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Abstract— During the melting season, predicting the daily sea
ice concentration (SIC) of the Pan-Arctic at a subseasonal scale
is strongly required for economic activities and a challenging
task for current studies. We propose a deep-learning-based data-
driven model to predict the 90 days SIC of the Pan-Arctic, named
SICNet90. SICNet90 takes the historical 60 days’ SIC and its
anomaly and outputs the SIC of the next 90 days. We design
a physically constrained loss function, normalized integrated
ice-edge error (NIIEE), to constrain the SICNet90’s optimiza-
tion by the spatial morphology of SIC. The satellite-observed
SIC trains (1991–2011/1997–2017) and tests the model
(2012/2018–2020). For each test year, a 90-day SIC prediction
is made daily from May 1 to July 2. The binary accuracy
(BACC) of sea ice extent (SIC > 15%) and the mean abso-
lute error (MAE) are evaluation metrics. Experiments show
that SICNet90 significantly outperforms the Climatology bench-
mark on 90 days prediction, with a BACC/MAE improve-
ment/reduction of 5.41%/1.35%. The data-driven model shows a
late-spring-early-summer predictability barrier (around June 20)
and a prediction challenge (around July 10), consistent with SIC’s
autocorrelation. The NIIEE loss optimizes the predictability
barrier/challenge with a BACC increase of 4%. Using a 60 days
historical SIC to predict 90 days SIC is better than a historical
SIC of 30/90 days. The historical 2-m surface air temperature
shows positive contributions to the prediction made from May
1 to mid-June, but negative contributions to the prediction
made after mid-June. The historical sea surface temperature and
500 hp geopotential height show negative contributions.

Index Terms— Deep learning, Pan-Arctic, physically con-
strained loss function, sea ice concentration (SIC) prediction,
subseasonal scale.

I. INTRODUCTION

UNDER the impact of global climate change, the Arctic
sea ice has been dramatically shrinking and thinning

over the past few decades [1], [2], [3], [4], [5]. The rapid
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summer Arctic Sea ice retreat creates commercial shipping
routes, significantly reducing the distance from Asia to Europe
[6], [7]. The navigation season for open water vessels along the
Northeast Passage has lengthened from occasionally navigable
in the 1980s to 92 ± 15 days in the 2010s [8]. Reliable
daily sea ice prediction from synoptic to seasonal scale is thus
strongly required for planning activities by shipping interests
and coastal communities throughout the Arctic during the
melting season [9], [10].

Many studies have been conducted on subseasonal/seasonal
sea ice prediction of the Pan-Arctic. These models can be
divided into numerical, statistical, and machine/deep learning
models. Numerical models integrate thermal and dynamic
interactions between ice, sea, and atmosphere through physical
equations [11], [12], and they are the mainstream methods
for sea ice prediction at the synoptic scale [14], [15], [16],
[17], [18], [19], [20]. Some numerical models show the ability
to predict the monthly mean sea ice parameters on seasonal
scales, such as Pan-Arctic Ice-Ocean Modeling and Assimi-
lation System (PIOMAS), Canadian Seasonal to Inter-Annual
Prediction System (CanSIPS), National Centers for Environ-
mental Prediction Climate Forecast System, version 2 (NCEP
CFSv2), and so on [21], [22], [23], [24], [25]. For the daily
sea ice prediction on a seasonal scale, Yang et al. [10] pro-
posed an ensemble-based Sea Ice Seasonal Prediction System
(SISPS) to predict the Arctic summer sea ice conditions from
May 26 to September 29, 2016. In addition, Yang et al. [26]
developed a coupled atmosphere-sea ice-ocean model that
outperformed the climatology means in predicting the sea ice
extent (SIE) from July 1 to October 1, 2017. Although the two
models show skillful seasonal predictability in 2016 and 2017,
most numerical models cannot beat the climatology mean in
the daily prediction above the synoptic scale [9].

Statistical models make long-term predictions by establish-
ing the relationships among atmospheric, oceanic, and sec ice
parameters based on statistical methods. Lindsay et al. [27]
developed a linear empirical model, which employed historical
ocean and ice information generated by PIOMAS to predict the
monthly mean Arctic SIE several months ahead. They found
that sea ice concentration (SIC) was the most important vari-
able for the first two months’ prediction. Wang et al. [28] pro-
posed a vector autoregressive (VAR) model to predict the daily
summer Arctic SIC of 80-day lead-based solely on historical
SIC. The VAR model outperformed the anomaly persistence
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baseline at 20–60 days’ lead times. Yuan et al. [29] developed
a linear Markov model to predict the monthly mean SIC based
on SIC, sea surface temperature (SST), and sea air temperature
(SAT) data. Wang et al. [30] used the weekly mean data to
evaluate the performance of the VAR and Markov models
in subseasonal SIC prediction. They found that SAT and
SST improved the prediction skill for a four-week lead time.
Wang et al. [31] reassessed the sea ice predictability of the
Pacific-Arctic sector by a Markov model and found that the
subsurface ocean heat content is important for monthly mean
prediction. Unlike the numerical models, statistical methods
provide a “lightweight” way and are widely used in long-term
sea ice prediction [11]. However, the traditional statistical
models cannot sufficiently capture the nonlinear spatial and
temporal relationships among long-term data sequences. The
modeling capability of statistical models is limited [28].

Deep learning (DL) is the cutting edge of machine learning.
Recently, DL has been successfully applied in Earth system
science and helped humans gain knowledge from a data-driven
perspective [32], [33], [34], [35], [36], [37], [38], [39], [40],
[41]. A typical DL model consists of multiple neural networks
(NNs) layers, automatically capturing nonlinear relationships
among layers from big data [42]. DL-based models can capture
more complex spatial and temporal relationships than statisti-
cal models and are more “lightweight” than numerical models.
They have been successfully applied to sea ice predictions. For
example, researchers have employed DL methods to predict
the Arctic Sea ice conditions of multiple temporal scales [43].
Models based on long short-term memory (LSTM) and deep
NNs (DNN) were proposed for SIC prediction [44], [45].
To capture the spatial dependency among the Arctic grid cells,
Kim et al. [46] proposed a convolutional NN (CNN) model to
predict the 1-month Lead SIC. Andersson et al. [47] proposed
a CNN-based model to predict the monthly mean SIC on
a seasonal scale named IceNet. IceNet used 50 parameters,
including sea ice, ocean, and atmospheric, as an input and
output the SIC of six-lead months. Experiments showed that
the binary accuracy (BACC) of the predicted SIE by IceNet
is higher than that of typical numerical and statistical bench-
marks.

Most of the mentioned studies use monthly mean data as
the prediction target. However, DL has also been applied
for daily sea ice prediction longer than the synoptic scale.
Ren et al. [48] proposed a fully data-driven model, SICNet,
to predict the daily SIC from weekly to monthly scales.
Experiments show that the SICNet outperformed the anomaly
persistence in predicting SIC for 28 consecutive days, which
provides the possibility for daily sea ice prediction at subsea-
sonal to seasonal scales.

Researchers have attempted to predict subseasonal/seasonal
sea ice parameters for the past two decades based on numer-
ical, statistical, and deep learning models. As a result, the
prediction accuracy and time scale are increasing. However,
there are still some issues that need to be further explored.

1) Can the daily prediction of Arctic SIC be extended to
a seasonal scale (exceeding 45 days–90 days)? Most existing
models focus on monthly SIC prediction, but few studies use
daily SIC as the prediction unit. Zampieri et al. [9] evaluated

the daily prediction skill of seven typical numerical models
on the subseasonal scale (0–60-day lead). The best numerical
model, European Centre for Medium-Range Weather Forecasts
(ECMWF), cannot beat the climatology means more than a
45-day lead, which means the ECMWF lost the prediction
skill. The statistical model VAR shows prediction skill on a
subseasonal scale (20–60 days), but with a nearly 10 times
reduction in SIC’s spatial resolution (from 25 to 225 km) and
without further evaluation of a long-term subseasonal scale,
such as 90 day [28]. Therefore, can we develop a model to
achieve a consecutive prediction skill over climatology on a
long-term subseasonal scale, covering 0–90 days?

2) Is there a barrier to the daily prediction of the Arctic
summer SIC? A series of studies have confirmed a spring
predictability barrier for Arctic Sea ice: predictions initialized
on or after the spring date perform well in predicting summer
sea ice, whereas predictions initialized before the date show
lower performances [27], [49], [50], [51], [52]. Based on the
climate model HadGEM1.2, Day et al. [53] found that the
predictions of Pan-Arctic SIE initialized on May 1 lost skill
more rapidly than those initialized on July 1. Bonan et al. [49]
found a predictability barrier in May based on Coupled Model
Intercomparison Project Phase 5 (CMIP5) data and suggested
the prediction initialized after June 1 will have substantial skill.
These studies are based on monthly mean data. For a daily
seasonal prediction, is there also an obvious barrier? If so,
how is the precise timing of the barrier distributed?

3) What is the optimal length of historical SIC sequence for
a 90-day SIC prediction? Statistical and deep learning mod-
els have demonstrated the potential of using autocorrelation
of historical SIC to predict future daily SIC over synoptic
scales. If the historical SIC can support a skillful 90-day SIC
prediction, what is the optimal length of the historical SIC
sequence?

4) How do the typical oceanic and atmospheric factors affect
the daily prediction of Arctic SIC on the subseasonal scale?
Typical oceanic and atmospheric factors, such as SST, SAT,
and geopotential height, affect sea ice change through thermal
and dynamic interactions. Existing studies have explored their
effects on monthly mean sea ice prediction [30], [47]. What is
the contribution of the typical oceanic and atmospheric factors
to the 90-day SIC prediction?

To solve the mentioned issues, we propose a DL-based data-
driven model to predict the 90-day SIC of the Pan-Arctic
during the melting season, named SICNet90. We train and test
SICNet90 by the satellite-observed SIC. Comparison experi-
ments with climatology mean are conducted to evaluate the
model’s prediction skill in forecasting Arctic SIC. The precise
timing of the barrier for the daily SIC prediction on a sub-
seasonal scale is explored. In addition, we discuss the optimal
length of historical SIC for a 90-day SIC prediction and the
corresponding mechanism behind the data-driven model. The
effects of the typical oceanic and atmospheric factors are also
discussed. This article is organized as follows. Section II
describes the data, and Section III describes the proposed
model. The comparison experiments and predictability barrier
analysis are shown in Section IV. Section V discusses the
optimal historical length and the effects of typical factors
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on the 90-day SIC prediction. Finally, conclusions are in
Section VI.

II. DATA

A. Data

The data in this study include SIC and the typical oceanic
and atmospheric factors. The National Snow and Ice Data
Center (NSIDC) provides the daily SIC data. It is derived from
the Nimbus-7 Scanning Multichannel Microwave Radiome-
ter (SMMR) and the Defense Meteorological Satellite Pro-
gram (DMSP) Special Sensor Microwave Imager (SSM/I and
SSMIS) [54]. The coordinate system of SIC is the north-polar
stereographic with a spatial resolution of 25 km. The study
focuses on the core Arctic region covering 320 × 224 grids
(90 N, 45 N, 180 E, and 180 W). The temporal coverage
is 29 years, from 1992 to 2020. Since the prediction of
summer SIC draws more attention than the winter, we focus
on the melting season from April 1 to September 30, which
is 183 days per year.

We select three typical oceanic and atmosphere factors: SAT,
SST, and 500 hPa geopotential height (500 GH), to explore
their effects on the daily subseasonal SIC prediction. The SAT
and SST represent the thermal coupling between the sea ice
and its upper/lower boundary and air/ocean. The geopotential
height represents the impact of atmospheric motions on sea
ice. The geopotential height is commonly adopted because
the surface winds are often noisy and vibrant [30]. Existing
sea ice prediction models widely adopt the SAT, SST, and
geopotential height [29], [46], [47]. As the 500 GH has
been demonstrated to be a key factor in monthly mean SIC
prediction of 1–3 months lead [47], we select the 500 GH
to represent the geopotential height factor in this study. The
SAT and 500 GH are hourly reanalysis data from the ERA5 of
ECMWF [55]. We calculate the daily mean value based on the
hourly data. The daily SST data are obtained from National
Oceanic and Atmospheric Administration (NOAA) Optimal
Interpolation Sea Surface Temperature (OISST) version 2,
which is constructed from Advanced Very High-Resolution
Radiometer (AVHRR) observation data with 0.25◦ resolu-
tions [56]. The spatial transformation is performed to ensure
that the coordinate and spatial resolution of SAT, SST, and
500 GH is consistent with the SIC.

III. METHOD

A. Overall Structure of SICNet90

We proposed a DL model to predict the daily SIC for the
90-day SICNet90. As shown in Fig. 1, SICNet90 includes two
branches. The main branch takes the historical SIC sequence
as an input, modeling spatiotemporal correlations of the SIC
sequence, and outputs the SIC for the next 90 days [see
Fig. 1(a)]. The secondary branch modeling spatiotemporal
correlations from the oceanic and atmospheric factors, SAT,
SST, and 500 GH, and fuse the correlations to the main
branch to make predictions. The correlation modeling module
of the two branches is a fully convolutional-networks-based
(FCNs-based) model and has the same structure as the SICNet
we proposed earlier [48]. It consists of an encoder module

and a decoder module. The encoder captures spatiotemporal
correlations from the historical SIC sequence at different scales
and forms downscaled feature maps. The decoder restores the
scales of the downscaled feature maps level-by-level until the
output sequence is the same size as the input sequence. Finally,
the intermediate feature maps captured by the encoder and
decoder are concatenated to form multiscale spatiotemporal
correlations.

SICNet90 also adopts the residual connection and
temporal–spatial attention module (TSAM) in SICNet [48].
A sigmoid function activates the final feature map to output
the daily SIC for 90 days. The sigmoid function sets the output
value between 0 and 1, consistent with the range of SIC. The
loss is calculated from the predicted SIC and the NSIDC SIC
(treated as the ground truth). All trainable parameters in the
SICNet90 are optimized based on the loss by back-propagation.
To optimize the model for a long-sequence SIC prediction,
we propose a physically constrained loss function, normalized
integrated ice-edge error (NIIEE), to constrain the SICNet90’s
optimization by the spatial morphology of SIC. The NIIEE
loss is derived from the typical evaluation metric integrated
ice-edge error (IIEE) for SIC prediction. We combine the
NIIEE with the mean square error (MSE) loss as the loss
function of the SICNet90.

B. Physically Constrained NIIEE Loss

In the training process of an NN model, the loss function
drives the parameter optimization and determines the optimal
state of the model. The MSE is the most widely used loss
function for a prediction task. However, for the subseasonal
prediction of the daily SIC, the MSE has two limitations.
First, the MSE can measure the numerical differences for the
Pan-Arctic but cannot measure the spatial similarity of the
predicted SIC and ground-truth SIC. The spatial pattern of
the SIC is an important metric for evaluating the prediction
performance. Second, the MSE is an absolute metric, and
the SIC determines its value. For an SIC sequence covering
90 days in the melting season, the SIC value decreases
gradually with the day, and the MSE loss also decreases,
driving the model not adequately fit the latter part of the SIC
sequence.

To solve the limitations of MSE loss, we propose the NIIEE
loss function, which is constrained by the physical pattern
of SIC. The NIIEE is derived from the evaluation metric
IIEE of SIC prediction. The IIEE is the sum of all areas,
where the local SIE is overestimated or underestimated [57].
It accounts not only for differences in total SIE but also for ice
predicted at the wrong location. For the original IIEE, SIE is a
banalization result, and SIC greater than 15% is 1; otherwise
is 0. Here, we do not binarize the SIC to represent the SIC
value accurately. Let SICP be the predicted SIC and SICG be
the ground truth (the NSIDC SIC), as shown in Fig. 2. The
IIEE is the union of SICP and SICG minus their intersection
(1). We transform the IIEE into a normalized format for the
NIIEE loss function (2). The NIIEE loss ranges [0–1], with
an NIIEE loss of 1 when the SICP and the SICG do not have
any intersection in space and an NIIEE loss of 0 when the
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Fig. 1. Structure of the SICNet90. (a) Main branch of the SICNet90. (b) Secondary branch is to fuse SAT/SST/500 GH for prediction. The red rectangle
marks the hybrid loss function composed of MSE and NIIEE.

Fig. 2. Schematic of IIEE and the transformation from IIEE to NIIEE. SICG
is the ground-truth SIC, and SICP is the predicted SIC. The IIEE region
consists of four subregions: IIEE1 and IIEE3 are overestimated regions, and
IIEE2 and IIEE4 are underestimated.

SICP and the SICG exactly match numerically and spatially.
Compared with the MSE loss, NIIEE loss measures numerical
and spatial differences between the predicted SIC and the
ground-truth SIC. It constrains the model optimization by
the spatial morphology of SIC. Besides, the NIIEE loss is a
normalized value not affected by the SIC value, which drives
the model to fit the daily SIC of a long sequence evenly.

The MSE has proven to be a fundamental loss function
with advantages for prediction tasks. Therefore, our SICNet90
adopts a hybrid loss function combining MSE and NIIEE.
To balance the values of MSE and NIIEE, we multiplied
NIIEE by a constant coefficient of 0.01. The hybrid loss
function of SICNet90 is shown in (3)

IIEE = (SICP∪SICG) − (SICP∩SICG) (1)

NIIEE =
IIEE

SICP∪SICG
= 1−

SICP∩SICG

SICP∪SICG
(2)

Hybridloss = MSE + 0.01 × NIIEE. (3)

IV. EXPERIMENTS AND ANALYSES

A. Data Setting and Evaluation Metrics

The data from 1998 to 2017 are used for training and
validating the model. Then, the data from 2018 to 2020 are
used for testing. As the minimum Arctic SIE observed by the
satellite occurred on September 2012, data for 2012 are added
to the test set. When we tested the model’s performance in
2012, the model was retrained with data from 1992 to 2011;
2012 and 2020 represent two extreme states of summer SIE
in the Arctic, and 2018 and 2019 represent the normal states.
Therefore, data from these four years are typically represen-
tative of verifying the model’s performance.

For each year, we focus on the main melting season of the
Arctic, from April 1 to September 30. The prediction period
starts from May 1 to July 2, and the SIC for the next 90 days
is predicted daily. The input of the SICNet90 is the historical
SIC and its anomaly of the last 60 days. For example, the
prediction starts on May 1 using the historical SIC and its
anomaly of March 2 to April 30 as an input and outputting
the daily SIC from May 1 to July 29. There are 63 samples
for each training/testing year.

Based on the existing research, we chose the climatology
model as a benchmark comparison model. The climatology
prediction is the mean NSIDC SIC at the same time of the
year during those 10 years preceding the respective forecast
target time [9]. To test the sensitivity of the input and the effect
of the proposed NIIEE loss, we derived three models from
model SICNet90. First, SICNet90_sic only takes the historical
SIC as an input without its anomaly. Second, SICNet90_sic_anom
takes both SIC and its anomaly as an input. The loss function
of SICNet90_sic and SICNet90_sic_anom is MSE, without NIIEE.
Finally, SICNet90_sic_anom_NIIEE takes the SIC and its anomaly
as an input and uses the hybrid loss combined by MSE and
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TABLE I
MAE AND BACC OF ALL TESTING YEARS

NIIEE in Section III-B. SICNet90_sic_anom_NIIEE represents the
SICNet90 we referred above.

The mean absolute error (MAE) and the BACC are adopted
as the evaluation metrics. MAE is an absolutely common error
in regression tasks. Let SICP be nonland grids’ prediction
values, and SICG be nonland grids’ ground values (NSIDCs).
MAE is calculated as (4). The BACC is derived from the
IIEE. Given a binary sea ice area judging by SIC greater
than 15% (value 1) or not (value 0), the IIEE is defined as
the sum of all areas, where the local SIE is overestimated
or underestimated. The BACC is a normalized version of
the IIEE: dividing the IIEE by the maximum SIE observed
historically. The model performs perfectly when the BACC
is 1 (100%), not underestimating or overestimating SIE. The
BACC is defined as (5): the active grid cell region is the
maximum daily SIE (SIC greater than 15%) observed by
satellite from 1988 to 2020

MAE = mean(|SICP − SICG|) (4)

BACC =

(
1−

IIEE
area of the activated grid cell region

)
×100%.

(5)

B. Model’s Overall Performance on 90 Days Lead Prediction

1) Overall Performance Compared With the Climatology
Benchmark: The MAE and BACC of different models on
testing data are shown in Table I. The metrics show that
all three data-driven models significantly outperform the
climatology benchmark in MAE and BACC of all testing
years. Compared to climatology, SICNet90_sic_anom_NIIEE shows
a BACC/MAE improvement/reduction of 5.41%/1.35%. The
BACC/MAE is improved/reduced from 86.32%/5.56% to
86.74%/5.38% by adding the SIC anomaly as an input,
SICNet90_sic_anom over SICNet90_sic. The SIC anomaly
is helpful in subseasonal SIC prediction. Compared
with SICNet90_sic_anom, SICNet90_sic_anom_NIIEE further
improves/reduces the BACC/MAE to 87.92%/5.12%,
indicating that the NIIEE loss function does contribute
significantly to the 90-days’ SIC prediction.

Fig. 3(a) and (b) shows the BACC and MAE trend of
90 target days averaged by all testing years. Given that the
BACC/MAE of the three data-driven models is significantly
higher than that of the climatology, the data-driven models
show skillful prediction ability over the 90 target days. Adding

SIC anomaly as an input and employing the NIIEE loss
function improve the accuracy of all target days. With the
increase in prediction days, the improvement brought by the
NIIEE loss becomes more and more significant. The NIIEE
loss drives the model optimization to be constrained by the
spatial pattern of SIC, and it is a normalized value that does
not decrease with the increase of predicted days. Thus, the
model fits the predicted SIC sequence evenly. Fig. 3(c)–(f)
shows that the BACC trend of each year is consistent with
the overall trend of all testing years. In 2012 and 2020, the
Arctic SIE was extremely small, and the BACC of climatology
in these two years decreased significantly with the increase of
predicted days. However, the NIIEE loss function significantly
improves the decay trend of BACC.

2) NIEE Contributes More to Subseasonally Prediction:
Previous studies have shown that the prediction of SIC over
45 days is still a huge challenge, and the prediction accuracy is
even lower than the climatology. Fig. 3 shows that compared
with the first 45 days, the advantage of the NIIEE is more
obvious in the latter 45 days. We calculate the metrics of the
1–45 and 46–90 days in Table II. Compared with only SIC
as an input, the mean improvements contributed by adding
SIC anomaly during the 1–45 and 46–90 days are 0.26% and
0.57%, respectively. The SIC anomaly slightly improves the
prediction of BACC for the last 45 days.

Furthermore, the mentioned improvements contributed
by the NIIEE loss are 0.59% and 1.78%. For
SICNet90_sic_anom_NIIEE, the improvement of the last 45 days
is three times that of the first 45 days. Therefore, the NIIEE
loss contributes significantly to the prediction of 46–90 days.
Therefore, the physically constrained loss NIIEE is more
powerful than the classical MSE loss for daily prediction at
the subseasonal scale.

C. Is There a Predictability Barrier to the Daily Prediction
on a Subseasonal Scale?

Numerical models have confirmed a spring barrier for
the Arctic Sea ice prediction: predictions initialized on or
after June perform well in predicting summer sea ice (July–
September), whereas predictions initialized on or before May
show limitation skill. The spring barrier date is defined based
on monthly mean data. Is there also a spring predictability
barrier for the daily prediction on the subseasonal scale? If
so, how is the precise timing of the barrier distributed?
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Fig. 3. BACC and MAE trend of the 90 lead days on four testing years of model SICNet90_sic, SICNet90_sic_anom, SICNet90_sic_anom_NIIEE, and climatology.
(a) Mean BACC trend of 2012 and 2018–2020. (b) Mean MAE trend of 2012 and 2028–2020. (c)–(f) BACC trend of 2012 and 2018–2020.

TABLE II
BACC (%) OF THE 1–45 AND 46–90 DAYS

We draw the BACC matrix of all target days during the
prediction period in Fig. 4: the vertical axis is the start-
ing date of each prediction, from May 1 to July 2, and
the horizontal axis is the 90 lead days to be predicted.
The first/second/third column in Fig. 4 is the BACC val-
ues of SICNet90_sic/SICNet90_sic_anom/SICNet90_sic_anom_NIIEE.
The fourth column is the BACC difference between
SICNet90_sic_anom_NIIEE and the SICNet90_sic_anom, indicating the
improvements brought by NIIEE loss. Fig. 4(a)–(d) shows
the mean values of all testing years, and Fig. 4(e)–(t) shows
the patterns of each testing year.

The BACC patterns of SICNet90_sic, SICNet90_sic_anom, and
SICNet90_sic_anom_NIIEE show similar trends. From May 1 to
July 2, the BACC of predictions in 70th–90th lead days
(covering July/August/September) decreases first and then
increases. Predictions are made from mid-May to early-
June show low BACC of 70th–90th days, targeting the mid-
August/early-September. However, the predictions initialized
after mid-June (marked by the red dashed line) show increased
forecasting skills at lead time longer than 70 days, as shown in
Fig. 4(a)–(c). Therefore, the data-driven models show a late-
spring-early-summer barrier in the 90-day SIC prediction:

aiming target days of July/August/September, the predictions
initialized from May 1 to early-June are less skillful than those
initialized after mid-June. June 20 (with slight fluctuation)
seems to be the boundary of the late-spring-early-summer
barrier.

Besides the late-spring-early-summer predictability barrier,
there is a prediction challenge date around July 10, with
slight fluctuation. The prediction challenge date reflects the
boundary of “summer sea ice” that appears in the definition
of the spring predictability barrier: predictions initialized on
or after the date can skillfully predict “summer sea ice,”
whereas predictions initialized prior to the date have much
lower skills. As shown in Fig. 4(a)–(c), for the prediction
started on May 1, the BACC shows an obvious drop around
July 10 (the 70th day). As the prediction date moves forward,
the BACC after July 10 remains lower than before July 10,
marked by the black dashed line in Fig. 4(a)–(c). When the
prediction starts on June 20, the challenge appears around
July 13 (the 23rd leading day). For July 2, the challenge
flag date moves later, appearing around July 27 (the 25th
day). Therefore, July 10 (with slight fluctuation) appears to
be a boundary for the prediction challenge, with predictions
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Fig. 4. BACC matrix of difference models: the first/second/third column is the BACC values of SICNet90_sic/SICNet90_sic_anom/SICNet90_sic_anom_NIIEE, and
the fourth column is the BACC difference between SICNet90_sic_anom_NIIEE and the SICNet90_sic_anom. (a)–(d) Mean values of four testing years. (e)–(t) Values
of each testing year. The red dashed line (a)–(d) marks the late-spring-early-summer barrier date. The black dashed line in (a)–(d) marks the prediction
challenge date.

after that date being less accurate. There is no significant
relationship between the challenge boundary and the initial-
ization date. As the initial prediction date slides from March
to June, the boundary of the prediction challenge is fixed in
mid-July.

Fig. 4(b) shows that, by adding SIC anomaly as another
input, the BACC shows some improvements. Fig. 4(c) shows
that the BACC of SICNet90_sic_anom_NIIEE is higher than that
of SICNet90_sic_anom. Although SICNet90_sic_anom_NIIEE does not
eliminate the predictability barrier and challenge, the pre-
diction accuracy is significantly optimized before/after the
barrier/challenge date. For the prediction of July–September,
especially the challenging mid-August–mid-September, the
NIIEE loss improves the BACC significantly. Fig. 4(d) shows
that the NIIEE loss increases the BACC before/after the
barrier/challenge boundary (June 20/July 10) by 4% or more,
significantly predicting the daily SIC in the Arctic summer at
subseasonal scales.

From a data-driven perspective, we can draw the follow-
ing conclusions about barriers to daily SIC prediction on a
subseasonal scale.

1) The proposed NIIEE loss substantially optimizes the
predictability barrier/challenge, with a BACC increase of
4% before/after the barrier/challenge boundary, significantly
boosting the daily SIC prediction in the Arctic summer at
subseasonal scales.

2) Our data-driven model shows a predictability bar-
rier in predicting the Arctic SIC on a subseasonal scale,
defined as a late-spring-early-summer predictability barrier:
for the 90 days leading prediction, the prediction covering
July/August/September before the late June shows lower accu-
racy than after the late June; 20 June (with slight fluctuation)
is the boundary of the late-spring-early-summer predictability
barrier.

3) July 10 (with slight fluctuation) appears to be a chal-
lenging prediction date for summer predictions, with SIC
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Fig. 5. Autocorrelation of the SIC sequence from March to July with a 10-day
gap. The yellow rectangle marks the testing period for our model. The dashed
line marks the autocorrelation gap around the maximum decorrelation timing
with slight fluctuations.

predictions being less accurate after that date than those
before. No significant correlation exists between the challeng-
ing date and the prediction initialization date.

D. Mechanism That Leads to the BACC Pattern
of 90-Day SIC Predictions

The predictability of data-driven models in predicting SIC
lies in the autocorrelation between the historical and target
SIC [28]. To investigate the mechanism of the BACC pattern
in Fig. 4, we calculate the Pearson correlation coefficients of
the SIC sequence from March to July with a gap of 10 days.
As shown in Fig. 5, the vertical axis is the date from March
10 to June 28 in a gap of 10 days, and the horizontal axis is the
leading days. Using the element in the first row and the first
column as an example, 0.99 means the correlation coefficients
between the data of March 1–10 and March 11–20. Fig. 5
shows that the coefficients between the spring (March–June)
SIC and the summer (July–September) SIC are low. The
yellow rectangle in Fig. 5 marked the correlation matrix from
May 9 to June 28: the correlation coefficients of the last 30-day
decrease and then increase. The turning point is the row of
June 18, corresponding to the dates June 9–18. Therefore, the
prediction accuracy for July–September is improved after June
20, described in Section IV-C [Fig. 4(a)–(c)]. The low correla-
tion of the last 30 day also explains the low prediction accuracy
of mid-August–early-September, predicted 90 days in advance
between mid-May to early-June, as shown in Fig. 4(a). The
dashed line in Fig. 5 corresponds to the challenging prediction
date described in Section IV-C, around July 10. There is
a significant correlation coefficient gap before and after the
dashed line, which leads to the prediction challenge.

Therefore, from a data-driven perspective, the late-spring-
early-summer predictability barrier in the 90-day SIC predic-
tion is consistent with the autocorrelation of the SIC sequence.
The SIC from March to early-June shows a low correlation
with that of July–September, leading to a predictability barrier

Fig. 6. Spatial distribution of MAE in different models. The first/second/
third/fourth column is the MAE averaged by 0–90th/0–30th/30–60th/60–90th
days. (a)–(d) Climatology. (e)–(h) SICNet90_sic. (i)–(l) SICNet90_sic_anom.
(m)–(p) SICNet90_sic_anom_NIIEE.

for summer SIC in spring and early summer. The correlation
improved after the end of June, making June 20 (with slight
fluctuation), the boundary of the predictability barrier. In addi-
tion, a correlation gap around July 10 (with slight fluctuation),
marked by the dashed line in Fig. 5, leads to the prediction
challenge date.

E. Spatial Distribution of Prediction Error

Fig. 6 shows the spatial distribution of mean MAE
in different models: the first/second/third/fourth column
is the MAE averaged by 0–90th/0–30th/30–60th/60–90th
days in temporal of four testing years, and Fig. 6(a)–(d)
shows climatology, Fig. 6(e)–(h) shows SICNet90_sic,
Fig. 6(i)–(l) shows SICNet90_sic_anom, and Fig. 6(m)–(p)
shows SICNet90_sic_anom_NIIEE. The climatology model shows
the largest spatial MAE among the four models during all
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target periods. On the other hand, the spatial MAE of the
three data-driven models is much lower than that of the
climatology model. SICNet90_sic and SICNet90_sic_anom show
similar spatial patterns, and their main difference is the
MAE of 60–90th days: by adding SIC anomaly, the error is
reduced in the 60–90th days’ prediction [Fig. 6(h) and (l)].
This phenomenon is consistent with the temporal distribution
of MAE shown in Fig. 3(b). Compared with SICNet90_sic
and SICNet90_sic_anom, SICNet90_sic_anom_NIIEE shows obvious
improvements: the mean MAE of all 90 day is reduced in
spatial [Fig. 6(m)], and the mean MAE of 30–60th/60–90th
days is reduced more significantly than that of 0–30th
days. Therefore, the NIIEE loss function contributes to the
SIC prediction of long sequences. For the 60–90th days’
prediction, the NIIEE loss significantly reduces the MAE
for the Pacific sector and partially in the Atlantic sector
[Fig. 6(h), (l), and (p)]. Fig. 6(p) shows that the MAE in Fram
Strait is larger than that of other regions in the prediction
60–90th days, and the reason for this phenomenon needs to
be further explored.

F. Model’s Performance in Subseasonally Predicting
the SIE of September

As the Arctic has the minimum SIE of the year in Septem-
ber, we selected four typical days in September to evalu-
ate the model’s performance in predicting SIE 90 days in
advance. The first, second, and fourth days are September 1,
9, and 24. The third day is when the annual minimum SIE
appears, usually from September 16–18, such as September
17, 2012 and September 16, 2020. Climatology is adopted as
a benchmark. The SICNet90_sic_anom and SICNet90_sic_anom_NIIEE
are selected for comparison. All SIEs are predicted on the 90th
day. We define the SIE based on SIC with a 15% threshold
and calculate the BACC.

As shown in Fig. 7, the predicted SIE of the two data-driven
models is more consistent with the NSIDC SIE than that of the
climatology model. Compared with the climatology model, the
BACC of SICNet90_sic_anom is averagely improved by 5.06%,
and that of SICNet90_sic_anom_NIIEE is averagely improved by
7.84%. Compared with SICNet90_sic_anom, the NIIEE loss
brings an average BACC improvement of 2.78%. In particular,
the SICNet90_sic_anom_NIIEE shows significant advantages over
the other two models for 2012 and 2020, when SIE was
extremely small.

Fig. 7(c), (h), (k), and (o) shows the minimum SIE
in 2012/2018/2019/2020. Compared with the climatology
model, the BACC of SICNet90_sic_anom/SICNet90_sic_anom_NIIEE
is improved by an average of 6.73%/9.24%. Thus, the
two data-driven models show significant advantages over
the climatology model in predicting the minimum SIE
90 days in advance. Compared with the SICNet90_sic_anom, the
SICNet90_sic_anom_NIIEE brings an average BACC improvement
of 2.51%. For the extreme years 2012 and 2020, the BACC
improvements are 4.64% and 3.46%, respectively.

Overall, some conclusions can be drawn in predict-
ing the SIE of September 90 days in advance. The
SICNet90_sic_anom/SICNet90_sic_anom_NIIEE model outperforms

the climatology in predicting the September SIE, with an aver-
age BACC improvement of 5.06%/7.84%. For the prediction
of the minimum SIE, the BACC improvement brought by
SICNet90_sic_anom/SICNet90_sic_anom_NIIEE is 6.73%/9.24%. The
NIIEE loss brings an average BACC improvement of 2.78%
over the model without NIIEE loss. To be clear, the perfor-
mance of the two data-driven models fluctuated slightly in
2018. The SICNet90_sic_anom performed worse than climatology
on September 1, 2018. The SICNet90_sic_anom_NIIEE performed
worse than SICNet90_sic_anom on September 24, 2018. The
minimum SIE for September 2018 occurred on September 24,
a week later than the usual mid-September, causing fluctua-
tions in the two models. However, the SICNet90_sic_anom_NIIEE
still shows advantages over the climatology model.

V. DISCUSSION

A. How Long the Initialization Sequence Is Suitable for the
90-Day Prediction?

To investigate the optimal initialization sequence length for
the 90-day SIC prediction, we trained the model with historical
SIC and SIC anomaly sequences of 30, 60, and 90 days,
respectively. The length of the output SIC sequence is 90 days.
To ensure the predicted date of the three test periods starts
from May 1, the testing period of 30/90 days is 30 days
later/earlier than the 60 day. All compared models use the
hybrid loss function combined by NIIEE and MSE. The other
settings are unchanged.

Fig. 8(a) shows the BACC trend of 90 target days
averaged by all testing periods. The SICNet90_X30/
SICNet90_X60/SICNet90_X90 represents the model with
30/60/90-day historical SIC sequence as an input. The
climatology model is adopted as a benchmark. All three
SICNet90-based models outperform the climatology model
[Fig. 8(a) and (b)]. SICNet90_X30 and SICNet90_X90 perform
worse than SICNet90_X60. Especially when the prediction SIC
sequence exceeds 30 days, the model with 60 days as the
input shows more advantages over the other two models.
Taking a historical SIC sequence of 60 days as the input helps
predict SIC 30–90 leading days. The MAE trends in Fig. 8(b)
are similar to the BACC trends. We draw the BACC matrix
of SICNet90_X30/SICNet90_X90 and the BACC difference
between SICNet90_X60 and SICNet90_X30/SICNet90_X90
in Fig. 8(c)–(f). The pattern of the BACC matrix of
SICNet90_X30/SICNet90_X90 is similar to that of SICNet90_X60.
However, the BACC difference shows that SICNet90_X60
outperforms SICNet90_X30/SICNet90_X90 from May 1 to
July 2. The improvements after the challenging date (July 10)
are much larger than those before the challenging date.
For July, August, and September predictions, SICNet90_X60
performs better than the other two models. Thus, for the
90-day SIC prediction, initializing the data-driven model with
a 60-day historical SIC sequence is a suitable choice.

To explore the phenomenon’s mechanism, we calculate the
gradient-based saliency map of the SICNet90 with 30/60/90-
day SIC input. The gradient-based saliency map was originally
proposed to explain the mechanism of DL-based models for
image classification tasks. Given an input x and its corre-
sponding output y, the gradient value of x is calculated by
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Fig. 7. Predicted SIE of the 90th day in the four typical days of September. (a)–(d) 2012, (e)–(h) 2018, (i)–(l) 2019, and (m)–(p) 2020.

a single back-propagation to pass through y [58]. A large
gradient means that a small change in x causes a significant
change in y, which indicates that y is highly related to x .
The gradient-based saliency map has the same shape as the
model’s input. For predictions made from May 1 to July 2,
we calculate the gradient-based saliency map of each input

sequence and then average the gradient-based saliency map
in spatial. For example, the first row in Fig. 9(a) represents
the spatially averaged gradient-based saliency map of the input
SIC and its anomaly (corresponding to April 1 to April 30) for
prediction made on May 1 of all testing years. Fig. 9(a)–(c)
shows the gradient-based saliency map of the model with
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Fig. 8. BACC and MAE with 30/60/90-day SIC as model’s initialization. (a) and (b) Mean BACC and MAE of four testing years. (c) and (d) BACC matrix
with 30/90-day SIC as model’s initialization. (e) and (f) BACC of 60-day initialization minus BACC of 30/90-day initialization.

30/60/90-day historical SIC sequence as an input. The input
sequence includes SIC and its anomaly. As shown in Fig. 9, the
60-day input obtains large gradients from May 1 to mid-June,
much larger than those of 30/90-day input. This phenomenon
indicates that the 90-day lead SIC is more related to the 60-day
historical SIC than the 30/90-day historical SIC. Therefore,
SICNet90 performs best with the 60-day historical SIC as the
input.

B. How Do Typical Ocean and Atmospheric Factors Affect
the 90-Day SIC Prediction?

We explore how typical ocean and atmospheric factors affect
the 90-day SIC prediction. As stated in Section II, we selected
three typical oceanic and atmospheric factors, SAT, SST, and
500 GH. The preprocessing of three factors is described in
Section II. We stack a secondary branch to the SICNet90 to
fuse the SAT/SST/500 GH, as shown in Fig. 1(b). The encoder
and decoder of the secondary branch have the same structure
as those in the main branch [Fig. 1(a)]. The feature map output
by the secondary branch is fused to the backbone by a CNN
layer and obtains the final predictions. The SAT, SST, and
500 GH are input to the model separately to investigate the
effect of a single factor. The other settings are unchanged. The
anomaly of three factors is also input to the model. We try
30/60/90 days as the input length of SAT/SST/500 GH and

Fig. 9. Gradient-based saliency map of the SICNet90 with 30/60/90-day SIC
input during the testing period. The vertical axis is the testing date, from May 1
to July 2. The horizontal axis is the input length: the SIC and its anomaly.
(a) 30-day initialization. (b) 60-day initialization. (c) 90-day initialization.

find 60 days is the best choice (achieving the smallest MAE).
Another way to fuse the oceanic factor is stacking SIC and
SAT/SST/500 GH together and inputting all data to the main



4301315 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Fig. 10. BACC and MAE with SST/500GH/SAT as the model’s other input. (a) and (b) Mean BACC and MAE of four testing years. (c) BACC matrix only
with SIC and without SST/500GH/SAT as an input. (d)–(f) BACC difference of model with SST/500GH/SAT as another input and model only with SIC as
an input. The dashed line in (f) shows that the BACC decreases after mid-June.

branch in Fig. 1(a). We experimented and found our two
branches model was a good choice.

Fig. 10(a) and (b) shows the mean BACC and MAE of four
testing years with SAT/SST/500 GH as another input. The
SST and 500 GH show obvious negative contributions, with
higher/lower MAEs/BACCs covering all 90 target days. The
SAT shows both positive and negative contributions. During
the 15–40th days/55–90th days, the model with SAT achieves
a lower/higher MAE than the model with only SIC input.
Fig. 10(d)–(f) shows the BACC difference covering all testing
periods of the model with SST/500GH/SAT as another input
minus model only with SIC as the input. The SST and 500 GH
show negative contributions in almost all prediction periods.
The SAT shows positive contributions to the predictions made
before mid-June, marked by the dashed line in Fig. 10(f).
After mid-June, adding SAT reduces the BACC, especially the
55–90th days.

The effects of oceanic and atmospheric factors on sea ice
have been implied in the SIC sequence. The data-driven model
potentially captures these effects through the autocorrelation
of a long sequence of daily SIC. Therefore, explicitly adding
the oceanic and atmospheric factors does not improve the
prediction accuracy, especially for SST and 500 GH. This
find differs from the existing studies based on monthly mean
data [29], [46]. Explicitly adding the SAT brings positive

contributions before mid-June. SAT is more helpful than SST
and 500 GH for 90-day SIC prediction. The possible reason for
the negative contribution after mid-June is that the Arctic Sea
ice changes from declines to increase around mid-September.
The SAT is used to predict the mid-September 90 days in
advance are 90–150 days earlier (about mid-April to mid-
June), still melting the sea ice, leading to increased prediction
error. The model’s poor performance with SAT during 55–90th
days in Fig. 10(a) and (b) is mainly caused by the low
prediction accuracy after mid-June.

In summary, during the melting season, the 60-day historical
SST and 500 GH geopotential height negatively contribute
to the 90-day SIC prediction. The 60-day SAT shows posi-
tive/negative contributions to the prediction made before/after
mid-June. Therefore, if we make a 90-day SIC prediction from
May 1 to mid-June, we should take the SAT as an input. If we
make a 90-day SIC prediction after mid-June, we should not
use the SAT.

VI. CONCLUSION

This study proposes a data-driven model to predict the
daily SIC on a subseasonal scale of the Pan-Arctic during the
melting season named SICNet90. SICNet90 is an FCN-based
DL model. It takes in the historical 60-day SIC and SIC
anomaly and outputs the SIC of 90 lead days. We consider
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the spatial characteristic of the Pan-Arctic SIC to design a
physically constrained loss function NIIEE. The NIIEE mea-
sures numerical and spatial differences between the predicted
and the ground-truth SIC, which constrains the SICNet90’s
optimization by the spatial morphology of SIC.

Meanwhile, the NIIEE is a normalized value unrelated to
the SIC value, driving SICNet90 to fit the daily SIC of a
long sequence evenly. We use SIC data from NSIDC as the
experiment data and split the data from 2012 to 2018–2020
as the testing data. The MAE and BACC are employed
as evaluation metrics. The climatology model is used as a
benchmark. Comparison experiments are conducted to eval-
uate models’ performance and the effect of NIIEE loss. The
BACC pattern of all 90 leading days during the test period
(from1 May to July 2 of each test year) is analyzed. The
spatial distributions of prediction error are analyzed. Then,
we take the September as an example to evaluate the models’
performance in predicting the SIE 90 day in advance. Finally,
we explore how long the input SIC sequence is the best choice
for the 90-day SIC prediction. The effects of typical oceanic
and atmospheric factors, SAT, SST, and 500 GH, on the
90-day SIC prediction are discussed. Given the four issues
in Section I, our study draws the following answers.

1) Can the daily prediction of Arctic SIC be extended
to a subseasonal scale (exceeding 45–90 days)? The pro-
posed SICNet90 model effectively predicts daily SIC on a
subseasonal scale (90-day leading). The SICNet90 signifi-
cantly outperforms the climatology benchmark on 90-day
SIC prediction, with a BACC/MAE improvement/reduction
of 5.41%/1.35%. The SIC anomaly is slightly helpful in
90-day SIC prediction. The proposed physically constrained
loss of NIIEE contributes to the 90-day SIC prediction,
improving/reducing the BACC/MAE by 1.18%/0.26% than
the model without NIIEE loss. The improvement of the last
45 days brought by NIIEE is three times that of the first
45 days. In predicting the daily SIE in September 90 days in
advance, the SICNet90 shows powerful ability with an average
BACC improvement of 7.84% over the climatology, and the
NIIEE loss brings an average BACC improvement of 2.78%
over the model without NIIEE loss.

2) Is there a barrier to the daily prediction of the Arctic
summer SIC? Our data-driven model shows a predictability
barrier in predicting the daily SIC on a subseasonal scale,
defined as a late-spring-early-summer predictability barrier:
for the 90-day leading prediction, the prediction covering
July/August/September before late June shows lower accuracy
than after late June 20. June 20 (with slight fluctuation) is
the boundary of the late-spring-early-summer predictability
barrier, and the prediction for July–September made after that
date is more accurate than those made before that date. July 10
(with slight fluctuation) appears to be a challenging prediction
date for summer predictions, with SIC predictions after that
date being less accurate than those before. The challenging
prediction date reflects the boundary of “summer sea ice”
defined in the spring predictability barrier. No significant cor-
relation was observed between the challenging prediction date
and the prediction initialization date. The late-spring-early-
summer predictability barrier and the prediction challenge are

consistent with the autocorrelation of the SIC sequence. The
proposed NIIEE loss substantially optimizes the predictability
barrier/challenge, with an increase of BACC of about 4%
before/after the barrier/challenge boundary, which significantly
boosts the daily SIC prediction in the Arctic summer at
subseasonal scales.

3) What is the optimal length of historical SIC sequence for
a 90-day SIC prediction? From the data-driven perspective,
the autocorrelation between the historical SIC sequence and
the target SIC plays the most important role in 90-day SIC
prediction. For example, initializing our data-driven model
with a 60-day historical SIC sequence performs better than
a 30-day or 90-day historical SIC sequence. Therefore, the
60 day is an optimal historical SIC length for a 90-day lead
SIC prediction.

4) How do the typical oceanic and atmospheric factors
influence the daily prediction of Arctic SIC on the subseasonal
scale? For the 90-day SIC prediction, the 60-day historical SST
and 500 GH show negative contributions. The 60-day SAT
shows positive contributions to the prediction made before
mid-June, but negative contributions to the prediction made
after mid-June. The possible reason is that the initial SAT
is 90–150 days earlier, which brings the noise for the state
transition of sea ice (from melting to freezing). Therefore,
if we predict a 90-day SIC prediction from May 1 to mid-
June, we should take the SAT as a model’s input, and if we
predict mid-June to early July, we should not consider the
SAT.

ACKNOWLEDGMENT

The sea ice concentration data are downloaded from
the National Snow and Ice Data Center (https://nsidc.org/
data/NSIDC-0051/versions/1). The sea surface temperature
data are obtained from National Ocean and Atmospheric
Administration (NOAA) OI SST V2 High-Resolution Dataset
data provided by the NOAA PSL, Boulder, CO, USA, from
their website at https://psl.noaa.gov. The 2-m surface air
temperature and 500-hPa geopotential height data are down-
loaded from the European Centre for Medium-Range Weather
Forecasts (https://cds.climate.copernicus.eu).

REFERENCES

[1] C. L. Parkinson, “A 40-y record reveals gradual Antarctic sea ice
increases followed by decreases at rates far exceeding the rates
seen in the Arctic,” Proc. Nat. Acad. Sci. USA, vol. 116, no. 29,
pp. 14414–14423, Jul. 2019, doi: 10.1073/pnas.1906556116.

[2] D. Olonscheck, T. Mauritsen, and D. Notz, “Arctic sea-ice vari-
ability is primarily driven by atmospheric temperature fluctua-
tions,” Nature Geosci., vol. 12, no. 6, pp. 430–434, Jun. 2019,
doi: 10.1038/s41561-019-0363-1.

[3] Q. Shu et al. (2022). Arctic Ocean Amplification in a Warming Climate
in CMIP6 Models. [Online]. Available: https://www.science.org

[4] X. Liang et al., “A comparison of factors that led to the
extreme sea ice minima in the twenty-first century in the Arc-
tic ocean,” J. Climate, vol. 35, no. 4, pp. 1249–1265, Feb. 2022,
doi: 10.1175/JCLI-D-21-0199.1.

[5] L. Zhou, S. Xu, J. Liu, and B. Wang, “On the retrieval of sea ice thick-
ness and snow depth using concurrent laser altimetry and L-band remote
sensing data,” Cryosphere, vol. 12, no. 3, pp. 993–1012, Mar. 2018, doi:
10.5194/tc-12-993-2018.

[6] N. Melia, K. Haines, and E. Hawkins, “Sea ice decline and 21st century
trans-Arctic shipping routes,” Geophys. Res. Lett., vol. 43, no. 18,
pp. 9720–9728, Sep. 2016, doi: 10.1002/2016GL069315.

http://dx.doi.org/10.1073/pnas.1906556116
http://dx.doi.org/10.1038/s41561-019-0363-1
http://dx.doi.org/10.1175/JCLI-D-21-0199.1
http://dx.doi.org/10.5194/tc-12-993-2018
http://dx.doi.org/10.1002/2016GL069315


4301315 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

[7] C. Min et al., “The emerging Arctic shipping corridors,” Geophys. Res.
Lett., vol. 49, no. 10, May 2022, doi: 10.1029/2022GL099157.

[8] Y. Cao et al., “Trans-Arctic shipping routes expanding faster
than the model projections,” Global Environ. Change, vol. 73,
Mar. 2022, Art. no. 102488, doi: 10.1016/j.gloenvcha.2022.
102488.

[9] L. Zampieri, H. F. Goessling, and T. Jung, “Bright prospects for Arctic
sea ice prediction on subseasonal time scales,” Geophys. Res. Lett.,
vol. 45, no. 18, pp. 9731–9738, Sep. 2018, doi: 10.1029/2018GL079394.

[10] Q. Yang et al., “Improving Arctic sea ice seasonal outlook by ensemble
prediction using an ice-ocean model,” Atmos. Res., vol. 227, pp. 14–23,
Oct. 2019, doi: 10.1016/j.atmosres.2019.04.021.

[11] V. Guemas et al., “A review on Arctic sea-ice predictability and pre-
diction on seasonal to decadal time-scales: Arctic sea-ice predictability
and prediction,” Quart. J. Roy. Meteorological Soc., vol. 142, no. 695,
pp. 546–561, Jan. 2016, doi: 10.1002/qj.2401.

[12] Y. Lin et al., “Community integrated earth system model (CIESM):
Description and evaluation,” J. Adv. Model. Earth Syst., vol. 12,
no. 8, Aug. 2020, Art. no. e2019MS002036, doi: 10.1029/
2019MS002036.

[13] Q. Yang et al., “Assimilating SMOS sea ice thickness into a
coupled ice-ocean model using a local SEIK filter,” J. Geophys.
Res., Oceans, vol. 119, no. 10, pp. 6680–6692, Oct. 2014, doi:
10.1002/2014JC009963.

[14] D. A. Hebert et al., “Short-term sea ice forecasting: An assessment of
ice concentration and ice drift forecasts using the U.S. Navy’s Arctic cap
nowcast/forecast system,” J. Geophys. Res., Oceans, vol. 120, no. 12,
pp. 8327–8345, Dec. 2015, doi: 10.1002/2015JC011283.

[15] L. Mu, X. Liang, Q. Yang, J. Liu, and F. Zheng, “Arctic ice ocean
prediction system: Evaluating sea-ice forecasts during Xuelong’s first
trans-Arctic passage in summer 2017,” J. Glaciol., vol. 65, no. 253,
pp. 813–821, Oct. 2019, doi: 10.1017/jog.2019.55.

[16] R. Kim, L. B. Tremblay, C. Brunette, and R. Newton, “A regional
seasonal forecast model of Arctic minimum sea ice extent: Reflected
solar radiation versus late winter coastal divergence,” J. Climate, vol. 34,
no. 15, pp. 6097–6113, Aug. 2021, doi: 10.1175/JCLI-D-20-0846.1.

[17] G. C. Smith et al., “Sea ice forecast verification in the Canadian
global ice ocean prediction system,” Quart. J. Roy. Meteorological Soc.,
vol. 142, no. 695, pp. 659–671, Jan. 2016, doi: 10.1002/qj.2555.

[18] J. Lemieux et al., “The regional ice prediction system (RIPS): Verifi-
cation of forecast sea ice concentration,” Quart. J. Roy. Meteorological
Soc., vol. 142, no. 695, pp. 632–643, Jan. 2016, doi: 10.1002/qj.2526.

[19] X. Liang, F. Zhao, C. Li, L. Zhang, and B. Li, “Evaluation of ArcIOPS
sea ice forecasting products during the ninth CHINARE-Arctic in
summer 2018,” Adv. Polar Sci., vol. 31, no. 1, pp. 14–25, 2020, doi:
10.13679/j.advps.2019.0019.

[20] Z. Chen, J. Liu, M. Song, Q. Yang, and S. Xu, “Impacts of assimilating
satellite sea ice concentration and thickness on Arctic sea ice prediction
in the NCEP climate forecast system,” J. Climate, vol. 30, no. 21,
pp. 8429–8446, Nov. 2017, doi: 10.1175/JCLI-D-17-0093.1.

[21] J. Zhang, M. Steele, R. Lindsay, A. Schweiger, and J. Morison, “Ensem-
ble 1-year predictions of Arctic sea ice for the spring and summer of
2008,” Geophys. Res. Lett., vol. 35, no. 8, pp. 1–5, Apr. 2008, doi:
10.1029/2008GL033244.

[22] M. Sigmond, J. C. Fyfe, G. M. Flato, V. V. Kharin, and W. J. Merryfield,
“Seasonal forecast skill of Arctic sea ice area in a dynamical forecast
system,” Geophys. Res. Lett., vol. 40, no. 3, pp. 529–534, Feb. 2013,
doi: 10.1002/grl.50129.

[23] M. Sigmond, M. C. Reader, G. M. Flato, W. J. Merryfield, and A. Tivy,
“Skillful seasonal forecasts of Arctic sea ice retreat and advance dates
in a dynamical forecast system,” Geophys. Res. Lett., vol. 43, no. 24,
p. 12, Dec. 2016, doi: 10.1002/2016GL071396.

[24] W. Wang, M. Chen, and A. Kumar, “Seasonal prediction of Arc-
tic sea ice extent from a coupled dynamical forecast system,”
Monthly Weather Rev., vol. 141, no. 4, pp. 1375–1394, Apr. 2013,
doi: 10.1175/MWR-D-12-00057.1.

[25] W. J. Merryfield, W.-S. Lee, W. Wang, M. Chen, and A. Kumar, “Multi-
system seasonal predictions of Arctic sea ice,” Geophys. Res. Lett.,
vol. 40, no. 8, pp. 1551–1556, Apr. 2013, doi: 10.1002/grl.50317.

[26] C. Yang, J. Liu, and S. Xu, “Seasonal Arctic sea ice prediction using a
newly developed fully coupled regional model with the assimilation of
satellite sea ice observations,” J. Adv. Model. Earth Syst., vol. 12, no. 5,
May 2020, Art. no. e2019MS001938, doi: 10.1029/2019MS001938.

[27] R. W. Lindsay, J. Zhang, A. J. Schweiger, and M. A. Steele, “Seasonal
predictions of ice extent in the Arctic ocean,” J. Geophys. Res., vol. 113,
no. C2, pp. 1–11, Feb. 2008, doi: 10.1029/2007JC004259.

[28] L. Wang, X. Yuan, M. Ting, and C. Li, “Predicting summer Arctic sea
ice concentration intraseasonal variability using a vector autoregressive
model,” J. Climate, vol. 29, no. 4, pp. 1529–1543, Feb. 2016, doi:
10.1175/JCLI-D-15-0313.1.

[29] X. Yuan, D. Chen, C. Li, L. Wang, and W. Wang, “Arctic sea ice
seasonal prediction by a linear Markov model,” J. Climate, vol. 29,
no. 22, pp. 8151–8173, Nov. 2016, doi: 10.1175/jcli-d-15-0858.1.

[30] L. Wang, X. Yuan, and C. Li, “Subseasonal forecast of Arctic sea ice
concentration via statistical approaches,” Climate Dyn., vol. 52, nos. 7–8,
pp. 4953–4971, Apr. 2019, doi: 10.1007/s00382-018-4426-6.

[31] Y. Wang et al., “Reassessing seasonal sea ice predictability of the
Pacific-Arctic sector using a Markov model,” Cryosphere, vol. 16, no. 3,
pp. 1141–1156, Apr. 2022, doi: 10.5194/tc-16-1141-2022.

[32] M. Reichstein et al., “Deep learning and process understanding for data-
driven earth system science,” Nature, vol. 566, no. 7743, pp. 195–204,
Feb. 2019, doi: 10.1038/s41586-019-0912-1.

[33] X. Li et al., “Deep-learning-based information mining from ocean
remote-sensing imagery,” Nat. Sci. Rev., vol. 7, no. 10, pp. 1584–1605,
Oct. 2020, doi: 10.1093/NSR/NWAA047.

[34] G. Zheng, X. Li, R.-H. Zhang, and B. Liu, “Purely satellite data–
driven deep learning forecast of complicated tropical instability
waves,” Sci. Adv., vol. 6, no. 29, Jul. 2020, doi: 10.1126/sciadv.
aba1482.

[35] Y. Ren, X. Li, X. Yang, and H. Xu, “Development of a dual-
attention U-Net model for sea ice and open water classification on SAR
images,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022, doi:
10.1109/LGRS.2021.3058049.

[36] Y. Liu, Q. Zheng, and X. Li, “Characteristics of global ocean abnormal
mesoscale eddies derived from the fusion of sea surface height and
temperature data by deep learning,” Geophys. Res. Lett., vol. 48, no. 17,
Sep. 2021, doi: 10.1029/2021GL094772.

[37] X. Zhang et al., “Oceanic internal wave amplitude retrieval from
satellite images based on a data-driven transfer learning model,”
Remote Sens. Environ., vol. 272, Apr. 2022, Art. no. 112940, doi:
10.1016/j.rse.2022.112940.

[38] B. Huang et al., “Nonlocal graph theory based transductive learning
for hyperspectral image classification,” Pattern Recognit., vol. 116,
Aug. 2021, Art. no. 107967.

[39] B. Huang, L. Ge, X. Chen, and G. Chen, “Vertical structure-based
classification of oceanic eddy using 3-D convolutional neural network,”
IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–14, 2021.

[40] X. Zhang and X. Li, “Satellite data-driven and knowledge-informed
machine learning model for estimating global internal solitary wave
speed,” Remote Sens. Environ., vol. 283, Dec. 2022, Art. no. 113328.

[41] Y. Guo, L. Gao, and X. Li, “A deep learning model for green algae
detection on SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 60,
2022, Art. no. 4210914.

[42] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015, doi: 10.1038/nature14539.

[43] Z. I. Petrou and Y. Tian, “Prediction of sea ice motion with con-
volutional long short-term memory networks,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 9, pp. 6865–6876, Sep. 2019, doi:
10.1109/TGRS.2019.2909057.

[44] J. Chi and H.-C. Kim, “Prediction of Arctic sea ice concentration using
a fully data driven deep neural network,” Remote Sens., vol. 9, no. 12,
p. 1305, Dec. 2017, doi: 10.3390/rs9121305.

[45] J. Kim, K. Kim, J. Cho, Y. Kang, H.-J. Yoon, and Y.-W. Lee, “Satellite-
based prediction of Arctic sea ice concentration using a deep neural
network with multi-model ensemble,” Remote Sens., vol. 11, no. 1, p. 19,
Dec. 2018, doi: 10.3390/rs11010019.

[46] Y. J. Kim, H.-C. Kim, D. Han, S. Lee, and J. Im, “Prediction of
monthly Arctic sea ice concentrations using satellite and reanalysis data
based on convolutional neural networks,” Cryosphere, vol. 14, no. 3,
pp. 1083–1104, p. 5124, Mar. 2020, doi: 10.5194/tc-14-1083-2020.

[47] T. R. Andersson et al., “Seasonal Arctic sea ice forecasting with
probabilistic deep learning,” Nature Commun., vol. 12, no. 1, Aug. 2021,
doi: 10.1038/s41467-021-25257-4.

[48] Y. Ren, X. Li, and W. Zhang, “A data-driven deep learning
model for weekly sea ice concentration prediction of the pan-
Arctic during the melting season,” IEEE Trans. Geosci. Remote
Sens., vol. 60, 2022, Art. no. 4304819, doi: 10.1109/TGRS.2022.
3177600.

http://dx.doi.org/10.1029/2022GL099157
http://dx.doi.org/10.1016/j.gloenvcha.2022.102488
http://dx.doi.org/10.1016/j.gloenvcha.2022.102488
http://dx.doi.org/10.1016/j.gloenvcha.2022.102488
http://dx.doi.org/10.1029/2018GL079394
http://dx.doi.org/10.1016/j.atmosres.2019.04.021
http://dx.doi.org/10.1002/qj.2401
http://dx.doi.org/10.1029/2019MS002036
http://dx.doi.org/10.1029/2019MS002036
http://dx.doi.org/10.1029/2019MS002036
http://dx.doi.org/10.1002/2014JC009963
http://dx.doi.org/10.1002/2015JC011283
http://dx.doi.org/10.1017/jog.2019.55
http://dx.doi.org/10.1175/JCLI-D-20-0846.1
http://dx.doi.org/10.1002/qj.2555
http://dx.doi.org/10.1002/qj.2526
http://dx.doi.org/10.13679/j.advps.2019.0019
http://dx.doi.org/10.1175/JCLI-D-17-0093.1
http://dx.doi.org/10.1029/2008GL033244
http://dx.doi.org/10.1002/grl.50129
http://dx.doi.org/10.1002/2016GL071396
http://dx.doi.org/10.1175/MWR-D-12-00057.1
http://dx.doi.org/10.1002/grl.50317
http://dx.doi.org/10.1029/2019MS001938
http://dx.doi.org/10.1029/2007JC004259
http://dx.doi.org/10.1175/JCLI-D-15-0313.1
http://dx.doi.org/10.1175/jcli-d-15-0858.1
http://dx.doi.org/10.1007/s00382-018-4426-6
http://dx.doi.org/10.5194/tc-16-1141-2022
http://dx.doi.org/10.1038/s41586-019-0912-1
http://dx.doi.org/10.1093/NSR/NWAA047
http://dx.doi.org/10.1126/sciadv.aba1482
http://dx.doi.org/10.1126/sciadv.aba1482
http://dx.doi.org/10.1126/sciadv.aba1482
http://dx.doi.org/10.1109/LGRS.2021.3058049
http://dx.doi.org/10.1029/2021GL094772
http://dx.doi.org/10.1016/j.rse.2022.112940
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/TGRS.2019.2909057
http://dx.doi.org/10.3390/rs9121305
http://dx.doi.org/10.3390/rs11010019
http://dx.doi.org/10.5194/tc-14-1083-2020
http://dx.doi.org/10.1038/s41467-021-25257-4
http://dx.doi.org/10.1109/TGRS.2022.3177600
http://dx.doi.org/10.1109/TGRS.2022.3177600
http://dx.doi.org/10.1109/TGRS.2022.3177600


REN AND LI: PREDICTING THE DAILY SIC ON A SUBSEASONAL SCALE OF THE PAN-ARCTIC 4301315

[49] D. B. Bonan, M. Bushuk, and M. Winton, “A spring barrier
for regional predictions of summer Arctic sea ice,” Geophys. Res.
Lett., vol. 46, no. 11, pp. 5937–5947, Jun. 2019, doi: 10.1029/
2019GL082947.

[50] M. Bushuk, M. Winton, D. B. Bonan, E. Blanchard-Wrigglesworth,
and T. L. Delworth, “A mechanism for the Arctic sea ice spring
predictability barrier,” Geophys. Res. Lett., vol. 47, no. 13, Jul. 2020,
Art. no. e2020GL088335, doi: 10.1029/2020GL088335.

[51] M.-L. Kapsch, R. G. Graversen, T. Economou, and M. Tjern-
ström, “The importance of spring atmospheric conditions for pre-
dictions of the Arctic summer sea ice extent,” Geophys. Res.
Lett., vol. 41, no. 14, pp. 5288–5296, Jul. 2014, doi: 10.1002/
2014GL060826.

[52] E. Blanchard-Wrigglesworth, K. C. Armour, C. M. Bitz, and
E. DeWeaver, “Persistence and inherent predictability of Arctic sea ice
in a GCM ensemble and observations,” J. Climate, vol. 24, no. 1,
pp. 231–250, Jan. 2011, doi: 10.1175/2010JCLI3775.1.

[53] J. J. Day, S. Tietsche, and E. Hawkins, “Pan-Arctic and regional
sea ice predictability: Initialization month dependence,” J. Cli-
mate, vol. 27, no. 12, pp. 4371–4390, Jun. 2014, doi: 10.1175/
JCLI-D-13-00614.1.

[54] D. J. Cavalieri, C. L. Parkinson, P. Gloersen, and H. J. Zwally,
“Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-
SSMIS passive microwave data, version 1,” NASA Nat. Snow Ice
Data Center Distrib. Act. Arch. Center, Boulder, CO, USA, 1996, doi:
10.5067/8GQ8LZQVL0VL.

[55] H. Hersbach et al., “The ERA5 global reanalysis,” Quart.
J. Roy. Meteorol. Soc., vol. 146, no. 730, pp. 1999–2049,
May 2020.

[56] R. W. Reynolds, T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey,
and M. G. Schlax, “Daily high-resolution-blended analyses for sea
surface temperature,” J. Climate, vol. 20, no. 22, pp. 5473–5496,
Nov. 2007.

[57] H. F. Goessling, S. Tietsche, J. J. Day, E. Hawkins, and T. Jung,
“Predictability of the Arctic sea ice edge,” Geophys. Res. Lett., vol. 43,
no. 4, pp. 1642–1650, Feb. 2016, doi: 10.1002/2015GL067232.

[58] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
2013, arXiv:1312.6034.

Yibin Ren (Member, IEEE) received the B.S.
degree in geographical information science from the
Shandong University of Science and Technology,
Qingdao, China, in 2012, the M.S. degree in car-
tography and geography information system from
the Nanjing University, Nanjing, China, in 2015, and
the joint Ph.D. degree in cartography and geography
information system from the Ocean University of
China, Qingdao, and the University College London,
London, U.K., in 2019.

He joined the Institute of Oceanology, Chinese
Academy of Sciences, in 2019, and he is currently an Assistant Researcher.
His research interests include satellite oceanography, ocean big data mining,
and sea ice prediction based on deep learning methods.

Xiaofeng Li (Fellow, IEEE) received the B.S.
degree in optical engineering from Zhejiang Uni-
versity, Hangzhou, China, in 1985, the M.S. degree
in physical oceanography from the First Institute
of Oceanography, Qingdao, China, in 1992, and
the Ph.D. degree in physical oceanography from
North Carolina State University, Raleigh, NC, USA,
in 1997.

He was with the National Ocean and Atmospheric
Administration (NOAA), Washington, DC, USA,
from 1997 to 2019, where he was responsible for the

development of various operational satellite ocean remote sensing products.
He is currently with the Institute of Oceanology, Chinese Academy of
Sciences, Qingdao. His research interests include satellite oceanography,
artificial intelligent oceanography, big data, and image processing.

Dr. Li is a member of the Editorial Board of the International Journal
of Digital Earth, Big Earth Data, and the Journal of Oceanology and
Limnology. He serves as an Associate Editor for the IEEE TRANSACTIONS
ON GEOSCIENCE AND REMOTE SENSING and the International Journal of
Remote Sensing and the Executive Editor-in-Chief for the Journal of Remote
Sensing.

http://dx.doi.org/10.1029/2019GL082947
http://dx.doi.org/10.1029/2019GL082947
http://dx.doi.org/10.1029/2019GL082947
http://dx.doi.org/10.1029/2020GL088335
http://dx.doi.org/10.1002/2014GL060826
http://dx.doi.org/10.1002/2014GL060826
http://dx.doi.org/10.1002/2014GL060826
http://dx.doi.org/10.1175/2010JCLI3775.1
http://dx.doi.org/10.1175/JCLI-D-13-00614.1
http://dx.doi.org/10.1175/JCLI-D-13-00614.1
http://dx.doi.org/10.1175/JCLI-D-13-00614.1
http://dx.doi.org/10.5067/8GQ8LZQVL0VL
http://dx.doi.org/10.1002/2015GL067232

