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Abstract— Wave runup observations are key data for under-
standing coastal response to storms. Lidar scanners are capable
of collecting swash elevation data at high spatial and temporal
resolution in a range of environmental conditions. Efforts to
develop automated algorithms that effectively separate returns
off of the beach and the sea surface are complicated by environ-
mental noise, thus requiring time-intensive data quality control
or manual digitization. In this study, a fully convolutional neural
network (FCNN) was trained and validated on 966 30-min lidar
linescan time series of the beach and swash zone and tested on
an additional 99 30-min linescan time series to improve the auto-
mated classification of lidar returns off of the beach and water,
facilitating the extraction of a depth-defined wave runup time
series. Lidar returns were classified as beach or water, and beach
points at each cross-shore location were interpolated through
time, creating a time-varying beach elevation surface that was
used to calculate instantaneous swash depths. Runup was defined
as the most landward position of 3-cm water depth through time.
Overall, the runup time series determined using the manually and
machine learning (ML)-digitized beach–water interface agreed
well (0.02-m root-mean-square difference (RMSD) 3-cm contour
location and 0.06-m RMSD 2% runup exceedance elevation
R2%). The trained model was found to be robust to noise and
moderate data gaps and applicable in a range of wave conditions.
Results demonstrate the potential of the ML model to replace
manual data processing steps and significantly reduce the time
and effort required to extract the instantaneous runup location
from lidar linescan time series.

Index Terms— Machine learning (ML) algorithms, oceans,
remote sensing.

I. INTRODUCTION
A. Wave Runup Observations

WAVE runup, defined as the temporally varying location
of the water’s edge on the beach face, is a primary

driver of beach and dune erosion and thus an important consid-
eration when assessing the vulnerability of coastal infrastruc-
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ture and dune systems to wave action [1], [2], [3], [4], [5], [6],
[7], [8], [9]. Many storm vulnerability and hazard forecasts are
predicated specifically on accurate prediction of wave runup
elevations in relation to antecedent coastal morphology and
infrastructure elevations [10], [11], [12]. Unfortunately, wave
runup is a challenging parameter to measure due to the inher-
ent dynamic nature of the process, particularly during storms.
As a result, runup elevation datasets are limited (see [13],
[14] for some recent runup observations), and scatter in runup
predictions remain unexplained.

Early efforts to measure and analyze wave runup dynamics
relied primarily on in situ sensors such as pressure gauges and
resistance wires that collect data at either a fixed location or
along a cross-shore transect [15], [16], [17]. However, in situ
sensors can easily become buried or damaged during energetic
conditions, limiting their use in long-term data collection
efforts or during storms. To overcome these limitations, remote
sensing methods (primarily based on optical imagery and
lidar) have been developed, which allows for the collection of
long-duration runup measurements in a wide range of wave
conditions.

Optical imagery has been used in a number of studies to
analyze swash processes on both reflective [18], [19] and
dissipative [3], [20], [21], [22] beaches. Optical systems can
be deployed over long time periods and provide information at
multiple alongshore locations but only collect usable imagery
during daylight hours and can suffer from detrimental visual
artifacts due to weather conditions (e.g., rain and fog) or
sun position (e.g., glare). Runup location is identified in
optical imagery using differences in pixel intensity on a
cross-shore transect, with the location of the runup time
series extracted either manually [16], [21], [23] or using
algorithms that employ a Radon transform [22], edge detection
technique [24], or intensity threshold [25]. These algorithms
generally require calibration due to changing light conditions
and image intensities across the beach and water [25] and often
need manual verification and correction [25], [26]. In addition,
the elevation of the beach must be known and incorporated
into photogrammetric equations in order to determine the
accurate cross-shore position and elevation of the runup edge.
This elevation information is rarely available at the necessary
temporal resolution to extract runup elevations over long
deployments or during storms [27], [28]. Finally, these manual
digitization processes are inherently subjective, particularly
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during times with noisier or more ambiguous data, which
introduces additional uncertainty into the extracted runup
elevations and cross-shore locations. This human-based sub-
jectivity in manual digitization processes can create differences
in what is considered correct, with interlabeler agreement
varying with data quality, which in some cases can result in
the need for multiple human labelers of the same dataset in
efforts that rely on annotated features in optical imagery of
the nearshore [29], [30].

Lidar scanners have become an increasingly common tool in
swash zone analyses in recent years due to their ability to col-
lect elevation data at high spatial and temporal resolutions [9],
[25], [31], [32], [33], [34], [35], [36], [37]. Swash depths can
be estimated from lidar linescan time series by subtracting the
sand level in the swash zone from the instantaneous elevations
across the water surface [34]. Beach elevation changes can
occur over short time scales (seconds to tens of minutes),
with smaller changes (0–5 cm) during typical wave conditions,
and larger changes (10–50 cm) during storms [16], [18],
[31], [38], [39], [40]. Lidar scanners directly measure these
elevation changes, allowing for a precise estimation of the
instantaneous swash water depth. The estimated swash depths
allow for a quantitative definition of the runup time series
as the location of a specific swash depth contour and thus
remove any subjectivity resulting from the manual digitization
process. However, lidar data in its raw form measures the
subaerial swash elevations and water surface as one continuous
dataset. Data in each lidar linescan thus must be separated
first into “beach” and “water” returns in order to be processed
accurately. In addition, lidar data collected using systems set
to “maximum sensitivity” to focus on returns off of the water
surface tend to include significant noise from aerosols, spray,
foam, or objects on the beach and can have increased temporal
variance off of wet surfaces [37].

Various approaches to define the time-varying sand surface
in the swash zone have been explored previously in the
literature [9], [25], [33], [34], [35], [36], [41] for both lidar and
ultrasonic altimeter observations, as both collect continuous
time series of elevation, regardless of whether it is sand or
water. Since the foreshore sand surface in the swash zone can
evolve rapidly, defining a temporally varying bed is important
for accurate analysis of these data. For short-range lidars and
ultrasonic altimeters with clean signals [31], temporal variance
thresholds have demonstrated skill at separating the slowly
changing bed surface from the more rapidly changing sea
surface. However, these algorithms have mostly been used
in short-term deployments and have had to be calibrated at
each site [9], [33], [41]. Vousdoukas et al. [25] used a data
fusion approach where a manually calibrated algorithm was
used to first digitize colocated video imagery to define the
time-varying cross-shore location of the runup edge, and then,
this location was used to separate lidar returns. Similarly,
Fiedler et al. [34] used a manually digitized runup location
to separate beach and water returns in lidar data and then
calculated a mean sand surface elevation over the runup time
series to define the sand elevation. It is important to note
that in the case of [34], the lidar was located on a 70-m tall
cliff 400 m from the swash zone and was collecting during

storm conditions, and thus, noise and movement were likely
a factor in the long averaging approach applied. Thus, most
prior approaches using lidar data to extract runup locations
have relied on some level of manual digitization, calibration,
or correction, which limits workflow automation for large
datasets.

B. Machine Learning Approaches to Coastal Data
Processing

Machine learning (ML) approaches provide an alternative
to the analytical algorithms used to extract runup location
time series from remote sensing data. ML techniques have
shown success at solving computer vision problems that were
previously unapproachable due to complicated relationships
with input features and inference target [42], [43] (and many
others). ML models have been applied in a number of coastal
analyses, including for the classification of rip currents [44],
land cover [45], and beach states [29]; the estimation of
wave heights [46], breaking [47], [48], [49], [50], and runup
extent [13], [51]; the inversion of wave kinematics to solve
for bathymetry [52], [53], [54], [55], [56]; and the identifica-
tion of dune-toe locations from airborne lidar images [57].
Gaussian processes have also been utilized to estimate the
2% runup exceedance elevation using lidar data and bulk
wave/morphology parameters (significant wave height, peak
wave period, and beach slope) [58]. This analysis was possible
due to a large runup dataset extracted from lidar data; however,
the details of this neural network detection tool have not been
published at this time [58]. These examples demonstrate the
effectiveness of ML at extracting meaningful features out of
image intensity or lidar point cloud data and their usefulness
in the classification and interpretation of nearshore remote
sensing data.

C. Objectives

The goal of this work is to develop a robust, automated anal-
ysis framework to extract wave runup elevation through time
from lidar linescan data to improve the ability to utilize these
unique datasets in coastal science and engineering analyses.
The framework combines ML approaches with quantitative
analytical runup extraction algorithms to provide a reliable and
reproducible extraction of wave runup time series from repeat
lidar transect observations of the beach and sea surface. The
developed and tested framework will be applied within a fully
automated workflow that processes continuously collected data
from a shore-based lidar system deployed at the U.S. Army
Engineer Research and Development Center’s Field Research
Facility (FRF) in Duck, NC, USA [37]. Section II details
the methodology of this study, starting with an overview
of the lidar data collection and preprocessing methods in
Section II-A and details on a manual runup digitization pro-
cess in Section II-B. The ML-based digitization process is
presented in Section II-C, including details on the ML model
(Section II-C1), model training and testing (Section II-C2),
and the range of wave conditions during collection periods
used in the training and testing (Section II-C3). The resulting
comparison between the ML and manually digitized runup
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Fig. 1. Example linescan point cloud plotted as elevation (NAVD88)
versus cross-shore distance from the scanner: (a) all returns over the 30-min
collection period, (b) single linescan with yellow points indicating returns
off the beach and blue points indicating returns off the water, and (c) same
linescan with the interpolated beach shown in pink (ML Beach Interp).
The ML model’s predicted beach–water interface (ML beach/water) and the
3-cm water depth contour (ML 3 cm) are shown in dashed and solid lines,
respectively.

extraction approaches is presented in Section III. Principal
findings and conclusions are discussed in Sections IV and V,
respectively.

II. METHODOLOGY

A. Lidar Data Overview

The FRF is a coastal observatory located in Duck, NC,
USA, on the Atlantic coast of the United States. The facility
maintains several permanently deployed in situ and remote
sensors that provide coastal hydrodynamic and morphody-
namic data to the broader scientific community. A fixed,
continuously scanning Riegl terrestrial VZ-1000 lidar scanner
(1550-nm laser) is deployed on a 4-m tower located on the
foredune crest at the northern extent of the property [37].
The scanner collects a single framescan of the beach and a
30-min cross-shore linescan time series at 7 Hz each hour,
producing high-density point cloud data of the elevations
across the beach, swash zone, and inner surf zone [36]. The
resulting data include the spatial position of each return as
well as the reflectance intensity. The scanner used in this
study has a high noise floor due to the sensitivity optimization
parameter used during data collection. Linescans are filtered
to remove objects on the beach, spray, and aerosols, and then
gridded at a 10-cm resolution. The scanner has been collecting
scans semicontinuously since September 2015, with collection
disruptions occurring when the scanner was malfunctioning or
being serviced. Processed data are publicly available to access
on the Coastal and Hydraulics Laboratory’s THREDDS server.
Runup time series that have been manually verified are flagged
but remain a minority of the total dataset. An example linescan
point cloud and its subsequent delineation process can be seen
in Fig. 1(a)–(c).

B. Manual Runup Time Series Delineation
The instantaneous location of the beach–water interface

was identified and digitized manually across 1065 30-min
linescan collection periods by visually identifying features
indicative of beach or water in the lidar linescan elevation
and reflectance data and derived data products through time.
Several variables were used in the manual digitization process,
including the elevation and reflectance intensity at each grid
location, the difference between the instantaneous elevation
and the minimum elevation at each grid location (referred
to as Zdiff), as well as a computed variable referred to as
the cumulative elevation difference (CumDiff) that estimates
the likelihood from 0 to 1 of a grid cell being beach or
water using the instantaneous elevation and the change in
elevation at that grid cell through time. The cumulative eleva-
tion difference approach is similar to the elevation variance
approached used in [33] and adapted from processing of
ultrasonic altimeters [41]. Details on the cumulative elevation
difference calculation can be found in [35].

The variables were visualized and interpreted during the
manual digitization process by plotting each as a cross-shore
transect timestack [Fig. 2(a) and (b)]. Water is identifiable
in both the elevation and Zdiff timestacks as the area of
changing elevation through time (x = 20–60 m, Fig. 2(b),
top left and bottom right, respectively). Returns off of the
water surface generally have lower reflectance values than
returns off of the dry beach (Fig. 2(b), top right) and are often
less dense, resulting in some gaps in coverage in the swash
zone. Lidar reflectance magnitude decreases as water content
increases, and thus, wet sand and water can have similarly
low reflectance values. White foam, in contrast, has higher
reflectivity and so appears brighter than the wet sand or water
surface, making runups easier to identify when compared
with rundowns. Finally, the CumDiff algorithm provides a
valuable visualization of the beach–water interface, with a
strong contrast in likelihood values visible between the beach
and the runup tongue (Fig. 2(b), bottom left). Once the location
of the beach–water interface has been visually identified at
each time step, all locations onshore of the runup time series
location are classified as beach, and all locations offshore
of this location are classified as water (similar to the ML
classification example shown in Fig. 2(d), with beach locations
in purple and water locations in yellow). On average, it would
take approximately 20 min of expert labor to digitize the
beach–water interface for each 30-min lidar time series.

The manual digitization process relies on the digitizer’s
visual interpretation of the data and thus is inherently sub-
jective, particularly during the rundown when the contrast
between returns on the water and wet sand is less stark.
To generate a more quantitative and consistent runup metric,
the location of the 3-cm swash depth contour was extracted
from the lidar data using the manually digitized beach–water
interface as a constraint. Swash depths through time were
calculated by subtracting a time-varying, interpolated beach
elevation from the instantaneous elevation at each cross-shore
location across the swash zone for each time step. The
interpolated beach transect was generated by removing all
data points classified during the manual digitization process
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Fig. 2. Diagram of the data processing and neural network workflow: (a) example reflectance timestack showing the full time series; (b) windowed [1024
time steps by 1024 cross-shore cells, indicated with a red box in (a)] elevation, reflectance, CumDiff, and ZDiff timestack channels; (c) neural network that
ingests the windowed input parameters; and (d) (Top) windowed beach–water prediction that is output from the neural network and then is merged with
(bottom) other windowed sections to form the entire time series prediction. Modified from [54].

as water and then interpolating the remaining beach points
through time at each cross-shore location. The interpolated
beach was then smoothed using a Gaussian kernel through
space and time to prevent noisy lidar returns from erroneously
changing the beach profile on unrealistically short time scales.
This process results in a smoothly time-varying beach ele-
vation transect that extends down to the farthest extent of
the rundown (Fig. 1(c), pink line). The interpolated beach
elevation time series allows for real beach elevation changes to
be included in the calculation of the swash water depths during
the 30-min period. The direct measurements of beach and
water surface elevation are one advantage inherent to lidar data
when compared to optical imagery, which relies on a visible
intensity contrast signal that does not necessarily correlate
with a specific water depth contour. Once the swash depths
were estimated at each time step, the first location offshore
of the manually determined beach–water interface where the
swash depth exceeds 3 cm was identified [solid vertical line
in Fig. 1(c)]. Past lidar studies have extracted swash depth
contours ranging from 3 cm [33] to 10 cm [34], based on the
precision of the instrument and the experimental setup. These
methods and others [9], [41] separate the beach and swash
signals using a variance threshold and define the shoreline
as the boundary between the bed and the swash. Because of
the close proximity of the lidar scanner to the swash zone
(∼60–100 m) and the precision of the instrument (∼1-cm
vertical), the 3-cm contour was chosen to define the wave
runup location in the present work. The term runup refers to
the location of the 3-cm swash depth contour for the remainder
of this article.

The precise lidar elevation data allow for a consistent and
reproducible definition of the instantaneous runup location,
which helps reduce the subjectivity in the manual runup

extraction process. The initial beach–water interface digitiza-
tion is a necessary step to constrain the swash depth contour
extraction due to noisy lidar returns further up the beach that
are not removed during the filtering process, including relic
foam, sea spray, and pedestrians. As of July 2022, runup time
series have been extracted for less than 5% of the total number
of linescan time series the lidar has collected since 2015 due
to the time required to manually digitize the beach–water
interface.

C. ML-Based Runup Delineation

The manual runup digitization process is prohibitively slow,
resulting in a growing lidar dataset that cannot be processed
fully using current methods. To address this need, an ML
model was developed to identify the instantaneous location of
the beach–water interface in the lidar data using 966 manually
digitized linescan time series. The ML model was tested to
identify the beach–water interface using 99 30-min linescan
collection periods over two storm events in 2016 and 2019.
Consistent with the manual digitization process, the 3-cm
swash depth contour was then extracted using the ML-derived
beach–water interface location as a constraint. The details of
the ML model development and the model training and testing
are described in the following.

1) ML Model: A fully convolutional neural network
(FCNN) was developed to convert the four input param-
eter timestacks [elevation, reflectance, Zdiff, and CumDiff,
shown in Fig. 2(b)] into a beach–water classification for
each grid cell (Fig. 2). The model is based on the UNET
architecture [59], which was originally developed for medical
image segmentation. UNET has traditionally been shown to be
effective in pixelwise regression tasks in other coastal remote
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sensing areas [60], [61], including our previous work on
bathmymetric inversion from simulated and remotely sensed
nearshore images [53], [54]. For this task, downsampling
and upsampling convolutional blocks with skip connections
[Fig. 2(c)] are utilized to intake the four 2-D feature sets
[Fig. 2(b)] created using a windowing method with no overlap
and output the beach–water classification covering the same
spatial and temporal extent [Fig. 2(d)]. Fig. 2(c) also details
the neural network layers for predicting the beach–water
interface. Downsampling and upsampling convolutional blocks
are defined independently. Input data travel through a combi-
nation of convolutional blocks, dropout, batch normalization,
and pooling layers. The input data first travel through the
downsampled blocks shown in Fig. 2(c) (partially sourced
from [53]), then through a series of four alternating convolu-
tional and batch normalization layers, and finally a Gaussian
noise layer. This output is then passed into a max-pooling
layer, which downsamples the data by a factor of 2. This
is repeated four times until the data are fully downsampled
into a 32 × 32 grid. This downsampled output is then passed
through a combination of upsampling blocks, dropout, and
merge layers to create a final prediction of the beach–water
classification at the original input resolution.

A knowledge-based constraint for continuity in the
beach–water classification in the cross-shore is utilized in the
loss function to penalize the network for producing unrealistic
gradients in land–water prediction. The constraint consisted of
a penalty to the network when the prediction decreased water
probability in each cell when moving in the off-shore direction
for each linescan transect as follows:

Losstotal = LossMAE +

{
∇x (prediction) ≥ 0 : 0
∇x (prediction) < 0 : 1

(1)

where Losstotal is the total loss, LossMAE is the mean-absolute-
error loss, and ∇x (prediction) is the gradient in the predicted
water probability (where a prediction of 0 indicates beach
and a prediction of 1 indicates water). This loss addition is
helpful for minimizing the misclassification of beach as water
in the case of relic foam and other sea spray onshore of the
beach–water interface during more extreme conditions such as
storms. The effects of this loss are discussed in the following.

2) Model Training and Testing: The training and testing
loops were designed using Tensorflow 2.0 and performed on
a custom-built PC with 128 GB of RAM and a NVIDIA RTX
Titan V with 24 GB of VRAM. The model takes approxi-
mately 20 h (±2 h) to converge to a minimum validation loss,
and investigation showed that further training would degrade
the results on the unseen test set. The model is first trained on
a mean absolute error loss for five epochs and then recompiled
with the modified gradient error described above for the rest
of training duration. The model utilizes dropout and trainable
batch normalization terms for each convolutional up and down
block. Once the timestack is classified, the 3-cm swash depth
contour time series is determined using the method described
above. The runup time series and associated statistics are
reported in the following using the derived 3-cm depth contour.

The 1065 30-min linescan time series with manually dig-
itized beach–water interfaces were used to train, validate,

Fig. 3. Histograms of peak wave period (left column), peak wave direction
(middle column), and significant wave height (right column) during linescan
time series used in (a) testing dataset, (b) training dataset, and (c) combined
testing and training dataset.

and test the UNET ML model. Training and validation were
performed using 966 30-min linescan time series from 2015,
2017, and 2018, with 10% of the data being set aside for
validation randomly. This was done to ensure that the specific
composition of the training and validation set did not affect the
accuracy of the model. The test dataset consisted of 99 30-min
collection periods from a Nor’easter in 2016 and Hurricane
Dorian in 2019, which directly impacted the facility in Duck,
NC, USA.

3) Wave Conditions: Wave conditions during collection
periods used in the training and test datasets were measured
using an array of pressure gauges located in approximately 8-
m water depth. Histograms of the wave conditions during these
collection periods are shown in Fig. 3. Many of the manually
digitized 1065 linescan time series that were used to train the
ML model occurred during storm events at the FRF. For this
reason, the wave conditions during the collection periods used
in this analysis include wave heights and periods that are larger
than the average conditions at the study area. However, there
is still a widespread in wave conditions during both training
and testing collection periods.

D. Runup Time Series Comparisons

To assess the accuracy and consistency of the ML model
in identifying the location of the beach–water interface, the
locations and statistics generated from the runup time series
determined using the manual digitization and the ML classi-
fication of the beach–water interface were compared. Several
statistics were derived from the elevation time series, including
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Fig. 4. Example of approximately 5 min of data from the test set on 2016-02-08-1300 UTC during a Nor’easter with significant wave height Hs = 3.48 m,
peak wave period Tp = 12.5 s, and peak wave direction (D = 71◦). (a) Reflectance, (b) ML classification (0 is beach and 1 is water), and (c) swash water
depths as a function of cross-shore position and time. In (c), the ML-derived beach–water interface and final 3-cm water depth time series are shown in dashed
and solid magenta lines, respectively.

the mean runup elevation (Rmean), the 2% runup exceedance
elevation (R2% runup), and the 2% rundown exceedance eleva-
tion (R2% rundown). R2% rundown is defined as the elevation
of the lowest 2% of wave rundowns, which can be used in
combination with the more commonly used R2% runup to
quantify the full extent of the swash.

In addition to the time series statistics, spectral statistics
derived from runup frequency spectra were also calculated and
compared across methods, including the total significant swash
height Stotal, the significant sea-swell swash height Sinc, the
significant infragravity swash height SIG, and the mean period
Tm . Fourier analyses were conducted using the elevation of the
runup time series determined from each of the two methods
to generate the runup frequency spectra for each hour. From
the spectra, the significant swash heights Stotal, Sinc, and SIG
were calculated using the following equation:

Stotal = 4 ∗

√∫ f2

f1

PSD( f )d f (2)

where PSD is the frequency power spectral density. For Stotal,
the spectrum was integrated over the entire frequency range.
For Sinc and SIG, the spectrum was integrated over the sea-
swell ( f = 0.04–0.5 Hz) and infragravity ( f = 0–0.04 Hz)
frequency bands, respectively. Finally, Tm was defined as
the quotient of the centroidal and mean frequency from the
spectral analysis.

The differences between the time series and spectral statis-
tics determined using each of the two digitization meth-
ods were quantified by calculating the absolute difference
(ML digitization—manual digitization), the root-mean-square

difference (RMSD), and the bias. Due to the subjectivity inher-
ent in the manual digitization runup methodology, the runup
time series derived from the manually digitized classification
are not necessarily seen as “truth.” For this reason, results of
the statistical comparisons are presented as differences rather
than errors. This is discussed further in the following.

III. RESULTS

Overall, the ML model was able to classify lidar returns
as beach or water successfully from the four data inputs over
our test set, with an example ML model input and output
shown in Fig. 4(a) and (b), respectively. This separation of
beach and water lidar returns enabled both the generation of
the interpolated beach transects and the estimation of swash
water depth transects [Fig. 4(c)]. The estimated swash depths
were then used to extract the 3-cm water depth contour through
time [dashed magenta line, Fig. 4(c)].

A. Example Cases

Two example cases are presented to help illustrate the
beach–water interface and 3-cm swash depth contour loca-
tions determined using the different digitization methods in
varying conditions (Figs. 5 and 6). In Figs. 5 and 6, the
four input parameter timestacks used in the ML classification
are shown on the left, with cross-shore elevation transects
from four time steps shown on the right. Fig. 5 shows an
example case from a Nor’easter in 2016 illustrating high-
quality data. The cross-shore location of the runup is clearly
visible in the four input parameter timestacks. Although there
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Fig. 5. Example results from a collection period on 2016-02-07-2300 used in the test set with bulk offshore wave parameters of Hs = 4.07 m, Tp = 8.33 s, and
D = 57◦. ML model inputs: (a) elevation, (b) reflectance, (c) CumDiff, and (d) Zdiff—as a function of time and cross-shore position. Dashed lines show the
location of the beach–water interface determined using the ML (labeled as ML beach/water, shown in magenta) and manually digitization (human beach/water,
red) methodologies, whereas solid lines show the location of the 3-cm depth contour determined using the ML (ML 3 cm, magenta) and manually digitization
(H 3 cm, red) methodologies. (e)–(h) Instantaneous lidar elevation transects (Z, cyan line) as a function of cross-shore position, along with the interpolated
beach elevations determined using the manually digitized (H Beach Interp, pink line) and ML-digitized (ML Beach Interp, yellow line) beach–water interface.
The dotted gray line shows the elevation of the 5th percentile of lidar elevation returns for each linescan collection period. The times of the four transects
in (e)–(h) are indicated with horizontal black lines in (a)–(d). The vertical dashed lines show the locations of the manually digitized (red) and ML-derived
(magenta) beach–water interfaces, and the vertical solid lines show the location of the associated 3-cm depth contours (labeled as human 3 cm and ML 3 cm).

Fig. 6. Example results from a collection period on 2019-09-06-0000 near the peak of Hurricane Dorian showing times with increased environmental noise
and data gaps. Offshore bulk wave parameters were Hs = 1.90 m, Tp = 6.25 s, and D = 110◦ (see caption of Fig. 5 for plot layout).

are some small differences in the ML-digitized and manually
digitized beach–water interfaces (dashed lines in all panels),
there is close agreement between the 3-cm depth contour
location (solid lines in all panels) determined using the two
methods. The spectra calculated from the 3-cm depth contour
elevations agree very well [Fig. 7(a)], with nearly identical

spectral signatures (RMSD = 0.05 m2/Hz), considering the
high energies of this example (peak energy = 4.8 m2/Hz).

Fig. 6 shows an example case from Hurricane Dorian in
2019 that contains higher levels of environmental noise, data
gaps, and overall low-quality data. This time series contains
examples of two data attributes that result in poor overall data
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Fig. 7. (a) and (b) 1-D runup elevation spectra as a function of frequency
determined using the ML- (cyan) and human-based (black) methodologies
from (a) 2016-02-7-2300 (a Nor’easter) and (b) 2019-09-06-0000 (a few
hours before Hurricane Dorian). (c) and (d) 2-D histograms of runup elevation
spectral energy including all time series in the test dataset determined using
ML- and human-based methodologies, with frequency on the x-axis, spectral
energy on the y-axis, and colored by bin count; along with (e) bias and
(f) RMSD between methods. The spectra shown in (a) and (b) correspond to
the example cases shown in Figs. 5 and 6, respectively.

quality. First, the transect times series includes times with few
or no returns in the swash zone, seen as white NaN values
in the reflectance timestack [Fig. 6(b)]. This occurs primarily
on the beach during rundown, when the wet sand acts as a
specularly reflective surface, resulting in the reflection of the
incoming laser pulse away from the lidar scanner. Second,
the stormy conditions during this collection period resulted in
low reflectance values in returns off the water surface, seen by
comparing the reflectance timestack of Fig. 5(b) and (b). These
consistent low reflectance returns during relatively large waves
when significant foam is present in the surf are indicative of
attenuation of the laser from rain, sea spray, and fog common
during storm conditions. The poor raw data quality results in
poor beach–water predictions determined using the analytical
CumDiff algorithm [Fig. 6(c)]. In this example, there are
large differences in beach–water interface locations deter-
mined using the manual and ML digitization methodologies
[Fig. 6(e) and (h)]. At these time steps, the manually digitized
beach–water interfaces (red dashed lines) are farther onshore
than the ML-derived beach–water interfaces (magenta dashed
lines), which results in significant differences in the associated
3-cm contour location (solid lines) and the associated runup
elevation spectra [Fig. 7(b)].

B. Statistical Comparisons

The elevation of the 3-cm depth runup time series and
associated swash statistics determined using the two different
beach–water classification methods agreed well throughout the

Fig. 8. Comparisons of wave runup statistics calculated using the runup ele-
vation time series derived from the two methods: (a) R2% exceedance elevation
for runup (blue) and rundown (yellow), (b) total significant swash height Stotal,
(c) mean period Tm , (d) infragravity swash height SIG, (e) sea-swell swash
height Sss, and (f) mean runup elevation Rmean. The example case shown in
Fig. 5 is shown circled in blue. The example case shown in Fig. 6 is shown
circled in cyan. The furthest outlier example in R2% is shown circled in orange
and is the subject of the third row of Fig. 9.

test dataset (Fig. 8). While only the vertical swash excursion
and its derivatives are shown here, the horizontal excursion
showed similar correlation. A direct comparison of the R2%
runup elevation determined using the two methods had an
RMSD of 0.06 m and R2 of 0.99 (Fig. 8(a), blue markers). The
R2% rundown elevations determined using the two methods
had slightly more variability, with an RMSD of 0.07 m and
R2 of 0.97 (Fig. 8(a), orange markers). In addition, common
bulk runup statistical parameters, including significant swash
heights, mean runup elevation, and mean swash period, agreed
well (see Fig. 8 for 1:1 plots and associated statistics).

Runup elevation spectra and spectral-based difference met-
rics derived from the runup elevation time series (similar
to [62] and [63]) show good agreement in most scenarios
(Fig. 7), with Fig. 7(b) showing an example of one of
the poorest comparisons within the test dataset (the same
case shown in Fig. 6). Differences in the time series result
in some relatively large differences in spectral shapes and
statistics (0.03 RMSD m2/Hz and peak energy of 0.5 m2/Hz).
Spectral bias and RMSD were computed as a function of
frequency and energy to investigate whether there were sys-
tematic trends to the time series differences [Fig. 7(e) and (f)].
There is close agreement between the spectral distributions
[Fig. 7(c) and (d)], and however, there are some trends in the
residuals [Fig. 7(e) and (f)]. The runup elevation spectra calcu-
lated using the ML-based approach are biased slightly below
the runup elevation spectra calculated from the human-based
approach across most of the energy-frequency space, with
the highest residuals occurring during the high-frequency and
high-energy conditions [Fig. 7(d)], though these instances are
overall rare in the test set (Fig. 7(c) and (d) shows extremely
small counts in these bands). This is consistent with the
slightly increased scatter in larger significant sea-swell swash
heights and lower mean swash periods visible in the 1:1 plots
in Fig. 8.
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IV. DISCUSSION

While remote sensing approaches, such as video and lidar,
have been utilized successfully to measure swash processes,
robust and automated algorithms to extract wave runup time
series can be challenging. Image-based approaches require
knowledge of the beach-face elevations to generate accurate
runup elevation time series, and then, the corresponding depth
of the runup time series being extracted is unknown. Lidar
solves many of these problems by providing elevation data
of the beach and sea surface; however, accurately separating
beach elevations from swash elevations can be challenging,
particularly during storms when beach change can occur
rapidly and environmental noise can be higher. In this work,
an ML approach is demonstrated to be capable of interpreting
a lidar-derived runup timestack similar to a human doing
manual digitization to separate beach and swash. By inputting
image timestacks of lidar-observed elevation, reflectance, and
elevation variance (CumDiff and ZDiff) in both space and
time, the ML model has sufficient contextual information to
learn how to recognize wave runup and rundown. This is in
contrast to analytical approaches, which tend to only use the
information on elevation variance in time at individual cross-
shore locations. The ML model can interpret and classify
a 30-min lidar timestack in ∼21 s (∼3 s with a NVIDIA
QUADRO RTX 5000) and a 60-fold increase (360-fold with
GPU) in speed when compared to manual digitization while
also removing the need for human input. Once points are clas-
sified as beach or water, a specific swash depth contour relative
to a constantly updating beach can be estimated, resulting in
a clearly defined and reproducible runup elevation time series.
This approach allows the ML model to be used for initial
image interpretation, where it should excel while retaining an
objective definition of runup from the high-resolution lidar
data as the 3-cm water depth contour.

A. Environmental Noise Robustness

The success of the ML model in the initial classification
of beach and water data can be attributed to its ability
to identify the correct beach–water interface for each time
step even in the presence of environmental noise. Analytical
algorithms can struggle to differentiate between increased
temporal variance in elevation due to noise (such as rain,
blowing foam, seaweed, dune vegetation, and beachgoers)
and temporal variance in elevation due to swash runups and
rundowns. For example, in Fig. 9(a) and (b), an area of high
temporal variance landward of the swash zone is visible as
values close to 1 (yellow) in the CumDiff timestack. The
ML model, similar to the human digitizer, recognizes the
parabolic runup shapes, overlooking this noise and identifying
the correct beach–water interface. By including a very simple
knowledge-based constraint that penalized the network having
a negative gradient in beach/water prediction, the ML model
is able to correctly avoid the classification of these data as
water. The knowledge-based constraint for each time step also
enabled the model to maintain more consistency in periods
where there were gaps in the lidar data on the foreshore
and swash [primarily during lower wave conditions, storms,

or times when the swash zone was farther from the lidar
scanner, example shown in Fig. 6(b)] than an unrestrained loss
function during testing. Future work could explore more com-
plicated approaches, which include viscous and gravitational
effects to enforce a parabolic motion of wave runup through
time. The ability of the model to predict successfully the
beach–water interface in noisy, calm, and stormy conditions
removes the need for manual data quality control, which
decreases the time and human effort necessary to process the
lidar data.

B. Precise Depth Contours During Erosion and Accretion
Correctly identifying the beach–water interface in each time

step allows for the interpolation of beach elevations through
time “beneath” runups to create a time-varying beach elevation
surface in the active swash zone. This interpolated beach is
an improvement over past studies (e.g., [34]) that used a
mean elevation as the sand surface) because it allows for real
beach change to occur over the 30-min collection period and
thus enables a more precise extraction of a shallower depth
contour (e.g., 3 versus 10 cm in [34]). This is particularly
important during storms when significant erosion can occur in
short time periods. For example, during Hurricane Dorian at
the FRF, lidar observations showed that the berm completely
eroded within 2.5 h, with up to 0.2 m of change within our
30-min linescan collection period in some locations (Fig. 10).
The time-varying interpolated beach thus enables accurate and
consistently defined runup extraction during these dynamic
conditions and robustly characterizes the evolving swash mor-
phology and hydrodynamics on process-relevant time scales
(e.g., wave by wave).

Explicitly defining the runup time series by a depth con-
tour [34] provides a consistent definition of runup, which
reduces subjectivity compared to manual digitization meth-
ods using lidar or video, enables robust comparison to
phase-resolved wave modeling results [8], and provides a
framework to analyze the relationships between the volume of
water impacting coastal structures or features and the resulting
damage or change (i.e., not just a runup exceedance elevation).
Subjectivity in the manual digitization of wave runup signals
has been a source of potential error and scatter in runup obser-
vations used in parameterizations and annotations of other
coastal processes [5], [29], [30]. Rundown can be particularly
challenging to manually digitize in both video [18] and lidar
data when backrushes are thin. Differences in rundown loca-
tions can have an effect on the overall variance of the runup
time series (significant swash heights) as well as the mean
runup, two parameters that play an important role in empirical
formulations for wave runup. The value of the 3-cm contour
can be seen in Fig. 9(c) and (d), where there are differences in
interpretation of the beach–water interface determined by the
ML and manual digitization processes (time steps 28 and 46 s).
In this case, the objectivity provided by the interpolated beach
and resulting swash depth contour allows both methods to
agree on the location of the most seaward rundown limit during
rundown, despite the original discrepancies in the definition of
the beach–water interface. As evident in the similarity of the
3-cm runup time series and spectra determined using the two
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Fig. 9. (Left column) Reflectance and (Right column) CumDiff timestacks from three example collection periods during Hurricane Dorian, with the
ML- (magenta) and human-derived (red) beach–water interface locations and corresponding 3-cm contour locations shown in dashed and solid lines, respectively.
(a) and (b) Example case from 2016-02-08-0200, with bulk offshore wave parameters of Hs = 4.69 m, Tp = 9.09 s, and D = 61◦. (c) and (d) Example case
from 2016-02-08-1400, with bulk offshore wave parameters of Hs = 3.17 m, Tp = 11.76 s, and D = 64◦. (e) and (f) Example case from 2019-09-06-0000,
with bulk offshore wave parameters of Hs = 3.55 m, Tp = 15.38 s, and D = 76◦.

different methodologies (Figs. 7 and 8), the approach presented
here enables consistent and objective extraction of runup time
series with stable distributions of variance.

C. Data Density Threshold
In general, the performance of the model was consistent

across the range of wave conditions tested, as long as there
were ample data observed by the lidar in the swash zone.

Specifically, for the model to work well, there needed to be
less than 30% of linescans throughout the 30-min collection
period that has no return at the most offshore extent of the
ML-estimated beach–water interface (farthest rundown limit).
This threshold is a conservative estimate, based on the limited
number of cases with high data gaps in the test set. It is
possible that a lower threshold could be found, but this would
require manual digitization of more cases with limited data
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Fig. 10. (a) Lidar-derived cross-shore elevation transects over a 2.5-h period on 2019-09-06-1500 during Hurricane Dorian showing rapid beach change.
(b) Lidar-derived elevation time series from x = 75 m over the same 2.5-h period, with beach returns in red and water returns in blue. The horizontal dashed
in (a) indicates the location of the time series shown in (b).

Fig. 11. Histograms of swash conditions (green bars, left y-axis) and average
relative difference in R2% determined using the ML- and human-based
methodologies (red lines, right y-axis) as a function of (a) significant total
swash height Stotal and (b) mean period Tm including all collection periods in
the training and test datasets.

coverage to compare against. The existence of this threshold
was an expected requirement, as human attempts to trace a
runup contour with these datasets are also ill-advised. These
conditions tend to occur during intense rain, fog, or during
the smallest wave conditions when there is little breaking
at the shoreline. For our test set, which included Hurricane
Dorian, this threshold occurred in less than 10% of the test
cases at the peak of the storm, during time periods where
manual digitization of the beach–water interface was also
impossible. Thus, the aforementioned data coverage require-
ment was implemented to remove times known to be difficult

for digitization from the real-time processing of these data
(>30% linescans with no return at the furthest estimated
rundown extent).

When conditions met this threshold, percent differences in
swash statistics derived from the runup time series determined
using the ML- and human-based methodologies were less than
5.3% (see Fig. 11 for all observed Stotal and Tm). Slightly
higher percent differences in Stotal were observed during low
(<1 m) and high (>2.5 m) swash conditions, which are con-
ditions that occurred less frequently in the test set. In addition,
there are increased differences in the highest wave height bin,
which could be due to increasing beach slope as you go up
the beach, which results in larger elevation differences for
smaller horizontal deviations in runup locations. These results
are encouraging as the test dataset contains data during the
near-direct impact of Hurricane Dorian. Storm conditions are
some of the most valuable wave runup data to collect, and our
results suggest that this methodology will be able to robustly
and automatically identify the beach–water interface location
during similar events.

While the ML-classification was found to be robust in a
range of wave conditions, there was one notable instance in our
test set, which had a slightly higher difference in R2% (shown
circled in orange in Fig. 8). Investigation of this time series
discovered one incorrectly classified extreme runup event by
the ML classification when defining the beach–water interface
[Fig. 9(e) and (f)]. In this particular case, the swash uprush
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ran up the dune face, creating a case not often seen during
training of the model. Compounding the issue, long periods
often associated with large storms and energetic swash zones
create a low number (<100) of runup events during the 30-min
collection period. Therefore, a misidentification of a single
extreme runup event will result in a large difference in R2%,
even though the agreement between the runup line itself during
the time period is generally favorable. This issue could be
improved by ongoing work to identify additional cases that
have examples of dune-toe runup and adding them to the
training dataset.

D. Runup Data Availability

This framework will be implemented within the FRF’s
real-time dune lidar processing and will be applied to his-
torical observations, providing a wave runup dataset of over
50 000 linescan time series for the scientific and engineering
communities to use. Contributions of the wave runup dataset
from the full time period, the lidar system has been running,
and including real-time access to future runup measurements,
could have important relevance for the development of new
runup models. In addition, the network model will be made
available to the public so that others can adopt the methodol-
ogy and use transfer learning to aid in transferring the model
to other lidar systems at other locations. The following URL
contains the code and model: https://github.com/FRF-Remote-
Sensing/LidarRunup-ML.

V. CONCLUSION

In this study, an FCNN-based ML model was developed
to classify beach and water returns in lidar linescan time
series and trained using 966 30-min linescan time series
with manually digitized beach–water interface locations. The
classified data were then used to estimate swash depths and
to define a runup location based on a particular swash depth
contour (3 cm in this case). Overall, the resulting runup
locations determined using the ML- and manually digitized
beach–water interfaces compared favorably in a variety of
analyses (0.02-m RMSD 3-cm contour, 0.06-m RMSD in the
2% exceedance elevation R2%, 0.07-m RMSD in the total
swash height Stotal, 0.61-s RMSD in the mean period Tm ,
0.03-m RMSD in the infragravity swash height SIG, 0.08-m
RMSD in the sea-swell swash height Sss, and 0.02-m RMSD
in the mean runup elevation Rmean) over a range of wave
conditions. Transforming the lidar dataset into an image-like
timestack allowed for the successful leveraging of the image
processing strengths of FCNNs. While the 3-cm contour was
chosen for defining the wave runup location in this study,
other applications could be interested in extracting other depth
contours, and the swash depth estimation methods described
here could be used to extract a range of depth contours
in variable incident wave conditions. The quantitative runup
elevations provided by the methodology could also be helpful
for comparison to numerical wave models. The ML methods
described should be applicable to other geographical areas and
other lidar systems, and the model itself could be useful as
a starting point for transfer learning to other locations and

sensors to avoid the need for manual digitization of large
datasets.
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