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Maritime Ship Target Imaging With GNSS-Based
Passive Multistatic Radar

Zhenyu He , Wu Chen , Yang Yang, Duojie Weng, and Ning Cao

Abstract— In the field of maritime surveillance, the global nav-
igation satellite system (GNSS)-based passive radar has proven
its potential for moving target detection (MTD), localization,
and velocity estimation. The next stage is to investigate the
possibility of obtaining the radar image of the moving ship for
target recognition. However, the limited signal power budget of
GNSS prevents the conventional inverse synthetic aperture radar
technique that is based on target rotational motion and short
observation time for GNSS-based passive radar imaging moving
target. In this article, a two-stage imaging processing method
relying on the target translational motion over a long observation
time is proposed. The first stage confirms the presence of the
target by a long-time MTD processing technique. In the second
stage, based on the analysis of the Doppler history of the target
signal in the slow-time domain, short-time Fourier transform and
modified random sample consensus are combined to robustly
estimate target velocity with reduced computation complexity.
To obtain the focused bistatic image, azimuth compression
is conducted by using the estimated target velocity. Finally,
an image fusion operation is implemented to combine the bistatic
images achievable from multiple satellites so that a multistatic
image with high quality can be created. The effectiveness of the
proposed method is confirmed by the real experimental results
of three cargo ships illuminated by several satellites.

Index Terms— Global navigation satellite system (GNSS)-based
passive radar, image fusion, maritime surveillance, passive radar
imaging, target velocity estimation.

I. INTRODUCTION

S INCE the early 1990s, the signals of the global navi-
gation satellite system (GNSS) reflected off the Earth’s

surface has been exploited to retrieve the geophysical and
geometrical parameters of the sensed scene. This novel tech-
nology is the distinguished GNSS-Reflectometry (GNSS-R).
Plenty of remote sensing applications based on GNSS-R have
been developed, such as ocean altimetry [1], wind speed
inversion [2], soil moisture retrieval [3], and deformation
monitoring [4].

In recent years, the use of Earth-reflected GNSS signals for
land or sea target detection has been investigated. However,
due to the strong clutter and ambiguous target geolocation
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in the delay-Doppler map, the conventional GNSS-R with
a forward-scattering configuration is unsuitable for such an
application [5], [6]. A backscattering configuration is a mea-
surement geometry preferable to the forward scattering config-
uration [5]. From a radar perspective, a system receiving the
backscattered GNSS signals can be considered a GNSS-based
passive radar system. As a passive radar system, it has some
inherent virtues of low-cost, license-free, security, and no
electromagnetic pollution, which provides a good complement
to active radar systems. With the development of wireless
communication technology, many terrestrial radio sources are
employed as illuminators of opportunity for passive radars,
such as digital video broadcasting-terrestrial (DVB-T), fre-
quency modulated broadcasting, and Wi-Fi. Compared with
terrestrial passive radars, GNSS-based passive radar has the
advantage of persistent signal coverage over the world, partic-
ularly, in the coastal areas, open seas, and pole regions, thanks
to the large constellations in space (global positioning system
(GPS), GLONASS, Galileo, and Beidou). Moreover, the GNSS
signals typically operate in the microwave region (L-band),
which can easily penetrate clouds and fog. Therefore, com-
pared with the conventional optical or infrared space-based
sensors, GNSS-based passive radar is capable of working all
day and all weather.

Due to the abovementioned advantages, GNSS-based pas-
sive radar has attracted substantial attention from the radar
research community. A series of relevant studies have been
made over the last few years. One of the well-known GNSS-
based passive radar techniques is the passive synthetic aperture
radar (SAR), which concentrates on static objects on land,
aiming to yield local area monitoring [7], [8], [9]. Mov-
ing to dynamic objects, in recent years, the application of
maritime surveillance is a research hotspot. Two proof-of-
concept studies for maritime moving target detection (MTD)
were implemented in [10] and [11]. Nevertheless, the main
weakness of GNSS-based passive radar is the low signal power
budget, restricting the radar’s operational range. To address
such an issue, some long-time integration techniques have
been proposed for detection purposes [12], [13], [14], [15].
Because the technology of code (or frequency) division mul-
tiple access is applied in GNSS, an individual receiver (Rx)
can separate the GNSS signals coming from different satellites.
Noticeably, GNSS-based passive radar belongs to a multistatic
radar in nature, enabling target location and velocity estima-
tion. Relevant works can be referred to [16], [17], [18], [19],
and [20].

The next step is to investigate the possibility of obtaining
the radar images of the detected targets, which would bring an
additional benefit, allowing target classification. For example,
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the obtained images enable us to estimate the length of the
ships and identify their characteristic features when different
types of ships pass through the surveyed area. The inverse
SAR (ISAR) technique applied in the active radar systems
can be modified for the passive radar systems to realize
moving target imaging. Some contributions to the ISAR
images can be found concerning the exploitation of third-party
illuminators [21], [22], [23], [24], [25], [26]. The capabilities
of imaging naval and aerial targets by using DVB-T/DVB-
satellite (DVB-S) signals have been shown in [21] and [22].
The experimental results of ground target imaging by using
GSM and Wi-Fi transmissions have been reported in [23]
and [24], respectively. For coastal surveillance, geostationary
telecommunication satellites [25] and hitchhiking on the coop-
erative coastal radar [26] have been put forward to produce
passive ISAR images, respectively. However, in the field of
GNSS-based passive radar, a few studies have been presented
to tackle the imaging issue of the moving target. Some
preliminary experimental results of large-size ship imaging
have been reported in [27] and [28]. Then, in [29], a proper
processing chain to achieve the images has been developed.
It can focus the energy of target signals in the bistatic range
and Doppler domain to obtain the ship image. A mathematical
framework is defined to map the bistatic range and Doppler
domain into the equivalent monostatic range and cross-range
domain for the interpretation of the image products. During the
imaging processing, the proposed technique in [29] requires
some accurate kinematic parameters of the ship target, such
as the Doppler rate and the angle of the direction of arrival,
retrieved by the stages of target detection and location. How-
ever, these parameters are usually achieved through a search
process that is characterized by a heavy computational cost.
Furthermore, most proposed algorithms of target detection and
location assume that the ship behaves from an electromagnetic
point of view as a point-like target whose reflection position
is located at the “center of gravity” of the ship. On the
contrary, in the real scenario, the reflection position on the
target changing with the illumination and scattering angles
may be randomly distributed within the target size during
the observation time [17], [19], which would degrade the
estimation accuracy of these kinematic parameters.

To image the moving target, the conventional ISAR tech-
nique uses the fast Fourier transform (FFT) in the azimuth
direction for azimuth compression, which is valid for targets
with pure rotational motion over a short observation time.
However, due to the low signal power budget of GNSS signal,
the limitation of the observation time is in contrast with
the long aperture time needed by GNSS-based passive radar.
On the other hand, the restricted signal power budget enables
the major use of GNSS-based passive radar mostly suitable
for short-range surveillance scenes, such as coastal areas and
river channels, where the ship target moves with a translational
motion and negligible rotational motion (i.e., low sea state
conditions) [25]. Therefore, in these short-range application
scenes, it is of interest to obtain the passive ISAR image
relying on the translational motion over the long observation
time, particularly, when the trajectory of the moving ship
crosses the line of sight (LOS) of the radar antenna.

This article is dedicated to the use of the GNSS signals for
ship target imaging by resorting to the SAR technique because
the ship translational motion is equivalent to the stationary
Rx moving along the opposite direction with the same speed,
similar to in strip-map SAR. Conventional GNSS-SAR algo-
rithms [30], [31], [32], [33] have the knowledge of the radar
platform velocity and then implement azimuth compression to
fulfill imaging processing. However, in our case, the moving
ship is a noncooperative target whose velocity is unknown.
Hence, before azimuth compression, the target velocity must
be estimated through the Doppler history of the target signal.
In [34], motivated by the back-projection algorithm (BPA)
commonly used in the field of GNSS-SAR, a moving target
imaging method is proposed, in which the target signal energy
focused in the bistatic range and Doppler domain is projected
into the local Cartesian plane by searching the target velocity.
However, like BPA, the projection process in [34] is performed
at the expense of a high computational cost. In this article,
to efficiently obtain the focused image, a two-stage imaging
method is proposed. In the first stage, a long-time MTD
processing technique is performed to determine the existence
of the target in a range-Doppler (RD) map. In the second stage,
a bistatic acquisition geometry of the imaging scene is first
defined to analyze the Doppler history of the target signal with
respect to the slow time. Then, based on the Doppler history of
the target signal, short-time Fourier transform (STFT) [35] and
random sample consensus (RANSAC) [36] are combined to
estimate target velocity with reduced computation complexity
and robust estimation errors. Finally, the azimuth-matched
filter is designed by using the estimated target velocity to
accomplish azimuth compression in the frequency domain.
In our previous work [37], the preliminary images of ship
targets were achieved via real experimental data. However,
the inherent multistatic nature of GNSS-based passive radar is
not taken into account, which can enrich image information
from various illumination angles. Therefore, in this article,
an image fusion operation is conducted to combine the bistatic
images from multiple baselines, obtaining a multistatic image
with enhanced quality. The proposed imaging method is tested
against the experimental data, including several GPS satellites
and three cargo ships with different lengths and speeds.
The collected results validate the accuracy and robustness
of the proposed target velocity estimation method and show
that the multistatic image can improve the estimation accuracy
of ship length.

This article is organized as follows. Section II describes
GNSS-based passive radar detecting the moving target in
the short-range surveillance scene. On this basis, Section III
presents the processing procedure of velocity estimation and
imaging formation. The field trial results are reported in
Section IV. Finally, a conclusion is drawn in Section V.

II. LONG-TIME MTD PROCESSING

In this section, the 1-D GNSS signal model is first described.
Then, the 2-D radar data formats of both the direct signal
and the target signal are given, convenient for the radar signal
processing. Finally, the long-time MTD processing technique
is presented for the short-range surveillance scene.
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Fig. 1. System concept of GNSS-based passive radar for MTD.

A. Signal Model

Typically, the GNSS signal can be regarded as the product
of three time waveforms [38]: the pseudorandom noise (PRN)
code, the navigation code, and the radio frequency (RF) carrier.
Taking the GPS L1 signal, for example, the simplified emitted
signal can be expressed as

SL1(t) = C(t)× D(t)× cos(2π fct + ϕini) (1)

where C(·) is the PRN code sequence whose duration is 1 ms
with a chip rate of 1.023 MHz, D(·) is the navigation code,
fc is the central carrier frequency, and ϕini is the initial carrier
phase.

Due to the noncooperative nature of the waveform of
opportunity, the direct signal is usually employed as the
local reference signal for the target signal compression in the
passive radar system. Therefore, as shown in Fig. 1, the Rx
has a pair of RF channels, comprising the reference channel
(RC) and the surveillance channel (SC). The RC collects
the direct signals emitted by the satellite (Tx) through a
low-gain antenna, while the SC records the reflected signals
from the target (Tg) moving on the surveyed area of interest
through a high-gain antenna. However, the signal-to-noise ratio
(SNR) of the direct signal output from the RC can be as
low as −30 dB [39]. To overcome such a problem, signal
synchronization is a crucial step that acquires the direct signal
and tracks the observation parameters, including code delay,
carrier phase, carrier frequency, navigation message, and so on.
These parameters can generate a noise-free replica of the direct
signal as the local reference signal. For the radar applications,
the local reference signal stored as the 1-D data stream must
be transformed into the 2-D radar data matrix in terms of
the pulse repetition interval (PRI) that can be matched to the
PRN code length. After intermediate frequency demodulation
and ignoring constant phase and amplitude terms, the local
reference signal can be written as

Sdi (τ, u) = C[τ − τdi (u)− τe1(u)] × D[τ − τdi (u)− τe1(u)]

× exp
{

j
[
2π fdi (u)τ + ϕdi (u)+ ϕe1(u)

]}
(2)

where τ ∈ [0,PRI] is the fast time, u∈[−T/2, T/2]

is the slow time, and T is the entire observation time.

τdi (u) = (Rb(u))/(c), ϕdi (u) = 2π(Rb(u))/(λ ), and fdi (u) =

−(Ṙb(u))/(λ ) are the instantaneous time delay, phase, and
Doppler frequency of the direct signal, respectively. Rb is the
baseline length between the Tx and the Rx, c is the speed of
light, and λ is the carrier wavelength. τe1 and ϕe1 are the total
delay and phase errors, respectively. They are induced by the
atmospheric factors (i.e., troposphere and ionosphere delay)
and the Rx artifacts (i.e., clock cycle slips and local oscillator
drift).

Likewise, supposing one point-like target, the target echo
can be expressed as

Sr (τ, u) = C[τ − τr (u)− τe2(u)] × D[τ − τr (u)− τe2(u)]

× exp
{

j
[
2π fr (u)τ + ϕr (u)+ ϕe2(u)

]}
(3)

where τr (u) = (R(u))/(c), ϕr (u) = 2π(R(u))/(λ ), and
fr (u) = −(Ṙ(u))/(λ ) are the instantaneous time delay, phase,
and Doppler frequency of the target echo, respectively. R =

Rt + Rr is the propagation range of the target signal, Rt is the
range between the Tx and Tg, and Rr is the range between
the Rx and Tg. τe2 and ϕe2 are the total delay and phase
errors, respectively. It should be noted that the navigation code
causes the phase transition, unfavorable to the target signal
processing. Fortunately, the navigation codes in both (2) and
(3) are the same within the range of 6000 km [15]. On the
other hand, the delay and phase errors in both (2) and (3)
are very close to each other due to the similar atmospheric
factors and the shared oscillator between the RC and SC. The
abovementioned interference factors can be eliminated later by
range compression.

B. Long-Time MTD Processing Technique

The main goal of long-time MTD processing is to indicate
the moving target in the RD domain and then extract the
target signal with respect to the slow time through the constant
false alarm rate (CFAR) technique [40]. The long-time MTD
processing contains three main steps: range compression,
range cell migration (RCM) correction, and long-time hybrid
integration. Each step is described in the following.

1) Range Compression: Range compression can not only
measure the time delay difference between the reference signal
and the target signal but also eliminate the navigation code, the
delay, and phase errors in the target signal. It is implemented in
the fast time by cross-correlating the target signal in (3) with
the complex conjugate of the reference signal in (2). After
range compression, the time-domain range-compressed signal
can be written as

rc(τ, u)= CF
[
τ −

Rbi(u)
c

]
× exp

[
− j2π

Rbi(u)
λ

]
(4)

where CF(·) denotes the envelope of the cross correlation func-
tion and Rbi = Rt + Rr − Rb is defined as the bistatic range.
It should be noted that the calculation of (4) is conducted in
the frequency domain based on the convolution theorem to
realize high computational efficiency.

2) RCM Correction: As shown in (4), the envelope of
the cross correlation function is coupled with the slow time.
Consequently, the envelopes will be dispersed on several range
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cells, i.e., the RCM, with the ship translational motion during
the long observation time. To align the envelopes within
a single range cell resolution, the keystone transform (KT)
is employed because it can correct the RCM without prior
knowledge of target velocity. For detailed implementation
steps, one can refer to [15]. After the RCM correction, the
range-compressed signal in (4) can be rewritten as

rc(τ, u)= CF
(
τ −

Rc
bi

c

)
× exp

[
− j2π

Rbi(u)
λ

]
(5)

where Rc
bi is the constant bistatic range that the target appears

to be after the RCM correction.
3) Long-Time Hybrid Integration: The energy gain offered

by range compression is limited, which may be insufficient
to extract the target signal from the background disturbance.
Hence, to detect the target signal and reduce the computational
complexity, a two-step long-time hybrid integration approach
is performed here. In the first coherent integration step, the
long observation time is divided into several frames (i.e., the
range-compressed data matrix in (5) is divided into several
small matrices with respect to the slow time). Each frame has
an identical and short coherent processing interval (CPI), such
as 2–3 s [13], [14]. Then, all frames conduct the FFT in a slow
time. The target response in the lth RD map can be obtained
as

RDl(r, fd) =

∫
rc(r, u)

× rect
(

u − l × T f

T f

)
× exp(− j2π fdu)du

= CF
(
r − Rc

bi

)
× Wa

(
fd − f l

dc

)
× exp

[
jθ l

a(r, fd)
]

(6)

where r = τ × c is the bistatic range cell, l ∈ [0, N f −1], N f is
the number of frames, fd ∈ [−PRF/2,PRF/2] is the Doppler
frequency, PRF represents the pulse repetition frequency that
equals 1/PRI, rect(u/T f ) is a rectangular window with a
duration T f , T f is the length of CPI, Wa( fd − f l

dc) is the
spectral envelop centered at f l

dc, and θ l
a(r, fd) is the phase

angle after the FFT. In a short-range surveillance scene, the
coherent integration gain over a single CPI is sufficient to
isolate the target response from the background disturbance
because the moving ship yields a relatively high SNR input
to the Rx [29]. In the second step, a noncoherent integration
strategy is implemented to reduce the fluctuations of the
background disturbance and increase the detection probability.
The noncoherent integration of multiple frames is derived as

RDNCI(r, fd) =
1

N f
× ∥RDl(r, fd)∥2. (7)

As a result, a 2-D RD map is generated. It should be
noted that the direct signal intruded from the sidelobes of the
SC antenna in the real scene is the strongest return. After
the long-time hybrid integration, the compressed direct signal
(along with its sidelobes) is located at the zero bistatic range
and zero Doppler frequency position. They can be filtered out
by a simple direct signal cancellation procedure. Finally, the
obtained RD map is used for CFAR detection. Fig. 2 shows
the flowchart of the long-time MTD processing.

Fig. 2. Flowchart of the long-time MTD processing.

TABLE I
SIMULATION PARAMETERS

A simulation trial is performed to present the generated RD
map, where a moving ship is modeled as five scatter points
distributed uniformly along the target length and its trajectory
is orthogonal to the LOS of the radar antenna. Additive white
Gaussian noise is utilized as the background disturbance, while
the intruded direct signal and the sea clutter are not considered
here. The detailed simulation parameters are listed in Table I,
where the GPS signal parameters are referred to [41]. Fig. 3(a)
shows the resulting RD map. We can see that the track of the
moving ship can be separated from the background noise and
is aligned together at almost one bistatic range (Rc

bi = 2418m)
since the RCM correction has been performed after range
compression. For comparison, another example without the
RCM correction is shown in Fig. 3(b), where the severe RCM
can be seen in the bistatic range domain. Finally, in Fig. 3(a),
the bistatic range of the track can be determined by the CFAR
detection, which will be used in Section III-A.

III. MOVING SHIP IMAGING PROCESSING

In short-range surveillance scenes, such as coastal areas
and river channels, the ship’s translational motion is dominant
in the case of a low sea state. The image of the moving



HE et al.: MARITIME SHIP TARGET IMAGING WITH GNSS-BASED PASSIVE MULTISTATIC RADAR 5800918

Fig. 3. Resulting RD maps: (a) with the RCM correction and (b) without
the RCM correction.

target can be achieved by resorting to the SAR technique
when the trajectory of the ship crosses the LOS of the radar
antenna. In this section, an imaging method is proposed,
mainly including the bistatic acquisition geometry analysis,
target velocity estimation, and imaging formation. Each part
is described as follows.

A. Bistatic Acquisition Geometry Analysis

As shown in Fig. 4(a), an east-north-up (ENU) reference
system is constructed. The Rx is fixed at the origin, and
the LOS of its radar antenna coincides with the due south
direction. The Tx is in a state of quasi-static observing from
the ground during the observation time (e.g., <120 s) because
the distance between the Tx and the ground in an order of tens
of thousands of kilometers leads to the Doppler bandwidth
contributions caused by the target translational motion with
respect to the Tx much smaller than the Doppler resolution
cell (1/T f ) [29]. The trajectory of the Tg nearly orthogonal
to the LOS of the radar antenna in the E-N plane is regarded
as the synthetic aperture, which is equivalent to the Rx moving
along the opposite direction with the same speed. Furthermore,
the Tg is assumed to move with an almost constant velocity.
This assumption is reasonable for the ship sailing at cruising
speed [12], [13], [14], [15].

Considering the fact that Rt and Rb (>20 000 km) are much
greater than Rr (a few km), line Tx–Rx is almost parallel to
the line Tx–Tg in Fig. 4. Therefore, the bistatic range defined

Fig. 4. Bistatic acquisition geometry of the imaging scene. (a) 3-D view.
(b) Top view.

in (4) can be approximated as

Rbi = Rr + Rt − Rb ≈ Rr + Rr × cos θbi (8)

where θbi is the bistatic angle. From the geometry in Fig. 4(a),
we know that θbi has the trigonometric relationship as follows:

cos θbi = cosαTx × cosϕNa−Tg−Rx (9)

where αTx is the satellite elevation angle and ϕNa−Tg−Rx is the
angle that varies with the target’s motion. Through the top
view in Fig. 4(b), the variation of (9) over the observation
time can be further expressed as

cos[θbi(u)] = cosαTx × cosϕTx ×
Rs

Rr (u)

− cosαTx × sinϕTx ×
(ua − u)× v

Rr (u)
(10)

where u ∈ [0, 2La/v], La is the half-length of the synthetic
aperture, v is the velocity of the Tg, ϕTx is the satellite azimuth
angle (measured clockwise from the north), Rs is the shortest
range between the Rx and the Tg, and ua = La/v is the slow
time at which the Tg crosses the aperture center. It should be
noted that, if the LOS of the radar antenna does not coincide
with the due south direction, ϕTx should be recalculated.
As shown in Fig. 5, it is not hard to understand that the
recalculated ϕTx equals the absolute value of the difference
between the azimuth angle of the LOS with the subtraction of
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Fig. 5. Satellite azimuth angle recalculation.

180◦ and the real satellite azimuth angle (measured clockwise
from the north).

Substituting (10) into (8), we get the bistatic range history
over the observation time as

Rbi(u) =

√
R2

s + v2 × (ua − u)2 − v cosαTx sinϕTx

× (ua − u)+ Rs cosαTx cosϕTx. (11)

It should be noted that, if the Tg in Fig. 4(b) moves along
the opposite direction, the bistatic range history is changed as

Rbi(u) =

√
R2

s + v2 × (ua − u)2 + v cosαTx sinϕTx

× (ua − u)+ Rs cosαTx cosϕTx. (12)

This peculiarity has been discussed in [37]. One can refer
to [37] for detail. For the sake of convenience, only (11) is
used for the next analysis. Expanding (11) into a second-order
Taylor series approximation around u = ua , we have

Rbi(u) =
v2

2Rs
× (u − ua)

2
+ v cosαTx sinϕTx × (u − ua)

+ Rs(1 + cosαTx cosϕTx). (13)

The Doppler history of the target signal can be derived by
the first derivative of (13) with respect to u as

fd(u) = −
1
λ

×
d Rbi(u)

du

= −
v2

λ Rs
× u +

v

λ
×

(
v × ua

Rs
− cosαTx sinϕTx

)
(14)

and the Doppler rate γ can be derived by the second derivative
of (13) with respect to u as

γ = −
1
λ

×
d2 Rbi(u)

du2 = −
v2

λ Rs
. (15)

Equation (15) indicates that the target signals from different
satellites have a close Doppler rate value due to the satellites
being in a state of quasi-static during the observation time.
This peculiarity will be validated by the real experiments in
Section IV.

B. Target Velocity Estimation

As evident from (14), the Doppler history of the target
signal with respect to the slow time changes approximately
linearly, i.e., a linear frequency modulation (LFM) signal. The

Fig. 6. (a) Simulated T-F representation. (b) T-F set.

target velocity can be obtained by estimating the Doppler rate
value of the LFM signal. The long-time integration techniques
reported in [12], [13], [14], and [15] are able to estimate
the Doppler rate value. However, they are characterized by
a heavy computational cost because of the search process.
In this section, taking into account the computation complexity
and accuracy, the STFT and the RANSAC are combined to
estimate the target velocity.

Since the Tg has been detected at the bistatic range Rc
bi

in the RD map, the target signal with respect to the slow
time can be extracted from the range-compressed data matrix
in (5). Then, the STFT projects the target signal into the
time–frequency (T-F) domain by sliding a short-time window
over the entire observation time. The STFT of the target signal
with respect to the slow time can be written as

STFT(u, fw) =

∫
rc

(
τRc

bi
, u′

)
× winh

(
u′

− u
)

× exp
(
− j2π fwu′

)
du′ (16)

where fw ∈ [−PRF/2,PRF/2] is the Doppler frequency,
u′

∈ [−h/2, h/2], and winh(u) is the short-time window
function with the length of h (i.e., the length of CPI). As shown
in Fig. 6(a), a T-F representation simulated by using the
parameters listed in Table I is achieved through the STFT with
a window length of 2048 ms. We can see that the magnitude of
the spectrum of the target signal distributed on the T-F plane
forms an approximately straight line, which follows the LFM
signal assumption. It is apparent that the slope of the straight
line is the Doppler rate.
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In the T-F representation, the conventional ways to estimate
the Doppler rate are the Radon transform [38] and the Hough
transform [42]. However, the computation burden of these
methods is extremely heavy due to the LFM signal with a
large time-bandwidth product. Linear fitting can be employed,
which is simple and fast. The spectrum of the LFM signal
should be first extracted by using the position of the STFT
maxima [43]

fw(u) = arg max
fw

|STFT(u, fw)|. (17)

Consequently, a T-F set S = {(ui , fw,i ) | i ∈ [1, Np]} is
obtained, as shown in Fig. 6(b). Np denotes the total number
of points in the set. Because the target signal is contaminated
by the background noise, the T-F set in Fig. 6(b) comprises
both inliers, i.e., the points that can be fit to a line, and
outliers, i.e., the noise points that cannot be fit to this line.
A straightforward way to fit the line is the least squares method
(LSM). However, the LSM optimally fits both the inliers and
outliers, resulting in a bad fit to the T-F set. The RANSAC
algorithm widely used in the field of computer vision is able
to exclude the outliers and fit the line by using the inliers.
Therefore, we modify the RANSAC algorithm suitable for the
target velocity estimation. The proposed algorithm is referred
to as the STFT-MRANSAC. It is summarized as follows.

Step 1: Implement the STFT via (16) and obtain the T-F set
S via (17).

Step 2: Let K represent the number of iterations.
Step 3: Randomly select two points (uk

1, f k
w,1) and (uk

2, f k
w,2)

from S to generate the line via the fitting model in (14). Super-
script k denotes the kth iteration. Meanwhile, the Doppler rate
γ k

can as the candidate solution, and the Doppler centroid f k
cen

can be calculated by the above two points. To improve the
robustness of the algorithm, γ k

can is in a constraint given by

−
v2

max

λ Rs
≤ γ k

can ≤ −
v2

min

λ Rs
(18)

where vmin and vmax are the minimum and maximum ship
velocities, respectively. If γ k

can does not satisfy the above
constraint, the random selection process will be repeated.

Step 4: Calculate the distance of every point (uk
i , f k

w,i ) in S
to the line generated in Step 3 by

dk
i =

∣∣ f k
cen + γ k

can × uk
i − f k

w,i

∣∣. (19)

If dk
i is less than the predefined tolerance threshold thtol,

(uk
i , f k

w,i ) is considered an inlier. According to (14), thtol is
defined as the Doppler difference between the bow and stern:

thtol = (vmax × Ls)/
(
2 × λ × Rs

)
(20)

where Ls represents the ship length.
Step 5: Determine how many points from S fit the model

within the given thtol. If the fraction of the number of inliers
over the total number of points in S exceeds a predefined
threshold thscale, γ k

can is put into the candidate solution set C =

{γ k
can | k ∈ [1, K ]}. It should be noted that the abovementioned

configuration parameters will be given in Section IV.
Step 6: Let k = k + 1. If k ≤ K , go back to Step 3.

Otherwise, proceed to Step 7.

Fig. 7. (a) Zoomed simulated T-F representation. (b) Zoomed T-F set.

Step 7: Use a median filter to determine the estimated
Doppler rate value from C. Finally, the target velocity can
be solved by (15). It should be noted that the estimation of
Rs will be explained in Section III-C.

The reason why a median filter is used can be interpreted
as follows. The moving ship is no longer regarded as an
individual point-like target in the short-range surveillance
scene. Instead, it can be modeled as several scattering points
distributed within the ship size. In other words, the tar-
get signal scattered from the moving ship is composed of
multicomponent signals. During the translational motion, the
spectra of multicomponent signals can form a wide line in the
T-F representation owing to the Doppler frequency difference
between the bow and stern. Fig. 7(a) shows the zoomed T-F
representation whose Doppler resolution cell is about 0.49 Hz
[highlighted by a red box in Fig. 6(a)]. We can see that the
Doppler frequency difference between both edges of the wide
line exceeds 5 Hz (i.e., more than ten Doppler frequency cells
are shifted). However, the wide line brings difficulty to the
fitting process. As shown in Fig. 7(b), it is possible to obtain
an arbitrary Doppler rate that is located at the range between
“Line A” and “Line B” by using the conventional RANSAC
algorithm. In this case, the median filter solution (red line)
can effectively increase the accuracy and robustness of the
parameter estimation.

The STFT enjoys a low computational cost because it is
performed on a computer by using the FFT with the calculation
complexity of O(N log N ) operations. In Step 3, the random
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selection operation may be repeated one or M times. While
the calculation of the distances between the points and the
line in Step 4 is in the order of O(L). The operations in
Steps 3 and 4 are conducted K times. Hence, the proposed
STFT-MRANSAC has a maximum computational complexity
of O[N log N + (L + M)K ]. Compared with the long inte-
gration techniques in [12], [13], [14], and [15] and Radon
transform [38], where the complexities are in the order of
O(N 2 log N ), the STFT-MRANSAC is more favorable from
the calculation complexity point of view.

C. Imaging Formation

As the target velocity has been estimated in Section III-B,
an azimuth compression operation can be performed to obtain
the bistatic image of the ship. The bistatic image should be
converted into an equivalent monostatic range and cross-range
domain, convenient for the ship length estimation. Considering
the inherent multistatic nature of GNSS-based passive radar,
the bistatic images achievable from multiple satellites are
combined to create a multistatic image. The abovementioned
steps are described in the following.

1) Azimuth Compression: In the focused SAR process-
ing, azimuth compression is fulfilled by removing the
azimuth modulation of the target signal in the Doppler (or
azimuth-frequency) domain with the matched filter. Therefore,
designing the azimuth-matched filter is the key point here.
An analytical expression of the azimuth spectrum of the target
signal in the range and azimuth-frequency domain should be
derived. For simplicity, we first consider an individual point-
like target. The azimuth FFT of the range-compressed signal
in (5) can be written as

rc(τ, fu) =

∫
CF

(
τ −

Rc
bi

c

)
× exp

{
− j2π

[
Rbi(u)

λ
+ fu × u

]}
du (21)

where fu ∈ [−PRF/2,PRF/2] is the azimuth-frequency. Sub-
stituting (11) into (21), we exploit the principle of stationary
phase (PSP) to obtain an analytical solution on the integral
in (21). After some lengthy algebra (see the Appendix),
the azimuth spectrum is derived as (22), shown at the bot-
tom of the page, where ρaf denotes the magnitude of the
azimuth-frequency spectrum that is not important and will be
omitted in the following analysis. As shown in Section III-B,

all scattering points on the target surface experience the same
Doppler history. Therefore, the azimuth spectra of multiple
scattering points can be extended as (23), shown at the bottom
of the page, where un

a represents the slow time at which the
nth scattering point passes through the aperture center. From
(23), it is understood that the modulation phase (the first term)
should be removed. Hence, the azimuth-matched filter is the
complex conjugate of the modulation phase as follows:

H0(τ, fu)

= exp

[
j2π×

√( v
λ

)2
−

( v
λ

cosαTx sinϕTx+ fu

)2
×

Rs(τ )

v

]
.

(24)

Afterward, the azimuth compression process is done for
each range cell by multiplying (23) with (24), followed by
an azimuth inverse FFT (IFFT). The azimuth compression
operation is given by

I (τ, u) =

∫
rc(τ, fu)×H0(τ, fu)× exp( j2π fuu)d fu

=

∑
n

CF
(
τ −

Rc
bi

c

)
× sinc

(
u − un

a

)
. (25)

As evident, the above implementation of azimuth compres-
sion is based on the FFT and IFFT. The total computational
cost is in the order of O(N 2 log N ) for all range cells.

2) Range and Cross-Range Scaling: Range and cross-range
scaling are required to transform the fast- and slow-time
domains in (25) into the equivalent monostatic range and
cross-range domain. From (13), we know that the bistatic
range can be converted into an equivalent monostatic range
if u = ua is chosen as the reference instant after the RCM
correction. Since the Tg has been detected at the bistatic range
Rc

bi, Rs can be calculated by

Rs =
Rc

bi

1 + cosαTx cosϕTx
. (26)

Correspondingly, the equivalent monostatic range is scaled
by rx = (c×τ)/(1+cosαTx cosϕTx). The cross-range is scaled
by ry = v × u. Finally, the resulting image is obtained with
an equivalent range and cross-range domain as follows:

I
(
rx , ry

)
=

∑
n

CF(rx − Rs)× sinc
(
ry − Rn

a

)
(27)

where Rn
a = v × un

a represents the cross-range position of the
nth scattering points. Let us analyze the cross-range resolution.

rc(τ, fu) = ρaf(τ )× exp

[
− j2π

√( v
λ

)2
−

( v
λ

cosαTx sinϕTx + fu

)2
×

Rs(τ )

v

]

× exp(− j2πua fu)× exp
[
− j2π

Rs(τ ) cosαTx cosϕTx

λ

]
(22)

rc(τ, fu) =

∑
n

exp

[
− j2π

√( v
λ

)2
−

( v
λ

cosαTx sinϕTx + fu

)2
×

Rs(τ )

v

]

× exp
(
− j2πun

a fu
)

× exp
[
− j2π

Rs(τ ) cosαTx cosϕTx

λ

]
(23)
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Fig. 8. Azimuth resolution versus antenna beam angle.

It is obvious that the maximum Doppler bandwidth (i.e., the
Doppler history during the observation time) of the target
signal is dependent on the antenna beam angle ϑbw, described
as

Bmax =
2v
λ

× sin
ϑbw

2
. (28)

Correspondingly, the optimal cross-range resolution is
derived as

ρa =
v

Bmax
=

λ

2 sin(ϑbw/2)
. (29)

Fig. 8 depicts the curve concerning the cross-range resolu-
tion with ϑbw ∈ [1

◦

, 45
◦

] and λ = 0.19 m. We can observe
that the larger the antenna beam angle, the better the cross-
range resolution. The cross-range resolution of a small antenna
beam angle (<10◦) is finer than the best range resolution
(15 m) of Galileo E5a/b or GPS L5 signals, Therefore, the
high cross-range resolution is sufficient to estimate the length
of the maritime ship.

3) Image Fusion: As GNSS-based passive radar belongs
to multistatic radar in nature, the bistatic images achievable
from multiple baselines can be combined through image
fusion to form a multistatic image. The multistatic image can
acquire more scattering information about the moving ship
due to the satellites illuminating the ship from various angles,
favorable to the ship length estimation. The pixel-level fusion
process is used here. However, image registration should be
first performed to make the ship target in different bistatic
acquisition geometries locate on the same pixel area. As shown
in (25), the locations of the scattering points in the slow-time
domain are only related to times when they passed through the
LOS of the radar antenna. This implies that the homologous
pixels in different bistatic images are almost located at the
same pixel area in the cross-range domain, while the detected
bistatic range bin cell values are affected by different radar
configurations. Hence, image registration is performed to align
the range cells concerning multiple baselines. Then, the non-
coherent summation of multiple bistatic images is conducted,
obtained as

Ifusion
(
rx , ry

)
=

1
M

× ∥I m(
rx , ry

)
∥2 (30)

Fig. 9. Diagram of the moving target imaging and fusion process.

where m ∈ [1,M] and M is the number of satellites. Fig. 9
shows the overall moving target imaging and fusion process.

IV. EXPERIMENT

A maritime measurement campaign was undertaken at the
Cyberport Waterfront Park in Hong Kong on May 16, 2019.
Fig. 10(a) demonstrates the experimental site where the receiv-
ing hardware (red push-pin) was fixed on the shore, recording
the direct signals from the satellites and the reflected signals
from the moving ships, simultaneously. Fig. 10(b) shows the
photograph of the receiving hardware that consists of the
Rx front end, two different types of antennas, and the host
computer. The Rx front end [see the inset in Fig. 10(b)]
has two independent acquisition channels connecting to the
circular antenna (CA) and the square antenna (SA). The CA
is a commercial off-the-shelf right-hand circular polarization
antenna for direct signal collection, while the SA is a custom
left-hand circular polarization antenna with a high-gain in
charge of the reflected signal collection. To validate the
proposed method, three cargo ships with different lengths
and speeds were selected as the targets of interest, whose
trajectories were nearly perpendicular to the LOS of the SA.
Fig. 10(c) illustrates the photographs of three cargo ships,
including their names and the times when they passed through
the field of view of the SA. The voyage-related parameters
of three cargo ships provided by the automatic identification
system (AIS) are listed in Table II, which can be used as the
ground truth. The L1 band signals emitted by GPS satellites
were exploited to obtain the bistatic images of three cargo
ships. Table III gives the experimental and signal processing
parameters. It should be noted that the former two cargo ships
in Fig. 10(c), COSCO ROTTERDAM and KUO LIN, are
chosen to give the detailed analyses, while, for WAN HAI
313, only the final image fusion result and the binary image
will be shown to avoid description redundancy.

A. Detection Results

Fig. 11 demonstrates the resulting RD maps of both COSCO
ROTTERDAM and KUO LIN obtained from multiple base-
lines. It should be noted that the compressed direct signals
(along with their sidelobes) as the strongest returns have been
filtered out to enable the target responses visible in the RD
maps. Due to the short range and large size, we can see
from Fig. 11 that the long-time hybrid integration processing
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TABLE II
VOYAGE-RELATED PARAMETERS OF THREE CARGO SHIPS

TABLE III
EXPERIMENTAL AND SIGNAL PROCESSING PARAMETERS

can provide adequate integration gain for the target responses
isolated from the background disturbance during the observa-
tion time although the Doppler frequency migrations are not
corrected for further integration gain improvement. On the
other hand, the Doppler frequency migrations present the
tracks of the two cargo ships. They have been aligned together
in the bistatic range dimensions. Furthermore, we can find
that the signal energy backscattered from two cargo ships is
much stronger for some specific scattering angles than the
other perspectives. The main reason is that the fluctuations in
the radar cross section (RCS) of the target are related to the
illumination and scattering angles in the real scene.

Due to the tracks of two cargo ships aligned in the RD
maps, their bistatic ranges with respect to multiple baselines
can be measured at the maximum intensity values of the tracks
after the CFAR detection. Consequently, the shortest range Rs

can be calculated by (26). Table IV lists the numerical results

Fig. 10. Maritime measurement campaign. (a) Experimental site. (b) Receiv-
ing hardware. (c) Three cargo ships.

of the measured bistatic ranges and the estimated shortest
ranges. We can see that the estimation errors between the
estimated shortest ranges and the AIS ground truth given in
Table II are much smaller than the optimal range resolution
(∼150 m) of the GPS L1 signal. Furthermore, the differences
among the estimated shortest ranges with respect to two cargo
ships are less than the sampling resolution (18.3 m) of this
signal processing system. Hence, after imaging processing,
the focused targets in all bistatic images will be aligned in
the monostatic range domains, convenient for image fusion.

B. Velocity Estimation Results

The operation of target velocity estimation can be performed
after two cargo ships are detected in the RD maps. Fig. 12
shows the T-F representations of two cargo ships obtained
from multiple baselines. Although the fluctuations in the
target’s RCS cause the magnitude of the spectrum of the
target signal nonuniformly distributed on the T-F plane, we can
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Fig. 11. RD maps of two cargo ships obtained by the long-time hybrid integration. (a) sat. 1, COSCO ROTTERDAM. (b) sat. 2, COSCO ROTTERDAM.
(c) sat. 3, KUO LIN. (d) sat. 4, KUO LIN. (e) sat. 5, KUO LIN.

TABLE IV
MEASURED BISTATIC RANGES AND THE ESTIMATED SHORTEST RANGES

still see the approximate straight line with a negative slope
value in each figure, following the LFM signal model. Taking
COSCO ROTTERDAM as an example, we can observe from
Fig. 12(a) and (b) that the Doppler histories in both figures are
different due to their bistatic acquisition geometries. However,
the slope values of both lines (i.e., the Doppler rate values)
pertaining to sat. 1 and sat. 2 are very close to each other
because the Doppler frequency contributed by the relative
motion between the target and the Rx is dominant, while the
Doppler frequencies induced by the target translation motion
with respect to different satellites are extremely small and can
be neglected. Similar results for KUO LIN can be seen in
Fig. 12(c)–(e). The above findings from the real experimental
data are well in line with the theoretical expectations [see
(14) and (15)]. Moreover, apart from the spectra of the target
signals, the T-F representations in Fig. 12 also contain the
interference signals, such as the sea clutter (marked by the
red boxes) and the sidelobes of the intruded direct signal
(marked by the yellow boxes). The target velocity estimation
accuracy will be affected by the interference signals when the
conventional LSM is used for linear fitting.

The proposed STFT-MRANSAC is conducted to robustly
estimate target velocity in the presence of many data outliers.
First, the T-F set S is composed of the positions of the

STFT maxima. Then, the MRANSAC can be performed.
The configuration parameters used during the iteration of the
MRANSAC are given as follows. The number of iterations
K is set as 1000 so that a considerable number of candidate
solutions (i.e., slope values) can be acquired. The minimum
and maximum target velocities (vmin and vmax) are 5 and
15 m/s, respectively, in order to have the candidate solutions
in a constraint. The reason for the minimum target velocity
configuration is that a too small value of the target velocity
(such as 1 m/s) implies an increased observation time, during
which the satellite may not satisfy the assumption of the state
of quasi-static, while the configured maximum target velocity
is high enough for most cargo ships moving on the sea surface.
The tolerance threshold thtol for inlier determination can be
calculated by the Doppler difference between the bow and
stern. According to (20), Ls is set as 300 m long enough for
most cargo ships. Finally, the predefined threshold thscale for a
candidate solution determination is set 5% to ensure that the
candidate solution set C can be filled by as many candidate
solutions as possible.

After the iterations for the fitting of straight lines, in order
to better visualize the distribution of all candidate solutions,
the clouds of points composed of the candidate solutions with
respect to multiple satellites are illustrated in Fig. 13. It should
be noted that, according to (15), the slope values representing
the AIS ground truth are calculated via the parameters listed
in Table II. We can see that the candidate solutions are
randomly distributed within the constraint given by (18) due
to the wide straight lines and the outliers. However, the AIS
ground-truth data (black lines) are in the vicinity of the median
filter solutions (red lines) in all the figures. This implies that
the MRANSAC is capable of increasing the robustness of
slope value estimation against various effects in the underlying
interference signals and noise.
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Fig. 12. T-F representations of two cargo ships obtained by the STFT with a window length of 2048 ms. (a) sat. 1, COSCO ROTTERDAM. (b) sat. 2,
COSCO ROTTERDAM. (c) sat. 3, KUO LIN. (d) sat. 4, KUO LIN. (e) sat. 5, KUO LIN.

Fig. 13. Clouds of points composed of the candidate slop values obtained by the MRANSAC. (a) sat. 1, COSCO ROTTERDAM. (b) sat. 2, COSCO
ROTTERDAM. (c) sat. 3, KUO LIN. (d) sat. 4, KUO LIN. (e) sat. 5, KUO LIN.

Fig. 14 gives the fitting results of two cargo ships with
respect to multiple baselines achieved from the median fil-
ter solution of the STFT+MRANSAC. For comparison, the
generic RANSAC (whose code is from [44]) and the LSM
are combined with the STFT to implement linear fitting.
It should be noted that the configuration parameters of both
the generic RANSAC and the MRANSAC are the same, and
the constraint of the candidate solutions in (18) is also used
in the generic RANSAC. We can observe that there are
many outliers induced by the interference signals and noise
in all the figures. As a result, the straight lines fit by the

LSM (dashed blue lines) deviate significantly from the inliers
due to the LSM optimally fitting all points. The straight
lines fit by the generic RANSAC (green lines) are nearly
located inside the inliers. However, the voting scheme adopted
in [44] to find the optimal solution is not ideal in the wide
straight line fitting issue. The estimation errors of the generic
RANSAC may be worse than that of the LSM. On the contrary,
the straight lines fit by the median filter solution of the
STFT+MRANSAC (red lines) almost coincide with the lines
generated by the AIS fitting lines (black lines) in all the
figures.
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Fig. 14. Fitting results of two cargo ships obtained by the STFT+MRANSAC, STFT+RANSAC, and STFT+LSM. (a) sat. 1, COSCO ROTTERDAM.
(b) sat. 2, COSCO ROTTERDAM. (c) sat. 3, KUO LIN. (d) sat. 4, KUO LIN. (e) sat. 5, KUO LIN.

Fig. 15. Target velocity estimation curves of two cargo ships during ten trials obtained by the STFT+MRANSAC, STFT+RANSAC, and STFT+LSM.
(a) sat. 1, COSCO ROTTERDAM. (b) sat. 2, COSCO ROTTERDAM. (c) sat. 3, KUO LIN. (d) sat. 4, KUO LIN. (e) sat. 5, KUO LIN.

Because the RANSAC estimates the parameters of a model
by random sampling of observed data, ten trials are conducted
to test the target velocity estimation performance. Fig. 15
depicts the target velocity estimation curves of two cargo
ships with respect to multiple baselines provided by the
abovementioned three methods. We can intuitively see that,
compared with the STFT+RANSAC, the STFT+MRANSAC
cannot only have reduced estimation errors with regard to
the AIS velocities but also show a more robust estimation

performance against the random selection procedure. The
numerical results of the two methods are compared in Table V.
For the STFT+LSM, its estimation performance is signifi-
cantly affected by the outliers. Apparently, its estimation errors
are larger than that of the proposed method in Fig. 15(b)–(e).
However, there is one exception shown in Fig. 15(a). This
can be explained from Fig. 14(a) where the dashed blue line
is nearly parallel to the black line, but it only fits very few
inliers. To obtain the final estimated target velocity for the
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Fig. 16. Bistatic images of two cargo ships. (a) sat. 1, COSCO ROTTERDAM. (b) sat. 2, COSCO ROTTERDAM. (c) sat. 3, KUO LIN. (d) sat. 4, KUO
LIN. (e) sat. 5, KUO LIN.

TABLE V
ESTIMATED MEAN TARGET VELOCITIES AND STANDARD DEVIATIONS

FROM TEN TRIALS

next imaging processing, we adopt the mean values of the
target velocities pertaining to different satellites provided by
the STFT+MRANSAC. Hence, the estimated velocities of
COSCO ROTTERDAM and KUO LIN are 6.68 and 7.41 m/s,
respectively, in terms of Table V.

C. Imaging Results

As the target velocities are obtained, the passive ISAR
images of the moving targets can be generated by using
the proposed imaging method. Fig. 16 presents the resulting
bistatic images of two cargo ships. The color scales are in dB,
where 0 dB is the mean power of the noise. In all the figures,
the responses of two targets can be distinguished from the
background, and their positions are aligned in the range and
cross-range domains. Comparing Fig. 16(a) with (b), we can
see that both of them observe different components of the ship
body due to the different bistatic angles. Similar results can be
seen in Fig. 16(d) and (e). If the target features are extracted
from these bistatic images for the ship length estimation, it is
obvious that the estimated lengths are far from the actual
ones. On the other hand, in Fig. 16(c), the low level of SNR

provided by sat. 3 makes the outline of the ship target blurred.
It seems that sat. 3 is less suitable for the imaging task. The
above findings in the bistatic images indicate that it is essential
to increase the information gathered about the ship target
by combining the bistatic images achievable from multiple
illumination angles.

Image fusion operation is conducted to combine the bistatic
images for multistatic image generation. Fig. 17 shows the
meaningful multistatic images of COSCO ROTTERDAM,
KUO LIN, and WAN HAI 313. Compared with the bistatic
images, the multistatic images have lower fluctuations of the
background, making the outlines of the targets more visible.
The ship length can be measured through the distance between
both edges of the ship body along the cross-range direction.
We can intuitively see that the ship lengths in Fig. 17(a)–(c)
are, respectively, more than 250 m, less than 200 m, and a
little more than 200 m, which are will in line with the ship
length comparison listed in Table II. This reveals that the
multistatic images allow roughly estimating the ship length
and identifying the ship features for classification.

The binary images of three cargo ships are created to
evaluate the numerical results of the ship lengths. According
to the color scales in Fig. 17, a simple threshold is set as 10 dB
to extract the target features. Fig. 18 shows the binary results.
The ship lengths can be measured as the distance between the
rightmost and leftmost pixels of the main ship body. While
some isolated pixels out of the main ship body are discarded.
The measured lengths of COSCO ROTTERDAM, KUO LIN,
and WAN HAI 313 are, respectively, 323, 167.2, and 228.3 m.
Compared with the actual ship lengths given in Table II, the
measurement errors of three cargo ships are, respectively, 43,
2.8, and 15.3 m. Apparently, the measurement error of COSCO
ROTTERDAM is the largest. The main reason is that only
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Fig. 17. Multistatic images of three cargo ships. (a) COSCO ROTTERDAM.
(b) KUO LIN. (c) WAN HAI 313.

two bistatic images are used for image fusion, resulting in
low-intensity pixels belonging to the target, difficult to be
isolated from the surrounding area. Consequently, the pixels
not belonging to the target have more chances to be extracted
by the threshold and are used for the length estimation. This
problem can be overcome by exploiting more opportunistic
signal sources. Moreover, the threshold selection has an effect
on ship length measurement. Due to the weaker responses from
the ships’ bows and sterns shown in Fig. 17, the higher the
threshold value, the shorter the measured length. Therefore,

Fig. 18. Binary images of three cargo ships. (a) COSCO ROTTERDAM.
(b) KUO LIN. (c) WAN HAI 313.

how to extract the target feature for accurate ship length
estimation may be investigated in the future.

Taking KUO LIN for example, a simple sensitivity anal-
ysis is provided, which evaluates the imaging performance
degradation against errors on the estimated target velocity.
It should be noted that the imaging performance is quantita-
tively calculated via the image entropy in [34]. The estimated
target velocity is defined as v̂ = v0 + ev , where v0 is the
true value of the target velocity in Table II, and ev is a zero
mean Gaussian random variable with a standard deviation
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Fig. 19. Multistatic image of KUO LIN obtained by the existing method [29].

TABLE VI
IMAGING PERFORMANCE WITH RANDOM ERRORS

equal to ηv . Table VI shows the standard deviation (accuracy)
of the image entropy error as obtained by 103 independent
realizations of v̂. We can see that, in all cases, the standard
deviation values increase with the values of ηv increasing.
Therefore, the imaging performance relies on accurate target
velocity estimation.

Because some imaging methods tailored for GNSS-based
passive radar have been published in recent articles [29], [34],
it is necessary to discuss the advantage and disadvantages of
the proposed method. As shown in Sections II and III, the
most complicated operations in the proposed method are the
RCM correction, velocity estimation, and azimuth compres-
sion, whose total calculation complexity is in the order of
O(N 2 log N ); for the existing method in [29], if the calculation
cost of the motion parameters used for the scaling steps can
be ignored (i.e., they are provided by the AIS), a cost in the
order of O(N 3 log N ) is needed to focus the target energy in
the RD map. While the cost of the projection process in [34]
is more than O(N 3) but less than O(N 4) since the particle
swarm optimization algorithm is adopted to reduce the com-
putational burden. From the above analysis, we can see that
the computational cost of the proposed method is lower than
the existing methods in [29] and [34]. Due to the projection
process, the image resolution in [34] is restricted by the RD
map. Hence, taking KUO LIN for example, Fig. 19 shows the
multistatic image via the existing method in [29] by using the
experimental parameters given in Table III. Compared with
the result in Fig. 17(b), it seems that the ship body in Fig. 19
shows a higher SNR. From Fig. 8 and the beam angle of the
SA listed in Table III, we know that the cross-range resolution
of the proposed method is relatively high (<1 m), while the
cross-range resolution in [29] is dependent on the length of
CPI. According to (17) and (18) given by Pastina et al. [29],
the cross-range resolution in Fig. 19 is calculated as 9.3 m.

Therefore, the high cross-range resolution of the proposed
method causes the target energy to be dispersed in several
cells. As a result, the ship body in Fig. 17(b) shows a lower
SNR than that in Fig. 19. In summary, the proposed method
has a low computational cost and high cross-range resolution.
However, it is based on the requirements that the moving
ship provides a relatively high SNR input to the Rx and the
trajectory of the moving ship nearly perpendicular to the LOS
of the Rx antenna. A river shipping monitoring scene may
fulfill both requirements.

V. CONCLUSION

This article exploits the GNSS signals to obtain the passive
ISAR image of the ship relying on the target translational
motion over the long observation time in the short-range
application scene. Therefore, a two-stage imaging processing
method is proposed. In the first stage, a long-time MTD
processing technique is conducted to determine the presence
of the target in the RD map. In the second stage, the bistatic
acquisition geometry of the imaging scene is analyzed to
describe the Doppler history of the target signal induced by
the translational motion during the long observation time.
Then, based on the Doppler history, the STFT+MRANSAC
is presented to robustly estimate the target velocity. With
the estimated target velocity, azimuth compression can be
fulfilled by the designed azimuth-matched filter so that the
focused bistatic image can be created. To obtain the multistatic
image with improved quality, an image fusion operation is
performed. Finally, the effectiveness of the proposed method
is validated by the collected experimental data of two cargo
ships illuminated by several satellites. The velocity estimation
results indicate that, compared with the STFT+RANSAC and
STFT+LSM, the proposed STFT+MRANSAC can enhance
the accuracy and robustness of velocity estimation against
various effects in the underlying interference signals and noise.
The multistatic images show that it is possible to classify
different types of cargo ships passing through the surveyed
area in terms of the target length estimation.

The proposed imaging method requires the trajectory of
the moving ship nearly perpendicular to the LOS of the Rx
antenna. This requirement can be reached concerning river
shipping monitoring but may not be easy on the sea surface.
Therefore, the next work will consider more general bistatic
acquisition geometry. Moreover, the ship length estimation can
provide preliminary target identification. More target features
need to be studied through a large number of experimental
data. Therefore, more experiments will be carried out in the
future.

APPENDIX

The PSP is employed to derive an approximation of the
analytical representation of the integral in (21). To apply the
PSP, a general case is first given as

S( f ) =

∫
A(u)× exp

[
jψ(u)

]
dt (A1)

where A(u) is the slowly varying envelope function
and ψ(u) is the phase term function. The main idea of the
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PSP is that the integral values of (A1) on both sides of
the stationary point (the point where the derivative of the
phase is zero) are canceled out due to the slowly varying or
constant magnitude of the envelope. Hence, we should find the
stationary point. This is obtained by computing the derivative
of ψ(u) with respect to u and setting it to zero, i.e., by solving
the following:

d
dt

[ψ(u)] = 0, u = u∗ (A2)

where u∗ denotes the stationary point. Substituting the solution
of u∗ to (A1), we achieve

S( f ) = C × exp
(
− j

π

4

)
× A

(
u∗

)
× exp

[
jψ

(
u∗

)]
(A3)

where C is a constant amplitude term. C and the constant
phase offset π/4 can be omitted in the following derivation.

Moving back to (21), the above procedure will be applied.
Substituting (11) into (21), the stationary point u∗ is derived
as

d
du

[
−

Rbi(u)
λ

− fu × u
]

= 0, u = u∗ (A4)

namely

v2(ua − u∗)

λ

√
R2

S + v2(ua − u∗)
2

−
v cosαTx sinϕTx

λ
− fu = 0. (A5)

Substituting (A5) back to (21) with rearrangement,
we achieve the final analytical solution given by (22).
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