the confusion matrix of a classification model.
As an example, to study how the model performs with suspect
plastic pixels, we focus on the second row and second column
of the matrix. The diagonal element has the value 0.98, which
tells us that 98% of the pixels presumably containing floating
plastic were accurately labeled. The sixth element of the
second row has the value 0.02, so we conclude that 2% of
pixels expected to contain plastic were erroneously classified
as sea snot (false negatives). Nondiagonal elements in the
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Fig. 6. Normalized confusion matrix of the XGBoost model trained with the
nine features with the most permutation importance: band B1, band B8A, the
NDSI, the MNDWI, the NDWI, the OSI, the FDI, the WRI, and the MARI.
Results are shown rounded to two decimal points.

second column show us the false positives of plastics (i.e., the
samples of other classes that were wrongly labeled as plastic).

Through interpreting the confusion matrices of several mod-
els trained with distinct features, we concluded that training
the XGBoost using only the nine features with the most
permutation importance was the combination that achieved the
best results in the testing phase. The selected features comprise
band B1, band B8A, the NDSI, the MNDWI, the NDWI, the
OSI, the FDI, the WRI, and the MARI.

Fig. 6 shows the confusion matrix calculated from the
predictions obtained by the XGBoost model with these nine
input features. The model was initialized with a learning rate
of 0.3, a maximum depth of a tree of 6, and a minimum child
weight of 1. These hyperparameter values were chosen based
on the results of the grid search algorithm. As a loss function,
we selected the multiclass classification error rate, which is
the ratio between the number of wrong predictions and all
predictions. The model shows an accuracy above 95% for each
class except for sea foam. Water pixels are perfectly classified,
and none of the other classes’ pixels is classified as water. All
the driftwood pixels are also correctly classified, but there are
false positives. Around 13% of sea-foam pixels are incorrectly
labeled: 6% are predicted to be plastic and 5% are pumice. The
model accurately predicts 98% of the suspect plastic pixels.

These results indicate that this model is ready to be applied
in real-world conditions. Nevertheless, when inspecting the
results, one must acknowledge that some seaweed, pumice,
sea-snot, and mainly sea-foam pixels will be inaccurately
labeled as plastic.

Despite the overall promising results of the proposed clas-
sification model, two aspects must be considered. First, the
number of pixels wrongly classified as plastic. Although
looking like a small number, a Sentinel-2 image is composed
of millions of pixels, so the model may wrongly predict
thousands of pixels, which affects further decisions regarding
ocean clean-up. Therefore, efforts should be made to minimize

Fig. 7. Bagging-based algorithm with N classifiers. The training datasets of
each model are generated through bootstrap sampling.

the number of false positives of plastic, knowing that it is
impossible to achieve 100% accuracy in any classification
problem. Second, predictions where the model shows lit-
tle confidence because of aleatoric, or epistemic uncertainty
should be classified as another class—uncertain. This change
may reduce the number of misclassified pixels and create more
reliable results. However, this implementation will probably
result in a decrease in the number of pixels correctly labeled.

B. Classification With Uncertainty Estimation
To quantify uncertainty in the predictions, we developed

a bagging-based algorithm with XGBoost classifiers (i.e.,
an ensemble of XGBoost models). Bagging, or bootstrap
aggregating, is an ensemble technique that improves the sta-
bility and performance of automatic classification algorithms
and helps to avoid overfitting. As we cannot fit multiple
independent models in parallel due to the limited amount of
data, we use bootstrap sampling to create random subsets of
the training dataset. This method involves repeatedly drawing
samples of data, with replacement, from the training dataset.
Fig. 7 shows the proposed approach.

After testing, we used 20 parallel XGBoost models. To bring
variety to the models, they were trained in different subsets of
the training data generated by the bootstrap sampling method
and initialized with distinct hyperparameter values. The mod-
els were initialized with a learning rate between 0.05 and 0.11,
maximum depth of a tree between 2 and 7, and minimum
child weight between 1 and 8. For each input sample, each
model calculates its prediction. Then, the mean prediction’s
probability from all members and the standard deviation are
computed. If the prediction has a standard deviation above
20 or a mean below 90%, the pixel is classified as uncertain.
These thresholds were set after trial and error and can be
considered conservative. Their selection should consider the
final applicability of the classified images.

The results obtained with the ensemble model trained as
previously described are shown in Fig. 8. As expected, the
number of pixels correctly labeled decreased, compared to the
previous model in every class except in seaweed, which is
probably related to its singular spectral response within the
training dataset. Around 23% of suspect plastic pixels were
labeled uncertain, as well as 20% of pumice and 40% of sea
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Fig. 8. Normalized confusion matrix of the ensemble model built with
20 XGBoost models trained with different data and different data sizes, using
the nine features with the most permutation importance (Fig. 5). Predictions
whose mean was below 90% or had a standard deviation above 20 were
considered uncertain.

foam. Oppositely, few pixels of water, driftwood, seaweed,
and sea snot were classified as uncertain, meaning that the
features used to train the ensemble members allow a clear
distinction between these classes. The number of pixels incor-
rectly classified also decreased. Now, only 2% of sea-foam
pixels were predicted to be plastic, representing a 4% drop
from the previous results.

To compare the results of both models, apart from the
confusion matrix, we show real-world application examples.
For this purpose, we use a Sentinel-2A multispectral image
from July 31, 2021, in the Gulf of Gera, Greece. On this day,
the Marine Remote Sensing Group from the University of the
Aegean, Greece, performed another experience for the PLP
2021 [18]. They deployed two large artificial targets, one made
of wood, and one composed of plastic, on the ocean. Both
models were trained with a balanced dataset and the pixels
from this Sentinel-2 image were removed from the training
dataset, so this is the first time both models are seeing these
data.

Fig. 9 reveals that the first model can detect and correctly
classify the wooden and plastic targets. However, some pixels
on their borders are misidentified. Pixels around the wooden
target are classified as plastic or seaweed, and some pixels
on the plastic’s borders are labeled as sea foam. These mis-
classifications are related to the quantity of floating material
in those pixels. Therefore, if the floating material does
not cover a certain percentage of a Sentinel-2 pixel, the
model cannot accurately identify the material. Despite these
misclassifications representing a low number of pixels in this
case, if we scale up to larger satellite images, it might originate
thousands of wrong predictions. Thus, as previously discussed,
to accomplish the goal of providing meaningful information to
the decision-makers, there is a need for a model that quantifies
the predictions’ uncertainty.

Fig. 10 shows the predictions of the ensemble model. It can
correctly identify most pixels, but it classifies both targets’

Fig. 9. Predictions from the XGBoost model that does not quantify
uncertainty. The original data are from a Sentinel-2A image from July 31,
2021, in the Gulf of Gera, Greece.

Fig. 10. Ensemble model’s predictions. The original data are from a
Sentinel-2A image from July 31, 2021, in the Gulf of Gera, Greece.

borders as uncertain (except for one pixel that is still labeled
as seaweed). The ensemble model also identified the two
previously misclassified nearshore pixels as uncertain. These
results reveal the benefits of quantifying uncertainty in real-
world conditions. Its ability to label some pixels as uncertain
instead of providing misclassifications constitutes a substantial
advantage compared to the previous classification model.
Nevertheless, one must consider that despite the information
given by this model is more trustworthy, small accumulations
of floating materials may not be detected. Hence, there is a
tradeoff between the output’s reliability and the model’s ability
to identify small patches of floating materials. Fig. 11 shows
the mean spectrum of all plastic data used to train the deep
learning model (red line) and the individual spectra of pixels
classified as suspect plastic by the model in Fig. 10 (colored
lines). The most individual spectrum exhibits similar behavior
to the mean reflectance of all plastic data, suggesting that the
model correctly identified them as plastic debris. Furthermore,
it clarifies why the model identified them as suspect plastics.
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Fig. 11. Mean reflectance of all data classified as plastic used to train the
model (red line) and the individual spectra of pixels identified as plastic by
the model in Image 10 (shown in various colors).

Fig. 12. Normalized confusion matrix of an XGBoost model trained with
50 000 synthetic pixels of each class.

C. Classification With Synthetic Data

We now show the benefits of including synthetic spectral
data to increase the reliability and robustness of the proposed
classification model. Theoretically, training a model with a
larger balanced dataset with variability would make it more
robust and less sensitive to outliers and mislabeled training
data. Also, synthetic data samples may be a solution for the
lack of data in this problem since some classes are hard to
find.

We used 50 000 synthetic pixels from each class to create
a balanced dataset. As discussed previously, we opted for
this number of synthetic samples (350 000 in total) to ensure
enough variability in the data. Fig. 12 displays the confusion
matrix of an XGBoost model trained with these data and tested
with the testing dataset described in Table II. The results show
that synthetic data samples are a reliable solution to problems
with a lack of data or data imbalance since the model achieved
outstanding results. It accurately classified 83% of the suspect
plastic pixels, and the number of false positives of plastic
(i.e., pixels wrongly classified as plastic) is identical to the
best model. On the other hand, this model shows more false

Fig. 13. Predictions from a Sentinel-2B image from September 4, 2021,
in the Gulf of Gera, Greece. On this day, another experience for the PLP
2021 was performed. According to the authors, the sky was clear, but the
sunlight intensity was lower than in previous experiments, and the weather
was windy (8.5 m/s) [18]. They removed the wooden target and deployed some
of it under the plastic target, simulating a mixed target that is closer to what
is found in the ocean. The new target was in good condition, despite having
some overworked points, and most of it was on the sea surface. The model
successfully detected the plastic target. However, some of its pixels were
considered uncertain, which is probably related to the presence of wood. Some
uncertain pixels in the ocean may be related to sun glint or wave agitation. The
plastic pixels near the shore are probably land pixels that were not removed
in the land masking process.

negatives of plastic (i.e., plastic pixels wrongly classified as
other classes) since 9% of plastic pixels were labeled as sea
snot, 6% as sea foam, and 2% as pumice. All the other classes
except sea foam are classified with accuracies above 90%,
which proves that training a model with synthetic samples
creates good results. Sea-foam pixels are correctly labeled
78% of the time, which shows that the model occasionally
has trouble distinguishing this class from sea snot, pumice,
and plastic. Despite the overall great results, we opted to use
the ensemble model trained with real data not seen in the
training or test datasets (i.e., in real-world conditions).

D. Monitoring the Ocean

Here, the ensemble model that quantifies uncertainty
(Section V-B) is tested in real-world conditions, to assess its
feasibility (Figs. 13–18).

In Figs. 13 and 14, most of the individual pixels classified
as plastic exhibit a similar reflectance to that of plastic, which
is a good indication that the model is detecting plastic debris.
The standard deviation in the individual pixel spectra may be
due to several factors, such as the presence of wood, sun glint,
or wave agitation. Additionally, some of the pixels classified
as plastic were near the shore, which could also contribute to
the variability in their spectra.

The spectral analysis of the pixels identified as plastic in the
Playa del Carmen image revealed a larger reflectance peak at
B3 than expected (Figs. 15 and 16). This effect suggests that
the plastic debris may have been mixed with other materials,
such as seaweed or driftwood, which can affect the spectral
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Fig. 14. Mean reflectance of all data classified as plastic used to train the
model (red line) and the individual spectra of pixels identified as plastic by
the model in Fig. 13 (shown in various colors).

Fig. 15. Every year, beaches in Mexico suffer a massive invasion of
Sargassum seaweed because of the water temperature, the increase of nutrients
in the water, marine currents, and wind. Playa del Carmen is one of the
most affected places. These predictions are from a Sentinel-2A image of
Playa del Carmen, from June 15, 2022. The model only detected the seaweed
accumulations that were further away from the shore. Once again, the debris’
borders were classified as uncertain, meaning that the predictions depend on
the percentage of material in a pixel. Most of the seaweed accumulations
that were near the shore were classified as water, probably because they were
mostly submerged. The model also classified a vessel that was not removed
in the preprocessing phase as plastic. The model identified plastic in near
shore pixels, suggesting that plastic pollution may also occur in these areas.
These misclassificaitons highlight the challenges of accurately detecting and
classifying plastic debris in satellite images.

signature of the plastic. Likewise, it is plausible that the
materials in these pixels were not accounted for in the model’s
training process, explaining the deviation from the expected
spectral signature. Furthermore, the model’s misclassification
of a vessel as plastic underscores the difficulty in distinguish-
ing between plastic and other synthetic materials with similar
spectral characteristics.

It is also important to note that detecting floating debris
in controlled environments may differ from identifying debris
in natural environments, which are more complex and may
contain numerous materials with similar spectral properties
(e.g., Figs. 17 and 18). These limitations highlight the need for
further research to improve the model’s accuracy in detecting
plastic debris in real-world scenarios.

Fig. 16. Mean reflectance of all data classified as plastic used to train the
model (red line) and the individual spectra of pixels identified as plastic by
the model in Fig. 15 (shown in various colors).

Fig. 17. Model’s predictions from the Sentinel-2A image of Okinawa,
Japan, from October 26, 2021, which was used to collect pumice pixels
(Section III-B). None of the training data were collected from this specific
subimage, so this is the first time the model is seeing these data. The model
detects large accumulations of pumice and classifies their borders as uncertain.
The remaining uncertain pixels may be due to ripples. Some pixels near the
land that appear to be waves crashing on the shore were classified as sea snot
instead of sea foam.

E. Limitations

The application examples shown herein exhibit most mis-
classifications in pixels close to the shore, where reflectance
is usually higher because of the lower water depth, indicating
that the model produces more reliable results in deeper waters.
As expected, rough waters cause uncertainty in the predictions,
so sea conditions should be considered when analyzing the
model’s predictions.

From our experiments, XGBoost was the deep classification
tool with the highest performance. However, different training
datasets might be more suitable for other classification algo-
rithms. We stress the need for larger open-source databases
with in situ validations to predict floating debris from Earth
observation data more reliable.

In addition, in this work, we decided not to perform any
spectral unmixing profile using ground-truth data. While this
decision makes the classification task harder, it facilitates its
potential applicability in real field conditions by removing
a preconditioning data step. Notice that we are statistically
classifying spectra for different floating materials considering
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Fig. 18. Model’s predictions based on a Sentinel-2B image from June 13,
2021, on the coast of Istanbul, where sea snot aggregations with hundreds of
meters wide can be seen. There are also many pixels classified as uncertain
because of different sea-snot depths in each pixel and the rough water
conditions.

that they do not represent end members. The unmixing profile
task could be performed for example using data acquired
during the PLP [17], [18]. We use average spectra to train the
classification algorithm. However, we do not handle uncertain-
ties originated from different spatial resolutions of different
spectral bands. This uncertainty layer originates band-to-band
registration problems. This issue is discussed in detail [10].

Another source of uncertainty, which we tried to tackle
with the proposed approach, is associated with the quantity
of material in a pixel (i.e., floating debris-to-water ratio).
The model regularly classifies the pixels of the image cor-
responding to the borders of the materials, where there is less
quantity of the floating class, as uncertain. If not of enough
size, above the spatial resolution of the sensor, floating debris
accumulations will not be detected. There is also a common
challenge in every study that uses satellite data: clouds. Clouds
spoil the satellite data even if they are not dense since they
reflect sunlight, preventing the computation of predictions if
above the area of interest. Finally, sediments in suspension
also negatively affect the predictions. This usually happens in
rivers, the primary conduits for plastic waste to the sea.

It is also worthwhile to mention that detecting plastic debris
in a controlled environment (e.g., the PLP experiments in
Greece) differs significantly from identifying plastics in a
noncontrolled environment. The complex nature of coastal
waters, including other floating materials and the effects of
weather and lighting conditions, can make it challenging
to accurately detect and classify these debris. As a result,
a careful examination of the retrieved spectra is necessary.

Finally, the results obtained with the proposed automatic
classification method hold exclusively for the data set consid-
ered using Sentinel-2 data. Alternative datasets and/or sensors
would potentially result in the worst performance.

VI. CONCLUSION

A. Discussion
The main contributions of this work can be summarized as

follows: 1) the data acquisition process allowed the collection

of a large dataset related to suspect floating plastics, and other
floating debris, in satellite imagery that is freely available
to the community and 2) it shows that pixels suspected to
contain floating plastic debris are distinguishable from five
other classes of floating debris and water. The combination of
features that proved most successful was using bands B1 and
B8A, the NDSI, the MNDWI, the NDWI, the OSI, the FDI,
the WRI, and the MARI. An XGBoost model trained with
these features showed high overall accuracy. All the pixels
of water and driftwood were correctly classified, as well as
98% of plastic pixels, 96% of seaweed pixels, 95% of pumice
pixels, 97% of sea-snot pixels, and 87% of sea-foam pixels.

Despite the high accuracy values, for a model to be deployed
in real-world conditions and provide meaningful information
for the decision-makers, the percentage of misclassifications,
in particular, the number of false positives of plastic labels,
must be minimized. To reach this objective, we included
uncertainty as part of the classification model using ensemble
models. The ensemble model achieved lower percentages of
correct classifications than the previous model, but also, and
most importantly, it decreased the number of misclassifica-
tions. Deploying the model in real-world conditions confirmed
the good results and revealed some limitations: clouds, shal-
lower waters, suspended sediment, and rough sea conditions.

This study proposes an approach to generating synthetic
data for deep learning classifiers due to the limited availability
of validated spectral information and data on floating debris,
especially plastic debris. We show the applicability of the pro-
posed approach in real-case applications, where an XGBoost
model is trained exclusively with data computed numerically.
Training a model with synthetic data produces good results.
However, as expected, the quality of the predictions decreases
when compared to the XGBoost model trained with real data.

B. Future Work

One of the major limitations regarding the detection of
floating plastic in satellite imagery is the lack of in situ data
since the best detection methods rely on supervised learning
approaches. Therefore, there is a need for more plastic data to
be collected globally, whether via artificial targets or natural
occurrences. Furthermore, it is essential to validate the existing
data through spectral analysis to confirm that they represent
the considered debris accurately. This would ensure that the
data used for training machine learning algorithms are reliable
and can generalize to different regions and scenarios.

Future research should also focus on maximizing the qual-
ities of this work’s model by creating parallel systems. For
example, numerical models could be used to indicate areas
of study. The same could be done by models that focus on
the spatial characteristics of floating materials through satellite
imagery (e.g., convolutional neural networks). Marine robots
or UAVs could also be deployed in those locations to confirm
the model’s classifications. Furthermore, it would be interest-
ing to compare how different atmospheric correction methods
affect the detection of floating plastics. Finally, it would be
relevant to assess if Sentinel-2 imagery can be used to detect
floating debris in rivers since they are the main points of entry
of plastic into the ocean.
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While we deal with the identification of floating debris for
a temporal snapshot (i.e., a single satellite image), coupling
the temporal domain in this classification model (e.g., high-
resolution Lagrangian ocean models) could allow us to model
simultaneously the spatiotemporal evolution of the floating
debris between the revisiting periods of the satellites to the
study area, potentially accounting for the degradation of the
material.
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