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Detection of Subtle Thermal Anomalies: Deep
Learning Applied to the ASTER Global

Volcano Dataset
Claudia Corradino , Michael S. Ramsey , Sophie Pailot-Bonnétat , Andrew J. L. Harris , and Ciro Del Negro

Abstract— Twenty-one years of Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) global thermal
infrared (TIR) acquisitions provide a large amount of data for
volcano monitoring. These data, with high spatial and spectral
resolution, enable routine investigations of volcanoes in remote
and inaccessible regions, including those with no ground-based
monitoring. However, the dataset is too large to be manually
analyzed on a global basis. Here, we systematically process the
data over several volcanoes using a deep learning algorithm to
automatically extract volcanic thermal anomalies. We explore the
application of a convolutional neural network (CNN), specifically
UNET, to detect subtle to intense anomalies exploiting the
spatial relationships of the volcanic features. We employ a
supervised UNET network trained with the largest (1500) labeled
dataset of ASTER TIR images from five different volcanoes,
namely, Etna (Italy), Popocatépetl (Mexico), Lascar (Chile),
Fuego (Guatemala), and Kliuchevskoi (Russia). We show that our
approach achieves high accuracy (93%) with excellent general-
ization capabilities. The effectiveness of our model for detecting
the full range of thermal emission is shown for volcanoes with
very different styles of activity and tested at Vulcano (Italy). The
results demonstrate the potential applicability of the proposed
approach to the development of automated thermal analysis
systems at the global scale using future TIR data such as the
planned NASA Surface Biology and Geology (SBG) mission.

Index Terms— Deep learning (DL) classifier, satellite remote
sensing, thermal infrared (TIR) image data, volcanic eruptions.

I. INTRODUCTION

SPACEBORNE thermal infrared (TIR) measurements of
high-temperature volcanic features improve our under-

standing of the underlying volcanic processes and our ability
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to identify reactivation of activity, forecast eruptions, and
assess hazards [1]. In particular, volcanic thermal changes,
indicative of preeruptive volcanic thermal activity, have been
observed [2]. High spatial resolution satellite sensors such as
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) can be used to detect such anomalies.
ASTER is onboard of Terra satellite and has acquired volcanic
data since 2000 and with improved cadence since the urgent
request protocol (URP) program started [3], [4]. The URP sen-
sor web enables new acquisitions that are triggered by either
orbital or ground-based systems generating more than 320 000
new scenes of the world’s volcanoes [5].

The abundance of image data from numerous orbital sensors
(current and planned) is leading to the critical need for novel
approaches to process these large datasets to avoid manual
inspection. Artificial intelligence (AI) is quickly growing in
different remote sensing fields because of its capability to
automatically learn patterns from the data. In fact, AI enables
problem-solving by creating systems able to make predictions
or classifications based on input data. In particular, with the
advent of machine learning (ML) and deep learning (DL)
techniques, a new programming paradigm allows us to deal
with this amount of data by extracting data-driven patterns
(i.e., without explicit programming), otherwise missed by
traditional approaches.

Over the last decades, different methods have been explored
to detect and estimate the temperature above background
in volcanic areas [6], [7]. The most common approaches
rely on a spatial statistical analysis based on a scene-by-
scene choice of the background temperature region. Threshold-
based techniques are commonly adopted to automatically
classify thermal features; however, subtle thermal changes that
can reveal preeruptive signs are typically missed (e.g., low
background thermal gradient and the presence of background
nonvolcanic thermal features). In fact, although significant
thermal anomalies, such as active vents or lava flows, are
easy to detect, a major challenge still exists to detect subtle
anomalies because of their similar values to solar-heated rocks
or their partial obscuration by clouds, volcanic degassing, and
plumes.

Given external perturbation and possible uncertainties with
respect to seasons, local weather, topography, and surface
heterogeneity, subtle thermal anomalies are commonly a weak
signal in a strong background level, and thus, they are hard to
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isolate using only statistically based pixel intensity approaches
that work well for much higher temperature anomalies. Despite
that, some satisfactory results are shown using spatiotemporal
anomaly detection algorithms based on a statistical profil-
ing approach where fixed statistical thresholds are used [6].
In addition, a temporal-based statistical approach has also been
used to process ASTER data [8]. However, the impact of short-
term meteorological warming is difficult to eliminate because
it is the same magnitude as subtle thermal changes.

ML is widely used in data analysis to automatically learn
patterns from the data. Several applications for volcano mon-
itoring have been proposed using both ground [9], [10]
and satellite remote sensing data [11], [12]. ML techniques
involve a feature extraction phase followed by a classification
step. While the feature extraction phase is embedded in the
ML technique rather than performed manually (i.e., feature
engineering), it is referred to as DL. This tool is widely
used for image segmentation and pattern recognition where
deep convolution neural networks (CNNs) allow adaptation to
most specific applications without the need for manual feature
extraction by using hierarchical learning methods.

Here, we develop a DL approach in Google Colab plat-
form to automatically extract subtle to large volcanic thermal
features by using the spatial information from ASTER data
acquired over several decades. In particular, rather than using
a purely intensity-based detection approach, we extract spatial
features from ASTER TIR images by using a convolutional
neural network (CNN). Our goal is to exploit the same
features of the human visual system to train a DL model to
recognize volcanic anomalies based on their spatial features
rather than just their intensity. This neglects other external (and
complicating) sources such as solar irradiance. The UNET
network (the so-called fully CNN) is trained by using nearly
1500 labeled ASTER TIR images over five volcanoes, the
largest such labeled database of its kind [13]. Its effectiveness
in detecting the complete range (subtle to high temperature)
of thermal changes is then applied to TIR data from Vulcano,
Italy, as a test of the model.

II. DATA

A. ASTER

ASTER is on the Terra satellite that was launched in late
1999 as a part of NASA’s Earth Observing System [5], [14].
ASTER has an equatorial revisit time of 16 days, which is
improved at higher latitudes due to converging orbits as well
as with the URP program started in 2009. URP-based ASTER
acquisitions entail data collection on every overpass possible
using off-nadir pointing. Data are acquired in eight spectral
bands (three in VNIR and five in TIR). The TIR bands span
from 8.125 to 11.65 µm at 90-m spatial resolution. Topograph-
ically corrected images (AST_L1T_003) are used in this study
to reduce the effect of topography. These data are provided by
USGS (https://lpdaac.usgs.gov/products/ast_l1tv003/).

B. Volcano Selection

We chose a set of five volcanoes to train and test the UNET
model (Fig. 1), namely, Etna (Italy), Popocatepetl (Mexico),

Lascar (Chile), Fuego (Guatemala), and Kliuchevskoi (Rus-
sia). A sixth volcano—Vulcano (Italy)—was chosen for the
testing phase. In particular, these volcanoes show different
thermal features (e.g., fumaroles, lava flow, and lava lake) and
different environmental conditions, such as topography, solar
inclination, and cloud conditions. We have considered both
nighttime and daytime data to exploit all the available images
at each volcano. We use the band B13 (10.25–10.95 µm) data
for the temperature as has been done in previous studies [8].

III. METHOD

A schematic framework of the proposed approach, includ-
ing the training and prediction phases, is shown in Fig. 2.
Supervised techniques require a large volume of labeled data
produced using an automatic or semiautomatic approach to
serve as the training set. We use the statistical approach pro-
posed in [13] to label data followed by an expert supervision
step required to properly check the correctness of the labeled
data. Only the images that pass through this stage are used.

Input and target data are then processed by a UNET that
learns to detect volcanic thermal features (positive class)
against background, clouds, and missing data [i.e., border
pixels with missing values (negative class)] during the training
phase. Finally, the trained UNET model is employed in the
anomaly prediction process using images that have never been
seen by the model.

A. Volcano Selection and Data Preprocessing

Coordinates of the volcano of interest are inserted by the
user in the Google Colab interface and the ASTER L1T
data are accessed through Google Earth Engine (GEE) server
from 2000 to 2021. Data are available in digital number (DN)
format and converted to brightness temperature (BT) for band
B13 using the steps described in [15]. Because of the large
data volumes, images are clipped using an optional buffer
centered on the volcanic edifice. Finally, the.geotiff images
are downloaded and saved in cloud through Google Colab.

B. Model Input Preparation

The input image size needs to be chosen at this phase
and the choice is driven by several considerations. Because
the number of pixels containing anomalies is far less than
the background in the image, the number of training samples
belonging to the different classes has to be balanced; other-
wise, the algorithms can become “overtuned” to specific case
studies [16]. This process is case-specific and the optimal size
is achieved by trial and error. This “imbalance problem” means
that only a few locations contain objects (i.e., foreground)
and the rest are background objects. It leads to a main issue:
training is inefficient as most locations are easy-negatives,
meaning that they can be easily classified by the detector as
background that contributes no useful learning. Easy negatives
account for a large portion of training data, thus weighting
more in the model performance making small loss even when
the foreground is not well detected.

Therefore, we crop the image in patches containing a similar
amount of volcanic thermal features and background pixels.
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Fig. 1. Volcanoes selected for the training and testing phase: (a) Etna, (b) Lascar, (c) Fuego, (d) Popocatepetl, (e) Kliuchevskoi, and (f) Vulcano
[http://www.earth.google.com (July 11, 2022)].

By reducing the input image size, we reduce the size of the
data and retain the region of interest and its corresponding
labels. Then, patches are extracted from each image to deter-
mine the input size of the CNN (i.e., dimension of power
of 2). We have chosen a 48 × 48 pixel size. Different sizes
were tried and 48 × 48 was considered optimal, being a
good compromise between the number and the size of the
convolutional layers reaching 3 × 3 (the smallest size able to
extract the smallest spatial feature).

Then, each input temperature image is converted into
grayscale images, with pixel values scaled to [0, 255] using
the min–max normalization. The patch extraction sequence is
shown in Fig. 3.

C. UNET Model Identification

CNN is a neural network class that exploits deep, locally
connected layers to extract discriminative features (e.g., the

spatial distribution of thermal anomalies) and to classify
the input learning from the data. In particular, features are
progressively generated with an increasing level of complexity
from the input to the output. For image-based classification,
the first layers convolve small spatial regions with weight
blocks that are found during the training phase. These blocks
represent the feature extractors that work similar to the human
eye and thus similar to the Gabor filter principles [17]. Our
goal is to replicate the way in which the human visual system
detects thermal anomalies in a grayscale image to extract
automatically only those pixels. This overcomes the difficulty
of using simple intensity-based approaches to detect subtle
changes that are comparable with the background. Training
the CNN allows learning from the data without any a priori
setting of the relevant spatial features. For this purpose, we use
the UNET, a type of CNN designed for semantic image seg-
mentation. In UNET, the initial series of convolutional layers
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Fig. 2. Workflow of the proposed DL approach to retrieve volcanic spatial thermal features of thermal anomalies on Vulcano using the trained UNET from
the other five volcanoes.

Fig. 3. Sequence steps performed to prepare the UNET input dataset. The Geotiff image is split into 48 × 48 patches and a min–max normalization applied
to the input image of the UNET.

are interspersed with max-pooling layers, i.e., an operation that
computes the maximum value for patches of a feature map to
create a downsampled (pooled) feature map, thus decreasing
the resolution of the input image. These layers are followed by
a series of convolutional layers interspersed with upsampling
operators, successively increasing the resolution of the input
image. Combining these two series paths forms a U-shaped
graph [18]. The U-shaped architecture is symmetric and con-
sists of two parts. The left half is the encoding/contracting

path constituted by the convolutional process decreasing the
input dimension. The right half is the decoding/expansive path,
which is constituted by transposed 2-D convolutional layers
allowing data to be upsampled to the original image size.

D. Semiautomatic Labeling Technique

During the model identification phase, images have to be
labeled to obtain the targets that are used to tune model
parameters and evaluate performance indices. Labeling is a
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process of generating the expected model outputs for a subset
of images, i.e., the expected model output will be a binary
image whose pixels have a null value if they belong to the
background and one if they are an anomaly. These have
been prepared by applying the statistical technique introduced
in [13] where a multistep approach based on both intensity
and texture features is adopted. In particular, because a purely
intensity-based approach is not always able to detect subtle
anomalies very close to the background area, we also use a
bank of Gabor filters to emulate how the human eye performs
feature extraction. Abundant applications for the Gabor feature
space exist not only in biologically inspired systems but also
in numerous other areas such as fingerprint detection and
texture classification [19]. While a Gabor filter is applied to
an image, it gives the highest response at edges and at points
where texture changes, thus having a distinguishing value at
the spatial location of that feature. This bank of filters is tuned
for different frequencies and orientations to localize roughly
orthogonal subsets of frequency and orientation information in
the input data. In particular, we designed a bank of 24 Gabor
filters that represent combinations of multiple wavelengths,
from 2.8 to 11.3 pixels/cycle, and 18 orientations, namely,
from 0◦ to 170◦ with steps of 10◦ [13]. The input for this
detection technique is an image whose pixel values are the
thermal intensity weighted by these spatially located features.

This is done in order to use both thermal and shape infor-
mation to detect anomalies by setting some a priori statistical
parameters. This algorithm detects both subtle and higher
temperature anomalies. However, because it relies mainly on
fixed parameters for the Gabor filter design, it may still
either detect nonvolcanic anomalies or miss some. Thus, the
identified volcanic thermal anomalies are later checked by an
expert and only the ones with a high degree of confidence are
used as labeled target images.

This step is critical to overcome the limits due to only using
an intensity-based approach. The visual inspection performed
by the expert is actually able to identify a subtle volcanic
anomaly that has an intensity only slightly above the back-
ground (thus having similar values in the TIR image) but also
a clear distinguishable spatial feature that is associated with
the volcanic-related activity (based on the spatial features of
the TIR image). Thus, although the automatic portion of the
semiautomatic labeling algorithm gives a result mainly based
on intensity, the expert check addresses any misclassification
related to volcanic and not volcanic areas having similar
intensities.

For this study, a large group of 1500 input and target images
from five volcanoes were collected and labeled for the UNET
input. This represents the largest database of labeled, high
spatial resolution TIR data for volcanic thermal anomalies.

E. Training and Test Datasets Creation

For the training phase, images containing primarily the
volcanic area are selected for the UNET input. The input
and target images are then split into the training and testing
datasets with a ratio of 80:20 [20]. Images acquired over Etna,
Popo, Lascar, Fuego, and Kliuchevskoi volcanoes were used,

and thus, for each volcano, a subset (1200) was available for
the training phase corresponding to 2.7 × 106 data samples.
During the training phase, it is fundamental to include samples
representative of different kinds of anomalies, namely, subtle
fumaroles, hot gas vents, active lava flows, and domes as the
positive class, as well as the background data, clouds, and
missing data as the negative class. For the testing phase, a
dataset consisting of 20% of the labeled data (i.e., 300 images
corresponding to about 7 × 105 samples) is used.

F. UNET Training

The model has been trained with a learning rate of 1 ×

10−3, a mini-batch size of 128, and four encoder depths, for
100 and 300 epochs with the Adam optimizer to minimize the
focal loss [18], [21]. The focal loss function is based on the
cross-entropy (CE) loss. The focal loss compensates for class
imbalance by using a modulating factor that emphasizes hard
negatives during training.

In fact, although we have reduced the size of the training
input images, class imbalance problem may still be present
because many subtle thermal anomalies occupy a very small
portion of the image (i.e., few pixels, with respect to the
background). The focal loss is an improved version of CE
loss that tries to handle the class imbalance problem by
assigning more weight to hard or easily misclassified examples
(i.e., background with noisy texture, partial object, or the
object of our interest) and to downweight easy examples (i.e.,
background objects). Thus, the focal loss reduces the loss
contribution from easy examples and increases the importance
of correcting misclassified examples.

G. Testing and Performance Evaluation

The learned model is then applied to test data never seen
during the training phase. Different performance indices are
used in order to assess the feasibility of the proposed approach.
For each class, namely, anomaly and background, precision,
recall, and F1-score, also known as Sørensen–Dice coefficient,
are computed.

Precision indicates the fraction of predicted positive values
that are actually positive, recall indicates the fraction of the
actual positive values that are correctly predicted as positive
by the classifier, and F1-score combines precision and recall
into a single measure. Macro scores are calculated by getting
the metrics for each class individually and then taking mean
of the measures (1–9)

Precisionanomaly =
TP

TP + FP
(1)

Precisionbackground =
TN

TN + FN
(2)

MacroPrecision =
Precisionanomaly + Precisionbackground

2
(3)

Recallanomaly =
TP

TP + FN
(4)

Recallbackground =
TN

TN + FP
(5)
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MacroRecall =
Recallanomaly + Recallbackground

2
(6)

F1_scoreanomaly = 2
Precisionanomaly ∗ Recallanomaly(
Precisionanomaly + Recallanomaly

) (7)

F1_scorebackground = 2
Precisionbackground ∗ Recallbackground(
Precisionbackground + Recallbackground

)
(8)

MacroF1_score =
F1_scoreanomaly + F1_scorebackground

2
(9)

where true positive (TP) is the number of real positives that
are correctly predicted as positive, false negative (FN) is
the number of real positives that are wrongly predicted as
negative, false positive (FP) is the number of real negatives
that are wrongly predicted as positive, and true negative (TN)
is the number of real negatives that are correctly predicted as
negative.

H. Output Preparation

The UNET output is a collection of 48 × 48 thermal
anomaly binary maps and therefore has to be reaggregated
combining the previously processed map patches into the full
images. The trained model is now applied to the same or other
volcanoes for monitoring volcanic thermal behavioral trends.

I. Comparison With Intensity-Based Approaches

A hotspot detection algorithm based on intensity alone finds
the best minimum detectable TA value, i.e., a threshold above
which every pixel is considered an anomaly. In such intensity-
based approaches, the reference value can be computed statis-
tically in space or/and in time.

First, we consider the state-of-the-art algorithm to process
ASTER data to be RASTER proposed in [8]. It uses a temporal
approach to detect TA, i.e., temporal mean and standard
deviation are computed for each location over 20 years (i.e.,
2000–2020) of ASTER observations and used to compute
a z-score value of band B13. Furthermore, to enhance the
detection of subtle changes, a normalized index based on bands
B13 and B12 is used. We implemented this algorithm for
comparison and only one out of five cases produced a detected
anomaly.

Second, because the choice of the background/nonvolcanic
varies greatly in prior studies, it greatly affects the threshold
value. We also consider a different intensity-based approach
(intensity-based 2). An intensity-based algorithm able to detect
the same subtle anomalies would pick all the pixels in the
scenes greater than that value. Thus, setting the minimum
value as the threshold of the intensity-based algorithm, we then
apply the trained UNET. In this way, we do not arbitrarily
choose any of the existent methods to find the intensity
threshold avoiding biasing the result, i.e., with an incorrect
choice of the background area to consider.

IV. RESULTS

In order to evaluate the performance of the trained UNET
with focal loss performance, a comparison with the standard
CE UNET using the same setting is shown in Table I.

TABLE I
PERFORMANCE METRICS FOR BOTH UNET WITH CE AND UNET WITH

FOCAL LOSS

The accuracy index computed as the number of corrected
predictions as a percentage of the total number of predictions
would be biased by the background due to unbalanced issues.
In fact, the number of pixels belonging to the background class
is far higher than those belonging to the anomaly class. Thus,
a better performance index is the F1-score, which is a more
indicative performance index for datasets with classes with
unbalancing issues. F1-score accounts for both the number of
prediction errors and the type of errors that are made. In par-
ticular, in order to assess the capability of correctly classifying
both classes, i.e., anomaly and background, we compute the
Macro F1-score that is the unweighted mean of the F1-scores
calculated for each class [see (9)]. This measure returns the
objective results on imbalanced datasets giving equal impor-
tance to each class, i.e., a majority class will contribute equally
along with the minority. Overall, macro indexes (bold param-
eters in Table I) are the best metrics for unbalanced datasets.

For each of the volcanos listed in Section II-A, we show
the results obtained by applying the UNET with focal loss
on the complete ASTER dataset covering the area of interest.
The maximum temperature above average is computed as the
difference between the maximum temperature of the detected
anomalies and the median temperature of the background
area (pixels belonging to the background class). For the five
volcanoes used for testing, the original band B13, the detected
anomalies, and the maximum temperature above average are
shown in Fig. 4. The time series of the maximum temperature
above average of the detected volcanic anomalies are shown
in Fig. 5.

Beside the volcanoes previously shown that have been used
to train the UNET, we then applied the detection capability to
Vulcano Island (Italy), which was not used during the training
phase. In particular, we computed radiative heat flux following
the steps in [15].

We computed the total heat flux produced by the detected
thermal anomalies as the sum of radiative and convective
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Fig. 4. Results for the testing images using UNET with focal loss: (a) Etna on 2013/05/18, (b) Fuego on 2003/10/14 16:24:46, (c) Kliuchevskoi on 2018/01/11
00:19:18, (d) Lascar on 2014/08/06 14:25:23, and (e) Popocatépetl on 2017/07/26 17:10:26. All times are expressed in UTC time. The range of the temperature
above average is shown as [minimum, maximum] interval in the third column for each volcano.

heat flux computed using (10)–(12). The main difference with
respect to previous studies is that the investigated area is not
manually detected and constrained to a limited pixel area
because a greater area allows possible detection of a larger
size anomaly [e.g., Fig. 7(m)] and all the entire archive (day

and night) is used

Radiative flux = γ σ
(
T 4

− T 4
a

)
A (10)

Convective flux = hc(T − Ta)A (11)
Total Heat flux = Radiative flux + Convective flux
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Fig. 5. Time series of the ASTER-derived maximum temperature above average retrieved from (a) Etna, (b) Fuego, (c) Kliuchevskoi, (d) Lascar, and
(e) Popocatépetl from 2000 to 2022 using UNET with focal loss. Red bars indicate several examples of detected thermal increase several months prior to
larger eruptions at Kliuchevskoi.

= γ σ
(
T 4

− T 4
a

)
A + hc(T − Ta)A (12)

where T is the temperature (K) of the detected anomalies,
Ta is the ambient temperature (K), A is the area of the
anomaly (m2), 8100 m2 for an ASTER TIR pixel, γ is the
emissivity (0.98), σ = 5.67 × 10−8 W·m−2

·K−4 is Stefan–

Boltzmann’s constant, and hc = 35 W·m−1
·K−2 is the heat

transfer coefficient.
Thus, for each ASTER scene, the total heat flux is given by

the sum of the heat flux produced by each anomaly.
In order to validate the results retrieved by using the UNET,

measurements from ground-based instruments are used. In par-
ticular, thermal surveys were used, which have been conducted
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Fig. 6. Subtle anomalies detection at Klyuchevskoi volcano on (a) 2001/04/17
11:07 UTC and (b) 2012/01/18 00:22 UTC. Red pixels are recognized as
anomalies. The minimum detected temperature above average is 0.72 showing
that the pixel-integrated temperature of the volcanic thermal anomaly is
comparable with the background making these impossible to detect with
standard threshold approaches. Red box indicates the area used to compute
the 1T.

inside the fumarole field since 1994, following the same path
and patterns logging the number and maximum temperature
using IR radiometers [22]. A thermal normalization index was
developed during these surveys to account for the thermal
behavior of the system, using maximum and mean temper-
atures, number of vents, and the standard deviation.

Ground temperature has also been measured since January
2020 using a HOBO data logger station located close to the
fumarole field and within the ground thermal anomaly area.
It records the 15-cm depth temperature, surface temperature,
and air temperature at 5 cm above the surface every 5 or
10 min. The data presented here are the daily averaged surface
temperature. Fig. 8 shows the average maximum tempera-
ture above background from January 2000 to March 2022
[Fig. 8(a)] plotted together with the number of fumaroles
detected during the field campaign [Fig. 8(b)] and radiative
heat flux of the thermal anomalies plotted together with the
normalization index [Fig. 8(c)].

V. DISCUSSION

A. Target Volcanoes

Different performance indices show that the trained UNET
(e.g., focal loss and CE) both reached high performance levels.
Overall, the F1-scores, both for class and macro, obtained for
the focal loss are higher than for CE (0.93 versus 0.91). This
confirms the fact that using the focal loss deals better with
unbalanced classes and represents the most appropriate choice
as a loss function for this style of analysis. More specifically,
the training phase is less polarized by background behavior
than UNET with CE, thus enhancing the UNET capability to
learn anomaly behavior and reduce the number of FPs (0.93 for
focal loss versus 0.88 for CE as macro-precision). On the
other hand, the recall index computed using UNET with CE
is higher than the UNET with focal loss because the training
phase is more polarized by the background, thus learning the
background behavior better and reducing the number of FNs
(0.92 for focal loss versus 0.95 for CE as macro recall).

The UNET trained with the focal loss results for each of
the investigated volcanoes is given in Fig. 4. Regardless of the
solar irradiance component that may affect thermal detection
capability, volcanic anomalies are well detected for all the
study cases. For example, Etna and Lascar volcanoes [Fig. 4(a)
and (d)] typically have strong solar radiance on local slopes
in the daytime images. Similarly, Fuego and Kliuchevskoi
volcanoes have moderate solar radiance depending on the
season. The results show good performance for all the target
volcanoes being able to detect the true volcanic anomalies and
avoiding slope heating [Fig. 4(b) and (c)]. Finally, Fig. 4(e)
shows that the UNET is also able to detect smaller anomalies
on Popocatépetl during periods of clouds and where higher
contrast emerges between cloudy and clear volcanic areas,
thus avoiding the detection of FP pixels. Purely intensity-based
approaches described in Section III have been compared
resulting in either a large portion of missing detection, i.e.,
FN (intensity-based approach 1: RASTer), or large portions of
incorrect detections, i.e., FP (intensity-based approach 2).

Once the thermal features are detected, the time series dis-
playing the maximum temperature above average background
is computed. The time series data obtained for each volcano
from 2000 to 2022 acquired by the ASTER TIR sensor is
shown in Fig. 5. It is worth noting the capability of this model
to monitor temperature above average of thousands of images
with high precision, thus allowing the detection of subtle
changes prior to eruptions. In fact, analysis of the thermal
time series shows that in some cases (e.g., Klyuchevskoi),
measurable above background temperatures persist for years
between eruptions and begin to increase months before the
next eruption, becoming precursory in nature. In particular,
1T increases before well-known eruptions at Klyuchevskoi,
namely, 2007/03/18–05/22, 2008/10/15–11/30, 2009/09/20–
2010/08/28, 2013/08/13–10/13, and 2016/04/06–09/05 [23],
which are highlighted in red [Fig. 5(c)]. This trend was
noted for one of these eruptions in a prior study [24].
Because this approach is able to detect volcanic TAs even
where their values are similar to the background), the delta
temperature values can be very small (even negative) even
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Fig. 7. UNET prediction for Vulcano island: B13 band temperature and detected volcanic anomalies on (a) and (b) 2008/12/14 at 10:00, (c) and (d) 2016/06/04
at 09:54, (e) and (f) 2020/09/10 at 21:03, (g) and (h) 2021/05/01 at 09:51, (i) and (j) 2021/07/27 at 21:00, and (k) and (l) 2021/09/20 at 21:05. All times are
expressed in UTC time.

Fig. 8. Time series for (a) Vulcano (Italy) of the temperature above
average, (b) detected area using UNET (black) and number of fumaroles using
ground-based measurements (red), and (c) heat flux using UNET (black) and
normalization index using ground-based measurements (red).

in the presence of high local gradient around the volcanic
TA. These gradients can happen because of solar heating,
stronger spatial variations in ambient surface temperature due,
for example, to surface cooling with altitude, and atmospheric
effects. All can produce greater variations in satellite-recorded
BTs than those induced by fumarolic activity, geothermal
heating, or conduction/convection above shallow intrusions.
As a consequence, potential thermal anomalies associated with

low-temperature active volcanic phenomena can produce lower
BT values.

We report a few examples from Klyuchevskoi volcano,
namely, ASTER acquisition of the 2001/04/17 11:07 UTC
[Fig. 6(a)] and 2012/01/18 00:22 UTC [Fig. 6(b)]. It is
evident that anomalies that are very similar in values with the
background are detected by the UNET because of the local
spatial features that have been learned by the DL model.

B. Vulcano Island

To further test the UNET model, we applied it to ASTER
TIR data of Vulcano Island, which was not used during the
training phase. Fig. 7 shows the detection maps for centered on
Vulcano crater, which is typically characterized by fumarolic
activity [15].

It is noteworthy that even for the daytime acquisitions
[Fig. 7(a)–(d)], the algorithm is able to clearly distinguish the
volcanic thermally elevated pixels despite solar irradiance on
the southern wall of the cone. In fact, scenes without volcanic
TA containing, however, nonvolcanic TA due to solar radiation
and clouds [Fig. 7(c), (d), (g), and (h)] are successfully not
detected by the algorithm.

The solar radiance is not detected as thermally anomalous
because the DL model is able to recognize its spatial features
as background rather than volcanic in origin. Even anomalies
partially covered by thin clouds [Fig. 7(e) and (f)] are detected
as well as a small, transient anomaly occurring north of the
main crater near the island’s port during a period of warm CO2

emission [Fig. 7(i)–(l)] [25]. Two months later, this thermal
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Fig. 9. Seasonal trend of the areal extension of the detected anomalies over the crater area using the UNET. (a), (b), (e), (f), (i), and (j) Wet and (c), (d),
(g), (h), (k), and (l) dry seasons: (a) and (b) 13/04/2015 21:09, (c) and (d) 20/07/2015 20:58, (e) and (f) 08/10/2016 21:09, (g) and (h) 01/08/2017 21:03,
(i) and (j) 11/10/2017 21:09, and (k) and (l) 03/07/2018 21:05. All times are expressed in UTC time.

Fig. 10. Seasonal trend of the areal extension of the detected anomalies
over the crater area using the UNET (black) and ground-based, daily average
surface temperature (red). The crisis period began on late June 2021 with the
highest thermal level from September 2021 to January 2022.

feature has decreased in intensity to the point where it is barely
detected [Fig. 7(m) and (n)].

Comparison of the ASTER thermal anomaly area and heat
flux time series to the ground data shows a notable differ-
ence between 2000–2008 and 2009–2022. Prior to 2008, the
ASTER URP program had not been enabled [5]. Data for
Vulcano were acquired either randomly during the process of
compiling the ASTER global map or collected intermittently
as part of the larger ASTER global volcano acquisition, which
collected data only once every three months. These data were
not frequent enough to detect the thermal behavior moni-
tored by the ground measurements. Since 2009, the increased
amount of ASTER data available because of the URP program
allows a better comparison to the thermal activity.

The heat flux time series in Fig. 8(c) shows some seasonal
patterns until May 2021, when increased activity started and
a crisis phase was announced. The crisis period began on

late June 2021 with the highest thermal level from September
2021 to January 2022 [26]. The seasonality is mirrored by the
area trend inside the crater, which becomes smaller during
wetter months (Fig. 9). Generally, the seasonal pattern of
anomaly areal growth is consistent with the daily average
surface temperature measured by ground-based instruments
(Fig. 10), i.e., their relationship is linear. However, during the
crisis period, a change in the area/daily average temperature
relationship is observed. From July 27, 2021 onward, for
the same, measured daily average temperatures far higher
anomalous area are observed for most of the samples. This
is likely due to the fact that the temperature increase was
localized in a few of the pixels belonging to the larger extended
thermal anomaly. As a consequence, the crisis produced a
change more evident in the area trend of the thermal anomaly
rather than the average surface temperature.

The increase in the number of detected anomalies is local-
ized inside the entire crater area. Even though seasonality
appears to affect the measured temperature for each pixel,
the increase of the detected anomalous area may not only be
caused by an exogenous solar source. Other processes may
be triggered by seasonal exogenous sources such as solar
radiation and rainfall.

The surface heat flux is a result of the combined effect of
the endogenous geothermal source and the exogenous source
from the sun. This heat flux changes due to other external
factors such as rainfall, strong winds, and changes in the
local sun conditions. Thus, the main issue in accurate surface
temperature monitoring of a volcanic area is the difficulty in
detecting magmatic impulses and differentiating those from the
other thermal signals. It has been shown that the Fossa area
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Fig. 11. (a) Time series of rainfall, (b) area of the detected thermal anomalies, and (c) wavelet coherence analysis between the area of the thermal anomaly
and the rainfall from 2005 to 2022.

sites are heated mainly by the process of steam condensation,
producing steam-heated soils (SHSs) [25].

The main thermal changes in the SHS result in changes
to the conductive heat flow, but also changes in the depth of
the convective front of the geothermal system, reflecting any
contraction or expansion of that convective zone.

The uppermost condensation level lays at the top of the
layer where the rising vapor adds additional heat to the
ground through condensation. When this condensation level
moves upward, the conductive layer diminishes and ultimately
disappears resulting in the heat transfer becoming essentially
advective. The amount of rainfall can affect the thickness
of the conductive layer. However, tiltmeters also show some
seasonal trends [27], consistent with the solar thermal radiation
causing a thermoelastic effect measured by sensors that could
be due to displacements of underground masses, e.g., aquifers
[26]. Therefore, the thermal changes observed in Vulcano’s
crater area may be due to a combination of processes. One
possibility is the fact that the expansion of the convective flow
is reflected by an areal expansion of the thermal anomalies.
As previously stated, the expansion/contraction of the con-
vective flow is affected by the amount of rainfall, which is
also seasonal. Increased rainfall during the wet season would
increase hydrothermal activity, thus enhancing deposition,
which progressively decreases the permeability [28]. In this
case, thermal anomalies may not be visible in the entire

area, thus being subdued during the wet season and more
observable during the dry season. Finally, an increase in air
temperature leads to an increase in evaporation inside of the
crater area during dry seasons, which leads to an increase
in the heated areas detected as thermally anomalous. Thus,
exogenous sources, such as solar radiance and amount of
rainfall, could trigger processes that are responsible for the
increase in the areal extension of the detected anomalies inside
the crater area. In Fig. 11, the time series of rainfall and area of
the thermal anomaly are shown from 2005 to 2022. We use the
wavelet coherence analysis to highlight that, especially after
the increase in data collection starting in 2009, seasonality
is present. Wavelet coherence is generally used to investigate
the localized correlation coefficient between two signals in a
time–frequency space, i.e., it is highly recommended for time
series that are not stationary [29]. This tool allows comparison
of the frequency contents of two-time series (y-axis), as well
as derives conclusions about the synchronicity of the series at
specific periods and across certain ranges of time (x-axis).
Wavelet coherence can effectively identify regions of high
co-movement in the time–frequency space. The correlation
magnitude between two signals is color scaled, while the
arrows indicate the phase of the investigated signals. Thus,
high values indicate high correlation between them at the
correspondent frequency in a specific time interval and vice
versa. The wavelet coherence between the areal extension and
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Fig. 12. Heat flux measured from January 2020 to March 2022 over Vulcano using UNET and the ASTER data. The time series graph shows the nighttime
(blue) and daytime (orange) acquisitions. Red triangles indicate the thermal index computed by using visual inspection. The gray shaded area indicates the
acquisition with the maximum difference between the two. Purple circle indicates the same-value day/night acquisitions.

rainfall is shown in Fig. 11(c) It is noteworthy that both signals
are highly correlated at Period = 1 year for the entire time
interval overall, i.e., one-year seasonality. We expect higher
values after 2009, but the highest values are observed from
2014. The opposite phases confirm that the rainfall signal’s
peak occurs in winter, whereas the maximum areal extension
occurs in hot seasons.

Finally, we focus on the last crisis. A consistent increase
in heat flux is observed starting in May 2021 reaching the
highest peak (86.4 MW) on October 19, 2021 (Fig. 12). This
trend is also detected by ground-based instruments, as well as
the SO2 and CO2 flux [26] and by Visible Infrared Imaging
Radiometer Suite (VIIRS) satellite sensor at a 375-m spatial
resolution starting from September 2021 [30]. An independent
study used an index computed by visual inspection-based
anomaly detection in nighttime ASTER data starting from
June 2021 [22]. An ambient control area on the island far
from the active target La Fossa is used as the background.
A similar index than the one used for the fumarole survey,
i.e., normalization, was created using the maximum and mean
surface temperature of the detected anomaly, the number of
anomalous pixels, and the standard deviation. This index is
used as a proxy for ground-based heat flux considering the
seasonality of surface temperature. It is worth noting that the
trained UNET allows us to process daytime acquisitions as
well, which is typically removed in past studies using only
intensity-based detection techniques. The importance of this
aspect is shown for the Vulcano study case, which creates
a better thermal trend with more sample points available.

The highest peak, therefore, reached during the crisis is in
a daytime acquisition. Both the heat flux and the thermal
index are generally correlated, although a large difference
is observed for the 29/09/2021 21:00 (gray shaded area in
Fig. 12). In this case, a much larger area is detected by
the visual inspection than detected using the UNET. This
scene contained widespread, thin clouds making the anomaly
difficult to discern accurately. This case is a good example
of the DL model’s potential to automatically discriminate
anomalies based on previous experience in areas that may be
much harder to recognize even by human inspection.

VI. CONCLUSION

Current satellite TIR systems have the potential to rou-
tinely monitor thermal change at volcanoes globally. Large
data volumes are freely available, and however, quantitatively
analyzing this huge volume of data is impractical. Techniques,
such as threshold-based statistical approaches, are generally
not accurate for subtle thermal anomaly detection. Thus,
we have applied an ML framework based on deep CNNs and
greatly reduced the potential of labeling errors by using a
rigorous statistical approach supervised by experts on a large
set of ASTER data for five different volcanoes. Results show
that the proposed model is applicable to different volcanoes
with different eruptive styles and most importantly is able to
detect all volcanic thermal anomalies from subtle to intense
with high precision. This is shown for the last two decades
of thermal monitoring at Vulcano, Italy. This case study,
compared with independent ground- and ASTER-based data,



5000715 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

successfully monitored the thermal activity during the recent
crisis period on Vulcano in September 2021. An increase in the
monitored heat flux was successfully observed before the peak
of thermal activity and correlated with ground-based moni-
toring. This system can be used to monitor volcanic thermal
behavior with higher levels of confidence with respect to other
existing data modeling systems. In fact, no a priori choice
related to thresholds is needed and background influence on
the outcome is avoided because our DL technique detects
volcanic anomalies with a different paradigm with respect
to the traditional approach by learning the textural features
from data similar to what the human eye does. We are able
to process automatically a large volume of high-resolution
TIR data for any volcano, thus improving thermal anomaly
detection and monitoring with high sensitivity, which is funda-
mental to detect subtle preeruptive and posteruptive changes.
This allows investigation of low-level and/or spatially small
volcanic thermal behavior otherwise missed by traditional
approaches. The next logical step will involve designing a
data-driven approach to automatically discover preeruptive
trends from the results of this model. With future planned
TIR instruments having greatly improved temporal (1–3 days)
and spatial (60 m) resolution data such as NASA’s Surface
Biology and Geology (SBG) mission, this approach will be
ideal for quickly interrogating the much larger data volume in
near real time.
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