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Multi-UAV Collaborative Trajectory Optimization
for Asynchronous 3-D Passive Multitarget Tracking
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Abstract— This article considers the 3-D collaborative trajec-
tory optimization (CTO) of multiple unmanned aerial vehicles
to improve multitarget tracking performance with an asyn-
chronous angle of arrival measurements. The predicted condi-
tional Cramér–Rao lower bound is adopted as a performance
measure to predict and subsequently control tracking error
online. Then, the CTO problem is cast as a time-varying noncon-
vex problem subjected to constraints arising from dynamic and
security (height, collision, and obstacle/target/threat avoidance).
Finally, a comprehensive solution method (CSM) is presented to
tackle the resulting problem, according to its unique structures.
Specifically, if all security constraints are inactive, the CTO
can be simplified as a nonconvex problem with convex dynamic
constraints, which can be solved by the nonmonotone spectral
projected gradient (NSPG) method. Oppositely, an alternating
direction penalty method (ADPM) is presented to solve the CTO
problem with some positive security constraints. The ADPM
introduces auxiliary vectors to decouple the complex constraints
and separates the CTO into several subproblems and tackles
them alternately, while locally adjusting the penalty factor at
each iteration. We show the subproblem w.r.t. the position
vector is nonconvex but with convex constraints, which can
be efficiently solved by the NSPG method. The subproblems
w.r.t. the auxiliary vectors are separable and have closed-form
solutions. Simulation results demonstrate that the CSM outper-
forms the unoptimized method in terms of tracking performance.
Besides, the CSM achieves the near-optimal performance pro-
vided by the genetic algorithm with much lower computational
complexity.

Index Terms— Asynchronous target tracking, passive sensor,
resource allocation, trajectory optimization (TO), unmanned
aerial vehicle (UAV).
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I. INTRODUCTION

A. Motivation and Related Work

TRAJECTORY optimization (TO) aims to predetermine
the waypoints of unmanned aerial vehicles (UAVs) to

achieve various tasks, such as minimizing fuel/battery con-
sumption [1], maximizing search area coverage [2], or improv-
ing localization/tracking performance [3], [4], and so on.
Passive tracking of radio emitters/targets with UAVs is among
these tasks, which has wide applications in military and
civilian fields, including target tracking in electronic recon-
naissance and mobile user tracking in a wireless commu-
nication network [5] and so on. The sensing capabilities
of UAVs depend not only on the measurement quality of
payload passive sensors but also on the geometry of multi-
UAV [6]. Therefore, one of the main research challenges is
how to automatically optimize the trajectories of UAVs online
to maximize tracking accuracy while simultaneously meeting
the constraints deriving from speed, turning angle, height,
collision, and obstacle avoidance.

To tackle this challenge, several TO models and corre-
sponding solution algorithms are proposed for target local-
ization/tracking in [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26]. Tzoreff and Weiss [7] discuss online and offline TO
problems for a single UAV in the presence of time of
arrival (TOA) measurements, subject to speed and no-fly
zone constraints. The proximal policy method and the policy
rollout algorithm are applied to TO problems to speed up
the localization of an emitter with angle of arrival (AOA)
measurements in [8] and [9], respectively. These TO schemes
for single-UAV [7], [8], [9] do not require consideration of
collision avoidance and communication distance constraints,
whereas these constraints should be considered in multi-UAV
collaborative TO (CTO) problems [10], [11], [12], [13], [14].
A receiver TO problem subjected to the minimal distance
allowed to the emitter is considered in [10] to improve the
localization performance, which is solved by the projected
gradient (PG) method. Then, Dogancay [10] extends their
work to a multitarget localization environment [11]. In [12],
a steering control approach is proposed for a pair of UAVs in
the time difference of arrival (TDOA)-based localization of a
single emitter. In [13], a noncausal TO scheme is addressed for
the received signal strength (RSS)-based localization to obtain
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a higher final localization accuracy. A TO problem for multiple
UAVs with heterogeneous payload sensors is considered in
[14] to maximize the localization performance of an emitter
while avoiding threats and ensuring effective communication
between UAVs. However, the previous works [10], [11], [12],
[13], [14] only optimize the steering of multi-UAV and do not
take full advantage of the degree of freedom concerning speed.

An offline 2-D TO problem for a single-emitter location
utilizing two moving AOA sensors is considered in [15] to
improve the localization performance. In this article, the TO
is formulated as a semidefinite programming problem with
several constraints rising from dynamic, collision, and obsta-
cle limitations, which is tackled by the alternating direction
method of multipliers [27] (ADMM). However, this work [15]
assumes a constant covariance of the measurement noise, but
it decreases as the UAV approaches the target in practice.
Besides, the convergence of ADMM for solving nonconvex
problems is related to initial points and penalty factors, tuning
of these parameters is needed for a good performance. The
adjustment of these parameters relies on experience and is
scenario-dependent.

Different from localization tasks, a prediction dynamic
model should be considered in tracking applications, which
would expand the uncertainty in the state estimation over time
due to the target motion. Hernandez [16] addresses an uncon-
strained TO problem for AOA sensors mounted on multiple
UAV platforms and proposes a quadrant search method that
iteratively restricts the search to the most promising quadrant.
In [17], [18], [19], [20], several joint TO and resource alloca-
tion problems are investigated to improve tracking accuracy,
which is solved by the cyclic minimization-based methods
and genetic algorithm (GA). A CTO problem is considered
in [21] to track a moving emitter using RSS sensors, which
is solved by the model predictive method. In [22], a central-
ized steering optimization scheme is presented for a pair of
UAVs to improve tracking accuracy. For the same purpose,
a heuristic planner is proposed in [23] to guide the waypoints
of multi-UAV while avoiding no-fly zones. However, collision
and obstacle avoidance is not fully investigated in [16], [17],
[18], [19], [20], [21], [22], [23]. The TO problem is formulated
in a partially observable Markov decision process framework
in [24], where the goal is to improve tracking performance
while achieving threat and collision avoidance. A CTO prob-
lem is addressed in [25] to minimize the overall tracking error
of multiple emitters while avoiding no-fly zones. This work
assumes that each UAV simultaneously intercepts signals from
multiple emitters. However, the transmit signals are usually
asynchronous across multiple emitters in practice.

Most of the previous works [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25] focus on 2-D TO. On the one hand, the 2-D TO
ignores the possibility of exploiting the altitude dimension
to improve tracking performance. On the other hand, the
increased dimensions of variables and the intercoupling of
multiple nonconvex constraints make the online 3-D CTO
problem more challenging. A 3-D CTO problem subject to
communication range and no-fly zone constraints is con-
sidered in [26] for target tracking. In this work [26], the

3-D trajectories are decomposed into two 2-D trajectories
in the horizontal and vertical directions and optimized by
gradient-descent and grid search methods, respectively. The
premise of this decomposition technique is that the velocity
constraints in the horizontal and vertical directions are not
coupled. This assumption may not hold for some types of
UAVs, such as fixed-wing UAVs. In addition, the proposed
model in [26] is not suitable for multiple target tracking (MTT)
problems.

B. Main Contributions

This article considers a 3-D CTO for multi-UAV armed with
AOA sensors1 in asynchronous passive MTT environments.
The major contributions are threefold:

1) A closed-loop asynchronous tracking framework is built
for CTO. In this framework, the maximum likelihood
(ML) estimator [28] is applied to obtain the composite
measurement (CM) from the current AOA measurements
spanning the fusion time interval. Then, the CMs are
processed by the Kalman filter (KF) to estimate and
predict the states of multiple targets [29]. According to
the prediction information, we calculate the predicted
conditional Cramér–Rao lower bound (PC-CRLB) and
adopt it as a performance measure to precontrol the
tracking error online [30]. Finally, the waypoints are
optimized in the fusion center and then fed back to
multiple UAVs

2) To improve the overall MTT performance with asyn-
chronous AOA measurements, we model the 3-D CTO as
a time-varying nonconvex problem subjected to dynamic
and security constraints. Since the arrival time of
measurements from different targets w.r.t. each sen-
sor is random, existing researches [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26] cannot be applied to
the 3-D CTO problem in the passive MTT context.
We introduce the fusion time interval for time alignment
and implement CTO in each fusion time instant. The
dynamic constraints deriving from the speed and turning
angle are represented as convex sets. The time-varying
security constraints arising from the height, collision,
and obstacle avoidance may not work at some time
instants, leading to the formulation of the 3-D CTO as
a time-varying nonconvex problem, since the PC-CRLB
is nonconvex w.r.t. waypoints of multi-UAV.

3) A fast comprehensive solution method (CSM) incorpo-
rates the nonmonotone spectral PG (NSPG) method and
the alternating direction penalty method (ADPM) is pro-
posed to solve the CTO problem, by exploring its time-
varying characteristic. The CSM begins with a judgment
of which security constraints are active. If all security
constraints are inactive, the CTO can be reduced to a
nonconvex optimization problem with convex dynamic
constraints, which can be efficiently solved by the NSPG

1Compared with TOA, TDOA, and RSS, AOA does not require synchro-
nization with the emitter or among the receivers and is insensitive to channel
variation.
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method [31] with the proposed closed-form projection
operator. In the case that some security constraints may
be activated during the CTO process, we introduce some
auxiliary vectors for the positive security constraints to
decouple them. Then, we reformulate the CTO as an
equality-constrained nonconvex optimization problem,
which can be handled by the ADPM framework [27].
The ADPM separates the CTO into several subproblems,
which can be tackled by the NSPG method or have
closed-form solutions.

The remainder of this article is organized as follows. The
system description is given in Section II. A two-step method
for passive MTT with asynchronous AOA measurements
is introduced in Section III. The formulation of the CTO
scheme and the corresponding solution technique are pre-
sented in Section IV. Several simulation results are analyzed
in Section V to demonstrate the effectiveness of the CSM.
Finally, Section VI concludes this article.

II. SYSTEM DESCRIPTION

A potential scenario of multi-UAV multitarget tracking is
shown in Fig. 1, where Q widely separated point targets are
considered to be tracked by N UAVs. Each UAV is equipped
with a passive sensor that can intercept the signal emitted by
multiple targets and provide AOA measurements. Note that
the signal launch time of multitarget is different, leading to the
measurement arrival time for different targets w.r.t. each sensor
is asynchronous, details are presented in Section II-C. To col-
laboratively track multiple targets, a fusion time interval T0 is
specified for simultaneous multitarget tracking in CTO. At the
fusion time instant tk (tk = tk−1 + T0), the position xp

q,k =

(xq,k, yq,k, zq,k)
T and the velocity xvq,k = (ẋq,k, ẏq,k, żq,k)

T

of target q ∈ {1, 2, . . . , Q} are unknown parameters to
be estimated, then xq,k = (xq,k, ẋq,k, yq,k, ẏq,k, zq,k, żq,k)

T is
defined as the state of target q . The position and velocity
of UAV n ∈ {1, 2, . . . , N } are pn,k = (xn,k, yn,k, zn,k)

T and
vn,k = (ẋn,k, ẏn,k, żn,k)

T , respectively.

A. Dynamic Model for Target q

The dynamic of target q is described as the nearly constant
velocity model [32]

xq,k = Fk−1xq,k−1 + uq,k−1 (1)

where Fk−1 is the state transition matrix, and uq,k−1 is a
zero-mean Gaussian process noise with covariance Qq,k−1 [32]

Fk−1 = I3 ⊗

[
1 T0
0 1

]
(2)

Qq,k−1 = τqI3 ⊗

[
T0

3/3 T0
2/2

T0
2/2 T0

]
(3)

where I3 is the identity matrix of order 3, ⊗ is the Kronecker
product, and τq denotes the process noise intensity [33].

Fig. 1. Typical scenario where N UAVs track Q targets.

Fig. 2. Asynchronous measurements span fusion time intervals.

B. Dynamic Model for UAV n

As is shown in Fig. 1, we consider UAV n flies in 3-D
Cartesian coordinates. Since the fusion time interval is small
generally, the dynamic of UAV n can be described as a con-
stant velocity model during the fusion time interval (tk−1, tk)

pn,k = pn,k−1 + vn,k T0, vn,k ∈ Vn,k (4)

where Vn,k = {vn,k | ∥vn,k∥2 ≤ vn
max, ∡(vn,k, vn,k−1) ≤

αn
max} implies the velocity of UAV n is restricted by the

maximum speed vn
max and the maximum turning angle αn

max,
and ∡(vn,k, vn,k−1) denotes the angle formed by vectors vn,k

and vn,k−1. From (4), we see the position of UAV n at time tk is
decided by the velocity vn,k for the given initial position pn,k−1.
vn,k can be adjusted at time tk−1 and maintain a constant
during the fusion time interval (tk−1, tk). Limited by dynamic
constraints, the possible positions of UAV n at time instant tk
are collected in the set Dn,k , given by

Dn,k = {pn,k | ∥pn,k − pn,k−1∥2 ≤ vn
maxT0

∡
(
(pn,k − pn,k−1)/T0, vn,k−1

)
≤ αn

max}. (5)

C. Measurement Model for Target q w.r.t. UAV n

During the kth fusion time interval (tk−1, tk), each sensor
may receive multiple measurements from different targets,
as shown in Fig. 2. We define Mn,q,k as the number of
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measurements received by sensor n from target q and refer
to tn,q,k(m) as the arrival time of the mth measurement from
target q w.r.t. sensor n. The number of measurements Mn,q,k

obeys a Poisson process with an exponential interarrival time
[34]. It is assumed that the sensor network has been synchro-
nized. In this case, the arrival time of AOA measurements for
target q w.r.t. different sensors are the same, i.e., t1,q,k(m) =

t2,q,k(m) = · · · = tN ,q,k(m) = tq,k(m) and M1,q,k = M2,q,k =

· · · = MN ,q,k = Mq,k . The arrival time interval between
two successive AOA measurements from target q received by
sensor n may not be equal. During the kth fusion time interval,
the mth AOA measurement from target q received by sensor
n is

zm
n,q,k = h(xp

q,k(m),pn,k(m))+ wm
n,q,k (6)

where h(xp
q,k(m),pn,k(m)) is the measurement function

h
(
xp

q,k(m),pn,k(m)
)

=
[
θm

n,q,k, ϕ
m
n,q,k

]T

=

[
arctan

((
ym

q,k − ym
n,k

)
/
(
xm

q,k − xm
n,k

))
arctan

(
dm

n,q,k/
(
zm

q,k − zm
n,k

)) ]
(7)

where xp
q,k(m) = (xm

q,k, ym
q,k, zm

q,k)
T is the position of target q

at time tq,k(m), pn,k(m) = (xm
n,k, ym

n,k, zm
n,k)

T is the position
of UAV n, dm

n,q,k = ((xm
q,k − xm

n,k)
2

+ (ym
q,k − ym

n,k)
2)1/2 is

the distance from the qth target to UAV n in xy plane,
θm

n,q,k ∈ [0, 2π ] and ϕm
n,q,k ∈ [0, π] are azimuth and elevation,

respectively. In (6), wm
n,q,k is the measurement noise that

follows a zero-mean Gaussian distribution with covariance
6m

n,q,k = blkdiag(σ 2
θm

n,q,k
, σ 2

ϕm
n,q,k
), i.e., wm

n,q,k ∼ N (0, 6m
n,q,k)

[35]. The notation blkdiag(·) is a block diagonal operator,
σ 2
θm

n,q,k
and σ 2

ϕm
n,q,k

are CRLBs on ML estimates of azimuth θm
n,q,k

and elevation ϕm
n,q,k , respectively [36]σ
2
θm

n,q,k
∝

(
κm

n,q,kθ
−2
3 dB

/(
Rm

n,q,k

)2)−1

σ 2
ϕm

n,q,k
∝

(
κm

n,q,kϕ
−2
3 dB

/
(Rm

n,q,k)
2)−1 (8)

where ∝ is a proportional operator, κm
n,q,k is the radar cross

section (RCS) of target q w.r.t. UAV n. θ3 dB and ϕ3 dB
are the 3 dB receive beamwidth in azimuth and elevation,
respectively [36]. Rm

n,q,k = ∥xp
q,k(m) − pn,k(m)∥2 represents

the distance from the qth target to the nth UAV. It can be
observed that the measurement error will decrease as the UAV
approaches the target.

III. MTT WITH ASYNCHRONOUS MEASUREMENTS

We assume that multiple targets are widely separated in
the surveillance area. In this scenario, the MTT task can be
divided into several independent single-target tracking prob-
lems. A two-step method is applied for target tracking with
asynchronous AOA measurements. First, the ML method is
employed to construct CMs for multiple targets at each fusion
time instant [28]. Then, we adopt the KF for state estimation
and prediction [37].

A. Formation of CM for Target q

The CM for target q at the fusion time instant tk is xq,k ,
which can be estimated by maximizing the likelihood function
of xq,k , based on the AOA measurements span the fusion time
interval (tk−1, tk)

Zq,k =

[
z1T

1,q,k, . . . , z1T
N ,q,k, . . . , zMq,k T

1,q,k , . . . , zMq,k T
N ,q,k

]T
. (9)

The probability density function (pdf) of Zq,k conditioned on
xq,k is p

(
Zq,k | xq,k

)
, then the ML estimator xq,k is

xq,k = arg max
xq,k

ln p
(
Zq,k | xq,k

)
= arg min

xq,k

0
(
Zq,k | xq,k

)
(10)

where 0
(
Zq,k | xq,k

)
is

0(Zq,k | xq,k) =

Mq,k∑
m=1

N∑
n=1

(
zm

n,q,k − h
(
xp

q,k(m),pn,k(m)
))T

×
(
6m

n,q,k

)−1(zm
n,q,k − h

(
xp

q,k(m),pn,k(m)
))
.

(11)

From (10) and (11), we convert the ML problem as a
weighted least square problem. It is hard for us to obtain
a closed-form solution to problem (10) since 0

(
Zq,k | xq,k

)
is a nonlinear function. Consequently, the ML estimate can
be obtained by the Newton iteration method [38], the state
estimate for target q after the lth iteration is

xl+1
q,k = xl

q,k +

((
Hl

q,k

)T
6−1

q,kHl
q,k

)−1

×
(
Hl

q,k

)T
6−1

q,k

(
Zq,k − h

(
xl

q,k

))
(12)

where the nonlinear measurement function can be represented
as follows:

h(xl
q,k) =



h
(
F(tq,k(1), tk)xl

q,k,p1,k(1)
)

...

h
(
F(tq,k(m), tk)xl

q,k,pn,k(m)
)

...

h
(
F(tq,k(Mq,k), tk)xl

q,k,pN ,k(Mq,k)
)


. (13)

In (13), h
(
F(tq,k(m), tk)xl

q,k,pn,k(m)
)

predictes the measure-
ment from the fusion time tk to the arrival time tq,k(m), where
F(tq,k(m), tk) denotes the transition matrix

F(tq,k(m), tk) = I3 ⊗

[
1 tq,k(m)− tk
0 1

]
. (14)

In (12), 6q,k = blkdiag(61
1,q,k, . . . , 6

m
n,q,k, . . . , 6

Mq,k
N ,q,k)

denotes the covariance matrix of the measurement noise, Hl
q,k

is the Jacobian matrix at the lth iteration

Hl
q,k =

[
HlT

1,q,k(1),HlT
2,q,k(1), . . . ,

HlT
n,q,k(m), . . . ,HlT

N ,q,k(Mq,k)
]T (15)
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where Hl
n,q,k(m) corresponding to the mth measurement eval-

uated at xl
q,k

Hl
n,q,k(m) = ∇xlT

q,k (m)
h
(
xl

q,k(m),pn,k(m)
)

× F(tq,k(m), tk)

(16)

where ∇ denotes the partial derivative operator, and xl
q,k(m) =

F(tq,k(m), tk)xl
q,k predicts the target state from the fusion time

tk to the arrival time tq,k(m). An initial state estimate for the
qth target is required for the Newton iteration method, which
can take the predicted state, since the fusion time interval is
small generally, e.g., two seconds as considered in this work.

The CRLB provides a lower bound for any unbiased esti-
mator. Given the true state xq,k and the state estimate xq,k , the
CRLB can be represented as

E
[
(xq,k − xq,k)(xq,k − xq,k)

T ]
≥ CB−1

q,k (17)

where CBq,k is the Fisher information matrix (FIM)

CBq,k ≈ HT
q,k6

−1
q,kHq,k |xq,k . (18)

The FIM requires knowledge of the true state of the target,
which is unknown in practice. Therefore, the FIM is approx-
imated by replacing the true state with the CM produced
by the ML estimator. It is shown that the ML estimator is
statistically efficient for as few as two AOA measurements [28]
(variety with UAV−target geometries). Therefore, the CRLB
matrix can be used as the measurement-noise covariance for
the resulting CM xq,k in the KF.

B. The KF for Target q

Suppose that the track initialization is available, and thus,
we can obtain the initial state estimate x̂q,k=0 and the corre-
sponding initial covariance P̂q,k=0 for target q. It is assumed
that the pdf of xq,k follows a Gaussian distribution, i.e.,
p(xq,k |xq,k) = N (x̂q,k, P̂q,k), where x̂q,k and P̂q,k are the state
estimate and the corresponding covariance, respectively. From
(1), the predicted pdf is p(xq,k |xq,k−1) = N (xq,k|k−1,Pq,k|k−1),
and the predicted state xq,k|k−1 and corresponding covariance
Pq,k|k−1 are [37]

xq,k|k−1 = Fk−1x̂q,k−1 (19)

Pq,k|k−1 = Fk−1P̂q,k−1FT
k−1 + Qq,k−1. (20)

If no measurements are received from the qth target during
the kth fusion time interval, the KF regards the predicted state
and the corresponding covariance as the state estimate and
the estimated covariance, respectively. On the contrary, the
innovation and the corresponding covariance can be obtained
from the predicted state and the CM as

ϑq,k = xq,k − xq,k|k−1 (21)

Sq,k = Pq,k|k−1 + CB−1
q,k . (22)

In (21), xq,k|k−1 = Fk−1x̂q,k−1 is the predicted state. The state
estimate x̂q,k and the corresponding covariance P̂q,k can be
obtained by

x̂q,k = xq,k|k−1 + Gq,kϑq,k (23)

Fig. 3. Closed-loop asynchronous tracking framework for CTO.

P̂q,k = Pq,k|k−1 − Gq,kPq,k|k−1 (24)

where Gq,k = Pq,k|k−1S−1
q,k is the Kalman gain [37].

IV. CTO FOR PASSIVE MTT

This article aims to collaboratively optimize the trajecto-
ries of multi-UAV to maximize the MTT performance. The
closed-loop asynchronous tracking framework is shown in
Fig. 3, where the two-step tracking method is utilized for
state estimation and prediction. According to the prediction
information, the PC-CRLB of each target can be calculated,
then the summation of these PC-CRLBs is used as the
objective function of the CTO problem. The dynamic and
security constraints can be specified according to the UAV’s
performance parameters and application scenarios. Finally, the
CSM is proposed for the resulting CTO problem to guide the
waypoints of multi-UAV next time. We first formulate the CTO
model and then introduce the CSM.

A. PC-CRLB for Target q

The PC-CRLB is adopted as the tracking performance
measure to predetermine the waypoints of multi-UAV at the
next fusion time, which is defined as [30]

Exq,k ,Zq,k |Zq,1:k−1

{[
x̂q,k − xq,k

][
x̂q,k − xq,k

]T
}

≥ J−1(xq,k |Zq,1:k−1
)

(25)
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where J(xq,k) is the predicted conditional FIM (PC-FIM),
whose inverse is the PC-CRLB. The PC-FIM is

J
(
xq,k |Zq,1:k−1

)
= Exq,k ,Zq,k |Zq,1:k−1

×
{
−1

xq,k
xq,k log p

(
xq,k,Zq,k |Zq,1:k−1

)}
.

(26)

In (26), p
(
xq,k,Zq,k |Zq,1:k−1

)
is the joint pdf conditioned on

the set Zq,1:k−1 that collects measurements from time t1 to tk−1,
and 1

xq,k
xq,k denotes a second-order partial derivative operator

w.r.t. xq,k . The PC-FIM can be simplified as the summation
of two terms as follows:

J
(
xq,k |Zq,1:k−1

)
= JP

(
xq,k |Zq,1:k−1

)
+ JD

(
xq,k |Zq,1:k−1

)
. (27)

In (27), JP(xq,k |Zq,1:k−1) is the prior information term

JP
(
xq,k |Zq,1:k−1

)
= Exq,k |Zq,1:k−1

{
−1

xq,k
xq,k log p

(
xq,k |Zq,1:k−1

)}
(28)

where the expectation is taken w.r.t. the predicted pdf.
It is hard to analytically evaluate the JP

(
xq,k |Zq,1:k−1

)
.

Since the predicted pdf of the target q obeys a Gaus-
sian distribution, we can approximate JP

(
xq,k |Zq,1:k−1

)
as the inverse of the predicted covariance matrix, i.e.,
JP

(
xq,k |Zq,1:k−1

)
≈ P−1

k|k−1.
In (27), JD

(
xq,k |Zq,1:k−1

)
is the data information term,

which can be expressed as follows:

JD
(
xq,k |Zq,1:k−1

)
= Exq,k ,Zq,k |Zq,1:k−1

{
−1

xq,k
xq,k log p

(
Zq,k | xq,k

)}
(29)

Similarly, the evaluation of JD(xq,k |Zq,1:k−1) involves the
expectation operation, which is usually implemented by
the Monte Carlo experiments. Under the assumption that
the process noise is relatively small, we can approximate
JD(xq,k |Zq,1:k−1) as [39]

JD
(
xq,k |Zq,1:k−1

)
≈

N∑
n=1

H̄T
n,q,k(pn,k)6

−1
n,q,k(pn,k)H̄n,q,k(pn,k) |xq,k|k−1 . (30)

The arrival time of measurements w.r.t. target q span ran-
domly in the fusion time interval (tk−1, tk), and we cannot
predict them at the time instant tk−1. Therefore, we calculate
JD(xq,k |Zq,1:k−1) according to the predicted state from the
fusion time instant tk−1 to tk . In (30), 6n,q,k(pn,k) is the
predicted covariance of the measurement noise [see (8) for
details]. H̄n,q,k(pn,k) means that the predicted Jacobian matrix
is a function of the UAV’s position

H̄n,q,k(pn,k) = ▽xT
q,k|k−1

h
(
xq,k|k−1,pn,k

)
=


∂θq,k

∂xq,k
0

∂θq,k

∂ yq,k
0 0 0

∂ϕq,k

∂xq,k
0

∂ϕq,k

∂ yq,k
0

∂ϕq,k

∂zq,k
0


(31)

where components of the partial derivatives are

∂θq,k

∂xq,k
= −

yq,k|k−1 − yn,k

dn,q,k|k−1
,

∂θq,k

∂ yq,k
=

xq,k|k−1 − xn,k

dn,q,k|k−1

∂ϕq,k

∂xq,k
=
(xq,k|k−1 − xn,k)(zq,k|k−1 − zn,k)

dn,q,k|k−1 R2
n,q,k|k−1

∂ϕq,k

∂ yq,k
=
(yq,k|k−1 − yn,k)(zq,k|k−1 − zn,k)

dn,q,k|k−1 R2
n,q,k|k−1

∂ϕq,k

∂zq,k
= −

dn,q,k|k−1

R2
n,q,k|k−1

. (32)

In (32), Rn,q,k|k−1 = ∥pn,k −xp
q,k|k−1∥2 is the predicted distance

from UAV n to target q , dn,q,k|k−1 = ((xq,k|k−1 − xn,k)
2

+

(yq,k|k−1 − yn,k)
2)1/2 denotes the predicted distance in xy

plane.
Based on the above-mentioned derivation, we can rewrite

the PC-FIM as follows:

J
(
xq,k |Zq,1:k−1

)
= P−1

q,k|k−1 +

N∑
n=1

H̄T
n,q,k(pn,k)6

−1
n,q,k

× (pn,k)H̄n,q,k(pn,k) |xq,k|k−1 .

(33)

B. CTO Model

The PC-FIM (33) shows that the positions of multi-UAV
have an impact on the tracking performance, which motivates
us to optimize the trajectories of multiple UAVs to achieve
the optimal MTT performance. Since the elements of the
PC-CRLB matrix have different units, it cannot be adopted
as an objective function directly, we perform a trace operation
on the normalized PC-CRLB as follows:

fq(pk) = Tr
(
3T J−1(xq,k |Zq,1:k−1

)
3

)
(34)

where the position vector of multi-UAV is defined as pk =

(pT
1,k,pT

2,k, . . . ,pT
N ,k)

T , and 3 = I3 ⊗ blkdiag(1, T0) is the
normalization matrix.

In general, the trajectories of UAVs are subject to some
dynamic and security constraints. The dynamic constraints are
given in (5), the first type of security constraint is that the
flying altitude of each UAV should be greater than or equal to
the minimum height Hmin

pn,k(3) ≥ Hmin, n ∈ �a,k (35)

where pn,k(3) denotes the third element of pn,k , and �a,k is a
set that collects all indexes of UAVs that may fly below the
minimum height at the next time step.

The second type of security constraint is that any two UAVs
should be separated by a certain distance dcol, that is, for all
(n1, n2) ∈ �s,k and n2 > n1

∥pn1,k − pn2,k∥2 ≥ dcol, (n1, n2) ∈ �s,k (36)

where �s,k is a set that collects all index pairs of any two
UAVs which may collide. In other words, if two UAVs are
unlikely to appear in their respective range of motion during
the next fusion time interval, the constraint (36) will not work.
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The third kind of security constraint is that each UAV should
keep a minimum clearance distance ri from a given position
ci , that is, for all (n, i) ∈ �b,k

∥pn,k − ci,k∥2 ≥ ri , (n, i) ∈ �b,k . (37)

These constraints (37) can be configured to achieve obsta-
cle/target/threat avoidance by appropriately selecting ci,k and
ri , i ∈ {1, 2, . . . , NB + NT + Q}, where NB and NT denote
the number of obstacle points and threats, respectively. The
obstacle points are given by a 3-D digital terrain map [40],
which is reloaded at each fusion time instant. The positions
of threats (e.g., enemy radars) are assumed known. If ci,k =

xp
q,k|k−1, it means that the UAV should keep a distance from

target q to avoid being detected by it. Similarly, if the UAV n is
far away from the obstacle i , i.e., (n, i) /∈ �b,k , this constraint
will be inactive. The constraints (37) may also be modified to
define arbitrary noncircular no-fly zones.

Combining (5) and (IV-B)–(37), we formulate the
time-varying CTO model as

min
pk

f (pk)

s.t.


pn,k ∈ Dn,k, n = 1, 2, . . . , N

pn,k(3) ≥ Hmin, n ∈ �a,k

∥pn,k − ci,k∥2 ≥ ri , (n, i) ∈ �s,k

∥pn1,k − pn2,k∥2 ≥ dcol, (n1, n2) ∈ �b,k

(38)

where f (pk) =
∑Q

q=1 fq(pk) denotes the overall MTT accu-
racy. Note that the security constraints (36) and (37) are
nonconvex sets and the objective is a nonconvex function, and
the CTO model (38) is a time-varying nonconvex optimization
problem, which is hard to obtain its optimal solution. In the
following, the CSM is proposed to find the suboptimal trajec-
tories of multiple UAVs in different situations.

The following remarks may be deduced from the CTO
model (38).

Remark 1: We note that the minimum flying height con-
straint in (38) may be redundant when specific obstacle
avoidance constraints are enforced. For instance, the height
constraint becomes redundant when clearance distances for
obstacle point avoidance are much larger than the mini-
mum flying height, i.e., ri ≫ Hmin. On the other hand,
if UAVs are far from obstacle points and require keeping high-
altitude flying, then the minimum flying height constraint is
necessary.

Remark 2: In [10], [11], [12], [13], [14], the heading
angle and speed are adopted as optimization variables, and
the dynamic model for UAV n is reformulated as pn,k =

pn,k−1 + vn,k T0ςn,k , where vn,k ≤ vn
max is the speed of UAV

n, ςn,k = [cos(βn,k) cos(φn,k), sin(βn,k) cos(φn,k), sin(φn,k)]
T

is the direction vector of velocity. βn,k and φn,k are azimuth
and elevation of the velocity, respectively, which satisfies
∡(ςn,k, ςn,k−1) ≤ αn

max. The adaptable variables in the new
dynamic model are {vn,k, βn,k, φn,k}. We see that the new
formulation is equivalent to model (4), but it introduces
transcendental functions, which increases the nonlinearity of
security constraints. Therefore, the dynamic and CTO models

Algorithm 1 The NSPG Method

Input: l = 0, λl
k , pl

k , ε, λmin and λmax;
repeat

1. Calculate the search direction:
dl

k = PDk (pl
k − λl

k∇pl
k

f (pk))− pl
k ;

2. Calculate the step length γ l
k according to

Algorithm 2 and set pl+1
k = pl

k + γ l
k dl

k

3. Update the spectral step length:
Let p′l

k = pl+1
k − pl

k and
yl

k = ∇pl+1
k

f (pk)− ∇pl
k

f (pk)

if p′lT
k yl

k ≤ 0 then
λl+1

k = λmax;
else

λl+1
k = max{λmin,min{λmax,p′lT

k p′l
k/p′lT

k yl
k}};

end
4. Let l = l + 1;

until ∥PDk (pl
k − ∇pl

k
f (pk))− pl

k∥∞ ≤ ε;
Return: pk = pl

k .

we built are simpler than the previous studies [10], [11], [12],
[13], [14].

C. CSM for the CTO Problem

In this section, the CSM is designed to solve the nonconvex
problem (37) by exploring its time-varying property. The CSM
begins with a judgment of which security constraints are active
based on the current position and velocity of the UAV as well
as the target. According to whether the security constraints
work, we design two algorithms to obtain the suboptimal
trajectories of multi-UAV. Then, the CSM is presented based
on the two algorithms.

Case 1 (CTO Without Security Constraints): If any two
UAVs are far apart at an altitude higher than Hmin, and
the UAVs are far away from multiple targets, threats, and
obstacles, the security constraints may not work. In this case,
the CTO model can be recast as

min
pk

f (pk)

s.t. pn,k ∈ Dn,k, n = 1, 2, . . . , N (39)

which is a nonconvex optimization problem with convex
constraints, since Dn,k is the intersection of a ball and a
cone. The PG method [10] can be applied to solve problem
(39) for a suboptimal solution, but with a slow convergence
rate. To this end, we introduce the spectral gradient idea
with a nonmonotone line search (NLS) to the PG method
to speed up its convergence [31]. The NSPG for problem
(39) is given in Algorithm 1, where ε is the tolerance for
the NSPG method, λl

k denotes the spectral step length at
the lth iteration, [λmin, λmax] are the minimum and maximum
safeguarding parameters for λl

k , Dk = D1,k ∪D2,k ∪· · ·∪DN ,k ,
and γ l

k represents the step length that can be obtained by the
NLS as listed in Algorithm 2.

In Algorithm 2, δ ∈ (0, 1) denotes a sufficient decrease
parameter, L is an integer, and σ1 and σ2 are safeguarding
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Algorithm 2 The NLS Method

Input: dl
k , pl

k , L , γ l
k = 1, δ, σ1 and σ2;

Output: γ l
k

repeat
1. Calculate fmax = max0≤i≤min{l,L−1} f (pl−i

k )

2. Update the step length:
Calculate γtemp = −

1
2γ

l2
k ∇pl

k
f (pk)

T dl
k/△ f ,

△ f = f (pl
k + γ l

k dl
k)− f (pl

k)− γ l
k ∇pl

k
f (pk)

T dl
k

if γtemp ∈ [σ1, σ2γ
l
k ] then

γ l
k = γtemp;

else
γ l

k = γ l
k/2;

end
until f (pl

k + γ l
k dl

k)− fmax − δγ l
k ∇pl

k
f (pk)

T dl
k > 0;

parameters that satisfy 0 < σ1 < σ2 < 1. The main idea
behind the NLS is that the steepest descent method is very
slow but it can be accelerated by taking a step size that comes
from the 1-D minimization at the previous step, instead of the
one that comes from the minimization of the function along
the gradient of the current iteration.

In Algorithm 1, PDk (p
temp
k ) represents an operator that

projects the point ptemp
k to the feasible sets, which corresponds

to the solution of problem (40)

min
pk

∥pk − ptemp
k ∥2

s.t. pn,k ∈ Dn,k, n = 1, 2, . . . , N (40)

which can be easily solved by the interior point solver [41]
but with a slow convergence rate and poor scalability. Instead,
we propose a projection operator with a closed-form solution,
which can be implemented parallelly. In particular, we can
separate problem (40) into N subproblems, as the feasible
domains of any two UAVs (n1 ̸= n2) satisfy Dn1,k ∩Dn2,k = ∅,
the nth subproblem is

min
pn,k

∥pn,k − ptemp
n,k ∥2

s.t. pn,k ∈ Dn,k . (41)

The optimal solution for problem (41) is PDn,k (p
temp
n,k ). The

projection process for the given point ptemp
n,k involves the

coordinate system transformation, as shown in Fig. 4. We first
pan the origin coordinate system to the point pn,k−1, and then
rotate the z-axis to the vn,k−1 direction. The rotation step
includes rotating βn,k−1 degrees around the z-axis and φn,k−1
degrees around the y-axis. The rotation matrix is defined as
Rot = Ry

ot Rz
ot , where

Ry
ot =

 cos(φn,k−1) 0 − sin(φn,k−1)

0 1 0
sin(φn,k−1) 0 cos(φn,k−1)

 (42)

and

Rz
ot =

 cos(βn,k−1) sin(βn,k−1) 0
− sin(βn,k−1) cos(βn,k−1) 0

0 0 1

 (43)

Fig. 4. Coordinate system transformation.

are rotation matrices w.r.t. y-axis and z-axis, respectively.
After coordinate transformation, the position of ptemp

n,k is
given by

p′temp
n,k = Rot

(
ptemp

n,k − pn,k−1
)
. (44)

Recalling that the feasible domain Dn,k is the intersection
of a ball and a cone. We define OA (the generatrix of the cone
in Fig. 4) to be the line segment where the point p′temp

n,k lies,
the coordinate of point A is

pA
n,k =vn

maxT0
[
sin

(
αn

max

)
cos(ψn,k),

sin
(
αn

max

)
sin(ψn,k), cos

(
αn

max

)]T (45)

where ψn,k is the azimuth of the point p′temp
n,k .

Then, the projected position of ptemp
n,k is

ppro
n,k = max(0,min(ηn,k, 1))pA

n,k (46)

where ηn,k = (pA
n,k)

T p′temp
n,k /∥pA

n,k∥2.
According to (44)–(46), we can obtain a closed-form expres-

sion for the projected point.
Case 2 (CTO With Security Constraints): In this case,

some security constraints may be active during the tracking
process, assuming that all three kinds of security constraints
are activated, i.e., �a,k , �s,k , and �b,k are nonempty sets in
problem (38). Note (38) is hard to deal with, since it may
entail a number of coupled nonconvex constraints. In light of
the challenge of computation, it is desirable to develop an
efficient algorithm to obtain high-quality suboptimal solutions
to problem (38). To this end, an ADPM is developed to solve
it with guarantee convergence under several conditions.

To present the ADPM, we first define

an,k = pn,k(3), n ∈ �a,k (47)

and denote ak as a vector concatenating all an,k, n ∈ �a,k .
Based on (47), we can compactly rewrite (35) as

A1pk = ak (48)

where A1 is a coefficient matrix, which can be obtained from
(47), the feasible domain of ak is Da,k = {an,k | an,k ≥

Hmin, n ∈ �a,k}.
For the second type of security constraint, we define

sn1,2,k = pn1,k − pn2,k, (n1, n2) ∈ �s,k (49)
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and let sk be a vector that concatenates all the
sn1,2,k, (n1, n2) ∈ �s,k . A compact form of (49) is

A2pk = sk (50)

where A2 is a coefficient matrix, which can be obtained from
(49). From (36), the feasible domain of sk is Ds,k = {sn1,2,k |

∥sn1,2,k∥2 ≥ dcol, (n1, n2) ∈ �s,k}.
Similarly, we define

bni,k = pn,k − ci,k, (n, i) ∈ �b,k (51)

where bk is a vector that concatenates all the bni,k, (n, i) ∈

�b,k with the feasible domain Db,k = {bni,k | ∥bni,k∥2 ≥

ri , (n, i) ∈ �b,k}. Then, we can equivalently rewrite (37) as
an equality constraint as

A3pk − ck = bk (52)

where A3 is a coefficient matrix, and ck is a vector that
concatenates all the ci,k, (·, i) ∈ �b,k .

Then, we can equivalently reformulate (38) as

min
pk

f (pk)

s.t.



A1pk = ak

A2pk = sk

A3pk − ck = bk

ak ∈ Da,k, sk ∈ Ds,k

bk ∈ Db,k, pn,k ∈ Dn,k,∀n.

(53)

The scaled augmented Lagrangian function of (53) is

Lρ
(
pk, ak, sk,bk; χ k,µk, νk, ρ1, ρ2, ρ3

)
= f (pk)+

ρ1

2

∥∥A1pk − ak + χ k

∥∥2
2 −

ρ1

2

∥∥χ k

∥∥2
2

+
ρ2

2

∥∥A2pk − sk + µk

∥∥2
2 −

ρ2

2

∥∥µk

∥∥2
2

+
ρ3

2
∥A3pk − ck − bk + νk∥

2
2 −

ρ3

2
∥νk∥

2
2 (54)

where χ k , µk , and νk are scaled Lagrange multipliers, and
ρ1, ρ2, ρ3 > 0 denote penalty parameters. The formulation
of (54) plays a fundamental role in the scaled ADPM [27],
we denote pl

k , al
k , sl

k , bl
k , χ l

k , µl
k , νl

k , ρl
1, ρl

2, and ρl
3 as estimates

of parameters at the lth iteration, and the iteration steps of the
ADPM are given as follows.

Step 1: Update ak by solving the following problem:

min
ak

∥∥A1pl
k − ak + χ l

k

∥∥2
2

s.t. ak ∈ Da,k (55)

which can be split into Na,k = |�a,k | subproblems, and be
solved parallelly, where |�a,k | is defined as the size of �a,k .
The i th (i = 1, . . . , Na,k) subproblem is

min
ai,k

(
pl

�a,k (i),k(3)− ai,k + χ l
i,k

)2

s.t. ai,k ≥ Hmin (56)

where �a,k(i) denotes the i th element of the set �a,k , χ l
i,k is

the i th element of the vector χ l
k .

The closed-form solution of problem (56) at the lth iteration
is

al+1
i,k =

{
Hmin, if pl

�a,k (i),k(3)+ χ l
i,k < Hmin

pl
�a,k (i),k(3)+ χ l

i,k, else.
(57)

Step 2: Update sk by solving problem (58)

min
sk

∥∥A2pl
k − sk + µl

k

∥∥2
2

s.t. sk ∈ Ds,k . (58)

Note that problem (58) can be decomposed into Ns,k =

|�s,k | subproblems, which can be solved parallelly. The i th
(i = 1, . . . , Ns,k) subproblem is

min
si,k

∥∥pl
j1,k − pl

j2,k − si,k + µl
i,k

∥∥2

2

s.t. ∥si,k∥2 ≥ dcol (59)

where ( j1, j2) = �s,k(i), si,k is the i th block of the vector
sk . The closed-form solution of (59) is

sl+1
i,k =


max(d1, dcol)

d1
(pl

j1,k − pl
j2,k + µl

i,k)

d1 = ∥pl
j1,k − pl

j2,k + µl
i,k∥2.

(60)

Step 3: Update bk by solving the following problem:

min
bk

∥∥A3pl
k − ck − bk + νl

k

∥∥2
2

s.t. bk ∈ Db,k . (61)

Similarly, we divide problem (61) into Nb,k = |�b,k | sub-
problems and solve them parallelly. The i th (i = 1, . . . , Nb,k)

subproblem is

min
bi,k

∥pl
j1,k − c j2,k − bi,k + νl

i,k∥
2
2

s.t. ∥bi,k∥2 ≥ r j2 (62)

where ( j1, j2) ∈ �b,k , and bi,k are i th block of bk .
The closed-form solution to problem (62) is given by

bl+1
i,k =


max(d2, r j2)

d2

(
pl

j1,k − c j2,k + νl
i,k

)
d2 = ∥pl

j1,k − c j2,k + νl
i,k∥2.

(63)

Step 4: Update pk by solving problem (64)

min
pk

f (pk)+
ρl

1

2

∥∥A1pk − al+1
k + χ l

k

∥∥2
2

+
ρl

2

2

∥∥A2pk − sl+1
k + µl

k

∥∥2
2

+
ρl

3

2

∥∥A3pk − ck − bl+1
k + νl

k

∥∥2
2

s.t. pn,k ∈ Dn,k, n = 1, 2, . . . , N . (64)

Although (64) is a nonconvex problem [42], the variable
pk = [pT

1,k,pT
2,k, . . . ,pT

N ,k] can be divided into N blocks, each
one with a convex constraint. Therefore, we can solve problem
(64) with Algorithm 1 for a stationary point at the lth iteration.

Step 5: Update penalty variables ρ1, ρ2, and ρ3 as follows:

ρl+1
1 =

{
ρl

1, if △ r l+1
a ≤ ϵ1,a △ r l

a

ρl
1ϵ2,a, else

(65)
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Algorithm 3 The Scaled ADPM
Input:
Initialize variables: pl

k , χ l
k , µl

k and νl
k ;

Initialize parameters: ρl
1, ρl

2, ρl
3, and let l = 0;

repeat
1. Update primal variable al+1

k by (57);
2. Update primal variable sl+1

k by (60);
3. Update primal variable bl+1

k by (63);
4. Update primal variable pl+1

k by Algorithm 1;
5. Update penalty parameters {ρl+1

1 , ρl+1
2 , ρl+1

3 } by
(65), (66), and (67);

6. Update dual variables {χ l+1
k , µl+1

k , νl+1
k } by

(68), (69), and (70);
7. Let l = l + 1;

until A predifined stopping criterion is achieved;
Return: pk = pl

k , ak = al
k , sk = sl

k , and bk = bl
k .

Algorithm 4 The Time-Varying CSM
1. Calculate �a,k , �s,k , and �b,k according to (5);
if �a,k , �s,k , and �b,k are empty sets then

2.1 Solve (40) by Algorithm 1;
else

2.2 Remove the constraints corresponding to the
empty sets question (38);

2.3 Introduce auxiliary variables for positive
security constraints to construct problem (53);

2.4 Solve (53) by Algorithm 3;
end
Return: pk .

ρl+1
2 =

{
ρl

2, if △ r l+1
s ≤ ϵ1,s △ r l

s

ρl
2ϵ2,s, else

(66)

ρl+1
3 =

{
ρl

3, if △ r l+1
b ≤ ϵ1,b △ r l

b

ρl
3ϵ2,b, else

(67)

where 0 < ϵ1,a, ϵ1,s, ϵ1,b < 1, and ϵ2,a, ϵ2,s, ϵ2,b > 1 but close
to 1. △r l

a = ∥A1pl
k − al

k∥2, △r l
s = ∥A2pl

k − sl
k∥2, and △r l

b =

∥A3pl
k − ck − bl

k∥2 are residuals corresponding to constraints
in (53).

Step 6: Update scaled dual variables as follows:

χ l+1
k =

{
χ̃

l+1
k , ifχ l+1

max ≤ ϖa

χ̃
l+1
k /χ l+1

max, else
(68)

µl+1
k =

{
µ̃

l+1
k , ifµl+1

max ≤ ϖs

µ̃
l+1
k /µl+1

max, else
(69)

νl+1
k =

{
ν̃

l+1
k , if νl+1

max ≤ ϖb

ν̃
l+1
k /νl+1

max, else
(70)

where χ̃
l+1
k =

ρl
1

ρl+1
1

χ l
k + A1pl+1

k − al+1
k , µ̃

l+1
k =

ρl
2

ρl+1
2

µl
k +

A2pl+1
k − sl+1

k , ν̃
l+1
k =

ρl
3

ρl+1
3

νl
k + A3pl+1

k − ck − bl+1
k , χ l+1

max,

µl+1
max and νl+1

max represent the elements with the largest absolute

Fig. 5. Trajectories of multitarget and unoptimized paths of UAVs in
scenario 1.

values in the vectors χ̃
l+1
k , µ̃

l+1
k , and ν̃

l+1
k , respectively. ϖa ,

ϖs , and ϖb are sufficiently large positive numbers.
If ρl+1

1 = ρl
1, ρl+1

2 = ρl
2, and ρl+1

3 = ρl
3, the ADPM

falls into the classic ADMM [27]. The idea behind the
penalty and dual-parameters update is to try to keep the
primal residual norms converging to zero. Specifically, if △r l

a
does not decrease with iterations, a larger ρl+1

1 is utilized to
make △r l

a approaches zero to find a feasible solution. This
operation not only improves the convergence of the classic
ADMM but also makes the ADPM less dependent on the
initial point [43]. As far as we know, the global convergence
of the ADPM for general nonconvex problems is still an
open problem [44]. On the other hand, our numerical results
suggest that the ADPM can converge from any starting point.
Toward understanding the numerical behavior, we provide the
following weak converge result for ADPM, where the bounded
of multipliers and the diminishing of ∥pl+1

k − pl
k∥2 are always

observed numerically.
Theorem 1: Suppose {ρl

1, ρ
l
2, ρ

l
3} are bounded, and

liml→∞ ∥pl+1
k − pl

k∥2 = 0. Then, the sequence {pl
k, al

k, sl
k,bl

k}

converges to limit points {p∗
k , a∗

k , s∗
k ,b∗

k}, which are Karush–
Kuhn–Tucker (KKT) points of the original problem (38).

Proof: See the Appendix.
Repeat steps 1–6 until some terminal conditions are satis-

fied, e.g., a maximum iteration number. We summarize the
iteration steps of the scaled ADPM in Algorithm 3. Note that
all kinds of security constraints are considered in Algorithm 3,
which is the most complex case. In practice, we need to
first determine which security constraints work, and then use
Algorithm 3 to solve problem (53) after removing the inactive
constraints, which can improve the efficiency of the algorithm.
Combining the two cases mentioned earlier, we give the time-
varying CSM, as shown in Algorithm 4.

V. SIMULATION RESULTS

This section presents simulation results to evaluate the
performance of the proposed CSM in different scenarios.
A 3-D area of [0, 10 000] m × [0, 10 000] m × [0, 2000]

m is investigated in scenario 1, where a team of N = 4
UAVs is used to cooperatively track a number of Q =

3 targets, as is shown in Fig. 5. The number of obstacle
points and threats are set to NB = 1600 and NT = 1,
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TABLE I
PARAMETERS FOR MTT IN SCENARIO 1

TABLE II
PARAMETERS OF MULTI-UAV MOUNTED AOA SENSORS

respectively. The initial states for multiple targets in the KF
and dynamic parameters are shown in Table I. For simplicity,
we set the initial velocity of each UAV to [−15, 25, 0]

T m/s,
the remaining parameters of multi-UAV mounted on AOA
sensors are given in Table II. We assume the RCS of target q
w.r.t. UAV n is κn,q,k = 1 m2, ∀n, q. In this case, the signal-
to-noise ratio (SNR) is only related to the geometry factor.
The total flight time is 120 s for all experiments.

For the initialization of the NSPG method, it is usual to
set λmin = 10−5, λmax = 105, λ0

k ∈ [λmin, λmax], σ1 = 0.1,
σ2 = 0.9, ε = 10−3, and δ = 10−4. A typical value for the
nonmonotone parameter is L = 10. The initial point is set
to be p0

n,k = pn,k−1, ∀n. We initial the scaled dual vectors as
zero vectors, ϖa = ϖs = ϖb = 103, ρ0

1 = ρ0
2 = ρ0

3 = 0.01,
ϵ1,a = ϵ1,s = ϵ1,b = 0.95, and ϵ2,a = ϵ2,s = ϵ2,b = 1.05 for
initialization of the ADPM.

Fig. 6. Comparison of root of objective function values w.r.t. several methods
in scenario 1.

A. Effectiveness of the Proposed CSM

In this section, numerical results are presented to demon-
strate the MTT performance of the CSM in comparison with
the conventional unoptimized method and the GA algorithm.
The GA imitates natural selection and survival of the fittest,
which is applied to find the optimal solution to the CTO
problem in [20]. Since the GA is categorized as a global search
method, it can be used to check the effectiveness of the CSM.

We first compare the passive MTT performance of
these methods. Following the steps of the CSM listed in
Algorithm 4, the root of objective function values of problem
(38) corresponding to three methods are shown in Fig. 6. It is
observed that the proposed CSM can achieve considerable
MTT performance improvement over the conventional unopti-
mized method. In particular, the performance improvement is
increasing as the frame elapses, and it reaches more than 50%
in the last few frames. This is because both angular separation
and targets’ SNRs improve as the multi-UAV move toward
multiple targets. Besides, the MTT performance of CSM and
GA are nearly the same. Since there are no theoretical results
on the iteration complexity of the ADPM, NSPG, and GA for
the general nonconvex problem, as an alternative, we compare
the runtime of the CSM and GA. The runtime comparison is
carried out on a 2.9-GHz Intel Core i7-10700 processor with
32-GB RAM and averaged on the total number of frames in
MATLAB 9.8.0 (2020a). The average runtime of the CSM is
about 0.05 s, while that of the GA is 52.4 s. The GA costs
the most time to find the optimal solution, due to its heuristic
property. Combining the results in Fig. 6, we can conclude
that the CSM achieves near-optimal MTT performance with
much lower complexity than the GA.

B. Passive MTT Performance of the Two-Step Method

In this section, we test the effectiveness of the two-step
tracking method. The root-mean-square error (RMSE) for
target q is defined as follows:

Rq
MSE,k =

√√√√ 1
Nmc

Nmc∑
m=1

tr
(
3T xerr

q,kxerr
q,k

T 3
)

(71)
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Fig. 7. RMSEs for multiple targets in scenario 1.

Fig. 8. CTO results w.r.t. the CSM in scenario 1.

where Nmc = 100 represents the number of Monte Carlo trials.
xerr

q,k = x̂m
q,k − xq,k denotes the estimation error, and x̂m

q,k is the
state estimate at the mth trial. The RMSEs for multiple targets
are depicted in Fig. 7.

From the results in Fig. 7, we see that RMSEs for multiple
targets w.r.t. GA and CSM are nearly the same, which is
consistent with the results in Fig. 6. The RMSE of target 1 is
barely improved after the CTO process, while the RMSEs of
targets 2 and 3 are significantly improved. This is due to the
unoptimized linear trajectories moving toward target 1, which
has an increasing SNR. After the CTO, UAVs 1 and 2 move
toward target 1, and UAVs 3 and 4 gradually approach targets
2 and 3 (see Fig. 8). Therefore, the proposed CSM achieves
a higher overall MTT accuracy than the unoptimized method
by improving the tracking accuracy of targets 2 and 3 while
maintaining the tracking accuracy of target 1.

C. Effects of Threat Avoidance on MTT Performance

The optimized trajectories of UAVs w.r.t. the CSM are
shown in Fig. 8. We can see that multi-UAVs move toward
multiple targets and the inter-UAV distances are increasing as
time elapses. In this case, the SNRs of multiple targets and the
angular separation of multi-UAV are continuously improved.
This is consistent with the conclusions drawn from Fig. 6.

During the CTO process, obstacle avoidance constraints are
activated at some frames, and the corresponding distances

Fig. 9. Root of objective function comparison of several cases w.r.t. the
CSM and the unoptimized method in scenario 1.

TABLE III
DISTANCES BETWEEN THREATS AND UAVS AT CERTAIN FRAMES

between obstacles/threats and UAVs are listed in Table III.
The results in Table III depict that the CSM is capable to
avoid targets/threats when the distance between the UAV and
the target/threat may be less than the clearance distance.

D. Effects of Maneuver on MTT Performance

The maneuver capability of multi-UAV is affected by the
maximum speed vn

max and the maximum turning angle αn
max.

To explore the effects of vn
max and αn

max on MTT performance.
We consider six combinations of maximum speed and maxi-
mum turning angle, namely, (vn

max, α
n
max). The root objective

function values corresponding to these cases are compared in
Fig. 9.

In Fig. 9, cases 1–4 w.r.t. the CSM are used to verify the
influence of the turning angle constraint on MTT performance,
and cases 4–6 are used to verify the effect of speed constraint
on MTT performance. In the first 20 frames, the tracking
accuracy of case 1 is very close to that of the unoptimized
method. This is because the initial speed (29.15 m/s) of the
target is close to the maximum speed, and it is difficult to
obtain an appropriate angular separation by a small turning
angle (the CTO problem is similar to the steering control
problem in this case). Comparing case 1 with case 2, we can
observe the MTT performance can be further improved by
increasing the maximum turning angle, but if the optimal
turning angle corresponding to the maximum speed is less
than the maximum turning angle, the MTT accuracy cannot be
improved by increasing the maximum turning angle (see cases
2 to 4). Cases 4–6 show that the effect of maximum speed
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Fig. 10. Trajectories of multitarget and unoptimized paths of UAVs in
scenario 2.

Fig. 11. Optimized trajectories of UAVs in scenario 2.

constraint on MTT performance is relatively obvious. This is
because the UAV is far from the target at frame k = 1, and the
SNR is relatively low. In these cases, multiple UAVs should
fly toward multitarget to improve the SNR, thus improving
the tracking accuracy. In addition, when the UAV approaches
the target, the performance improvement may become smaller
since the UAV needs to keep a safe distance from the target
(see cases 5 and 6 after frames 55).

E. Effects of Collision Avoidance on MTT Performance

In Fig. 5, the distance between every two adjacent UAVs
is 500 m at frame k = 1. In this scenario, the collision
avoidance is inactive during the CTO process, since multiple
UAVs pull away from each other to obtain a good angular
separation. In this section, we consider another scenario in
Fig. 10, where the initial distance between adjacent UAVs is
set to be smaller. The initial positions of UAVs 1 to 4 are set to
be [4, 0, 1.7]

T km, [4.2, 0, 1.7]
T km, [9.7, 4, 1.6]

T km, and
[9.9, 4, 1.6]

T km, respectively. The initial velocity of UAVs
1 and 2 are set to be [15, 25, 0]

T m/s, and the initial velocity
of UAVs 3 and 4 are set to be [−25, 10, 0]

T m/s.
In scenario 2, the collision avoidance constraints may be

activated in the first few frames. The optimized trajectories
of multi-UAV are shown in Fig. 11. We can observe that
UAVs 1 and 2 gradually approach target 1 while maintaining a
safe distance (300 m) from obstacles during the CTO process.
The obstacle avoidance constraints are activated at frames

Fig. 12. Interdistances between two pairs of UAVs in scenario 2.

Fig. 13. Comparison of root of objective function values w.r.t. several
methods in scenario 2.

k = 47 ∼ 50, during which a distance of at least 300 m
was maintained between UAVs 1 and 2 and the obstacle
points. Note that these obstacles also act as occlusions, that is,
a payload sensor may not receive AOA measurements from a
target when it is occluded. The occlusion leads to performance
degradation of the estimator for the CM, due to the reduction
in the number of measurements received. Fortunately, the
obstacles did not obscure the UAV’s light of sight in Fig. 11.
UAVs 3 and 4 move toward targets 2 and 3 at the first few
frames, then they chase these targets after the UAV and the
target gets closer.

The inter-UAV distances between two UAVs that may
collide and distances between UAVs and targets that may
trigger threat avoidance constraints are shown in Fig. 12. It can
be seen that any two adjacent UAVs are able to keep a safe
distance, and UAVs 2 and 3 maintain a safe distance from
targets 1 and 3, respectively. At frames k = 20, 36, the
distances between UAV 3 and target 3 are slightly less than
500 m, due to the error between the predicted state provided
by the KF and the true state of target 3.

The comparison of the objective functions between the pro-
posed CSM, GA, and the unoptimized algorithm in scenario
2 is shown in Fig. 13. We can observe that the proposed CSM
still achieves considerable MTT performance improvement
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over the unoptimized method and provides nearly the same
performance as the GA. It is consistent with the conclusions
drawn from Fig. 6. The performance improvement of the
proposed CSM in scenario 2 is smaller than that in scenario 1
since the SNRs of multiple targets are higher in scenario 2 than
that in scenario 1.

VI. CONCLUSION

A 3-D CTO framework is proposed in this article, which
collects measurements from the AOA sensors mounted on
multi-UAV, constructs the tracks of multiple targets, and
computes the control commands for the UAVs. A two-step
tracking method is applied in MTT to provide the prior infor-
mation for CTO, and the PC-CRLB is adopted as the track-
ing performance measure. We represent the height, collision,
and obstacle/target/threat avoidance as time-varying security
constraints, and then formulate the CTO as a nonconvex
problem subjected to the security and dynamic constraints. The
CSM is presented to solve the resulting CTO problem. If all
security constraints are inactive, the CTO can be simplified as
a nonconvex problem with convex dynamic constraints, which
can be solved by the NSPG method. Conversely, we present
an ADPM to solve the CTO problem with some positive
security constraints. The ADPM introduces auxiliary vectors
to decouple the complicated constraints and separates the CTO
into several subproblems and tackles them alternately, while
locally adjusting the penalty factor at each iteration. Numerical
examples demonstrate that the CSM provides a significant
improvement in passive MTT performance in comparison
with the unoptimized method. Besides, the CSM achieves
near-optimal performance with much lower complexity com-
pared with the GA. The CSM is myopic since it only considers
the MTT performance in the next time step. A more effective
way would be the multistep CTO since each optimization
will affect the possible trajectories over several future fusion
intervals. The multistep CTO problem will be considered as
our further work.

APPENDIX
PROOF OF THEOREM 1

Since the penalty parameters {ρl
1, ρ

l
2, ρ

l
3} are bounded,

from (65) to (67), we have liml→∞ ∥χ l+1
k − χ l

k∥2 = 0,
liml→∞ ∥µl+1

k −µl
k∥2 = 0, and liml→∞ ∥νl+1

k −νl
k∥2 = 0. This

implies liml→∞ ∥A1pl
k − al

k∥2 = 0, liml→∞ ∥A2pl
k − sl

k∥2 = 0,
and liml→∞ ∥A3pl

k − ck − bl
k∥2 = 0. Since liml→∞ ∥pl+1

k −

pl
k∥2 = 0,2 and Dn,k is a bounded set, we have liml→∞ pl

k =

p∗
k , A1p∗

k = a∗
k , A2p∗

k = s∗
k , and A3p∗

k −ck = b∗
k . The first-order

optimality condition of subproblem (55) is

0 = − ρl
1

(
A1pl

k − al+1
k + χ l

k

)
+ ξ

a,l
k ⊙ ∇ga

(
al+1

k

)
(A.1)

where ξ
a,l
k is the dual variable of subproblem (55) at the l

iteration, ga(al+1
k ) are the constraint functions w.r.t. the Da,k ,

and ⊙ denotes the Hadamard product. According to (A.1),
A1p∗

k = a∗
k , and liml→∞ ∥(A1pl

k − al
k)∥2 = 0, we have

0 = lim
l→∞

−ρl
1χ

l
k + ξ

a,l
k ⊙ ∇ga

(
al+1

k

)
2liml→∞ ∥pl+1

k −pl
k∥2 = 0 cannot ensure liml→∞ pl

k = p∗

k in some extreme
cases, which is beyond the scope of this article.

= − ρ∗

1 AT
1 χ∗

k + ξ a∗

k ⊙ AT
1 ∇ga

(
a∗

k

)
(A.2)

where ξ a∗

k is the optimal dual variable. Similarly, the first-order
optimality conditions of subproblems (58), (61), and (64) are
given by

0 = −ρ∗

2 AT
2 µ∗

k + ξ s∗
k ⊙ AT

2 ∇gs
(
s∗

k

)
(A.3)

0 = −ρ∗

3 AT
3 ν∗

k + ξ b∗

k ⊙ AT
3 ∇gb(b∗

k) (A.4)

0 = ∇ f
(
p∗

k

)
+ ρ∗

1 AT
1 χ∗

k + ρ∗

2 AT
2 µ∗

k

+ ρ∗

3 AT
3 ν∗

k + ξ
p∗

k ⊙ ∇gp
(
p∗

k

)
(A.5)

where ξ s∗
k , ξ b∗

k , and ξ
p∗

k are optimal dual variables. gs(sl+1
k ),

gb(bl+1
k ), and gp(pl+1

k ) denote the constraint functions w.r.t.
the Ds,k , Db,k , and Dk , respectively.

The Karush–Kuhn–Tucker (KKT) conditions of the original
problem (38) are

0 = ∇ f (pk)+ υ
p
k ⊙ ∇gp(pk)+ υa

k ⊙ AT
1 ∇ga(pk)

+ υs
k ⊙ AT

2 ∇gs(pk)+ υb
k ⊙ AT

3 ∇gb(pk) (A.6)

υa
k ⊙ ga(AT

1 pk) = 0, υs
k ⊙ gs(AT

2 pk) = 0

υb
k ⊙ gb(AT

3 pk − ck) = 0, υ
p
k ⊙ gp(pk) = 0 (A.7)

gp(pk) ⪯ 0, ga(A1pk) ⪯ 0

gs(A2pk) ⪯ 0, gb(A3pk − ck) ⪯ 0

υ
p
k ⪰ 0, υa

k ⪰ 0, υs
k ⪰ 0, υb

k ⪰ 0 (A.8)

A1pk = ak, A2pk = sk, A3pk − ck = bk . (A.9)

From (A.2)–(A.5), the KKT conditions are satisfied by
setting pk = p∗

k , ak = a∗
k , sk = s∗

k , bk = b∗
k , υa

k = ξ a∗

k ,
υs

k = ξ s∗
k , υb

k = ξ b∗

k , and υ
p
k = ξ

p∗

k .
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