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Abstract— Semantic segmentation is a fundamental and crucial
task that is of great importance to real-world satellite image-
based applications. Yet a widely acknowledged issue that occurs
when applying the semantic segmentation models to unseen
scenery is that the model will perform much poorer than when
it was applied to scenery similar to the training data. This
phenomenon is usually termed as the domain shift problem.
To tackle it, this article presents a self-training-based unsu-
pervised domain adaptation (UDA) method. Different from the
previous self-training approaches which focus on rectifying and
improving the quality of the pseudo labels, we instead seek
to exploit feature-level relation among neighboring pixels to
structure and regularize the prediction of the adapted model.
Based on the assumption that spatial topological relation is
maintained despite the impact of the domain shift, we propose
a novel self-training mechanism to perform DA by exploiting
local relation in the feature space spanned by the teacher
model, from which the pseudo labels are generated. Quantitative
experiments on four different public benchmarks demonstrate
that the proposed method can outperform the other UDA
methods. Besides, analytical experiments also intuitively verify
the proposed assumption. Codes will be publicly available at
https://github.com/zhu-xlab/PFST.

Index Terms— Self-training, semantic segmentation, transfer
learning, unsupervised domain adaptation (UDA).

I. INTRODUCTION

WITH the purpose of automatically classifying and seg-
menting different semantic targets in a single image
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at the pixel level, semantic segmentation [1], [2], [3], [4]
has been serving as an important technique in satellite image
processing-based applications such as urban planning [5], land
use, and land cover mapping [6], automatic agriculture [7].
With the renaissance of deep learning, the performance of
data-driven semantic segmentation algorithms has been pushed
to a new era. However, such a performance boost largely
relies on the emergence of large-scale manually annotated
data.

This leads to a problem, that is when applying the semantic
segmentation model in unseen scenario without sufficient
labels, its performance may drop drastically compared to its
performance on the source domain. In the field of remote
sensing, since the satellite image data are highly diversified,
biases and shifts widely exist between the source and the target
domain (where we train and evaluate our model, respectively).
Such shifts may result from the differences in the used
sensors, different atmospheric conditions, seasonal changes,
distributional biases of the ground objects, and so on. To tackle
this issue, domain adaptation (DA) techniques [8], [9], [10] has
been attracting more and more attention.

DA leverages the source and the target domain data at the
same time to bridge the shifts between them. Unsupervised
DA (UDA) is a common and practical DA setting where
only the target data are available, without any target labels
provided. One popular technique for UDA is self-training,
which has consistently achieved state-of-the-art results [11],
[12], [13]. The fundamental idea behind self-training is to
generate pseudo labels for the target domain data using a
source-trained model, and then fine-tune the UDA model
using selected high-confidence pseudo labels. Many of these
methods focus on evaluating the quality of pseudo labels
and developing selection strategies to filter out noisy pseudo
labels [14], [15].

However, previous self-training methods often overlook the
potential benefits of utilizing feature-level knowledge from the
teacher model, which is used to generate pseudo labels. Pseudo
labels are susceptible to noise [illustrated in Fig. 1 (left)],
possibly due to domain shifts that bias the distribution of target
objects in the low-dimensional output space. This realization
raises the question: can the higher-dimensional pseudo features
generated by the teacher model (referred to as pseudo features)
be more robust to domain shifts compared to the pseudo labels
that lie in the low-dimensional output space?
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Fig. 1. Illustration of our motivation. Traditional pseudo-labeling or entropy minimization methods heavily rely on the correctness of initial predictions.
We propose to model the relation between neighboring samples to counteract the negative effect of wrong initial predictions. Detailed discussion will be
presented in Section III-A.

Intuitively, the answer seems to be positive. Based on such
an assumption, we propose a pseudo features guided self-
training (PFST) method that leverages feature-level relations in
addition to pseudo labels. We assume that while domain shifts
can affect the consistency and accuracy of target predictions in
the output space, the spatial topological relation is relatively
preserved in the high-dimensional feature space. Building on
this insight, we propose to regularize target outputs using
feature-level local relations between the pseudo features.

Specifically, we measure the similarity between neighboring
feature pairs generated by the teacher model. For the most
similar pairs within each local region, we strengthen the
correlation of their corresponding target probability outputs.
Conversely, for the most dissimilar pairs, we reduce their
output-level correlation. By exploiting feature-level relations
as a more robust and domain shift-insensitive source of infor-
mation, we aim to improve the traditional self-training process.
Our contributions can be summarized as follows.

1) We propose the assumption that the high dimensional
local similarity structure in the pseudo feature space is
less sensitive to domain shift than output space pseudo
labels when applying the source-trained model on target
data. Besides, we experimentally verify its correctness.
Such an assumption is insightful to the development of
further self-training-based UDA methods.

2) We develop a novel self-training approach named PFST.
By exploiting feature-level local relation, PFST estab-
lishes the connection between the teacher model feature
space and the student model output space, which further
helps to counteract the negative effect caused by the
noisy pseudo labels and improve the generalizability of
the UDA model.

3) We establish and release a standard code library for
UDA in remote sensing based on MMSegmentation [16]
and EarthNets [17] framework. In this library, the data
loading, augmentation and other factors related to the
network training are standardized, which enables a fair

comparison of different UDA methods. Compared to the
results reported in the previous literature, our imple-
mented baselines and other UDA methods outperform
them by a large margin even under the same network
architecture.

4) We conduct extensive comparative experiments on four
different UDA settings, where different types of domain
shift have been considered. The proposed PFST achieve
the best and the most robust performance on all the
settings, which verifies the proposed method is practical
in real-world application.

II. RELATED WORKS

In this section, we will review some of the key techniques,
strategies, or approaches that promote the development of
UDA, both in computer vision society and in remote sensing
society.

A. Adversarial Learning

Adversarial learning applies generative adversarial networks
(GANs) [18] to perform adaptation between two or more
domains. The philosophy is to train a discriminator together
with the generator. While the discriminator is trained to be
able to distinguish whether the generator’s outputs come from
the source or the target domain, the generator will be trained
to confuse the discriminator to do so. In such a manner, the
outputs from the generator conditioned on different domains
will be undistinguishable and consistent, and the domain shifts
will be reduced. According to the scale or the level of the
networks where adversarial learning is applied, this line of
work can be further categorized into image-level, feature-level,
or output-level approaches.

1) Image-Level Adversarial Learning: In the earlier stage
of the research toward adversarial learning, it is more widely
used in the field of image generation [19] or image style
transfer [20] instead of DA. Typical works like CycleGAN [21]
and StarGAN [22], [23] apply GAN to transfer the image
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style, e.g., transfer oil painting to photos, images of zebra
to horse, human faces of different gender and hair styles.
Conditional GAN [24] extends these applications to perform
transfer between images and their semantic annotations.

In the field of remote sensing, image-level adaptation or
image-to-image translation are widely utilized to standardize
the style of images from different domains. Compared to natu-
ral scene images, remote sensing data are usually multimodal
[e.g., RGB, multispectral, hyperspectral, and synthetic aper-
ture radar (SAR) data], multisensory, multitemporal, or geo-
locationally diversified. As a result, the difference in image
appearances has a large impact on the generalizability of the
downstream model. Previous works have demonstrated the
usefulness of applying image-to-image techniques in remote
sensing data. For example, Bidirectional Domain Adaptation
Network (BiFDANet) [25] applies a CycleGAN architecture
to perform image-to-image translation between the source and
the target images, after which a semantic consistency loss
is applied to the outputs of the original and the stylized
images. StandardGAN [26], DAug [27] utilize StarGAN-like
architectures and adaptive instance normalization (AdaIn) [28]
to transfer the style of images captured from multiple cities,
and enables multisource multitarget DA.

2) Feature- and Output-Level Adversarial Learning: Apart
from the image-level domain shift, there are always biases
between the source and the target domains that cannot be
transferred solely by image-level style transfer. For example,
difference in the spatial geometry or the unbalance distribution
of source and target semantic objects. To mitigate those latent
high-level domainwise biases, aligning the source and the
target domain in feature- or output-level becomes necessary.
AdaptSeg [29] highlights the importance of adopting adver-
sarial learning in the output space and uses GAN to align
the source and the target output. AdvEnt [30] discovers the
effectiveness of entropy minimization in the target domain,
and further proposes to align the source and the target entropy
map in an adversarial manner.

In the field of remote sensing, full space domain adaptation
network (FSDAN) [31] uses a CycleGAN structure to gen-
erate target-style source images to mitigate the domain shift
problem. After that, they also apply feature-level and output-
level adversarial learning to further improve the adaptation
performance, which leads to a full-space alignment between
the source and the target domain. Entropy-guided adversarial
domain adaptation (EGA) [32] proposes an entropy-guided
adversarial learning algorithm. While adversarial learning is
conducted on the output level, a self-adaptive weight is
calculated to reweight the prediction from the discriminator.
Triplet adversarial domain adaptation (TriADA) [33] designs
an output-level adversarial learning method based on the triplet
loss, where an image triplet from the source and the target
domain is input to the semantic segmentation network during
training. Unlike the previous method, the discriminator is
devised as a similarity metric to measure the domain-level
similarity between two input images.

B. Self-Training

Adversarial learning-based methods are often characterized
by their instability and difficulties in optimization. However,

self-training [34], [35], [36], [37], which involves fine-tuning
the UDA model using pseudo labels generated from target
data, offers a more efficient way to leverage target information
and is typically easier to optimize. In the field of computer
vision, an important focus of self-training-based methods is
to effectively filter out noisy pseudo labels. For example,
CBST [14] points out that the training with pseudo labels
suffers the risk of being overwhelmed by easy-to-transfer
classes, and proposes to balance the distribution of pseudo
labels by applying a classwise confidence threshold. To prevent
the self-trained network from being over-confident during the
learning toward hard pseudo labels, confidence regularized
self-training (CRST) [15] argues to regularize the self-training
process by using soft labels. In uncertainty reduction for
model adaptation (URMA) [38], the prediction uncertainty
is estimated via the variance of different network outputs,
which is later used to automatically weigh the pseudo labels.
Prototypical domain adaptation (ProDA) [39] maintains a set
of prototypes for each class during training, and the relative
distance between features and prototypes is used to rectify the
false pseudo labels.

In remote sensing, it seems self-training receives less atten-
tion. Wang et al. [40] establish a benchmark for evaluating
different domain adaptive semantic segmentation methods,
where they study the effect of some classic DA methods
proposed in the computer vision society. Zhang et al. [41]
integrate the adversarial learning mechanism into the self-
training pipeline to perform UDA in the task of road extrac-
tion. In remote sensing scene classification, there are also
works like [42], which studies the influence of different strong
augmentation applied to the student model branch in the self-
training pipeline.

C. Data Augmentation and Other Techniques

Since self-supervised learning has achieved remarkable
progress [43], the importance of data augmentation has been
widely acknowledged. Among all different data augmentation
methods, data mixing [44] has been demonstrated to be
effective both in classification [44] and semantic segmenta-
tion [45]. Domain adaptation via cross domain mixed sampling
(DACS) [45] studies the impact of data mixing in the field of
UDA, where they use the ClassMix [46] strategy to cutout half
of the classes in a single source image, and overlay the target
image on top of the cut area.

In remote sensing, there are also works like randomized
histogram matching (RHM) [47] pointed out that simple
colorwise data augmentation strategy like RHM can pro-
duce comparable semantic segmentation results than complex
image-to-image translation-based methods.

Other DA works focus on devising a better sampling strat-
egy to reduce the influence of the domain shift. DAFormer [12]
proposes a rare class sampling strategy to balance the dis-
tribution of different semantic classes. The oversampling of
the rare classes tends to mitigate the long tail issue [48]
and improve the generalizability of the semantic segmentation
model. Curriculum-style local-to-global cross-domain adapta-
tion (CCDA) [49] proposes a curriculum-style UDA method
that rank the target patches from easy to hard according to
the output entropy. Those patches are then fed to the network
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Fig. 2. Illustration of our proposed PFST. A teacher model and a student model will be maintained. The teacher model generates pseudo labels based on the
target image to supervise the student model. The student model is trained on both the source labels and the pseudo labels. Its weights will be used to update
the teacher model by exponential moving average [50]. The source and the target images are augmented via weak or strong data augmentation before input
to the models (please refer to Section IV-B for more details). We calculate sliding windows over the teacher model features and the student model outputs
simultaneously. For each corresponding window pair, we apply a local similarity loss on output probabilities according to their local feature similarity. In such
a way, we incorporate a new regularization mechanism that connect the teacher model feature space and student model output space.

from easy to hard. This curriculum-based sampling strategy is
reported to be effective.

III. METHODS

The overall architecture of our approach is illustrated in
Fig. 2. In Section III-A, we will first introduce and illustrate
the DA problem and describe the motivation of the proposed
method. Then in Section III-B, we formulate the UDA setting
for semantic segmentation. Later on, we present the optimiza-
tion objectives and other loss functions in Sections III-C–III-E,
respectively.

A. Motivation

Fig. 1 provides an illustration of the UDA problem, high-
lighting two cases where conventional pseudo-labeling-based
methods may fail. In the original source feature distribu-
tions, two different classes are easily separable based on the
decision boundary. However, after applying the source model
on the target domain, there could be overlaps between the
target distributions of the two different classes, leading to
incorrect predictions. In such cases, traditional pseudo-labeling
approaches may push the target features toward the possibly
incorrect predictions of the source model, thereby exacerbating
the prediction errors. This can result in the adapted target
distributions becoming indistinguishable, further hampering
the performance of UDA methods.

In order to address the issue of optimization direction when
such errors occur, we propose the utilization of local similarity
and local discrepancy loss. Specifically, in case 1 where a
sample belonging to class A is misclassified as class B,
if we have correctly classified class A samples in its local
neighborhood with high similarity, maximizing their output-
level correlation can help redirect the optimization toward
the expected direction. Similarly, in case 2 where a sample
from class B is misclassified as class A, if it exhibits larger
discrepancy with nearby class A samples in the source feature
space, minimizing the output correlation between them can
also aid the optimization process.

B. Problem Formulation
Let Ds = {xs

i }
Ns
i=0 and Dt = {xt

i }
Nt
i=0 be the source and the

target domain data, and {ys
i }

Ns
i=0 and {yt

i }
Nt
i=0 be the correspond-

ing labels. Here xs
i , xt

i ∈ RH×W×3 denote the source and the
target images, while ys

i , yt
i ∈ RH×W indicate their labels. H

and W specify the height and width of the images. Note that
the target domain labels {yt

i }
Nt
i=0 are only available during the

evaluation time. Ns and Nt indicate the sizes of the source
and the target datasets. With these notations defined, the UDA
problem for semantic segmentation can be formulated as

min
θS

∑
xs∈Ds ,xt ∈Dt

L(xs, xt , ys
; θS , θT ) (1)

where L(·) is the loss function, θS and θT are the param-
eters of the student and the teacher models, respectively. In
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self-training-based UDA methods, the teacher model T is
usually used to generate pseudo labels to supervise the student
model S. T can be either pretrained on the source domain data
in an offline manner [34] or updated according to the student
model weights θS via exponential moving average [12]. In our
method, adopt the latter strategy. More specifically, weights of
the teacher network θT will be updated by

θ
(t)
T = αθ

(t−1)
T + (1 − α)θ

(t)
S (2)

where t denotes the current iteration step. The decay weight
α is set to 0.999 following [12].

Besides, we denote h as the feature extractor, g as a
classifier of the network model, and f = h ◦ g as their
composition. Target feature and output probability are denoted
by h(xt ) ∈ Rh×w×d and f (xt ) ∈ Rh×w×c, where h × w

corresponds to spatial dimension of extracted feature map. d
indicates the feature dimension and c is the number of classes.

C. Objective Function

We define our optimization objective as

L(xs, xt
; θS , θT ) = Lsrc + Lpse + αLloc + βLfeat (3)

where Lsrc is the source domain semantic segmentation loss,
defined as

Lsrc(xs) = −
1

H W

H×W∑
i=0

1
T
ys

i
log( fθS (xs)i ). (4)

Here 1ys
i

is the one-hot encoding of the source label. Lpse is
the pseudo label loss widely used for self-training approaches
in the field of DA. We adopt a weighted pseudo label loss
used in previous works [12], [45]

Lpse(xt ) = −
q(xt )

H W

H×W∑
i=0

1
T
ỹt

i
log( fθS (xt )i ). (5)

Here 1ỹt is the one-hot encoding of the teacher prediction ỹt ,
where ỹt

= fθT (xt ) corresponds to the pseudo label generated
by the teacher model on the target image. q(xt ) is a weighting
factor that balances the loss based on the predicted confidence
on each target image

q(xt ) =
1

H W

H×W∑
i=1

[max
c

fθT (xt )i,c > τ ]. (6)

It counts the number of pixels where the classwise maximum
output probability is larger than a certain threshold τ . τ is
fixed to 0.98 empirically in all our experiments.

D. Local Similarity Loss

Local similarity loss Lloc is used to supervise the student
model by exploiting feature-level similarity implied in the
teacher model

Lloc(xt ) = Lpos + Lneg. (7)

Specifically, it strengthens the correlation between two neigh-
boring target outputs that share a strong similarity in the
feature space defined by the teacher model, with a positive loss

term Lpos. Meanwhile, it increases the discrepancy between
target outputs that have weak similarity in the feature space
using a negative term Lneg. The positive term is defined as

Lpos(xt ) = −
1

H W |�|

H×W∑
i=1

∑
j∈�+

i ∪{i}

AθT

(
xt

i , xt
j

)
I +

i, j . (8)

Here Aθ is a feature space similarity measurement for a pair of
features extracted by a deep model θ . For simplicity, we adopt
the cosine similarity

Aθ (xi , x j ) =
hθ (x)i · hθ (x) j

∥hθ (x)i∥ ·
∥∥hθ (x) j

∥∥ . (9)

�i defines a sliding window centered at position i (i itself
excluded). Then �+

i contains the top ξ locations within �i

that yield the highest Aθ (xt
i , xt

j ) value. ξ is set to 3 in all
of our experiments. I +

i, j is a measurement in target output
space evaluating the probability that two nearby located pixels
produce the same prediction

I +

i, j =

c∑
k=1

(
pi pT

j

)
k,k (10)

where p = fθT (xt ) is the target model’s output. pi pT
j ∈

Rc×c measures the joint probability distribution of pi and p j

regardless of their dependence.
The negative loss term Lneg is defined as

Lneg(xt ) = −
1

H W |�|

H×W∑
i=1

∑
j∈�−

i

(
1 − AθT

(
xt

i , xt
j

))
I −

i, j .

(11)

In contrast to �+

i in (8), here �−

i defines the top ξ locations
that have the lowest AθT value within a sliding window.
Different from I +

i, j , I −

i, j measures the probability of cases
where pi and p j indicate different classes

I −

i, j =

c∑
k=1

c∑
l ̸=k

(
pi pT

j

)
k,l . (12)

Note that there is I +

i, j + I −

i, j = 1 since p is probabilistic.
By imposing Lpos only to �+

i and Lneg to �−

i , a relative
local relation is considered in addition to the absolute one
incorporated by AθT (xt

i , xt
j ). The intuition behind this is that

feature pairs of the same class are more likely to lie in �+

i ,
while feature pairs of different class mostly lie in �−

i .

E. Source Feature Distribution Loss

When applying the local similarity loss Lloc on the target
domain, we hope the feature similarity between pixel pairs that
share the same label is large, while the similarity between
pixel pairs with different labels is small. To achieve this,
we introduce a feature distribution loss on the source domain,
aimed at increasing the separability of the two similarity
distributions. In this context, let’s consider a scenario where
the similarity values between positive and negative feature
pairs follow two unknown distributions denoted as PθS and
NθS , respectively. These distributions can be characterized by
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Fig. 3. Illustration of the datasets and the separated domains that are used to construct our UDA settings. For Inria datasets, we only chose one city from
each of the source and the target domain.

their means, denoted as µpos and µneg, respectively, and their
standard deviations, denoted as σpos and σneg.

∀i, ∀ j ∈ �i , there is

AθS

(
xs

i , xs
j

)
∼

{
PθS (µpos, σpos), if ys

i = ys
j

NθS (µneg, σneg), otherwise.
(13)

We hope the two distributions can be as distinguishable as
possible. To this end, we apply a feature distribution loss Lfeat
on the source domain using the labeled source data

Lfeat(xs) = −µ̃pos + µ̃neg + σ̃ pos + σ̃ neg (14)

where µ̃pos and σ̃ pos are the mean and standard deviation of
the similarity between all the positive pixel pairs within all the
sliding window. They are used to approximate µpos and σpos

µ̃pos =
1

H W |�|

H×W∑
i=1

∑
j∈�i ,ys

i =ys
j

AθS

(
xs

i , xs
j

)
σ̃ 2

pos =
1

H W |�|

H×W∑
i=1

∑
j∈�i ,ys

i =ys
j

(
AθS

(
xs

i , xs
j

)
− µ̃pos

)2
. (15)

Likewise, µ̃neg and σ̃ neg are the mean and standard deviation
of the negative pixel pairs (given j ∈ �i , ys

i ̸= ys
j ).

By minimizing the value of −µ̃pos + µ̃neg, the difference
between the means of the two distributions is maximized,
leading to increased separation between them. Additionally,
by minimizing σ̃ pos and σ̃ neg, the standard deviations of the
two distributions are reduced, further enhancing the distinction
between them. As a result, the two distributions become more
effectively separated from each other in the end.

IV. EXPERIMENTS

A. Datasets and UDA Settings

We use four public datasets, including ISPRS Potsdam,1

Vaihingen,2 SeasonNet [51] and Inria [52] to evaluate the
performance of different UDA methods. Some sample images
of different UDA settings are shown in Fig. 3.

Potsdam and Vaihingen datasets consist of aerial images
captured over the Potsdam and Vaihingen cities in Ger-
many. Potsdam dataset contains 38 images with a size of

1https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-
potsdam.aspx

2https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-
vaihingen.aspx

6000 × 6000 and a ground sampling distance (GSD) of 5 cm.
Potsdam offers both RGB and near-infrared, red, and green
(IRRG) images, yet in our experiments, we only use the IRRG
ones. Vaihingen dataset has 33 images with a size of 2000 ×

2000, and a GSD of 9 cm. Three IRRG channels are given.
Both Potsdam and Vaihingen have six classes.

SeasonNet is a large-scale land cover and land use dataset
captured over the whole Germany. It contains in total of
1 759 830 image patches from Sentinnel-2 sensor, with a patch
size of 120 × 120, annotated to 33 land cover classes. All
those patches are categorized according to the season when
they are captured. In total, there are four seasons plus an
additional “Snow” domain where most of the land cover is
covered by snow. This makes it a realistic and ideal setting
for evaluating different UDA methods against the temporal
and seasonal domain shift.

Inria dataset is an aerial image labeling dataset created for
building footprint extraction [52]. It has a resolution of 0.3 m
and a coverage of 810 km2 captured over ten European and
American urban settlements. Pixel-level annotations of two
classes, including building and background are provided in
the training set. 36 images with sizes of 5000 × 5000 are
given for each city.

Based on the above public datasets, we organize four
different UDA setting to evaluate the performance of our
method. The detailed descriptions are given below.

1) ISPRS Potsdam IRRG to Vaihingen IRRG: In this setting,
we consider Potsdam dataset with IRRG images as the source
domain and Vaigingen dataset as the target domain. We split
the images from both datasets to a patch size of 1024 × 1024.
As the dataset provider gives official training and testing splits
of these two datasets, we adopt the setting that we train the
UDA model on labeled training split of the Potsdam IRRG
dataset, as well as the training split of the Vaihingen dataset
(without giving the label), validate the models on the Vaihin-
gen train split and report the results on the Vaihingen test
split.

2) ISPRS Vaihingen IRRG to Potsdam IRRG: This setting
is similar to the previous setting, except that we switch
the source and the target domain. As the result, we train-
ing the UDA model on the training split of Vaihingen,
as well the training split of Potsdam IRRG (without pro-
viding the label), validate the models on Potsdam IRRG
training split and report the results on Potsdam IRRG test
split.
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Fig. 4. Visualized semantic segmentation results of different UDA methods on ISPRS P2V setting.

3) SeasonNet Spring to Fall: To involve temporal and
seasonal changes, we consider the spring season as the source
domain and the fall season as the target domain. Note that in
this case, we want to create a moderate domain shift so that it
will not be neither too easy nor too hard for UDA method to
effect. As the dataset provider gives official train, validation,
and test splits, we train UDA methods on the train split of the
spring season, and validation split of the fall season (without
providing labels), validate them on the validation split of the
fall season and report the results on the fall season test split.

4) Inria Intercity: By introducing this setting, we want to
evaluate the generalizability of different UDA methods across
different geo-locations, i.e., different cities. Since only the
five cities in the training set of the Inria dataset are provided
with labels, we only utilize these cities. As a result, Austin,
Chicago, and Kitsap are considered as the source domain cities
while Vienna and Tyrol-w are considered the target domain
cities. We follow the suggestion from the dataset provider to
use the first five images from each city as the validation set,
while the others as the training set. To this end, we train the
UDA methods on the training set of the source domain cities,
validate on the target training set and report the results on the
target validation set.

B. Implementation Details

We reimplemented several classic and state-of-the-art
UDA methods for evaluation and comparison. These
methods include class-balanced self-training (CBST) [14],
MaxSqu [53], MinEnt [30], AdvEnt [30], and DAFormer [12].
All the implementations are under the same codebase from
MMLab [16] and EarthNets [17], where the data load-
ing pipelines, network architectures, optimizers and training
flows are shared, making the comparison fairer. We use
a classic network architecture for all the methods, where

DeepLabV3+ [54] is used as the decoder and ResNet50 [55]
is used as the encoder.

Regarding the data normalization and augmentation, for the
SeasonNet spring to fall setting, the data are converted from
16 to 8 bits by cutting out the values beyond µ ± σ for
each channel, where µ and σ are the mean and the standard
deviation of the whole datasets. The values within µ ± σ are
then normalized to [0, 1] and further converted to 8-bits data.
For the other settings, data are normalized using the ImageNet
statistics [56]. To perform the data augmentation, we include
random resizing, cropping, random horizontal and vertical
flipping, random rotation of 90◦, 180◦, or 270◦, and random
photometric distortion. For DAFormer and PFST which are
based on online pseudo-label generation, these operations are
considered as weak augmentation. ClassMix [46], color jitter-
ing, and random blurring are used as the strong augmentation.
We observe that these data augmentations can largely improve
the overall performances of different methods. About the
hyperparameter settings of the proposed PFST, α and β in
(3) are set as α = 0.1, β = 0.1. The sliding window size is
set to 3 with a dilation of 2. Such hyperparameter settings are
applied for all the UDA settings.

For optimizing the networks, Adamw optimizer [57] with
0.01 weight decay and 6e − 5 learning rate is used to train all
the approaches. The batch size is set to 2 for Potsdam IRRG
to Vaihingen IRRG (P2V), Vaihingen IRRG to Potsdam IRRG
(V2P), and Inria intercity settings, and set to 32 for SeasonNet
spring to fall setting. The number of iterations is set to 40k
for all the settings. Polynomial learning rate decay is applied
for all the methods. All the experiments are conducted on a
single NVIDIA RTX 3090 GPU with PyTorch library.

C. Quantitative Results

We list the quantitative comparison results of different UDA
methods on four different settings on Tables I–IV. From
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Fig. 5. Visualized semantic segmentation results of different UDA methods on ISPRS V2P setting.

Fig. 6. Visualized semantic segmentation results of different UDA methods on Inria intercity setting.

Table I, one can observe that different UDA methods all
make improvements over the baseline source trained model,
especially on the foreground objects (categories except Clut-
ter). Among all methods, DAFormer and the proposed PFST
perform better on the “Clutter” classes, which may owe
to the mix-up strategy that balance the distribution of rare
classes. PFST performs the best at all categories except “Tree,”
demonstrating the effectiveness of mining the source domain
feature-level similarity in distinguishing both foreground and
background objects.

In the ISPRS V2P setting, shown in Table II, we notice
that all UDA methods still improve over the baseline. One
phenomenon to be noticed is that their performance variances
on “Tree” class are larger. One possible reason is that in
Potsdam-IRRG dataset, the “Tree” and the “Low Vegetation”
classes are hard to be adapted, making them easily confused
when making the prediction. The proposed PFST performs the
best on these two classes, which could be explained by that the
differences between these two types of objects can be better
captured in the feature space.
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TABLE I
PER CLASS IOU AND MIOU (%) ON ISPRS POTSDAM-IRRG TO VAI-

HINGEN IRRG SETTING. “SOURCE” DENOTES THE SOURCE MODEL
WHICH IS ONLY TRAINED WITH THE LABELED SOURCE DATA.

∗ DENOTES THE RESULTS ARE CITED FROM THE ORIGINAL
PAPER. ALL METHODS ARE BASED ON DEEPLABV3+ [54]

ARCHITECTURE

TABLE II
PER CLASS IOU AND MIOU (%) ON ISPRS VAIHINGEN TO POTSDAM-

IRRG SETTING. “SOURCE” DENOTES THE SOURCE MODEL WHICH IS
ONLY TRAINED WITH THE LABELED SOURCE DATA. ∗ DENOTES

THE RESULTS ARE CITED FROM THE ORIGINAL PAPER. ALL
METHODS ARE BASED ON DEEPLABV3+ [54]

ARCHITECTURE

TABLE III
BUILDING IOU (%) ON INRIA INTERCITY SETTING. “SOURCE” DENOTES

THE SOURCE MODEL WHICH IS ONLY TRAINED WITH THE LABELED
SOURCE DATA. THE RESULTS ON THE TWO TARGET DOMAIN

CITIES AND THE OVERALL RESULTS ARE REPORTED

The results of the Inria intercity setting are shown in
Table III. Compared to the previous setting, the improvements
from different UDA methods are less obvious. Especially on
Vienna city, methods include CBST, MinEnt, and AdvEnt
cannot or can only slightly outperform the source model.
Generally, the domain shift between Vienna and the source

domain cities mainly lie on its larger and more complex build-
ing geometry, while the shift between Tyrol-w and the source
domain cities are mainly on its color and appearance. This
indicates the geometrywise differences between two domains
are more difficult to be tackled. In this case, DAFormer and
the proposed PFST can still provide stable improvements over
both cities, which demonstrate their effectiveness.

The results on the SeasonNet spring to fall setting are
shown in Table IV. This is a more challenging setting because
seasonal changes usually have large impacts on some of the
land cover types that related to agriculture, forests, natural
landscape, and so on. From the per-class results and the aver-
ages results, one can tell that although DAFormer outperforms
the others on some of the classes like C4 and C29, it fails
drastically on classes like C30 and C33. This may be because
the utilized rare class sampling strategy [12] samples too many
repeated image patches from rare classes, resulting in the
underfitting of some of the major classes. In general, PFST
performs very stable, and can make improvements against the
baseline source model on almost all the classes, and achieves
the highest mean IoU values. This further demonstrates its
robustness.

D. Qualitative Results

We visualize the semantic segmentation results of different
UDA methods in four different settings in Figs. 4–7. As can
be observed in Fig. 4, only DAFormer and the proposed PFST
can detect and segment the fine-grained clutter structure (in red
color) in the first row. From the third and the fourth rows, all
the other UDA methods except PFST perform not very well
at distinguishing the differences between “Tree” and “Low
Vegetation” categories, e.g., MinEnt, AdvEnt, and DAFormer
confuse the large “Low Vegetation” area in the last row with
the “Tree” class.

From Fig. 5, it is shown that the difference between “Low
Vegetation” and “Tree” classes is still the main challenging
issue. Among all the methods, DAFormer and PFST perform
the best on this goal if we look into the first, second, and the
fourth rows. Besides, PFST can also detect some tiny clutter
objects in the second row, despite it’s still hard to segment the
large clutter area in the third row due to its similarity to the
“Imprevious surface” class.

Fig. 6 shows the results on the Inria intercity setting.
As highlighted in the red bounding boxes, PFST generally
performs better at distinguishing the building structure that
is easy to be confused with the background areas (like what
is shown in the first and the fourth rows), and can also
better captures the borders of separated building instances
(highlighted in the second row).

The results on SeasonNet spring to fall setting are given
in Fig. 7. Generally, all the methods can capture the overall
land cover distribution in the image, yet they still tend to
be confused when trying to distinguish between two similar
classes. For example, in the first row, only CBST and PFST
can distinguish the “Broad-leaved forest” (C16) and the “Conif-
erous forest” (C17) area highlighted with the red bounding box.
In the second row, only PFST can recognize the “Fruit trees
and berry plantations” (C14) area inside the bounding box.
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TABLE IV
AACC, MACC, AND MIOU (%) ON SEASONNET SPRING TO FALL SETTING. “SOURCE” DENOTES THE SOURCE MODEL WHICH IS ONLY TRAINED WITH

THE LABELED SOURCE DATA. IOU RESULTS ON SOME SELECTED CLASSES (DENOTED BY Ci ), AND THE AVERAGED RESULTS OF ALL CLASSES
ARE REPORTED. FOR THE CLASS NAME OF EACH CLASS, PLEASE REFER TO [51]

Fig. 7. Visualized semantic segmentation results of different UDA methods on SeasonNet spring to fall setting. For the sake of simplicity, we use “C1”–“C33”
to denote the class labels. For the actual class names, please refer to [51].

TABLE V
ABLATION STUDY OF THE PROPOSED METHOD ON

ISPRS P2V SETTING AND V2P SETTING

E. Ablation Study
To evaluate if the idea of mining the feature-level local

similarity from the source domain model can really help
the target model to generalize on the target domain, we
ablate over the proposed local similarity losses and other

components on the ISPRS P2V and V2P settings. As can
be seen from Table V, self-training with exponential moving
average plays an important and fundamental role in setting a
strong baseline in our method, resulting in around 10% and
6% performance improvements on these two settings. If we
apply strong augmentations on top of the student model branch
during the self-training, we see a further performance increase
on P2V setting, although the influence is not that obvious on
V2P setting. In terms of the proposed local similarity loss, we
can see it helps to further boost the performance of the UDA
method on both settings, with relatively large margins (more
than 2% and 3%) on top of an already very strong baseline.
As for a nonparametric component, this result is promising
and proves the effectiveness of leveraging feature-level local
relation.

F. Interpreting the Local Feature Relation

To better explain the effectiveness of exploiting local rela-
tion, some verifying experimental results are presented in this
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Fig. 8. Per-class feature similarity distribution for all the sliding windows on ISPRS P2V setting. The class is defined according to the label of the center
pixel. For most of the classes, one can observe that the feature similarity of Case 1a and Case 2a are generally larger than the similarity of Case 1b and
Case 2b, indicating that the similarity between local pseudo features are more accurate than the pseudo labels in revealing the true relation between neighboring
target outputs.

section. Considering each local region defined by �i that is
sliding over the target image xt , we assume that the center
pixel xt

i is correctly classified by the semantic segmentation
model, i.e., argmax fθ (xt )i = yt

i . To this end, by investigating
whether the pseudo labels of xt

i and its neighborhood xt
j are

of the same class or not, there will be two cases.

1) argmax fθ (xt )i = argmax fθ (xt ) j : In this case, the two
neighboring pixels have the same pseudo labels. There
will be another two subcases depending on whether the
prediction on xt

j is correct or not, i.e., argmax fθ (xt ) j =

yt
j or argmax fθ (xt ) j ̸= yt

j . We denote these two
subcases as Case 1a and Case 1b.

2) argmax fθ (xt )i ̸= argmax fθ (xt ) j : In this case,
the two neighboring pixels have different pseudo

labels. Similarly, there will be two subcases accord-
ing to whether there is argmax fθ (xt ) j = yt

j or
argmax fθ (xt ) j ̸= yt

j . These two subcases are denoted
as Case 2a and Case 2b.

With the above listed cases, we seek to verify the assumption
that the pairwise feature similarities are more likely to reveal
the true relationship between each pair of the neighboring
pixels than the pseudo labels. In both Case 1a and Case 1b,
the pseudo labels give the same predictions to the neighboring
pixels, yet these predictions are correct in Case 1a, while
incorrect in Case 1b. Hence our assumption can be supported if
the pairwise similarity values in Case 1a are statistically larger
than those in Case 1b. Likewise, since the pseudo labels give
different predictions to the neighboring pixels both in Case 2a



5612414 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Fig. 9. Typical failure cases of the proposed methods on all the four UDA
settings.

and Case 2b, our assumption can be supported if the similarity
values in Case 2a are larger than those in Case 2b. As shown
in Fig. 8, the expected phenomena can be observed, which
verifies our assumption.

G. Limitations and Failure Cases

To analyze the limitations of the proposed method,
we present some failure cases of the proposed methods in
Fig. 9.

In the first row, it can be seen that PFST fails to recognize
the central basketball field, which is a rare class that is not
well-represented in the training set, and misclassifies it as the
“Clutter” class. This suggests that the proposed local spatial
layout (LSL) method may not be effective in recognizing out-
of-distribution targets. In the second and third rows, PFST
misclassifies the central “Impervious Surface” and the upper
“Building” area, possibly due to the lack of spatial context.
In such scenarios, the proposed method may not provide sig-
nificant improvement. In the last row, PFST misclassifies the
upper “Pastures” area as “Vineyards” area, which have similar
appearances, indicating that the high-dimensional feature-level
relation may not be sufficient to distinguish targets that exhibit
only subtle differences.

These failure cases highlight the limitations of the proposed
methods in handling rare classes, lack of spatial context, and
subtle differences in appearance, indicating areas where further
improvements may be needed.

V. CONCLUSION

In this article, we observe that domain-invariant knowledge
can be better preserved within high dimensional featurewise
topological relation than output space pseudo labels for UDA.
Inspired by this, a novel self-training mechanism is developed
to regularize target outputs using local relation within source
feature space. The proposed method is evaluated on four

standard UDA settings, and the results show that it achieves
superior performance compared to the existing UDA methods.

While the proposed method has shown success in general
cases, its performance may be limited when dealing with lim-
ited spatial contexts or out-of-distribution targets. Additional
research is required to overcome these challenges and improve
the method’s robustness and effectiveness in such scenarios.
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