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Abstract— The rapid evolution of the effects observed in
various areas of our planet related to climate change poses urgent
questions about the knowledge of the state of the polar area and
requires satellite acquisitions with fine spatial resolution and
high accuracy to develop advanced products. The Copernicus
Imaging Microwave Radiometer (CIMR) mission, based on a
multifrequency microwave radiometer and designed to observe
the ocean, sea ice, and Arctic environment, requires brightness
temperature measurements with a total absolute uncertainty
of 0.5 K and a spatial resolution of 5 km. This constraint
demands very large reflectors with a gain value of tens of
decibels. Mechanical constraints will be attained by using a mesh
reflector, which guarantees the required resolution but with the
drawback of a radiation pattern characterized by many grating
lobes that contaminate the value of the brightness temperature
associated with the boresight position. In this article, an antenna
pattern correction (APC) is proposed to correct these effects. The
algorithm takes advantage of an iterative formulation based on
the Jacobi Method, providing a suitable correction that depends
on the chosen spatial resolution. The APC algorithm was tested
at both K- and Ka-bands with similar performance. Here, only
the results from the latter are shown, as its antenna pattern is
the most challenging among CIMR.

Index Terms— Antenna pattern correction (APC), conical scan,
Copernicus Imaging Microwave Radiometer (CIMR), microwave
radiometry, radiometric accuracy.

I. INTRODUCTION

MONITORING the Earth’s surface and its atmosphere
has become increasingly important for understanding

climate change within the framework of global warming.
This is particularly important for polar regions, where ice
loss and coastal erosion have dramatically increased during
the last decades. Indeed, the Arctic surface air temperature
has increased by more than double the global average over
the last two decades, with feedback from the loss of sea
ice and snow cover contributing to amplified warming [1].
Within this framework, microwave radiometry is an important

Manuscript received 18 July 2022; revised 3 December 2022; accepted
19 December 2022. Date of publication 19 January 2023; date of current
version 1 February 2023. (Corresponding author: Ada Vittoria Bosisio.)

Alessandro Lapini is with the Dipartimento di Ingegneria, ICT e Tecnologie
per l’Energia e i Trasporti, Istituto di fisica applicata Nello Carrara Consiglio
Nazionale delle Ricerche, 50019 Sesto Fiorentino, Italy.

Ada Vittoria Bosisio is with IEIIT, CNR, 20133 Milan, Italy (e-mail:
adavittoria.bosisio@cnr.it).

Giovanni Macelloni is with the Department of Remote Sensing, Nello
Carrara Institute of Applied Physics National Research Council, 50019 Sesto
Fiorentino, Italy.

Marco Brogioni is with CNR-IFAC, 50127 Florence, Italy.
Digital Object Identifier 10.1109/TGRS.2023.3238269

tool for monitoring the polar regions, as recognized in [2].
In particular, the need for specific Earth observation products,
such as the sea ice concentration (SIC) and the sea surface
temperature (SST) at a nominal 10-km ground resolution, with
at least a daily revisit time, was identified as being crucial [2].

Currently available satellite products at 10-km resolution
are obtained by resampling the native radiometric measure-
ments [3]. This is why a new mission called Copernicus
Imaging Microwave Radiometer (CIMR) with improved
ground resolution capabilities has been identified by the
European Community as being one of the six Copernicus high-
priority candidate missions (HPCMs) that will be developed in
the next ten years [4]. CIMR requirements are stringent: spatial
resolution ≤5 km with an uncertainty of ≤5%, with respect to
SIC and sea ice extent (SIE), and spatial resolution ≤15 km
and an uncertainty ≤0.2 K for SST demand (with highly
accurate measurements).

The CIMR instrument is designed as a conically scanning
imaging microwave radiometer that acquires continuous
and contiguous measurements along the forward and
backward scan. As reported in [5], the CIMR antenna
foresees a deployable mesh reflector with a diameter of
about 7 m, to accommodate the required coverage and
spatial resolution within the applicable mass and volume
constraints.

The antenna dimensions determine the spatial resolution,
which is defined by the instantaneous field of view
(IFOV), i.e., the region where the received power is within
−3 dB below the maximum. Nevertheless, the measurements
collected by the spaceborne radiometer are characterized by
undesired contributions: 1) contamination coming from the
region outside the IFOV (e.g., cosmic microwave background,
lunar and solar contributions, and galaxy emissions); 2) cross-
polarization coupling; and 3) energy collected by side and
grating lobes. In order to mitigate contributions of types
1) and 2), antenna pattern correction (APC) algorithms were
developed [6], [7], [8], [9] and are recalled in [5], to which
the reader is referred to for deeper insight. More specifically,
a preliminary approach to the correction of these effects
is presented in [5], but with simplified assumptions about
the acquisition geometry.The mitigation of the grating lobe
contamination, singling out the brightness temperature Tb of
the scenario within the IFOV, was obtained from the antenna
temperature associated with the entire radiation pattern, i.e.,
over the 4π solid angle, through the implementation of a
well-established image processing approach and based on
the use of deconvolution techniques [10], [11]. The method
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was applied at the image level, assuming that the measured
temperature values were recomposed to form a raster from
the punctual observations.

As in [5], the proposed APC only considers the most
energetic contributions of the antenna pattern, which are
defined and limited by a proper threshold value of the
normalized antenna gain. The choice of this threshold value
is heuristically driven, but it can be adapted to other cases,
depending on the antenna characteristics and the error and
accuracy constraints on the brightness temperature and/or the
EO products. In this present article, the chosen threshold value
is −52 dB, with respect to the normalized maximum, so that
the contributions to the measurements, besides the main beam,
include the sidelobes and the more energetic grating lobes (up
to >99% of the radiated energy) [5].

The APCs are an attempt to obtain the brightness
temperature values Tb from the antenna measurements
pertaining only to the angular directions that define the
spatial area of interest, such as the footprint or a wider
area surrounding the boresight direction. Hence, the main
disturbances 2) must be properly compensated to obtain an
accurate estimate of the main beam brightness temperature.

In this article, an APC method for correcting CIMR
measurements, collected in ungridded instrument geometry,
is described and tested over synthetic scenarios. In the
algorithm, the contributions from 1) and 2) are assumed to
have been previously compensated. It is worth noting that
this algorithm, although specifically designed for the CIMR
mission, can be applied to other conical scanning instruments.

The proposed APC works channel-by-channel, correcting
all feed measurements together. It has been tested over
K- and Ka-bands, but the presented results only refer to the Ka
channel because it has the most challenging antenna pattern,
i.e., it exhibits the strongest contamination due to side and
grating lobes.

This article is organized as follows. In Section II, the
geometry of the acquisition model is introduced, along with
the statement of the APC problem and the description of
the forward model (i.e., the model used to simulate the
measurement process). Section III deals with the description
of the theoretical APC, its limits, and the algorithm devised for
operative use. The results obtained with the proposed APC are
described in Section IV, for several different synthetic scenes
intended to stress the algorithm. Finally, the results obtained
are discussed in Section V.

II. ACQUISITION MODEL

In this section, the acquisition geometry and the APC algo-
rithm are formalized to provide a comprehensive framework
for the understanding of the theoretical and iterative APC (see
Section III).

The CIMR instrument will observe the Earth at L-, C-,
X-, K-, and Ka-bands from a platform that moves in a polar
orbit, at an average altitude of approximately 836 km and with
an observation zenith angle of 55.0◦

± 1.5◦, by performing
a conical scan at a rotation speed equal to 7.8 r/min [4].
The conical scan and the varying height of the satellite orbit,
with respect to the Earth, produce an irregular sampling
grid over the Earth’s surface. In order to meet the mission
requirements [5], L-, C-/X-, and K-/Ka-bands have one, four,
and eight feeds, respectively. The sampling period and spatial
resolution depend on the specific channel.

A. Instrument Geometry
Given a generic channel of CIMR, let u = 0, 1, . . . , U − 1

be the index spanning the feed number and Ts the sampling
time. Let us also set the reference time t = 0 and an orbit
state vector that uniquely defines the CIMR position along its
trajectory. Then, the boresight of the antenna pattern of the uth
feed points at the position r[u, n′

] on the Earth’s surface at the
sampling instant t = n′

·Ts , n′
= 0, 1, . . . , N ′

−1, with N ′ the
number of time instants. After one sampling period Ts , the feed
boresight moves on the subsequent point r[u, n′

+ 1] on the
Earth’s surface and so on, thus defining a sequence of points.
The curve interpolating these points is the scan trajectory of
the uth feed, while Fig. 1(a) provides a sketch of the scan
geometry of one feed of the Ka channel, Fig. 1(b) shows the
coverage of the eight feeds over a limited region on the Earth’s
surface. The set of the points corresponding to the boresight
positions on the Earth’s surface of all feeds at all sampling
instants defines the CIMR reference grid. The conical scanning
produces an irregular reference grid, as shown in Fig. 1(a),
where the sampling period is set to 0.72 e−4 s [4], which
corresponds to an approximate 0.55-km step on a locally flat
Earth surface. It can be observed that the along-scan resolution
(fine, dictated by the subsampling time) is very different from
the across-scan resolution (coarse, dictated by the rotation
period, the satellite velocity and the number of feeds and
their position in the focal plane). Furthermore, the trajectories
and relative position of the sampling points vary strongly,
according to the region of the swath that is considered (central
or lateral).

In the following, each pair [u, n′
] is replaced by a unique

index = N ′u + n′, which, by extension, corresponds to the
boresight position r[n] ≡ r[u, n′

]. The following relations
hold that:

n↔[u, n′
] ↔ r

[
u, n′

]
↔ r[n]. (1)

Equation (1) defines a unique indexing rule over the Earth’s
surface as it is determined by the instrument acquisition
geometry for a given orbit state vector. For the sake of
convenience, n is referred to as a “point” or “boresight
position” or “instant” according to its dual meaning in space
and time.

A mesh is usually adopted to perform basic operations
over an irregular geometry in a systematic and relatively
efficient way, such as point location and interpolation. In this
work, a Delaunay triangulation of the CIMR reference grid
points is used [12]. The Delaunay triangulation is widely
used in several engineering fields, such as well-known FEM
software distributions (CST Studio Suite, Ansys HFSS, and
Altair Feko), because of its favorable geometrical properties
and quick computation. In Fig. 2, two examples of Delaunay
triangulation built upon the CIMR reference grid in the
Ka-band are reported for a central and a peripheral region
of the swath.

B. APC Problem Statement
The top-of-atmosphere (TOA) brightness temperature,

measured by CIMR at point n (also known as antenna
temperature), is indicated by T A[n] and can generally be
expressed as

T A[n] =

∫
An(r)Tb(r)d r + δ[n] (2)
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Fig. 1. Instrument geometry. (a) Scan trajectory of one feed of the CIMR system in Ka-band. (b) Zoom of the red square of (a), reporting the trajectories
and the subsampling points of eight feeds (one color = one feed).

Fig. 2. Delaunay mesh built upon the CIMR reference grid inside the red square of Fig. 1(a). (b) Delaunay mesh built upon the CIMR reference grid inside
the magenta square of Fig. 1(a). The solid lines in (a) and (b) are the edges of the Delaunay triangles whose vertices are the boresight positions projected
onto the Earth’s surface.

where An is the projection of the antenna pattern on the Earth’s
surface when the boresight points to r[n], Tb is the space-
continuous TOA brightness temperature of the scene, and δ[n]

accounts for second-order contributions, such as back lobes,
cross-polarization effects, measurement noise, and nonlinear
effects. The antenna pattern projection An changes as the
satellite and the Earth reciprocally move; furthermore, the
passive system condition of the antenna pattern holds∫

An ≤ 1 ∀n. (3)

Equation (2) states that T A may consistently deviate from Tb
because of the contamination coming from areas outside the
angular region of interest (i.e., IFOV or main beam). The effect
of antenna pattern smearing on each T A[n] is not evaluated
in this study.

With the purpose of evaluating the performances of the
proposed APC, where the real antenna pattern is used, an ideal
system is introduced. For the latter, the actual antenna pattern

is replaced by an ideal one, which assumes a constant value
inside a given aperture angle and is zero elsewhere. The
possible aperture angles are either θ−3dB or 2.5θ−3dB, which
correspond to the IFOV and the main beam, respectively [4].
In the following, the numerical domain that corresponds
to the ground projection of the ideal antenna pattern is
indicated by the term SUPPORT. In accordance with (2), the
TOA brightness temperature collected by the ideal system at
position n is

T Aideal [n] =

∫
Aideal

n (r)Tb(r)d r (4)

where Aideal
n is the projection of the ideal antenna pattern

when the boresight points to r[n]. The acquisition error of
the CIMR system is defined as the difference between the
synthetic measurement and the ideal one

e = T A − T Aideal . (5)
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Fig. 3. Reference systems used to define the forward model. The large ellipsis
is the sketch of the footprint encompassing the main beam and secondary
lobes; the smallest ones represent the footprint of the grating lobes.

The APC algorithm is applied to limit the acquisition error
of the CIMR system. Specifically, the goal of the APC is
to produce an estimate of the ideal value at sample n by
potentially using all the available observations T A

T̂ Aideal = APC(T A). (6)

The APC produces an APC error

eAPC = T̂ Aideal − T Aideal . (7)

C. Forward Model for Instrument Geometry
In order to calculate T A[n], the integral equation in (2) is

approximated by discretizing the antenna pattern. Let p =

0, 1, . . . , P − 1 be the index over the antenna pattern grid,
fixed with respect to the antenna pattern reference system to
which are associated a position r ′

[p] and an antenna pattern
coefficient c[p]. These geometrical parameters are shown in
Fig. 3. The following three assumptions are made:

c
[

p
]

≥ 0 ∀p ∈ [0, P − 1] (8a)
P−1∑
p=0

c
[

p
]

= C ≤ 1 (8b)

p = 0 corresponds tothe boresight position. (8c)

The assumptions in (8a) and (8b) are consistent with a passive
system, whereas (8c) sets the convention on the indexing order
of the antenna pattern coefficients.

In the following, the second-order impairments are either
considered as being compensated before the APC module or
their contribution is assumed to be negligible with respect to
the contamination introduced by secondary and grating lobes.
Hence, the term δ[n] is dropped and (2) is approximated as

T A[n] =

P−1∑
p=0

c
[

p
]
Tb( f (n,p)) (9)

where f (n, p) is a function that maps r ′
[p] to the

corresponding point in the fixed-to-Earth reference system
when the boresight points to r[n].

Fig. 4. Interpolation by means of barycentric coordinates of a triangle defined
over three grid points. w1, w2, and w3 are the barycentric coordinates of the
query point f (n, p) with respect to n1, n2, and n3.

It should be noted that Tb( f (n, 0)) = Tb(r[n]),
by construction, i.e., the boresight always points to a node on
the CIMR grid. Equation (9) is not useful for the APC in this
form because Tb is continuous, whereas T A is sampled over
the CIMR reference grid. Hence, Tb is sampled to obtain the
column vector of TOA brightness temperature samples over
the CIMR reference grid, namely, T b, as

T b[n] = Tb(r[n]) ∀ (10)

For each pair (n, p), one of the following two cases occurs.
If f (n, p) is inside the mesh, Tb( f (n, p)) is approximated by
means of interpolation over the mesh; otherwise, Tb( f (n, p))
is cast to a boundary condition. The former is the most
frequent scenario, which occurs for all positions p for which
the boresight position is sufficiently far from the mesh border,
and its value is a function of the value in the vertices of the
enclosing triangle, weighted by their barycentric coordinates
(see Fig. 4).

The previous assumptions lead us to rewrite (9) as the
system forward model, defined over the instrument geometry
(see Appendix A for the mathematical derivation)

T A = AT b + Dc (11)

where A is the N × N system matrix projecting the
TOA brightness temperature onto the CIMR grid. It has the
properties described in the following (the proofs are provided
in Appendix A).

1) All entries are nonnegative

A[n, m] ≥ 0 ∀n, m. (12)

2) The coefficient A[n, n], associated with the boresight
position, is lower bounded by the antenna pattern
coefficient in the boresight position

A[n, n] ≥ c[0] ∀ (13)

3) The sum of each row is upper bounded by the overall
gain of the (discretized) antenna pattern

N−1∑
m=0

A[n, m] ≤

P−1∑
p=0

c
[

p
]

∀n (14)

where the equality holds if, and only if, all the nonzero
antenna pattern coefficients are inside the mesh.

4) It is linear with respect to the antenna pattern coefficients

c = c1 + c2 ⇒ A = A1 + A2 (15)

where A1 and A2 are matrices associated with c1 and
c2, respectively.
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5) Each row is, at most, (3P − 2)-sparse. The actual
sparsity for a common antenna pattern is even lower
because the nonzero antenna pattern coefficients cluster
in the antenna pattern beams. As P ≪ N , most of the
entries are zero. Therefore, A can be efficiently stored
by using a sparse matrix representation.

D is the N × P boundary condition matrix so that vector
Dc accounts for the boundary conditions, i.e., the contribution
of the TOA brightness temperature outside the mesh on the
measurements T A. It is a structured matrix; the rows of D
corresponding to boresight positions (which are sufficiently
far from the mesh border) are identically equal to zero.

D. Forward Model of Ideal Antenna Pattern
The forward model of the ideal antenna pattern is the

forward model associated with the ideal system. The ideal
antenna pattern coefficients cideal[p], p = 0, 1, . . . , P − 1 are
defined over the antenna pattern sampling grid and satisfy
the conditions in (8a)–(8c). Without loss of generality, it is
assumed that the numbering of the sampling grid positions
r ′

[p] is such that the first PSUPPORT antenna pattern coefficients
are inside the support. For instance, if the ideal antenna pattern
is uniform, then

cideal
[

p
]

=


1

PSUPPORT
, if 0 ≤ p < PSUPPORT

0, otherwise.
(16)

Thus, the forward model of the ideal antenna pattern can
generally be written as

T Aideal = AidealT b + d ideal (17)

where T Aideal is the vector of values produced by the ideal
system and Aideal maps the TOA brightness temperature onto
the ideal observations. The vector d ideal accounts for the
boundary conditions and it is only nonzero near the borders.
As for the system forward model, (17) is not intended to be
used for simulating the acquisition process.

III. THEORETICAL APC AND PROPOSED APC
In this section, the theoretical APC (the algorithm that

provides a zero-error correction) is derived from matrix
algebra argumentations and discussed. In the second part, the
proposed operative APC (called “APC-i,” where “I” stands for
iterative) is presented.

A. Theoretical APC and Practical Issues
According to the definition in (7), the “zero-error APC”

must provide eAPC = 0. Let null(B) and B† be an
orthonormal base, spanning the null space, and the Moore–
Penrose pseudoinverse of a square matrix B, respectively.
If null(A) ⊆ null(Aideal), the expression of the zero-error APC
is (Appendix B)

T̂ A
opt
ideal = Aideal A†(T A − Dc) + d ideal. (18)

If null(A) ̸⊆ null(Aideal), then no zero-error APCs1 exist.
Indeed, it can be shown that there are infinitely many T b
mapped onto the same T A but different T Aideal , leading to
ambiguities in the correction process. In such a case, it is

1Zero-error Bayesian APC might exist for null(A) ̸⊆ null(Aideal). However,
we are only considering the class of deterministic algorithms.

necessary to set up additional constraints and pick up a metric
to minimize, e.g., ||eAPC||2, to derive the expression of the
theoretical APC in that sense. Nevertheless, this is out of the
scope of this study.

In a realistic scenario, A is nonsingular and A†
≡ A−1.

Nevertheless, A is ill-conditioned, due to the relatively low
directivity of the antenna pattern with respect to the CIMR
reference grid. Details on this aspect are investigated in
Appendix C.

The calculation of the Moore–Penrose pseudoinverse or
the calculation of the inverse is not necessary because
direct or iterative linear system solvers might be used to
calculate the vector A−1(T A − Dc). Direct solvers based
on matrix decompositions (e.g., LU decomposition and QR
factorization) face the same problems that arise for the
inversion. Iterative solvers are tailored for memory-intensive
problems, but their convergence is tied to good conditioning
of the system matrix. For ill-conditioned matrices, time-based
stopping criteria ensure that a solution is provided within
a controlled time interval, but these generally provide poor
accuracy. On the contrary, constraining the residual error may
lead to an unacceptable computational delay in an operational
ground segment processing chain. Effective preconditioning
matrices can also be provided to ensure a faster convergence
of iterative methods, but their computation is often as resource
demanding as inverting the original matrix.

Using valid boundary conditions is another key point for the
theoretical APC. In the practical usage of (18), the boundary
condition matrices D and d ideal are not precisely known
because they represent the TOA brightness temperature outside
of the measurement region; they can only be approximated by
an a priori model or estimated, e.g., by using the information
extracted from previous measurements. If D̂ and d̂ ideal, namely
the estimated values of D and d ideal, are used in (18), then the
APC error becomes

eAPC = Aideal A−1(D̂ − D
)
c +

(
d̂ ideal − d ideal

)
(19)

i.e., the zero-error condition is not generally achieved.
A general upper boundary on this error also depends on
the antenna patterns and its mathematical formulation is
beyond the scope of this work. To provide the reader with
a numeric example, we consider a 500 × 1500 km scene
that is homogeneously composed by open ocean surrounded
by open ocean (Tb = 130 K). To estimate the error on
boundary conditions, the theoretical APC is applied by
wrongly assuming that the scene is surrounded by ice (250 K)
instead of open ocean, i.e., the estimation errors ||D̂ − D|| and
||d̂ ideal − d ideal|| are maximized. If the antenna pattern reported
in Fig. 5 is used, the APC error is of the order of 100 K in
the first 2–3 km from the scene boundary but decreases to
about 10 K within 10 km and 0.1 K at about 85 km. Beyond
85 km, the error continues to decrease and becomes negligible.
Obviously, better information on boundary conditions, which
is generally required for satellite product development, leads
to better performances.

B. Iterative APC—“APC-i”

The proposed APC method follows a two-phase approach.
First, T̂ b, the estimation of tb, is carried out by means of an
iterative algorithm. Then, T̂ Aideal is computed by applying the
ideal forward model to T̂ b.
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Fig. 5. Ka-band antenna pattern used for assessing the APC performances.

Let us define FOCUS as being the spatial region centered
on the boresight, with cFOCUS being the overall gain of the
antenna pattern inside it. We assume that the latter is greater
than C/2, i.e.,

cFOCUS =

PFOCUS−1∑
p=0

c
[

p
]

>
C
2

(20)

where it is supposed that, without loss of generality, the first
PFOCUS coefficients of the antenna pattern belong to FOCUS.

1) Proposed Algorithm: Let us define the concentrated
antenna pattern coefficients c′ as

c′
[

p
]

=


cFOCUS, if p = 0
0, if 0 < p < PFOCUS

c
[

p
]
, otherwise

(21)

and the mismatch 1c as

1c =


−cFOCUS + c[0], if p = 0
c
[

p
]
, if 0 < p < PFOCUS

0, otherwise
(22)

such that

c′
= c − 1c. (23)

The concentrated antenna pattern is a hypothetical antenna
pattern whose gain inside the FOCUS region is cFOCUS and
it is fully concentrated in the boresight position. On the
contrary, the concentrated antenna pattern corresponds to the
real antenna pattern outside the FOCUS region. The mismatch
1c is a nonphysical quantity given by the difference between
the actual and the concentrated antenna patterns; its support
is limited to the FOCUS region, where it is equal to the
actual antenna pattern except in the boresight position, where

Fig. 6. Comparison among the considered antenna patterns, simplified in
1-D sketches. Assuming the FOCUS region extended over five samples, the
figure shows (Left to Right and Top to Bottom) the antenna pattern, the
concentrated antenna pattern, the mismatch, and the uniform ideal antenna
pattern (SUPPORT is assumed coincident to the FOCUS).

its value is nonpositive. The sketches in Fig. 6 report an
illustrative comparison of the aforementioned antenna patterns.

The system matrix can be split by using the property in
(15), yielding

A′
= A − 1A. (24)

As c′ fulfills (8a)–(8c), A′ is the system matrix of the
concentrated antenna pattern that depends on the chosen
FOCUS; it satisfies all the properties listed in Section II-C.
On the contrary, 1A is not a valid system matrix.

Given a suitable number of iterations, l > 1, and the
estimation of the boundary conditions D̂ and d̂ ideal, the
proposed APC algorithm is structured as follows.

1) Solve T A = A′T b + D̂c by means of the Jacobi method

T̂ b
(l)

= diag
(

A′
)−1{(T A − D̂c

)
−

[
A′

− diag
(

A′
)]

T̂ b
(l−1)

}
(25)

where diag(A′) is the diagonal matrix made by the main
diagonal of A′ and T̂ b

(0)
= T A − D̂c. Equation (25) is

the vector form of the Jacobi method.
2) Compute T̂ Aideal through (17), where T b is replaced with

T̂ b
(l) and d ideal with d̂ ideal

T̂ Aideal = AidealT̂ b
(l)

+ d̂ ideal. (26)

2) Convergence: A necessary and sufficient condition for
(25) to converge [13] is

ρ
(

I − diag
(

A′
)−1 A′

)
< 1 (27)

where ρ(·) is the spectral radius. The previous condition holds
if A′ is strictly diagonally dominant (sufficient condition), i.e.,∣∣A′[n, n]

∣∣ −

∑
m,m ̸=n

∣∣A′[n, m]
∣∣ > 0 ∀n (28)

and implies (27). The concentrated system matrix is strictly
diagonally dominant by construction; hence, the Jacobi method
converges. The proof is provided in Appendix D. The Jacobi
method has been chosen among other iterative solvers [e.g.,
generalized minimal residual method (GMRES)], for its plain
and memory-efficient implementation. Moreover, the form of
the Jacobi method provides some insights for interpreting the
proposed algorithm.
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3) Interpretation: The first step of the proposed algorithm
estimates the TOA brightness temperature over the CIMR
reference grid, as if the concentrated antenna pattern was
used in the sensing process. For such an antenna pattern, the
generally discrete forward model is given by (9) and (21), for
comparison

T A[n] = cFOCUSTb(r[n]) +

P−1∑
p=PFOCUS

c′
[

p
]
Tb( f (n, p)). (29)

Equation (25) is rewritten, after manipulation, as

T̂ b
(l)[n] =

1
cFOCUS

T A[n]−
P−1∑

p=PFOCUS

c′
[

p
]
T̃b

(l−1)
( f (n, p))


(30)

where T̃b
(l−1)

( f (n, p)) indicates either the interpolation of
T̂ b

(l) in f (n, p), when f (n, p) is inside the mesh, or the
estimated boundary condition, otherwise. It is the scalar
form of the Jacobi method and also corresponds to (29)
by multiplying by cFOCUS and replacing T̃b

(l−1)
( f (n, p))

and T̂ b
(l)

[n] by Tb( f (n, p)) and Tb(r[n]), respectively. Each
step of the proposed method can be interpreted as the
inversion of the generally discrete forward model of the
concentrated antenna pattern, where the (unknown) TOA
brightness temperature outside the boresight position is
replaced by the last available estimation. Iterating over (30)
is guaranteed to converge since A′ is strictly diagonally
dominant. The same reasoning can be repeated using the
system forward matrix A instead of A′ inside the Jacobi
method; then, (30) becomes

T̂ b
(l)[n] =

1
c0

T A[n] −

P−1∑
p=0

c
[

p
]
T̃b

(l−1)
( f (n, p))

. (31)

The last relation may suggest that it can be iterated over, i.e.,
applying the Jacobi method on the system matrix to exactly
solve the APC problem. Nevertheless, this procedure does not
converge because the system matrix A, associated with CIMR
simulations, fails to satisfy (27).

4) Error Analysis: The error of the proposed APC
algorithm at iteration l is

eAPC = ˆTAideal − T Aideal

= AidealT̂ b + d̂ ideal − AidealT b − d ideal (32)

where (26) and (17) have been substituted in (7).
Let us assume l to be sufficiently large such that T̂ b

(l)

converges to A′
−1(T A − D̂c); substituting in the previous

relation yields

eAPC = Aideal A′−1(T A − D̂c
)

− AidealT b + d̂ ideal − d ideal. (33)

By substituting in (11) and (24) and considering that
A′−1 A′

= I, the previous relation becomes

eAPC = Aideal A′−11AT b

+
[

Aideal A′−1(D − D̂
)]

c + d̂ ideal − d ideal. (34)

The APC error is the sum of two terms: the mismatch error
(first row of the second member) and the boundary conditions

Fig. 7. Frequency response of the digital filters “similar” to the effects of
the matrices Aideal, A′−1 and 1A.

error (last row). The mismatch error arises from using the
concentrated antenna pattern instead of the original one to
estimate the TOA brightness temperature. The expression
Aideal A′−11AT b can be qualitatively evaluated by comparing
the effects of such matrices to those of “similar” digital linear
filters.2 A comparison of the frequency response of such filters
is proposed in Fig. 7 by using the impulse responses shown
in Fig. 6. Aideal behaves as a low-pass filter because it is
associated with a uniform and spatially limited antenna pattern.
A′−1 can be considered as a hybrid between an all-pass filter
and a band/high-pass filter since it corresponds to the inversion
of the concentrated system matrix. 1A has high-pass behavior
since the mismatch 1c sums to 0. As a consequence of the
latter, the mismatch error tends to 0 over uniform tb.

The boundary condition error has already been discussed
for the theoretical APC. From Fig. 7, the term Aideal A′−1

can be framed as a low-pass filter. As will be shown by the
simulation results, a good coarse estimation of the boundary
condition matrix D is sufficient to limit the spread of the
boundary condition error.

5) Choice of the FOCUS Region: The convergence of the
proposed method depends on the choice of the FOCUS region.
The convergence rate increases with increasing FOCUS
extension, with the drawback of a greater mismatch error due
to the increased norm of 1A. As the latter has high-pass
behavior, the error is expected to impact more severely in the
areas where the TOA brightness temperature exhibits spatial
variations, i.e., steep transition regions. Changing the FOCUS
extension and the associated gain coefficient is also valid in
the other sense. If cFOCUS is greater than C/2, a narrow region
can be chosen to achieve a lower mismatch error, accepting a
slower convergence rate. It should be noted that finite precision
arithmetic might become critical for convergence when the
gain in the FOCUS region gets too close to C/2.

Interestingly, the convergence does not depend on how the
gain spreads outside the FOCUS, i.e., if there are secondary
or grating lobes, nor on how far away they are from the main
beam. On the other side, the gain spread is correlated with
the number of the boundary condition terms: the farthest the
grating lobes, the higher the number of rows in D that are
nonzero, i.e., more measurements are directly influenced by
the boundary conditions.

2It is remarked that such matrices represent space-variant linear operators
and, therefore, cannot mathematically correspond to digital linear filters.
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Fig. 8. Geometry of the testbed.

IV. EXPERIMENTAL RESULTS

A. Simulation Setup

The simulation setup was arranged to reproduce the
scanning process of CIMR in a simplified manner, according
to the following assumptions.

1) The acquisition kinematics are simulated in a 2-D
ground-projected geometry.

2) The satellite moves at uniform velocity (6670 m/s) with
respect to the Earth’s surface, which is considered to be
locally flat.

3) The system has eight feedhorns, as for the Ka-bands
of CIMR. The positions of feed footprints are fixed
and arbitrarily set to obtain an approximately uniform
surface coverage.

4) All feeds are assumed to have the same, but offset,
pattern. The antenna pattern used is represented in
Fig. 5. It was preprocessed by resampling it at a 1-km
ground resolution and clipping it below −52 dB.The
discretization in pixels of 1 × 1 km introduces an error
of an order of magnitude of about one-hundredth of K
in the antenna pattern, thus enabling fast computation
while fulfilling the required precision [5].

5) Only translation and rotation of the antenna pattern
are considered according to the scanning process,
i.e., no antenna pattern distortion due to the variable
projection of the swath over the Earth’s surface is
simulated.

The conical scan period and the sampling time are 7.6923 s
and 7.2 e−4 s, respectively, according to [4].

B. Testbed

All of the scenarios were simulated according to the
geometry shown in Fig. 8. The satellite was assumed to
move horizontally from left to right over the target scene and
the conical scan rotated counterclockwise. The target scene
extension was fixed to 2501 × 2501 km and had a resolution
of 1 km.

The forward models were applied to the simulation region
placed in the middle of the target scene to generate the
measurements. The APC was applied to an inner portion of the
simulation region, namely the APC region. The extension of
the APC region was chosen such that the grating lobes never
exceeded the border of the simulation region. The outer part
of the simulation region was the boundary region, chosen such
that the grating lobes never exceeded the border of the target
scene.

Fig. 9. Two binary target scenes: (a) infinite transition and (b) random
ice. White and gray colors correspond to 250 and 130 K TOA brightness
temperatures, respectively.

The simulation region was covered by approximately
1.48 × 106 samples; the number of samples inside the
solving region was N ≈ 4.72 × 105; the nonzero antenna
pattern coefficients were P = 1750. The system matrix A
and the concentrated system matrix A′ have approximately
5.5 × 108 nonzero entries.

The boundary conditions in the APC are set by assuming
that the TOA brightness temperature in the boundary region
corresponds to the measurements. This choice provides a
coarse estimation of the conditions at the borders, but it is
reasonable if no other information is available. Moreover, this
guarantees that the compared APCs are fully and equally
unaware of the underlying ground truth.

C. Performance Assessment
Two binary target scenes, whose values (130 and 250 K)

were chosen according to the CIMR requirements [4], were
considered:

1) infinite transition, shown in Fig. 9(a);
2) random ice, shown in Fig. 9(b): random pattern of

squares whose sides are randomly generated according
to a uniform distribution between 20 and 80 km.

The Picaso test card, suggested as a benchmark in [4], was
also considered when testing the APC algorithms, which is
shown in Fig. 10.

The performance assessment was carried out by considering
statistics over the APC error. A key metric for the mission is
the success rate, which is defined as

100
N

N−1∑
n=0

{
1, if |eAPC[n]| < 0.5 K
0, otherwise

(35)
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TABLE I
SUCCESS RATE IN THE TESTED SCENARIOS USING THE UNIFORM IFOV AS IDEAL ANTENNA PATTERN

Fig. 10. Picaso test card.

and this refers to the percentage of points where the
absolute APC error is less than 0.5 K. The threshold was
chosen according to OBS-1040 in [4] and the samples were
grouped according to their distance from the closest transition;
the success rate is separately computed for each group.
In binary images, the transitions correspond to the brightness
discontinuities; in the Picaso test card, the transitions are the
borders of the geometrical shapes shown in Fig. 10.

D. Results
The uniform IFOV is considered to be an ideal antenna

pattern. The performance comparison is carried over two
different APC strategies: APC by means of (18), where D̂
and d̂ ideal are used instead of D and d ideal (“theoretical”), and
APC by means of the proposed method, i.e., (25) followed by
(26), (“APC-i”).

Metrics related to measurements without APC (“T A”) are
also reported for comparison. For APC-I, the FOCUS is
set coincident with the SUPPORT. The proposed algorithm
is guaranteed to converge because cFOCUS ≈ 0.58 for the
considered antenna pattern. The related concentrated system

matrix is well-conditioned because the rows are poorly
correlated.

In terms of success rate, the results are reported in Table I.
For each target scene (first column), the number of samples
belonging to each distance-from-closest-transition range is first
reported (# points); then, the success rates attained by each
APC method for each distance range are indicated. For APC-i,
the results obtained at one iteration (l = 1) and ten iterations
(l = 10) are also displayed. The red line in the table border
identifies the distance corresponding to 1.5 IFOV, which is
considered a critical distance to assess the performance of the
APC algorithm [4].

Concerning the infinite transition scenario, it clearly
emerges that T A provides very poor results. The results are
explained by considering that, when the boresight is within
50 km from the transition line, a large part of the antenna
pattern is projected on the opposite side, and it consistently
contributes to impair the measurement. The theoretical APC
exhibits an improving performance as the distance from the
closest transition increases because it attempts to compensate
this effect, but it is limited by finite-arithmetic issues. The
APC-i performs worse than the theoretical APC, but at the
tenth iteration, it attains the best scores in all ranges except
the first one. After the tenth iteration, only decimal variation
of the success rate is observed; no variation occurs after
23 iterations (not shown here).

Similar results are also obtained in the random ice scenario,
as well as in the Picaso test card. In order to apply the
APC methods to all the geometrical shapes of the latter, ten
versions of the target scene are generated by circularly shifting
the image in order to cover the entire target scene without
increasing the simulation and the solving regions. The APC
algorithms are independently applied to each version and the
results are finally aggregated. This explains why the number
of samples in Table I is about one order of magnitude greater
than the other scenarios.
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TABLE II
STATISTICS OF APC ERROR (K) IN THE PICASO TEST CARD USING THE UNIFORM IFOV AS IDEAL ANTENNA PATTERN

TABLE III
SUCCESS RATE IN THE TESTED SCENARIOS USING THE UNIFORM MAIN BEAM AS IDEAL ANTENNA PATTERN

It should be noted that, in all three cases, the success rate at
the distance of 1.5 IFOV (red line) varied from 40% to 75%
(maximum), and to obtain values higher than 90%, we have
to move to 7–10 km (depending on the case). At a 10-km
distance, APC-i provides 100% success for all the cases.

In order to appreciate the radiometric distortion introduced
by the APC algorithms, the sample mean and the sample
standard deviation of the APC error on the Picaso test card
are proposed in Table II. The former provides information
about the bias introduced by the APC methods. The theoretical
APC and APC-i perform similarly and never exceed 0.1 K,
in terms of absolute value. The sample standard deviation
indicates the dispersion of the APC error. For the sake of
completeness, the standard deviation at iteration 23 of the
proposed method is also reported. We observe that the APC-i
shows an improving performance (lower dispersion) as the
number of iterations grows, except in the first distance range
where it is comparable to T A. The fact that the dispersion
of the APC error substantially decreases from iteration 10 to
iteration 23 is not in contrast with the fact that the success
rate change is negligible and in the same iteration range: the
success rate is a discontinuous statistic, whereas the sample
standard deviation is continuous. Thus, performing multiple
iterations of the proposed algorithm allows better preservation

of the radiometric characteristics of the underlying target
scene.

Analogous tests were carried out by considering the
uniform main beam as being an ideal antenna pattern. Since
cFOCUS ≈ 0.98, a very fast convergence occurs in this
case. The success rate is reported in Table III. T A exhibits
poor values under 50 km, which are comparable to the
same scenario, when using the uniform IFOV as an ideal
antenna pattern (Table I). The theoretical APC still suffers
from finite-arithmetic effects. The penultimate row reports the
scores attained by the proposed algorithm at iteration 2; it
underperforms the theoretical APC below the 8-km threshold
but outperforms it above. The last row reports the results at
iteration 2, before applying the second step of the proposed
algorithm, i.e., T̂ Aideal ≡ T̂ b

(l), and it is marked as “NO IFM.”
A performance boost is observed below the 8-km threshold.
This result is explained by considering that the first step of the
proposed algorithm has a remarkable low-pass effect near the
transitions, due to considering a wide FOCUS. Hence, T̂ b

(l)

is a smoothed version of the true T b that is already close to
the target value measured by the ideal system (T Aideal ).

Different from the uniform IFOV, in this case, the success
rate of the APC-i NO IFM is at 100%, starting from 5 to 6 km
in all of the tested scenarios.
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Fig. 11. Computational efficiency of the tested methods on a 500 × 1500 km scene, in terms of (a) algorithm iterations and (b) absolute time.

E. Computational Efficiency

The computational burden of the proposed and the
theoretical APCs is mainly determined by the inversion of a
linear system.3 The results presented in this section refer to
the processing of a 500 × 1500 km scene.

The efficiency is, therefore, compared in terms of the
relative residual norm for an increasing number of iterations.
For the proposed algorithm, the relative residual norm at
iteration l is (25)∥∥∥T A − D̂c −

[
diag

(
A′

)−1(A′
−diag

(
A′

))
T̂b

(l)
]∥∥∥∥∥T A − D̂c

∥∥ . (36)

For the theoretical algorithm, the system AT b = (T A − Dc)
is iteratively solved by means of the GMRES algorithm and
the residual is computed as∥∥T A − D̂c − AT̂b

(lGMRES)
∥∥

∥
T A − D̂c (37)

where lGMRES is the number of iterations of the GMRES
algorithm. The iteration versus relative residual norm curves
are represented in Fig. 11(a). The curve of theoretical APC
is influenced by the ill-conditioning of the system matrix and
the convergence is tied to the subspace spanned by the target
scene.

On the contrary, the proposed APC does not suffer from ill-
conditioning and converges independently of the target scene.
According to these results, the relative residual thresholds in
the simulations were set to 10−3 and 10−6 for the theoretical
and the proposed APC, respectively. A maximum number of
iterations was set to 2500, but only for the former, to face the
effects of ill-conditioning.

The plot in Fig. 11(b) compares the relative residual norm,
as a function of the absolute computational time. The proposed
APC requires less than 30 s to complete 50 iterations (the
tail of the red curve) through a MATLAB implementation
over an Intel4 Core5 i7-8700 CPU @ 3.20 GHz Linux

3The computational burden required to compute the involved matrices is not
considered since it can be preliminarily afforded off-line for both algorithms.

4Registered trademark.
5Trademarked.

machine; the theoretical APC takes about 50 min to complete
2500 iterations (the tail of the blue curve).

It can be seen that the Jacobi method has constant
computational and memory costs per iteration, whereas they
are incremental for GMRES without a restart option. The
proposed method can be alternatively implemented by using
the scalar form in (30), which takes advantage of parallel
execution for each sample and avoids storing matrix A′.
Since the term T̃b

(l−1)
( f (n, p)) must be recalculated by

means of interpolation over the mesh at each iteration, this
implementation takes about 220 s per iteration, using six
parallel cores on the same machine [the orange curve in
Fig. 11(b)].

The impact on memory from the theoretical and vector
form of the proposed APC algorithms is similar and, mainly,
determined by the size of the (concentrated) system matrix and
the boundary condition matrix. For the considered geometry
and antenna pattern, at least 5.2 GB of RAM is required
to store them in double precision. On the contrary, the
implementation of the scalar form of the proposed algorithm
is very memory efficient since the system and boundary
condition matrices are not precalculated.

V. CONCLUSION

The scientific objectives of the CIMR mission involve
stringent requirements, in terms of both spatial resolution and
the required uncertainty on the EO products that determine
an upper bound on the measured TOA brightness temperature
that cannot exceed 0.5 K. The large deployable mesh reflector
of the CIMR antenna guarantees a suitable spatial resolution
(<5 km in the Ka-band) but introduces contamination
to the measured antenna temperature, which stems from
contributions outside the region of interest, i.e., the IFOV or
the main beam. In order to meet the radiometric accuracy
required, various algorithms for the APC are considered
here.

The algorithm has been applied to three synthetic scenarios,
chosen as benchmarks due to their geometric discontinuities
and radiometric contrast. The comparison between different
methods shows that the proposed iterative algorithm, APC-
“i,” allows fast computation with a performance that depends
on the considered spatial benchmark. Considering the uniform
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main beam, a success rate of 100% is achieved 5–6 km
from the discontinuity, whatever the scenario, whereas, in the
uniform IFOV case, this happens at 10 km. Therefore, the
proposed APC-“i” allows accurate measurements close to
the radiometric discontinuities, such as coastlines and ocean
sea ice transitions.

The results discussed have been calculated in the Ka-band,
but a similar performance (not shown here) has been
observed in the K-band. Overall, the results prove that
APC goals are achievable with the current antenna design
and acquisition strategy; further developments (e.g., the
effects of antenna pattern smearing on sample measure-
ments, thermoelastic deformation of the antenna and its
impact on antenna pattern, and testing in realistic natural
scenarios) will be considered during the next phases of the
mission.

APPENDIX A

DERIVATION OF THE FORWARD MODEL

Let f (n, p) be the function that maps r ′
[p] to the

corresponding point in the fixed-to-Earth reference system
when the boresight points to r[n]. Define tri f (n,p) as the
triangle of the CIMR mesh enclosing the point given by
f (n, p) and tri f (n,p)[m] as the index on the CIMR reference
grid corresponding to the mth vertex (m = 0, 1, 2) of
the triangle tri f (n,p). Then, the TOA brightness temperature at
the point given by f (n, p) is approximated by the following
interpolation over the mesh (see Fig. 4):

Tb( f (n, p)) =

2∑
m=0

w′

(n,p)[m]T b
[
tri f (n,p)[m]

]
(38)

where w′

(n,p) is a three-element vector of the barycentric
coordinates of the triangle and satisfies

w′

(n,p)[m] ≥ 0 ∀m = 0, 1, 2
2∑

m=0

w′

(n,p)[m] = 1. (39)

A general expression for Tb( f (n, p)) that encloses both cases
for f (n, p), inside and outside the mesh, is

Tb( f (n, p)) = wT
(n,p)T b + d(n, p) (40)

where w(n,p) is an N -elements column vector such that its qth
entry is given by

w(n,p)

[
q
]

=

 w′

(n,p)[m],
if ∃ tri f (n,p)

∧∃ m : q = tri f (n,p)[m]
0, otherwise.

(41)

Also, d(n, p) accounts for the boundary condition

d(n, p) =

{
Tb( f (n, p)), if tri f (n,p)

0, otherwise.
(42)

By definition, wn,p is an all-zero vector when f (n, p) is
outside; on the contrary, d(n, p) is zero when f (n, p) is
inside. Moreover, wn,0[n] = 1 and zeros for all the remaining
positions, whereas d(n, 0) is always zero (both facts follow
on from having assumed that p = 0 is the index associated
with the boresight position).

Substituting (40) into (9) yields

T A[n] =

P−1∑
p=0

c
[

p
](

wT
(n,p)T b + d(n, p)

)

= cT


wT

(n,0)

wwT
(n,1)

...

wT
(n,P−1)

T b +


d(n, 0)
d(n, 1)

...
d(n, P − 1)

c

= aT
n T b + dT

n c (43)

d(n) = [d(n,0), d(n,1), . . . , d(n,P−1)]
T is the vector of boundary

conditions and a(n) is defined as

a(n) =
[
w(n,0),w(n,1), . . . ,wn,P−1

]
c. (44)

Equation (43) represents the sample forward model at n. The
vector dn is an all-zero vector if all the antenna pattern
coefficients are inside the mesh. The system forward model
is finally written by extending the sample forward model to
all boresight positions, yielding (11), where A is the N × N
system matrix

A =
[
a(0),a(1), . . ., a(N−1)

]T (45)

and D is the N × P that is the boundary condition matrix

D =
[
d(0),d(1), . . ., d(N−1)

]T (46)

The vector an has four noticeable properties that will be
exploited in the following.

The properties of A listed in Section II-C are even-
tually proved. It should be noted that, by definition,
A[n, m] = a(n)[m].

1) a(n)[m] is nonnegative because of the combination of
nonnegative quantities (44). This proves (12).

2) Equation (13) follows on from w(n,0)[n] = 1 and from
the fact that all the other barycentric coordinates are
nonnegatives (41).

3) Equation (14) follows from the following relations:∑
m

|A[n, m]|

= 1T [
w(n,0), w(n,1),. . . ,w(n,P−1)

]
c

≤

[
1T w

′

(n,0), 1T w
′

(n,0), . . .,1
T w

′

(n,P−1)

]
c

≤ 1Tc (47)

where 1 is the all-ones vector and (44) is used
in the second equality; then, we exploited (41) and
(39) in the first and second inequalities, respectively.
The relation becomes an equality if, and only if, all
the antenna pattern coefficients are inside the mesh
because it implies that 1T w(n,p) = 1T w

′

(n,p) = 1
from (41) and (39).

4) By substituting c = c1 + c2 into (44) and then into (45),
the latter can be rewritten as

A = A1 + A2 (48)

where

A1 =
[
a1(0),a1(1), . . . ,a1(N−1)

]T (49)

and

a1(n) =
[
w(n,0),w(n,1), . . . ,wn,P−1

]
c1 (50)
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Fig. 12. Empirical distribution of the maximum of the correlation
coefficients among the rows, as defined in (52), of (a) system matrix A and
(b) concentrated system matrix A′ that arises from the proposed APC.

and analogously for A2. This proves (15).
5) This property follows from the fact that each antenna

pattern coefficient is generally associated with three
vertices, but the first coefficient is only associated with
the boresight position by construction.

APPENDIX B

PROOF OF ZERO-ERROR APC
The zero-error APC can be proved from (7) as follows:

eAPC = T̂ A
opt
ideal − T Aideal

= Aideal A†(T A − Dc) + d ideal − AidealT b − d ideal

= Aideal A†(T A − Dc) − AidealT b

= Aideal A†(AT b + Dc − Dc) − AidealT b

= Aideal A† AT b − AidealT b

= Aideal
(
I − null(A)null(A)T )

T b − AidealT b

= AidealT b−Aidealnull(A)null(A)T T b − AidealT b

= 0 (51)

where (17) and (18) have been substituted in the second
step and (11) has been substituted in the fourth step. The
identity A†A = I − null(A)null(A)T , where I is the identity
matrix, has been used in the sixth step and the identity
Aidealnull(A) = 0, which follows from the hypothesis that
null(A) ⊆ null(Aideal), is substituted in the last step.

APPENDIX C

RELATION BETWEEN ANTENNA PATTERN AND
ALGORITHM CONVERGENCE

It is first shown that the system matrix is badly conditioned.
Let us define rmax

A (n) as the maximum of the correlation
coefficient between the nth row of A and the remaining ones,
i.e.,

rmax
A (n) =

rA(n, n′)
√

rA(n, n)r A(n′, n′)
(52)

where rA(n, n′)
∑N−1

m=0 A[n, m]A[n′, m]. Fig. 12(a) reports the
empirical distribution of rmax

A (n) for the system matrix of the
simulations in the Ka-band reported in Section IV.

The minimum, average, and maximum values of rmax
A (n) are

0.52, 0.84, and 0.98, respectively. The high correlation among
the rows and their number (N ≈ 4.72 × 105 in the Ka-band

Fig. 13. Ka-band antenna pattern contour levels centered on the nth boresight
position over the CIMR mesh (black lines) for a region in the center of the
swath. Only the sampling points of the antenna pattern (magenta dots) inside
the ‘A[n, n] region’ (red triangles) contribute to the value of A[n, n].

for a region of size 500 × 1500 km in the central part of the
swath) makes the system matrix numerically hard to invert.
On the contrary, the corresponding concentrated system matrix
exhibits a low correlation [Fig. 12(b)] and it is numerically
stable for inversion.

Therefore, the computation of A−1 is very resource-
demanding and prone to finite-arithmetic issues. A partial
solution that foresees the computation of A−1 with a low-
rank approximation would be computationally heavy and A−1

should be recomputed each time that the CIMR reference grid
or the orbital parameters change.

It can be verified, through (27), that A does not satisfy the
necessary sufficient condition for convergence and, therefore,
it is not strictly diagonally dominant. In the following, the
correlation between this fact and the characteristics of the
antenna pattern is explored.

According to (44), the coefficients on the main diagonal
A[n, n] are given by

A[n, n] =
[
w(n,0)[n],w(n,1)[n], . . . ,w(n,P−1)[n]

]
c (53)

In practical terms, A[n, n] is the sum of the coefficients
of the antenna pattern centered in r[n], weighted by their
barycentric coordinates with respect to the position r[n].
The sketch in Fig. 13 depicts the reciprocal position of the
Ka-band antenna pattern and the CIMR reference grid during
the acquisition of sample n in a central region of the swath. For
a given antenna pattern sampling grid (magenta points), only
the coefficients associated with the points inside the A[n, n]-
region (red triangles) contribute to the value of A[n, n]. The
plots in Fig. 14 show the value of A[n, n] in the scenario
of Fig. 13, as a function of the density of antenna pattern
sampling grid, assuming the overall gain C = 1.

As the sampling becomes denser (P → +∞), A[n, n]

converges to the integral of the antenna pattern over the
A[n, n]-region

A[n, n] =

∫∫
A[n,n]region

An(r)w(n, r)d r

≤

∫∫
A[n,n]region

An(r)d r (54)

where w(n, r), w(n, r) ≤ 1 is the barycentric coordinate
with respect to position r[n]. The value of c0, and those
of the gain of the antenna pattern inside the A[n, n]-region,
is also reported for comparison. This example shows that
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Fig. 14. Comparison among c0, A[n, n] and the overall gain inside the
A[n, n] region, for the scenario in Fig. 13 and for increasing density of the
antenna pattern sampling grid: (Left) linear values and (Right) normalized
with respect to A[n, n].

Fig. 15. Ka-band antenna pattern contour levels centered on the nth boresight
position over the CIMR mesh (black lines) for a region in the peripheral
swath. Only the sampling points of the antenna pattern (magenta dots) inside
the “A[n, n] region” (red triangles) contribute to the value of A[n, n].

Fig. 16. Comparison among c0, A[n, n], and the overall gain inside the
A[n, n] region for the scenario in Fig. 15 and for increasing density of the
antenna pattern reference grid: (Left) linear values and (Right) normalized
with respect to A[n, n].

the system matrix A is not strictly diagonally dominant
because the A[n, n] coefficient is lower than C/2. For the
sake of completeness, a scenario related to the acquisition in
a peripheral region of the swath is shown in Fig. 15. The values
of the antenna pattern gain, shown in Fig. 16, are lower than in
the previous scenario because the A[n, n]-region is narrower.

The inequality in (54) states that a necessary condition for
the system matrix to be strictly diagonally dominant is that
the gain in the A[n, n]-region is greater than C/2 for all n.

Figs. 14 and 15 show that an extremely high antenna
directivity is required, in practice; by using the concentrated

system matrix, we mathematically enforce this condition by
construction at the price of a mismatch error. In other terms,
the mismatch error is the tradeoff between the proposed
fast and computationally feasible APC algorithm and a real
antenna, whose directivity is not sufficient for the resolution
of the CIMR reference grid.

APPENDIX D

PROOF OF CONVERGENCE

A′ is proven to be strictly diagonally dominant, which
means that it fulfills (28) as follows:∣∣A′[n, n]

∣∣ −

∑
m ̸=n

∣∣A′[n, m]
∣∣

= a′

(n)[n] −
(
1T a′

(n) − a′

(n)[n]
)

= 2a′

(n)[n] − 1T a′

(n)

≥ 2c′[0] − 1T a′

(n)

≥ 2cFOCUS − 1T a′

(n)

> C − 1T a′

> C − 1T c′ > 0 (55)

where the absolute values can be dropped from (12) and the
first equality follows from (44). The first inequality follows
from (13), the second inequality follows from (21), the third
inequality follows from (20), the fourth inequality follows
from (14), and the last inequality follows from (8b). The
relation holds for all n; thus, A′ is strictly diagonally dominant.
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