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Abstract— Background reconstruction is a key step of moving
object detection in satellite videos. Most existing model-based
methods exploit low-rank prior to recover background, which
has achieved good performance but suffered degradation under
complex and dynamic scenes. In this article, we introduce a
deep background prior into model-based methods for moving
vehicle detection in satellite videos. Our deep background prior
is obtained by a background reconstruction network, which
can learn to reconstruct the background from consecutive
frames. By applying our deep background prior into model-
based methods, a closed-form solution can be obtained via the
alternating direction method of multipliers (ADMM), and then,
detection results can be acquired through iterative optimization.
More importantly, our background reconstruction network can
be trained in an unsupervised way by introducing specifically
designed loss, thus relieving the dependence on large-scale
labeled datasets. Extensive experimental results demonstrate the
efficiency and effectiveness of the proposed method.

Index Terms— Background reconstruction, iterative optimiza-
tion, moving object detection (MOD), satellite videos, unsuper-
vised learning.

I. INTRODUCTION

WITH the development of remote sensing technology
in recent years, video surveillance from satellites has

become an effective way for many applications, such as
urban monitoring [1], resource exploration [2], and traffic
condition monitoring [3], [4]. For these applications, moving
object detection (MOD) plays a fundamental role to locate
objects of interest. However, MOD, especially moving vehicle
detection in satellite videos, is extremely challenging due to
the following aspects.

1) Small Object Sizes: Due to the low spatial resolution
(e.g., the ground sampling distance (GSD) of Jilin-1 is
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around 1 meter), moving vehicles captured by satellite
videos are with small object sizes and usually smaller
than 5 × 5 pixels, leading to a lack of appearance and
texture information.

2) Low Contrast to the Complex and Dynamic Background:
Due to various complex and dynamic scenes, the mov-
ing vehicles are sometimes with low contrast to back-
grounds, which are difficult to be distinguished from
background clutters.

3) Insufficient Labeled Data: Although the camera on satel-
lites can provide continuous observation of the Earth
and obtain a large number of satellite videos, collecting
and manually annotating large datasets for MOD require
considerable time, effort, and cost, thus hindering the
research process.

Due to the merit of flexibility, model-based methods [3],
[5], [6], [7], [8], [9], [10] have been widely investigated for
MOD in satellite videos, in which background subtraction
plays an important role to segment target from its adjacent
pixels. However, existing methods [6], [7], [8] generally
adopt handcrafted priors (e.g., low-rank prior [6], [7], [8])
with regularization terms and hand-tuned parameters to the
model background. When dealing with complex scenes, these
methods can not accurately reconstruct the background, thus
limiting the detection performance. Moreover, due to the
introduction of various regularization terms, most of these
methods are computationally expensive as they need iterative
optimization.

Recently, deep neural networks have demonstrated their
effectiveness in serving as implicit image priors and have
achieved remarkable performance in various fields, such
as image deblurring [11], single image super-resolution
(SISR) [12], and color image demosaicing [13]. Inspired
by these methods, in this article, we utilize deep networks
to extract implicit background information (which is called
deep background prior in the following text) to accurately
reconstruct the background for moving vehicle detection.
Specifically, we design a U-shape network to obtain deep
background prior, which is incorporated into model-based
methods. The whole framework can be solved by alternating
direction method of multipliers (ADMM) [14] to get the
closed-form solution. Based on the closed-form solution, the
detection results can be obtained via iterative optimization.
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It is worth noting that our background prior can be learned
in an unsupervised manner by training the U-shaped network
with a specifically designed loss function, thus eliminating the
reliance on the large-scale annotated dataset.

The main contributions of this article are summarized as
follows.

1) We incorporate deep background prior into the
model-based method for moving vehicle detection in
satellite videos, which combines the advantages of both
model- and learning-based methods. To the best of our
knowledge, we are the first to propose such a framework
for MOD in satellite videos.

2) We design a background reconstruction network to
recover background from multiple frames in an unsu-
pervised way. A loss objective is designed to guide the
network to reconstruct the background without ground-
truth labels.

3) With the help of the incorporated deep background prior,
our method achieves superior detection performance
with significant acceleration compared to state-of-the-art
model-based methods.

The rest of this article is organized as follows. Some
related works are briefly reviewed in Section II. The notations
and preliminaries are described in Section III. The proposed
framework is illustrated in Section IV. Section V presents
the experimental setup and results in detail, and Section VI
concludes this article.

II. RELATED WORK

MOD in satellite videos is a newly emerging field in
recent years due to the availability of satellite videos provided
by launched satellites, such as Jilin-1 and Skybox. In this
section, we briefly review the major works on model- and
learning-based methods for MOD in satellite videos. In addi-
tion, we introduce the highly related works on model-based
methods with deep image priors and unsupervised MOD.

A. Model-Based Methods for MOD in Satellite Videos

Most traditional methods exploit the physical characteristics
of targets to tackle MOD in satellite videos, which can be
divided into frame differencing-based methods [15], [16], [17]
and background subtraction-based methods [3], [6], [7], [18],
[19], [20], [21].

Frame differencing-based methods [15], [16], [17] detect
moving objects by computing the differences between adjacent
frames and then perform segmentation to get the detection
results. A variety of two- and three-frame differencing methods
have been proposed. However, the detection performance
would be degraded by the sudden change in the dynamic
backgrounds.

Typical background subtraction-based methods [3], [18] first
estimate the background by different filters (e.g., mean or
median filters) and then get the detection results by subtracting
the estimated background from each frame. The relatively
simple estimation of background makes these methods suffer
performance degradation under complex scenes, resulting in a
high false alarm rate.

Another line of background subtraction-based methods
exploits robust principal component analysis (RPCA) tech-
niques to detect moving objects. These RPCA-based meth-
ods [6], [7], [19], [20], [21] assume that the image from
satellite videos is a summation of background, target, and
noise, and employ different regularization on each component.
The detection results can be obtained by acquiring closed-form
solutions and applying iterative optimization [6], [7], [21].
However, these RPCA-based methods usually employ sophis-
ticated and handcrafted regularization terms to tackle complex
scenes, which increases the computational complexity and
slows down the iterative process. Moreover, when dealing
with complex scenes, these methods cannot ensure the quality
of the recovered background, thus degrading the detection
performance.

B. Learning-Based Methods for MOD in Satellite Videos

Before the deep learning era, feature extractors and descrip-
tors are widely used for many tasks, such as object detec-
tion [22] and image matching [23]. With powerful feature
modeling capacities, deep learning has been successfully
applied in object detection for natural images [24], [25], [26],
[27], [28], [29], [30] and achieved promising performance.
For example, Bayraktar et al. [30] proposed a framework
consisting of basic image preprocessing techniques, geomet-
rical operations, and deep neural networks to improve the
performance of ornamental plant detection and counting from
onboard UAV cameras. However, these object detection meth-
ods mainly rely on appearance information to detect objects.
When dealing with moving objects in satellite videos with
limited appearance and texture information, these methods
will suffer significant performance degradation [31], [32]. For
MOD in satellite videos, the spatiotemporal information is of
great importance. Therefore, existing learning-based methods
usually design suitable network architectures for the extraction
of spatiotemporal information.

LaLonde et al. [31] proposed a two-stage network named
ClusterNet to extract spatiotemporal information from consec-
utive airborne images to detect moving objects. Xiao et al. [32]
proposed a two-stream detection network called DSFNet to
incorporate the static context information and the dynamic
motion cues for MOD in satellite videos. Although the
learning-based methods have achieved promising performance,
their performance relies heavily on large-scale labeled data.
However, due to the extremely small object size and complex
backgrounds, annotating moving objects in satellite videos is
labor-intensive and time-consuming. In this article, we explore
an unsupervised method for MOD in satellite videos to fully
use a large amount of unlabeled data to relieve the labeling
burden, which is more practical in real scenes.

C. Model-Based Methods With Deep Image Priors

Unlike traditional model-based methods that require explicit
and handcrafted image priors, model-based methods with
deep priors [33], [34], [35] can incorporate implicit deep
priors from deep CNN networks for image restoration [36].
Tirer and Giryes [37] utilized the plug-and-play framework
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with IRCNN [38] denoiser to tackle SISR. Li and Wu [39]
introduced IRCNN denoiser into a model-based method to
solve depth image inpainting. Zhang et al. [13] modulated the
deep denoiser prior into traditional model-based methods to
solve various image restoration problems.

Inspired by these works, we introduce an implicit deep
background prior into model-based methods to generate more
accurate backgrounds, which further improves the effective-
ness of MOD in satellite videos. Different from the aforemen-
tioned supervised image restoration methods, we develop a
background reconstruction network to obtain deep background
prior in an unsupervised manner.

D. Unsupervised Moving Object Detection

Unsupervised MOD aims to perform detection without
any handcrafted annotation. Recently, many unsupervised
MOD methods have been proposed for natural images [40],
[41], [42], [43]. Specifically, Sultana et al. [40] proposed a
GAN-based moving object detector to estimate the background
and employed differencing and segmentation to generate
detection results. Yun et al. [42] proposed an unsupervised
MOD method for pan-tilt-zoom (PTZ) cameras. They designed
two background models for large and small changes, and
incorporated the results from both models to get the moving
objects. Bao et al. [43] modified the SlotAttention [44] frame-
work to detect moving objects and utilized pseudo-ground
truth generated by a motion segmentation method as supervi-
sion. However, the aforementioned methods are designed for
general objects in natural images, where the object contains
abundant appearance and texture information. They tend to
suffer significant performance degradation on MOD in satellite
videos due to the small sizes and low contrast to background
clutters.

To alleviate the annotation burden of moving vehicles in
satellite videos, Zhang et al. [45] proposed a weakly super-
vised method to detect moving objects in satellite videos.
They first generated pixelwise pseudolabels from the tradi-
tional RPCA-based method E-LSD [6] and then utilized the
pseudolabels to train an encoder–decoder network to segment
moving objects. Due to the inaccuracy of the generated pseu-
dolabels, the method in [45] achieved an inferior performance
than E-LSD [6].

In the field of MOD in satellite videos, unsupervised learn-
ing has not been discussed yet. In this article, we propose
the first unsupervised learning method for moving vehicle
detection in satellite videos.

III. NOTATIONS AND PRELIMINARIES

A. Formulation of MOD in Satellite Videos

Generally, the problem of MOD in satellite videos can be
formulated as follows:

fD = fB + fT + fN (1)

where fD , fB , fT , and fN represent the original image, the
background image, the target image, and the noise image,
respectively. Compared with matrix-based methods [6], [7],

the low-rank tensor decomposition method [8] can obtain good
detection performance due to the preservation of the spatiotem-
poral structure. Therefore, this article uses the low-rank tensor
decomposition method as the basic framework. Consequently,
the model in (1) can be rewritten into the tensor form as
follows:

D = B + T +N (2)

where D,B, T ,N ∈ RnL×H×W represent the original patch
tensor, the background patch tensor, the target patch tensor,
and the noise patch tensor, respectively. The detection results
(i.e., target image) can be obtained by fetching out the slices
of T .

B. Low-Rank and Sparse Component Decomposition Model

The background regions are generally assumed to change
slowly over a period of time, and there are a lot of overlapped
regions among different frames. Therefore, background patch
tensor B conforms to the low-rank property [6] with suitable
video length, which can be described as

rank(B) ≤ r (3)

where r is a constant and rank(·) represents the rank of a
tensor.

The target patch tensor T conforms to the sparsity prior,
which can be depicted as

∥T ∥0 ≤ d (4)

where d is an integer that is related to the target characteristic
and satisfies d ≪ W × H .

The noise N is usually modeled as additive white Gaussian
noise, and it satisfies the following:

∥N∥F ≤ σ (5)

where ∥·∥F represents the Frobenius norm of a tensor and
σ > 0 denotes the Gaussian noise level.

Generally, the low-rank tensor-based framework for MOD
in satellite videos can be obtained by replacing ∥T ∥0 with
∥T ∥1 [46]. Therefore, the low-rank and sparse component
decomposition model can be formulated as

min
B,T

∥B∥∗ + λ∥T ∥1 + β∥N∥F

s.t. D = B + T +N (6)

where λ and β denote the weight for target and noise compo-
nents, respectively. ∥·∥∗ represents the nuclear norm, which is
a nonconvex approximation of rank(B).

IV. PROPOSED FRAMEWORK

Previous model-based methods [6], [7], [8] usually employ
explicit image prior (e.g., low rank prior) as regularization
terms (e.g., the nuclear norm) to accurately recover the back-
ground. Despite achieving promising performance, these meth-
ods cannot handle complex scenes well due to the quality of
the reconstructed background. To address this issue, we intro-
duce the implicit deep background prior into the model-based



5603114 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Fig. 1. Illustration of the proposed method. (a) Overall framework, which consists of two parts, including a background reconstruction network and
iterative optimization. (b) Background reconstruction network. The proposed network can reconstruct the background as deep background prior, which
can be incorporated into the model-based method. Then, the detection results can be obtained by solving the closed-form solution and performing iterative
optimization.

method, which can be obtained by a deep background recon-
struction network. In this section, we introduce the proposed
framework with deep background prior, which is shown in
Fig. 1(a). In the following, we first present a model-based
method with deep background prior in Section IV-A. Then,
the solving process of the proposed framework is illustrated
in Section IV-B. Finally, the unsupervised background recon-
struction network is introduced in Section IV-C.

A. Model-Based Method With Deep Background Prior

The core idea of our proposed framework is to incorporate
deep background prior into the model-based method. There-
fore, we introduce the deep background prior into (6) and
remove the handcrafted nuclear norm on the background. The
formulated model is given as follows:

min
B,T ,N

λ∥T ∥1 + β∥N∥
2
F

s.t. D = B + T +N , B = fθ (D) (7)

where fθ (D) denotes the deep background prior recovered
from the input image by the background reconstruction
network fθ (·). λ and β denote the positive regulariza-
tion parameters. Note that one can replace fθ (·) with any
designed background reconstruction network. Therefore, our
proposed framework can not only retain the flexibility of the
model-based method but also leverage the powerful modeling
ability of deep neural networks.

B. Solving the Proposed Method

The problem in (7) can be rewritten by the inexact
augmented Lagrangian multiplier (IALM) [47] approach

as follows:

L(B, T ,N , y1, y2)

= λ∥T ∥1 + β∥N∥
2
F +

µ

2
∥D − B − T −N∥

2
F

+
µ

2
∥B − fθ (D)∥2

F + ⟨y1,D − B − T −N ⟩

+ ⟨y2,B − fθ (D)⟩ (8)

where y1 and y2 represent Lagrangian multipliers and µ

is a positive penalty scalar. Since it is hard to optimize
all these variables concurrently, we approximately solve this
optimization problem by alternately solving one variable with
the others being fixed. Thus, we apply ADMM [14] approach
to decompose (8) into three optimization subproblems about
B, T , and N , and then alternately solve these variables. The
details are given as follows.

1) Updating B with other variables being fixed

Bk+1
= arg min

B

µk

2

∥∥∥∥B − fθ (D) +
yk

2

µk

∥∥∥∥2

F

+
µk

2

∥∥∥∥D − B − T k
−N k

+
yk

1

µk

∥∥∥∥2

F
. (9)

The solution of (9) can be obtained by

Bk+1
=

1
2

×

(
fθ (D) −

yk
2

µk
+D − T k

−N k
+

yk
1

µk

)
.

(10)

2) Updating T with other variables being fixed

T k+1
= arg min

T
λ∥T ∥1

+
µ

2

∥∥∥∥D − Bk+1
− T −N k

+
yk

1

µk

∥∥∥∥2

F
. (11)
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Algorithm 1 Proposed Algorithm
Input: image sequence, parameters λ, β, µ > 0
Initialize: Transform the image sequence with length
nL into the original tensor D, B0

= T 0
= N 0

= 0,
y0

1 = y0
2 = 0, µ0 = 5e − 4, µmax = 1e7, ρ = 1.5,

β = 100, λ = 1/
√

max(H, W ) × nL , ζ = 1e − 7,
max I ter = 500, k = 0.
While not converged do

1 : Update Bk+1 by Eq. (10)
2 : Update T k+1 by Eq. (12)
3 : Update N k+1 by Eq. (14)
4 : Update the Lagrangian multipliers by Eq. (15)
5 : Update µk+1 by Eq. (16)
6 : Check the convergence conditions

∥D−Bk+1
−T k+1

−N k+1∥
2
F

∥D∥
2
F

≤ ζ or k = max I ter
7 : Update k = k + 1

end While
Output : Bk+1, T k+1,N k+1

Equation (11) can be solved by performing elementwise
shrinkage operation [48]

T k+1
= T hλ(µk)

−1
(
D − Bk+1

−N k
+

yk
1

µk

)
(12)

where Th(·) denotes the elementwise shrinkage operator
and µk is the positive penalty scalar for the kth iteration.

3) Updating N k+1 with other variables being fixed

N k+1
= arg min

N
β∥N∥

2
F

+
µk

2

∥∥∥∥D − Bk+1
− T k+1

−N +
yk

1

µk

∥∥∥∥2

F
. (13)

The solution of (13) can be obtained by

N k+1
=

µk
(
D − Bk+1

− T k+1
)

+ yk
1

µk + 2β
. (14)

4) Updating multipliers y1, y2 with other variables being
fixed{

yk+1
1 = yk

1 + µk
(
D − Bk+1

− T k+1
−N k+1

)
yk+1

2 = yk
2 + µk

(
Bk+1

− fθ (D)
)
.

(15)

5) Updating the positive penalty scalar µk+1

µk+1
= min

(
ρµk, µmax

)
. (16)

Finally, the proposed method is summarized in Algorithm 1.

C. Unsupervised Background Reconstruction Network

We build a background reconstruction network to recover
background, which can serve as implicit deep background
prior. Due to the lack of ground-truth background and the
difficulty in acquiring such labels in real scenes, we pro-
pose to train the background reconstruction network in an
unsupervised manner. In the following parts, we introduce
the architecture of the proposed background reconstruction
network in Section IV-C1, the merge block in Section IV-C2,
and the specifically designed loss in Section IV-C3.

1) Network Architecture: We design a U-shape net-
work [49] to recover the background from consecutive frames
in satellite videos, which consists of an encoder for feature
extraction, a decoder for feature reconstruction, and skip
connections for feature propagation. The encoder and the
decoder are composed of several convolution blocks (each
convolution block consists of two Conv-BN-ReLU layers)
and downsampling or upsampling operations. A merge block
is added to the skip connection to aggregate the temporal
information, which can propagate the spatiotemporal infor-
mation from the encoder side to the decoder side. The net-
work architecture is shown in Fig. 1(b). Specifically, a video
clip Vt with n frames It+τ (τ = [−r, r ], r = ⌊n/2⌋) is first
fed into a 2-D convolutional layer to generate the initial
feature map F t

0 ∈ Rbn×c0×H×W , where b denotes the batch
size. After that, the initial feature map is processed by the
encoder to generate multilevel feature maps, resulting in
F t

i ∈ Rbn×ci ×(H/2i−1)×(W/2i−1) for the i th convolution block.
Next, the generated multilevel feature maps are processed
by merge blocks, which can fuse the spatial and temporal
information, resulting in G t

i ∈ Rb×ci ×(H/2i−1)×(W/2i−1). Then,
the fused multilevel feature maps are sent to the decoder,
which can recover the resolution of the feature map. Finally,
the resulting feature map from the decoder is processed by a
2-D convolution to get the reconstructed background B̂ t .

2) Merge Block: For the skip connection, to aggregate the
spatiotemporal information of the feature map generated from
the video clip, we build a merge block into the skip connection
to propagate spatiotemporal information from the encoder to
the decoder. Since the background region overlaps among
adjacent frames, merging the spatiotemporal information from
multiframes and reducing the temporal dimension can help
to obtain deep background prior. The merge block consists
of a 3-D convolution block and a temporal average-pooling
operation. To reduce the computational cost of the 3-D con-
volution block, we decomposed the 3-D convolution with a
kernel size of k × k × k into a spatial convolution with
a kernel size of 1 × k × k and a temporal convolution
with a kernel size of k × 1 × 1. Each convolution in the
decomposed 3-D convolution block is followed by a batch
normalization and a ReLU. Following the decomposed 3-D
convolution is the temporal average-pooling operation. The
temporal average-pooling operation can reduce the temporal
dimension and fuse background information from multiple
frames. Through the merge block, multiframe background
information can be extracted and fused for background recon-
struction.

3) Objective Loss Function: It is a straightforward way to
utilize clean backgrounds as supervision to train the back-
ground reconstruction network. However, in practice, it is
difficult to generate backgrounds as supervision from natural
images. Therefore, in this article, we design a loss function
to guide the network to reconstruct the background in an
unsupervised manner.

Since the image can be intuitively separated into background
and target regions, we can use different strategies to deal with
these regions when computing loss. For the background region,
it is better to make the reconstructed results approximate the
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TABLE I
DETECTION PERFORMANCE ACHIEVED BY DIFFERENT METHODS. RECALL (RE) (%), PRECISION (PR) (%), AND F1 SCORE (F1) (%) ACHIEVED BY

DIFFERENT METHODS ON SEVEN SATELLITE VIDEOS. TIME COST (S) FOR A SINGLE IMAGE (1024 × 1024) OF DIFFERENT METHODS IS ALSO
LISTED IN THE TABLE. THE BEST RESULTS ARE SHOWN IN BOLDFACE, AND THE SECOND BEST RESULTS ARE SHOWN IN UNDERLINE

original images. In contrast, for the target areas, it is better to
make the reconstructed results approximate the adjacent back-
ground area instead of the original target pixels. Based on these
motivations, we separate the reconstructed background into
two disjoint subsets (i.e., target region and background region)
and employ different supervisions to compute the loss of these
two regions. For the background region, we use the original
input image as supervision. For the target region, to alleviate
the influence of target pixels, we utilize the temporal median
filtered image as supervision since targets are moving, and
temporal median filtering can filter out most target pixels
to reduce their influence in the target region. Therefore, the
loss objective consists of two parts, including background
region-related loss Lback and the target region-related loss L tar,
which are defined as follows:

Lback =
1

H W

∥∥B̂ t ⊙ (1 − Mt ) − It ⊙ (1 − Mt )
∥∥

F (17)

and

L tar =
1

H W

∥∥B̂ t ⊙ Mt − Im ⊙ Mt
∥∥

F (18)

where ⊙ represents element multiplication and Mt represents
the generated binary mask of the target areas with 1 denoting
the target region and 0 indicating the background region.
Im represents the temporal median filtered image of the input
video clip. To obtain the target region mask, we first feed
the reconstructed background and the input images to the
iterative optimization to generate detection results and then
apply segmentation to get the target mask.

The background region-related loss Lback and the target
region-related loss L tar work jointly to guide the network to
reconstruct the background. The total loss objective is defined
as

L = Lback + L tar. (19)

Since the designed loss objective is label-independent, the
proposed method can alleviate the dependence on large-scale
labeled data.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we conduct extensive experiments to evaluate
the detection performance of the proposed framework on the
dataset collected from Jilin-1 satellite [10].

A. Dataset Description and Experimental Details

The detection performance of the proposed method is eval-
uated on satellite videos from the Jilin-1 satellite. The GSD
of the dataset is around 1 m, and the frame rate is 10 frames
per second. The moving vehicles in the dataset are labeled
by bounding boxes as the ground truth. The videos in the
dataset contain complex and dynamic backgrounds, which are
challenging for MOD.

For the background reconstruction network, we used seven
consecutive frames with a frame interval of 3 as input to the
network. The batch size was set to 10 with a random crop
image patch size of 256 × 256. We trained our network using
the Adam optimizer [50] for 100 epochs with a learning rate
of 1 × 10−4. All the models were implemented with Pytorch
on one Nvidia RTX 3090Ti GPU.

For the iterative optimization, we set ρ = 1.5, µ = 0.0005,
nL = 16, β = 100, and λ = 1/(max(H, W ) × nL)1/2,
where H , W , and nL represent the height, width, and video
length of the input video, respectively.

B. Evaluation Criteria

In order to make a fair comparison with other compared
methods, we follow [7], [10], and [31] to use precision, recall,
and F1 score as the evaluation metrics, which are defined as
follows.

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1 =
2 × Precision × Recall

Precision + Recall
(22)

where TP, FN, and FP represent the number of true positives
(correct detections), false negatives (missed targets), and false
positives (false alarms), respectively. Specifically, the precision
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metric measures the fraction of the detections of TPs, and
the recall metric indicates the fraction of positives that are
correctly identified. The F1 measure is a combination of
precision and recall, and is a more reliable and comprehensive
evaluation metric.

It is worth noting that, although IoU is widely used for the
performance evaluation of generic object detection [24], [25],
[26], [27], [28], [29], it is not suitable for the evaluation of
extremely small objects in satellite videos. Due to the small
size of moving targets in satellite videos, tiny shifts of the
predicted bounding box will cause a large fluctuation in the
IoU value. Therefore, in this article, we follow [31] to consider
a predicted bounding box as a TP if the distance between the
center of this bounding box and the ground-truth one is smaller
than a predefined threshold. In this article, we set the distance
threshold to 5 pixels, which represents around 5 m considering
the GSD of the Jilin-1 satellite.

C. Comparison to the State of the Arts

In this section, we present the detection results and anal-
yses of MOD in satellite videos. We compare the pro-
posed method with nine state-of-the-art methods, including
two frame differencing-based methods (i.e., D&T [9] and
MMB [10]), four RPCA-based methods (i.e., GoDec [19],
DECOLOR [5], E-LSD [6], and B-MCMD [7]), and three deep
learning-based methods (i.e., SAHI [29], ClusterNet [31], and
DSFNet [32]).

1) Quantitative Results: The quantitative results are shown
in Table I. It can be observed that, compared with the
model-based methods, our framework achieves higher average
recall, precision, and F1 score, outperforming the second best
model-based method MMB [10] by 1.4 in terms of F1 score.
That is because our method introduces deep background prior
into model-based iterative optimization, which can recover
background more accurately, thus achieving superior per-
formance. Compared with the deep learning-based method
SAHI [29], our method achieves superior performance. That
is because SAHI [29] is designed for generic small object
detection in a single image and would suffer significant perfor-
mance degradation when applied to an extremely small moving
object in satellite videos. Note that our method achieves the
best average precision, outperforming the second best method
DSFNet [32] by 1.3 in terms of precision rate, which means
that our method can improve the detection performance with
reduced false alarms due to the accurately reconstructed back-
ground. Moreover, although our framework performs inferior
to DSFNet [32] (80.9 versus 85.5 in terms of F1 score), our
method can detect moving objects in an unsupervised way,
which can relieve the dependence on the large-scale dataset
with labor-intensive and time-consuming annotation process.

2) Time Efficiency Analyses: To compare the efficiency of
different methods, we record the average time cost (s) of
different methods on an input image with a size of 1024 ×

1024. The results are listed in Table I. It can be observed
that, compared with LRSD-based methods (i.e., GoDec [19],
DECOLOR [5], E-LSD [6], and B-MCMD [7]), our method
is faster and achieves higher F1 score. Compared with the

LRSD-based method GoDec [19], our method can achieve
nearly 10× acceleration. That is because our method sub-
stitutes the low-rank regularization term with deep back-
ground prior, which can reduce the computational burden
of the low-rank regularization term. Moreover, due to the
removal of the regularization nuclear term in the back-
ground, our method can exploit CUDA acceleration tech-
niques to improve efficiency, which can further speed up
the detection process. Moreover, compared with the fastest
deep learning-based method SAHI [29] and the second fastest
frame differencing-based method D&T [9], our method runs
relatively slowly, while the detection performance of our
method is superior, which demonstrates the effectiveness of
our method.

3) Qualitative Results: Qualitative results of different meth-
ods are shown in Figs. 2 and 3. It can be observed that, com-
pared to the complex backgrounds, moving vehicles occupy
only a few pixels, and there are many distractors in the
surroundings. Compared with the state-of-the-art model-based
methods, our method can produce more reliable detection
results with fewer false alarms (as can be seen from the
numbers of the TP, FP, and FN), which demonstrates the
superiority of our method in tackling challenging scenes.
It can also be observed that the existing model-based methods
exhibit many false alarms on stationary background objects
(e.g., residential area of video 7 in Fig. 3), while our method
produces fewer false alarms on these objects. We attribute this
to the accurately reconstructed background produced by our
deep background reconstruction network.

D. Ablation Study

In this section, we conduct different ablation studies to
investigate the design of our proposed framework.

1) Effectiveness of Background Reconstruction Network:
To validate the effectiveness of our background reconstruction
network, we replace the background reconstruction network
with other reconstruction methods, including the spatial mean
filter, the spatial median filter, the temporal mean filter, and
the temporal median filter. The quantitative results are shown
in Table II. It can be observed that our proposed method
achieves the best F1 score and outperforms the second best
background reconstruction method by 1.9 in terms of F1
score. The backgrounds reconstructed by different methods are
shown in Fig. 4. It can be observed that our method can restore
a more clean background, which can be used to obtain better
detection results. In contrast, other background reconstruction
methods have target residuals in the target region and, thus,
have inferior detection performance.

To accurately evaluate the background reconstruction capa-
bility of different methods, we add synthetic moving targets
on the clean backgrounds and then apply different methods
for background reconstruction. The reconstructed background
is compared with the ground-truth clean background. Follow-
ing [51], we use PSNR calculated between the reconstructed
background and the ground-truth one as quantitative metrics
for reconstruction performance evaluation. We compare our
proposed method with three RPCA-based methods, including
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Fig. 2. Visual comparison of detection results on Video 1 (bridge area) and Video 4 (airport area). The light green, yellow, and red boxes denote the annotated
ground truth, correct detections, and false alarms, respectively. The TP/FP/FN numbers achieved by different methods on the presented scenes are reported
below the image regions.

Fig. 3. Visual comparison of detection results on Video 6 (wild road) and Video 7 (residential area). The light green, yellow, and red boxes denote the
annotated ground truth, correct detections, and false alarms, respectively. The TP/FP/FN numbers achieved by different methods on the presented scenes are
reported below the image regions.

DECOLOR [5], E-LSD [6], and B-MCMD [7]. The quan-
titative results are shown in Table III. It can be observed
that our method achieves the best PSNR and F1 score,

which demonstrates the effectiveness of our deep background
prior. The qualitative results are shown in Fig. 5. It can be
observed that our method can reconstruct a more accurate
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Fig. 4. Background reconstruction results generated by different methods. The red circles indicate the target region to show the target residuals. Fewer target
residuals indicate better background reconstruction quality.

TABLE II
PERFORMANCE OF DIFFERENT BACKGROUND RECONSTRUCTION

METHODS. AVERAGE RECALL (AVG RE) (%), AVERAGE PRECISION
(AVG PR) (%), AND AVERAGE F1 SCORE (AVG F1) (%) ARE

LISTED IN THE TABLE FOR PERFORMANCE COMPARISON. THE
BEST RESULTS ARE SHOWN IN BOLDFACE

TABLE III
PERFORMANCE OF DIFFERENT METHODS ON THE SYNTHETIC DATA.

PSNR AND F1 SCORE (%) ARE LISTED IN THE TABLE FOR
PERFORMANCE COMPARISON. THE BEST RESULTS

ARE SHOWN IN BOLDFACE

background (smaller errors between the generated background
and the ground-truth one) and, thus, achieves better detection
performance.

2) Effectiveness of Merge Block: As a component of our
background reconstruction network, the merge block can inte-
grate the spatial and temporal information, and propagate
the fused spatiotemporal information from the encoder to the
decoder. Here, we investigate the merge block by introducing
two variants, i.e., Block2D and Block3D. Block2D merges
spatial and temporal information by first concatenating multi-
frame features along channel dimension and then performing
a 2-D convolution with a kernel size of 3 × 3 (with BN
and ReLU layers). Block3D integrates the spatiotemporal
information explicitly by a 3-D convolution with BN, ReLU,
and a temporal average-pooling layer.

The detection performance of different variants is shown
in Table IV. It can be observed that our method achieves the
best F1 score and outperforms Block2D by 2.9 in terms of F1

TABLE IV
ABLATION STUDY ON MERGE BLOCK. AVERAGE RECALL (AVG RE) (%),

AVERAGE PRECISION (AVG PR) (%), AVERAGE F1 SCORE (AVG F1)
(%), AND TIME COST (S) ARE LISTED IN THE TABLE FOR
PERFORMANCE COMPARISON. THE BEST RESULTS ARE

SHOWN IN BOLDFACE. THE BEST RESULTS
ARE SHOWN IN BOLDFACE

TABLE V
PERFORMANCE OF DIFFERENT DETECTION METHODS. AVERAGE RECALL

(AVG RE) (%), AVERAGE PRECISION (AVG PR) (%), AND AVERAGE
F1 SCORE (AVG F1) (%) ARE LISTED IN THE TABLE FOR

PERFORMANCE COMPARISON. THE BEST RESULTS
ARE SHOWN IN BOLDFACE

score. That is because Block2D utilizes 2-D convolution and,
thus, cannot fully extract and fuse the spatial and temporal
information. Moreover, compared with Block3D, our method
reduces the processing time of a single image by 33% (0.48 s
versus 0.72 s) and achieves a better F1 score. That is because
the decomposed 3-D convolution in the merge block can not
only reduce the computational cost but also introduce extra
nonlinear operations to enhance the modeling ability of the
network. In conclusion, our designed merge block can achieve
higher accuracy and efficiency.

3) Effectiveness of the Iterative Optimization: To validate
the effectiveness of the iterative optimization, we directly use
frame differencing operation between the input image and
the reconstruction background and segment detection results
from the residual images. The quantitative results are shown
in Table V. It can be observed that the iterative optimization
achieves the best average F1 score and outperforms the frame
differencing method by 2.9 in terms of F1 score. That is
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Fig. 5. Experimental results on the synthetic sequence. The first row illustrates the background reconstruction results obtained by different methods, and
the zoomed-in area is utilized for a better illustration of details. The second row draws the detection results, and the light green, yellow, and red rectangles
indicate the ground truth, correct detections, and false alarms, respectively. The third row shows the differencing heatmaps between the generated background
and the ground-truth one, and lower errors indicate better reconstructed background quality.

Fig. 6. Convergence curve of the iterative optimization process.

because the iterative optimization process can optimize the
detection results to achieve optimal performance.

Moreover, we investigate the convergence of iterative opti-
mization. Here, we study numerical convergence instead of
analytical convergence since our method is a combination of
deep learning and model-based approaches. Following [52],
we use ((∥D − Bk+1

− T k+1
−N k+1

∥
2
F )/(∥D∥

2
F )) ≤ ζ as

criterion to measure the convergence. Taking video 1 as an
example, the convergence curve is shown in Fig. 6. It can be
observed that the proposed method converges to an optimal
objective value after about 40 iterations and maintains stable.

4) Impact of Network Depth: We investigate the impact of
network depth on detection performance. We set the number
of convolution blocks in the encoder and decoder to 3, 4, 5,

TABLE VI
IMPACT OF NETWORK DEPTH ON DETECTION PERFORMANCE. AVERAGE

RECALL (AVG RE) (%), AVERAGE PRECISION (AVG PR) (%), AVERAGE
F1 SCORE (AVG F1) (%), AND TIME COST (S) ARE LISTED IN THE

TABLE FOR PERFORMANCE COMPARISON. THE BEST
RESULTS ARE SHOWN IN BOLDFACE

and 6, respectively, and investigate the accuracy and efficiency
of different variants. The quantitative results are shown in
Table VI. It can be observed that, when the network depth
increases from 3 to 5, the detection performance is improved
with the increase in the network depth but at the cost of a
higher computational burden with more processing time. When
network depth increases from 5 to 6, the average F1 score
slightly drops. That is because, when the depth goes deeper,
it tends to overfit the limited training data and, thus, damages
the performance. Therefore, we choose a five-layer U-shape
network as our reconstruction network.

5) Impact of Frame Number: Our background reconstruc-
tion network reconstructs the background from n consecutive
frames. We evaluate the background reconstruction network
with different frame numbers, i.e., n = 3, 5, 7, 9. The results
are shown in Table VII. It can be observed that, when n
increases from 3 to 7, the detection performance is improved
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Fig. 7. Background reconstruction results and generated masks in loss objective during training. The first row presents the original image and the reconstructed
backgrounds. The second row illustrates the generated target masks. The red rectangles indicate the background details and target mask regions.

TABLE VII
IMPACT OF INPUT FRAME NUMBER ON DETECTION PERFORMANCE.

AVERAGE RECALL (AVG RE) (%), AVERAGE PRECISION (AVG PR)
(%), AVERAGE F1 SCORE (AVG F1) (%), AND TIME COST (S) ARE

LISTED IN THE TABLE FOR PERFORMANCE COMPARISON. THE
BEST RESULTS ARE SHOWN IN BOLDFACE

as the frame number is increased. That is because additional
frames can provide more information about the background,
which is beneficial to background reconstruction. It is also
notable that the detection performance tends to be saturated
when the frame number is increased from 7 to 9 (the average
F1 score remains unchanged). That is because the information
provided by the seven frames is already sufficient for back-
ground reconstruction. Since the spatial and temporal informa-
tion has been fully exploited for seven input frames, a further
increase in frames cannot provide performance improvement
but bring extra computational burdens. Therefore, we utilize
seven frames as input to the proposed network.

E. Analyses of Loss Objective

To reconstruct the background in an unsupervised manner,
we design a loss objective and adapt different strategies for
different image regions. To verify the effectiveness of the pro-
posed loss objective, we train our background reconstruction
network under Lback, L tar, and the combination of both losses,
respectively. The quantitative results are shown in Table VIII.
It can be observed that, with only Lback, the trained model only
suffers a minor performance degradation (80.1 versus 80.9 in
terms of F1 score). That is because, due to the ignoring of
target regions, the network cannot learn to reconstruct a fine-
grained background. It can also be observed that, with only
L tar, the F1 score drops nearly half compared to our proposed

Fig. 8. Evaluated detection performance during training.

method. That is because the limited background information
is insufficient to reconstruct the background. Thanks to the
discriminative treatment of target and background areas, our
method can learn to reconstruct a fine-grained background and,
thus, achieves higher performance.

To further investigate the effectiveness of our proposed loss
objective, we visualize the reconstructed background and gen-
erated masks during training in Fig. 7. It can be observed that,
with the increase in training epochs, the generated masks can
cover more target regions, and the quality of the reconstructed
background can be improved gradually. Since the quality of the
reconstructed background is gradually improved, the detection
performance increases with epochs and reaches saturation at
around 100 epochs, as shown in Fig. 8.

F. Parameter Sensitivity Analyses

In this section, we conduct experiments to investigate the
impact of two important parameters λ and β in the iterative
optimization on the MOD performance.

1) Impact of λ: To make it concise, while keeping β fixed
to 100, we use various values of λ0 to control the values of
λ (λ = λ0/(max(H, W ) × nL)1/2). The results are shown in
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Fig. 9. Average performance evaluation with different parameters. (a) Average performance evaluation with different λ0’s and fixed β = 100. (b) Average
performance evaluation with different β’s and fixed λ0 = 1.

TABLE VIII
RESULTS OF DIFFERENT LOSS OBJECTIVES. AVERAGE RECALL (AVG RE)

(%), AVERAGE PRECISION (AVG PR) (%), AND AVERAGE F1 SCORE
(AVG F1) (%) ARE LISTED IN THE TABLE FOR PERFORMANCE

COMPARISON. THE BEST RESULTS ARE SHOWN IN BOLDFACE

Fig. 9(a). It can be observed that, when λ0 increases from
10−6 to 102, the detection performance remains unchanged.
However, when λ0 becomes too large, the sparsity of the
target would be overemphasized, leading to overshrinkage
of the target and a dramatic drop in detection performance.
Theoretically, when λ0 approximates 0, the sparsity term will
be ignored, which will damage the detection performance.
It can be observed that our proposed method can still achieve
good performance when λ0 approximates 0. We attribute this
to the introduction of deep background prior, which would
prevent the performance from dropping to 0 when λ0 is too
small.

2) Impact of β: While keeping λ0 fixed to 1, we conduct
experiments to verify the influence of β. The results are shown
in Fig. 9(b). It can be observed that, when β exceeds 10,
the detection performance tends to be fixed. That is because,
when β is sufficiently large, the noise term N tends to zero,
which will negligibly influence the detection performance.
Theoretically, when β becomes too small, the noise term N
will be less emphasized, leading to the increase in the residual
in noise term N and significant performance degradation.
However, in our method, when β turns very small, the detec-
tion performance remains at a certain level. We attribute this
to the introduction of recovered background, which tends to
prevent N from including too many residuals into the noise
term.

VI. CONCLUSION

In this article, we have introduced deep background prior
into the model-based method for MOD in satellite videos.

The deep background prior is obtained by a background
reconstruction network, which is trained in an unsupervised
manner with the help of a specifically designed loss. Combin-
ing the learned deep background prior with the model-based
iterative optimization, the proposed framework benefits from
both worlds. Extensive experiments have demonstrated the
effectiveness and efficiency of the proposed framework.

It is worth noting that there remains room for further
improvements. On the one hand, our deep background prior
can be generated by any background reconstruction network,
and the quality of the reconstructed background has a great
impact on the detection performance. One possible direction
would be how to design a more powerful background recon-
struction network for effective background reconstruction.
On the other hand, the background reconstruction and the
iterative optimization are divided into two separate steps, and
the parameters of iterative optimization need to be tuned by
manual efforts. One can explore how to make the parameters in
iterative optimization learnable and how to combine the deep
background prior and iterative optimization into an end-to-end
network.
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