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Abstract— Space-based infrared tiny ship detection aims
at separating tiny ships from the images captured by Earth-
orbiting satellites. Due to the extremely large image coverage
area (e.g., thousands of square kilometers), candidate targets
in these images are much smaller, dimer, and more changeable
than those targets observed by aerial- and land-based imaging
devices. Existing short imaging distance-based infrared datasets
and target detection methods cannot be well adopted to the
space-based surveillance task. To address these problems,
we develop a space-based infrared tiny ship detection dataset
(namely, NUDT-SIRST-Sea) with 48 space-based infrared
images and 17 598 pixel-level tiny ship annotations. Each image
covers about 10 000 km2 of area with 10 000 × 10 000 pixels.
Considering the extreme characteristics (e.g., small, dim,
and changeable) of those tiny ships in such challenging
scenes, we propose a multilevel TransUNet (MTU-Net) in this
article. Specifically, we design a vision Transformer (ViT)
convolutional neural network (CNN) hybrid encoder to extract
multilevel features. Local feature maps are first extracted by
several convolution layers and then fed into the multilevel
feature extraction module [multilevel ViT module (MVTM)]
to capture long-distance dependency. We further propose a
copy–rotate–resize–paste (CRRP) data augmentation approach
to accelerate the training phase, which effectively alleviates the
issue of sample imbalance between targets and background.
Besides, we design a FocalIoU loss to achieve both target
localization and shape description. Experimental results on the
NUDT-SIRST-Sea dataset show that our MTU-Net outperforms
traditional and existing deep learning-based single-frame
infrared small target (SIRST) methods in terms of probability
of detection, false alarm rate, and intersection over union.
Our code is available at https://github.com/TianhaoWu16/Multi-
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I. INTRODUCTION

SPACE-BASED infrared tiny ship detection aims at separat-
ing tiny ships from the images captured by various (e.g.,

low, middle, and geostationary) Earth-orbiting satellites [1],
[2]. Due to the much longer imaging distance, the targets of
space-based infrared images of ocean scenes exhibit several
different characteristics [1], [2] (e.g., larger image size, more
complex background, more suspicious targets, extremely small
targets, and multiscale targets) from that of previous land-
and aerial-based single-frame infrared small target (SIRST)
detection [3], [4], [5].

To detect tiny targets under complex scenes by an infrared
band, numerous traditional methods have been proposed,
including filtering-based methods [6], [7], local contrast-based
methods [8], [9], [10], [11], [12], [13], and low-rank-based
methods [5], [14], [15], [16], [17], [18], [19]. Although
promising progress has been achieved, these methods essen-
tially rely on handcrafted features and fixed hyperparame-
ters. When the scenes (e.g., land, ocean, ports, and clouds
background) change dramatically, these methods suffer from
a significant decrease in probability of detection (Pd) and an
increase in false alarm rate (Fa).

With the advances of deep learning, numerous convolutional
neural network (CNN)-based methods [20], [21], [22], [23],
[24], [25], [26], [27], [28] have been proposed recently, intro-
ducing significant performance improvement in SIRST. Dai
et al. [23] proposed the first segmentation-based SIRST detec-
tion network (ACM). Then, Dai et al. [24] improved ACM by
introducing a dilated local contrast measure and developed
an ALC-Net. Moreover, Wang et al. [25] used a conditional
generative adversarial network (MFvsFA-cGAN) to achieve a
tradeoff between miss detection and false alarm for infrared
small target detection. Li et al. [27] proposed a dense nested
attention network (DNA-Net) to extract high-level information
of small targets. However, the above CNN-based methods are
designed for the short-distance imaging SIRST detection task
(e.g., land- and aerial-based SIRST). The candidate targets in
the space-based tiny ship detection task are much smaller,
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Fig. 1. Comparison of space-, air-, and land-based infrared images.
(a) Typical image zoomed in 1, 25, and 1600 times in our space-based SIRST
dataset. (b) Typical image zoomed in one and four times in the aerial-based
SIRST dataset. (c) Typical image zoomed in one and four times in land-based
SIRSTs. The targets are highlighted by red dotted circles.

dimer, and more changeable than those targets observed by
aerial- and land-based imaging devices. These methods cannot
be well adopted to handle such challenges in space-based
SIRST tiny ship detection.

To address the above problems, we first develop a
space-based infrared tiny ship dataset, NUDT-SIRST-Sea.
It contains 17 598 tiny annotated ships and 48 images with
10 000 × 10 000 pixels captured by cameras mounted on the
low Earth-orbiting satellite. As shown in Fig. 1, the tiny ships
in space-based ocean scenes are visually nonsalient in local
regions compared to those targets in the land- and aerial-based
SIRST datasets. General CNN-based detection methods are not
good at capturing long-distance dependency between targets
and background. Therefore, it is necessary to further exploit
the contextual relationship to achieve the improved detection
performance.

Inspired by the success of the vision Transformer (ViT) [29]
structure in generic object detection, we first design a
multilevel ViT CNN hybrid encoder. Specifically, we design
a multilevel ViT module (MVTM) to achieve coarse-to-fine
feature extraction. In our multilevel ViT CNN hybrid encoder,
multilevel features are first extracted by CNN. Then, these
features are refined by MVTM to capture long-distance depen-
dency. Due to the sparsity of tiny ships in space-based infrared
images, the foreground targets and background are extremely
imbalanced. To address this issue, we propose a novel copy–
rotate–resize–paste (CRRP) data augmentation approach to
increase the ration of candidate targets in the training phase
and ultimately accelerate the convergence of the network.
Moreover, we find that existing intersection over union (IoU)-
like loss overly focuses on producing complete shape of the
target but lacks the ability to locate small-scale targets. The
focal loss focuses on hard samples but lacks the ability to
produce the complete shape of the target. Therefore, we design
a novel FocalIoU loss to accurately localize tiny targets and
completely produce the shape of the target.

To the best of our knowledge, this is the first deep
learning-based work to achieve space-based infrared tiny ship

detection. The contributions of our work can be summarized
as follows.

1) To our knowledge, NUDT-SIRST-Sea is the largest man-
ually annotated dataset with a wide variety of categories
in space-based infrared observation. The 17 598 high-
precision bounding boxes and pixel-level annotations are
introduced to support the development and evaluation of
various target detectors in space-based infrared images.

2) We propose a novel Transformer CNN hybrid archi-
tecture [i.e., multilevel TransUNet (MTU-Net)] for
space-based infrared tiny ship detection. With the help of
multilevel ViT CNN hybrid encoder, the long-distance
dependency of tiny ships can be well incorporated and
fully exploited by coarse-to-fine feature extraction and
multilevel feature fusion.

3) A CRRP data augmentation method and a FocalIoU loss
are proposed to alleviate the foreground–background
imbalance problem and achieve “double-win” of target
localization and shape description.

4) Experimental results show that space-based infrared tiny
ship detection is a challenging task, and previous land-
and aerial-based SIRST methods cannot well handle
those challenges (e.g., extremely small and dim targets)
introduced by this task. Our method can achieve state-
of-the-art (SOTA) results in three metrics: probability of
detection (Pd ), false alarm rate (Fa), and IoU.

This article is organized as follows. In Section II, we briefly
describe the importance of our task and present the statistical
characteristics and challenges of our NUDT-SIRST-Sea dataset
in detail. In Section III, we briefly review the related work.
In Section IV, we introduce the architecture of our MTU-Net,
CRRP data augmentation approach, and our FocalIoU loss in
detail. The experimental results are represented in Section V.
Section VI gives the conclusion.

II. ANALYSIS OF THE NUDT-SIRST-SEA DATASET

A. Importance

Space-based infrared tiny ship detection is one of the
most important tasks in the SIRST detection family, which
generally includes land-based [25], aerial-based [23], [28],
and space-based SIRST detection tasks. As shown in Table I,
a space-based infrared image usually covers about 10 000 km2

of area with 10 000 × 10 000 pixels, thousands of times
larger than the size of other land- and aerial-based images.
Due to the much longer imaging distance, the targets of
space-based infrared images exhibit extreme characteristics
(e.g., small, dim, and changeable) than other SIRST images.
Due to the lack of sufficient high-quality annotated datasets,
existing deep learning-based methods cannot work well on
the space-based long-distance detection tasks. To alleviate this
problem, we propose a space-based SIRST dataset (namely,
NUDT-SIRST-Sea). Specifically, we collect 48 real images
captured by sensors mounted on the low Earth-orbiting satel-
lite from both near-infrared (i.e., 845–885-nm wavelength)
and short-infrared waveband (i.e., 1650–1660-nm wavelength).
The field of view for both wave lengths images is completely
overlapped; 41 images are used for training and the rest seven
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TABLE I

MAIN CHARACTERISTICS OF SEVERAL POPULAR SIRST DATASETS. NOTE THAT OUR NUDT-SIRST-SEA DATASET HAS IMAGES OF THE HIGHEST
RESOLUTION, GROUND-TRUTH LABEL TYPE, THE LOWEST TARGET-TO-BACKGROUND RATIO, THE LARGEST TARGET NUMBER, THE LOWEST

AVERAGE SNR, THE SMALLEST AVERAGE TARGET SIZE, AND THE LARGEST NUMBER OF GROUND-TRUTH ANNOTATIONS COMPARED

WITH THE MAINSTREAM SIRST DATASETS

images are used for test. Each image covers about 10 000 km2

of area with 10 000 × 10 000 pixels. Moreover, we take more
than 500 h to manually generate 17 598 pixel-level tiny ship
annotations. Both bounding boxes and pixel-level annotations
are provided for the development and evaluation of various
target detectors. The average target size of our dataset is
29 pixels, which is much smaller than the size of those images
in other datasets. The target-to-background ratio of our NUDT-
SIRST-Sea dataset is 0.000029%, which is hundreds of times
smaller than the target-to-background ratios of other SIRST
datasets.

B. Statistical Properties of NUDT-SIRST-Sea

1) Much Larger Image Size: Compared with existing SIRST
datasets in Table II, each image of NUDT-SIRST-Sea cov-
ers about 10 000 km2 of area with 10 000 × 10 000 pixels,
thousands of times larger than the image sizes of NUDT-
SIRST [27], NUST-SIRST [25], and NUAA-SIRST [23].
As shown in Fig. 2(a), a much larger image contains more
different scenes (e.g., port, land, clouds, and sea). Besides,
a much larger image size results in higher computational
difficulties.

2) Much More Complex Background: As shown in Fig. 1,
aerial- and land-based infrared images are much simpler than
space-based infrared images due to the limited coverage area.
As shown in Fig. 2(b), different scenes (e.g., clouds, tiny ships,
port, land, and sea face) can form more types of complex
scenes. Several scenes are considered as the difficult targets
in NUDT-SIRST-Sea: urban inland river, cloud blocks, dense
cluster targets, and targets in port. These complex scenes
challenge the method’s ability to capture long-distance context
information.

3) Multitype Suspicious Targets: Fig. 2(c) shows that our
NUDT-SIRST (sea) dataset has a rich variety of suspicious
targets, including tiny clouds, port containers, reefs, and land
bright spots. These suspicious targets are very easily confused
with real ship targets in shape and brightness and thus cause
false alarm.

4) Much Smaller Targets: As shown in Table I, the aver-
age target size of our NUDT-SIRST-Sea dataset is only
29 pixels, which is much smaller than the average target
size of images in other mainstream SIRST datasets. The
target-to-background ratio of our NUDT-SIRST-Sea dataset

is 0.000029%, hundreds of times smaller than the target-to-
background ratios of NUDT-SIRST [27], NUST-SIRST [25],
and NUAA-SIRST [23]. As shown in Fig. 2(d), 76% targets
cover less than 0.005% area in space-based images. Targets of
other datasets [23], [25], [27], [28] mostly cover over 0.05%
area in space-based images. Therefore, much smaller targets
in NUDT-SIRST-Sea make this dataset more challenging than
other datasets.

5) Much Dimmer Targets: As shown in Table I, our NUDT-
SIRST-Sea has the much smaller average target SNR than
other datasets [23], [25], [27], [28]. Detailed comparisons
among these existing datasets are shown in Fig. 2(e). Datasets,
such as NUDT-SIRST [27], NUST-SIRST [25], and NUAA-
SIRST [23], mostly focus on bright targets. However, more
than 20% of targets have a brightness smaller than 0.5 in
our NUDT-SIRST-Sea. In contrast, less than 5% of targets
have a brightness smaller than 0.5 in other aerial- and land-
based datasets. Compared to other datasets, NUDT-SIRST-Sea
is more challenging on dim targets.

6) Multiscale Targets: As shown in Fig. 2(f), the size of
different types of ships (e.g., large cruise ships, medium-sized
oil recovery wells, and small yachts) varies a lot, ranging from
2 to 500 pixels. Due to the large area occupied by space-based
infrared images, targets with different scales often appear in
the same scene. Detecting targets with different scales in the
same scene is a fairly challenging task.

III. RELATED WORK

In this section, we briefly review the major works in space-
based visible tiny ship detection, SIRST detection, and ViT.

A. Space-Based Visible Tiny Ship Detection

Space-based visible tiny ship detection aims to detect tiny
ships in remote sensing visible images. Chen et al. [30] pro-
posed a degraded reconstruction enhancement-based method
for tiny ship detection in remote sensing images. They incorpo-
rated a cross-stage multihead attention module in the detector
to further improve the feature discrimination by leveraging the
self-attention mechanism and introduced a large-scale dataset.
Wu et al. [31] proposed an effective tiny ship detector for
low-resolution RSIs (namely, R-TSDet). LR-TSDet consisted
of three key components: a filtered feature aggregation (FFA)
module, a hierarchical-atrous spatial pyramid (HASP) module,
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Fig. 2. Overall description of the NUDT-SIRST-Sea dataset. (a) Typical image zoomed in 1, 16, and 1600 times with tiny ships in the NUDT-SIRST-
Sea dataset. (b) Illustration of the variety of background. (c) Illustration of the variety of suspicious targets. (d) Distribution of target number with the
target-to-background ratio. (e) Distribution of target number with target brightness. (f) Distribution of target number with target area.

and an IoU-Joint loss. Furthermore, they introduced a new
dataset called GF1-LRSD collected from the Gaofen-1 satellite
for tiny ship detection in low-resolution RSIs. Li et al. [32]
proposed a new SDVI algorithm, named enhanced YOLO v3
tiny network, for real-time ship detection. The algorithm can
be used in video surveillance to achieve accurate classification
and positioning of six types of ships (including ore carrier,
bulk cargo carrier, general cargo ship, container ship, fishing
boat, and passenger ship) in real time.

However, the above methods are designed for the visible
tiny ship detection task. Tiny ships in infrared band are much
dimmer and shapeless than those in RGB bands. Moreover,
infrared images contain poorer contextual relation than visible

images. Multitype suspicious targets (i.e., tiny clouds, port
containers, reefs, and land bright spots) exhibit more texture
and color differences from the tiny ships in visible images and
are more easily confused with targets (i.e., ships under clouds,
ships in port, and ships by reefs) in infrared images.

B. SIRST Detection

General SIRST detection tasks (e.g., aerial- and land-based
SIRSTs) have been extensively investigated for decades. Many
filter-based background methods [6], [7] were proposed. These
methods used specifically designed filters for the background
noise and clutter suppression. Considering that the small
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target is more visually salient than its surrounding back-
ground, human visual system local contrast-based methods [8],
[9], [10], [11], [12], [13] have been proposed. However,
clutters can be easily confused with targets in highlighted
scenes. To solve this problem, low-rank-based methods were
proposed [5], [14], [15], [16], [17], [18], [19]. Nonlocal
self-correlation between background patches was used in
infrared images to construct low-rank sparse decomposition
model. After that, Xia et al. [33] proposed a mechanism
named dynamic image structure evolution (DISE) and a DISE-
derived single-frame IRSTD framework. Nevertheless, these
previous filter-based methods, local contrast-based methods,
and low-rank-based methods rely on fixed hyperparameters.
When real scenes change dramatically, such as in clutter
background, target shape, and target size, it is difficult to use
fixed hyperparameters to handle such variations.

Different from traditional methods, CNN-based meth-
ods adopt a data-driven training manner to learn common
characteristics among small targets. Due to the previous
open-sourced SIRST datasets and the powerful detection mod-
els, CNN-based methods have achieved promising progress
recently. Dai et al. [23] proposed the first segmentation-based
CNN network. They designed an asymmetric contextual mod-
ule to aggregate features from shallow layers and deep lay-
ers. Then, Dai et al. [24] further improved their ACM by
introducing a dilated local contrast measure in their ALC-
Net. Specifically, a feature cyclic shift scheme was designed
to achieve a trainable local contrast measure. After that, Wang
et al. [25] decomposed the infrared target detection problem
into two opposed subproblems (i.e., miss detection and false
alarm). They proposed a conditional generative adversarial
network (MDvsFA) to achieve the tradeoff between miss
detection and false alarm for infrared small target detection.
Considering that pooling layers in the networks could lead
to the loss of targets in deep layers, Li et al. [27] proposed
a DNA-Net. With the help of their specifically designed
dense nested interactive module (DNIM), high-level infor-
mation of small targets can be extracted and the response
of small targets can also be maintained in the deep CNN
layers. Zhang et al. [28] proposed an infrared shape network.
In their network, a Taylor finite difference (TFD)-inspired edge
block and a two-orientation attention aggregation (TOAA)
block were devised to address the problem of submerging
of infrared targets in the background of heavy noise and
clutter.

Benefited from these specifically designed architectures
and modules, the above CNN-based methods have achieved
promising results in the land- and aerial-based SIRST detec-
tion tasks. However, space-based SIRST images are quite
different from the aerial- and land-based SIRST ones. Smaller,
dimer, and more changeable targets make it difficult to
achieve high-performance detection under limited receptive
fields introduced by CNN architectures. Moreover, poor
long-distance dependency capture ability of traditional CNN
architectures may result in more false alarm. Therefore, it is
necessary to introduce more long-distance information capture
modules to further exploit the correlation of targets and
background.

C. Vision Transformer

Inspired by the success of the Transformer architectures
in the NLP area [34], some works try to apply them in
the computer vision area. ViT [29] is the first work to
apply Transformer to computer vision. It uses nonoverlap-
ping medium-sized image patches in Transformer to achieve
high-precision image classification. With the success of ViT,
more promising ViT works emerged. Various ViT-based struc-
tures are proposed to handle various high-level tasks (e.g.,
object detection and semantic segmentation). For example,
Carion et al. [35] proposed the first end-to-end object detection
network with Transformers (namely, DETR). After that, Chen
et al. [36] proposed TransUNet and argued that Transformers
can serve as powerful encoders for medical image segmen-
tation tasks with the combination of U-Net [37] to enhance
finer details by recovering localized spatial information. In the
SIRST detection field, Liu et al. [38] proposed the first work
to explore the ViT to detect infrared small-dim targets and
achieved promising performance in SIRST. They first used
CNN to extract local features. Then, they adopted ViT to
learn high-level information of target localization from local
features. Next, Qi et al. [39] proposed a fusion network archi-
tecture of transformer and CNN (FTC-Net), which consists of
two branches. The CNN-based branch uses a U-Net with skip
connections to obtain low-level local details of small targets.

Although achieving promising performance, the above
transformer-based works are not designed for spaced-based
SIRST detection tasks. Specifically, DETR is designed for
normal scale object detection and cannot well capture the
features of tiny targets. TransUNet mainly focuses on the
whole image segmentation performance but pays less attention
to local information of tiny targets. The ViT for SIRST method
proposed by Liu et al. [38] is mainly designed for aerial-
and land-based SIRSTs. However, the space-based SIRST
detection task requires both high-level information for target
localization and low-level information for shape description.
Their single-level ViT structure only applied on the features
extracted by the last CNN layer. Thus, their method cannot
fully capture low-level information for shape description and
easily confuse the real targets with suspicious targets (e.g.,
tiny clouds, port containers, reefs, and land bright spots). To
address the above problems, our MTU-Net combines MVTM
and CNN in a multilevel ViT CNN hybrid encoder. CNN
extracts multilevel features. Then, MVTM refines the features
to capture the long-distance dependency of multilevel features.

IV. METHODOLOGY

In this section, we introduce our MTU-Net
(Sections IV-A–IV-D), CRRP data augmentation method
(Section IV-E), and FocalIoU loss (Section IV-F) in detail.

A. Overall Architecture

As shown in Fig. 3, our MTU-Net takes a single image
as its input and sequentially consists of a multilevel ViT
CNN hybrid encoder (Section IV-B), a U-shape decoder
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Fig. 3. Illustration of the proposed MTU-Net in this article. (a) Encoder. The input image is fed into the CNN encoder to coarsely extract multiscale
features. (b) MVTM. Then, features of different levels go through the MVTM to extract long-distance features. (c) MFFM. The multilevel features are fed
into the MFFM, where these features are concatenated and fused to incorporate long-distance information. (d) Decoder. Features with multilevel long-distance
information are fed into the U-shape decoder and fused at the nodes of skip connection to generate the final predicted probability map. (e) Eight-connected
neighborhood clustering module. The predicted probability map is clustered and the centroid of each target region is finally determined.

(Section IV-C), and an eight-connected neighborhood cluster-
ing module (Section IV-D) to generate the pixel-level local-
ization and classification results.

Section IV-B introduces our multilevel ViT CNN hybrid
encoder. The input image is first cut into image patches
I ∈ R

C×H×W , where C , H , and W denote the channel, width,
and height of image patch, respectively. Image patches I are
preprocessed before being fed into the CNN to coarsely extract
multiscale features Fi ∈ R

Ci ×Hi×Wi (i ∈ {1, 2, . . . , k}), where
k denotes the level numbers of CNN. Then, each feature of
different levels Fi (i ∈ {1, 2, . . . , k − 1}) goes through the
MVTM to obtain V i ∈ R

Ci ×Hk×Wk (i ∈ {1, 2, . . . , k − 1}). The
multilevel features {Vi } (i ∈ {1, 2, . . . , k − 1} and Fk are fed
into the multilevel feature fusion module (MFFM). In MFFM,
features are concatenated and fed to a 1 × 1 convolution to
generate the features Mk ∈ R

Ck ×Hk×Wk with multilevel long-
distance information. Section IV-C introduces the U-shape
decoder. Features Mk with multilevel long-distance infor-
mation are fed into the decoder and fused with Fi (i ∈
{k − 1, k − 2, . . . , 1}) at the nodes of skip connection to gen-
erate Mi (i ∈ {k − 1, k − 2, . . . , 1}) and final predicted prob-
ability map P . Section IV-D elaborates the eight-connected
neighborhood clustering module. The final predicted prob-
ability maps P are fed into this module to calculate the
spatial locations of target centroid, which are then used for
comparison in Section V-C.

B. Multilevel ViT CNN Hybrid Encoder

1) Motivation: As shown in Fig. 3, our MTU-Net consists
of a multilevel ViT CNN hybrid encoder, a U-shape decoder,
and an eight-connected neighborhood clustering module to
generate the pixel-level localization and classification results.
To achieve efficient feature extraction for extremely large
images (e.g., 10 000 × 10 000 resolution), the images are first

cut into 1024 × 1024 patches and then fed into the ResNet-
18 [40] to extract multiscale local features. To distinguish
multitype suspicious targets in complex backgrounds, more
long-distance information is required. The proposed MVTM
refines the extracted multiscale local features. In this way, the
long-distance dependency of suspicious targets in complex
background is captured from high-level features. Moreover,
multiscale infrared small targets are significantly different in
their sizes, ranging from 1 pixel (i.e., point targets) to tens
of pixels (i.e., extended targets). With the increase of network
layers, high-level information of target localization is obtained,
while the shape description of extended targets is easily
lost after multiple downsamplings. Therefore, we designed
an MFFM to fuse multilevel features extracted by MVTM.
In this way, high-level information for target localization and
low-level information for shape description can be fused and
enhanced by our MFFM.

2) Multilevel ViT Module: MVTM contains (k − 1) ViT
branches, and all branches have the same structure. we adopt
ResNet-18 [40] as the feature embedding module to extract
multiscale local features Fi ∈ R

Ci ×Hi×Wi (i ∈ {1, 2, . . . , k}).
Features Fi are flattened into 2-D patches Eem

(i) ∈ R
Ni ×(Pi

2Ci ),
where Ni = (Hi Wi/Pi

2) is the number of patches and
(Pi , Pi ) is the resolution of each patch. After position embed-
ding, we get E(i)

pos. We obtain embedded tokens E(i) =
E(i)

em + E(i)
pos, where n is the number of tokens and n =

(Hi Wi/P2
i ). Embedded tokens E(i) are divided into m heads

E(i) = {E(i)
1 , E(i)

2 , . . . , E(i)
j , . . . , E(i)

m }, E(i)
j ∈ R

n×(Ci /m) ( j ∈
{1, 2, . . . , m}) and then fed into the multihead self-attention
module MSA to obtain interaction tokens E(i)

a . We define these
processes as

E(i)
a = MSA[LN(E(i))] + E(i) (1)

where LN is the layer normalization.
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In each head, the multihead self-attention module MSA
defines three trainable weight matrices to transform queries
Q(i), keys K (i), and values V (i). Then, E(i)

a are fed into the
MLP module to obtain final tokens E(i)

b , and the result of MLP
can be expressed as

E(i)
b = MLP

[
LN

(
E(i)

a

)] + E(i)
a (2)

where E(i)
b ∈ R

Ni ×(Pi
2Ci ).

Then, we reshape tokens E(i)
b ∈ R

Pi
2Ci into features V i ,

where Pi = Hk = Wk . The result of the ViT branch can be
expressed as

Vi = Reshape
{
MLP

[
LN

(
E(i)

a

)]} + E(i)
a

)
. (3)

3) Multilevel Feature Fusion Module: In our MFFM, fea-
tures are fused by capturing the long-distance dependency
of these extracted high-level features. The multilevel features
{Vi } (i ∈ {1, 2, . . . , k − 1} and CNN local features Fk are first
concatenated and then fed to an 1 × 1 convolution to fuse the
features Mk ∈ R

Ck ×Hk×Wk . All multilevel features are fused
by capturing the long-distance dependency of these extracted
high-level features. The fusion features can be expressed as

Mk = Conv[Concat(Fk, Vk−1, Vk−2, . . . , V1)]. (4)

C. U-Shape Decoder

To obtain confidence maps of small targets, we adopt
a decoder to upsample multilevel features Mk. Multilayer
features {Fi } (i ∈ {1, 2, . . . , k − 1} in the encoder are con-
catenated with features obtained by upsampling operation
through skip connection operation to generate Mi (i ∈
{k − 1, k − 2, . . . , 1}). The processing of the decoder can be
expressed as

Mi−1 = Conv{Concat[Fi−1, Upsample(Mi )]}. (5)

A robust predicted probability map can be expressed as

P = Sigmoid(M0). (6)

D. Eight-Connected Neighborhood Clustering Module

After the U-shape decoder, we introduce an eight-connected
neighborhood clustering module [41] to clutter all pixels and
calculate the centroid of each target. If any two pixels (m0, n0)
and (m1, n1) in feature maps P have intersection areas in their
eight neighborhoods, i.e.,

N8(m0, n0) ∩ N8(m1, n1) �= 0 (7)

where N8(m0, n0) and N8(m1, n1) represent the eight
neighbor-hoods of pixel (m0, n0) and (m1, n1), respectively.
Then, (m0, n0) and (m1, n1) are judged as adjacent pixels.
If these two pixels have the same value, i.e.,

p(m0, n0) = p(m1, n1) ∀(p(m0, n0), p(m1, n1)) ∈ P (8)

where p(m0, n0) and p(m1, n1) represent the value of pixel
(m0, n0) and (m1, n1), respectively, and these two pixels are
considered to belong to the same target area. Once all targets in
the image are determined, centroid can be calculated according
to their coordinates.

E. Data Augmentation

As mentioned in Section II, the distribution of the fore-
ground targets and background is extremely imbalanced in
our NUDT-SIRST-Sea. This foreground–background imbal-
ance issue makes the network pay more attention to those unin-
formative background regions and thus hinders the quick con-
vergence of the network. Copy–paste (CP) data augmentation
is a powerful data augmentation method for instance segmenta-
tion [42]. Based on the CP data augmentation method, we fur-
ther propose a CRRP data augmentation method (namely,
CRRP) to manually increase the ratio of candidate targets
in the training phase and thus accelerate the convergence of
the network. Our CRRP data augmentation method copies
both targets and target neighborhood background, while the
CP data augmentation method only copy targets. In this way,
our CRRP data augmentation method can well preserve the
information of target itself and contextual information between
targets and background. Otherwise, suspicious targets (e.g.,
tiny clouds, port containers, reefs, and land bright spots)
are detected as targets without the contextual dependency.
Therefore, our CRRP is a more suitable data augmentation
method for space-based SIRST detection task compared to the
CP method.

As shown in Fig. 4(a), we first collect images of the
targets’ neighborhood and randomly copy one target. Then,
the selected targets are randomly rotated. After that, the target
is randomly resized as a candidate target. Finally, we paste the
candidate target into the background area of image background
region. As shown in Fig. 4(b), the imbalance of the foreground
targets and background distribution is relieved and the training
time is also greatly reduced compared to previous simple data
augmentation methods (e.g., rotate, translate, and color jitter).

F. FocalIoU Loss

Focal loss [43] focuses on hard samples (e.g., small-scale
targets, edges of targets, and suspicious targets), which helps
target localization. However, the focal loss causes more false
alarm due to the high response in the background suspicious
area. SoftIoU loss [44] focuses on large-scale targets and
loses small-scale targets. This is because large-scale targets
contribute much more in IoU than small-scale targets,
resulting in the loss of small-scale targets. To achieve the
“double-win” of target localization and shape description,
we combine the SoftIoU loss and the focal loss to develop
a FocalIoU loss. Our FocalIoU loss combines the advantages
of the focal loss and the SoftIoU loss, with a low response
in background areas, and focuses on small-scale targets. The
formula of our FocalIoU loss function is expressed as (11)

FL(p, y) = −y(1 − p)γ log(p) − (1 − y)pγ log(1 − p)

(9)

SoftIoU = smooth + ∑
p × y

smooth + ∑
p + ∑

y−∑
p × y

(10)

FIoUL(p, y) = 2(1 − SoftIoU)[FL(p, y)] 1+SoftIoU
2 (11)

where p denotes the probability of each pixel, y denotes the
label of each pixel in probability map P , and γ is an adjustable
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Fig. 4. Illustration of the CRRP data augmentation method. (a) CRRP data augmentation. Images of the targets’ neighborhood are first collected and randomly
copied. Then, the selected target is randomly rotated. After that, the target is randomly resized as a candidate target. Finally, the candidate target is pasted
into the background area of image background region. (b) Samples of synthesized images.

Fig. 5. FocalIoU loss analysis. (a) FocalIoU loss function curve. (b) FocalIoU
loss function gradient curve.

factor to control the attention on hard samples. FL and
FIoUL are the abbreviations of focal loss and FocalIoU loss,
respectively. SoftIoU is a convergent IoU with an adjustable
factor smooth to avoid infinity.

To further analyze our FocalIoU loss function, we derive
the FocalIoU loss function in (13)

∂FL(p, y)

∂p
= −(1−y)γ pγ−1log(1 − p)+(1−y)pγ 1

1− p

+ yγ (1 − p)γ−1log(p) − y(1 − p)γ
1

p
(12)

∂FIoUL(p, y)

∂x
= (1 − SoftIoU2)FL(p, y)

1−SoftIoU
2

· ∂FL(p, y)

∂p

∂p

∂x
(13)

where p = Sigmoid(x), in which x is the value of each pixel
in the MTU-Net output map and p is the probability value of
each pixel.

As shown in Fig. 5(a), samples with low IoU output result in
a high FocalIoU loss and a sharp decrease of the FocalIoU loss.

When IoU is small, the overall segmentation performance of
this image is poor, and the FocalIoU loss focuses on difficult
simple samples (e.g., large-scale targets) more than difficult
samples. Consequently, Fa decreases, while IoU increases.
When IoU is large, the FocalIoU loss performs like the focal
loss and focuses more on difficult samples, which helps Pd to
increase.

V. EXPERIMENT

In this section, we first introduce our evaluation metrics and
implementation details. Then, we compare our MTU-Net to
several SOTA SIRST detection methods. Finally, we present
ablation studies to investigate our network.

A. Evaluation Metrics

Following the pioneering DNA-Net [27], we adopt proba-
bility of detection (Pd ) and false alarm rate (Fa) to evaluate
the localization performance and use the IoU to evaluate the
shape description performance. Besides, we adopt a receiver
operating characteristic (ROC) [45] analysis to further show
the overall detection effectiveness, target detection ability, and
background suppression ability

1) Probability of Detection: The probability of detection
(Pd) is a target-level evaluation metric. It measures the ratio of
correctly predicted target number Tcorrect over all target number
TAll. Pd is defined as

Pd = Tcorrect

TAll
. (14)

If the centroid deviation of the target is smaller than the
pre-defined deviation threshold Dthresh, we consider those
targets as correctly predicted ones. We set the pre-defined
deviation threshold as 3 in this article.
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2) False Alarm Rate: False alarm rate (Fa) is another
target-level evaluation metric. It is used to measure the ratio
of falsely predicted pixels Pfalse over all image pixels PAll. Fa

is defined as

Fa = Pfalse

PAll
. (15)

If the centroid deviation of the target is larger than the
pre-defined deviation threshold, we consider those pixels as
falsely predicted ones.

3) Intersection Over Union: It is a target-level evaluation
metric. It evaluates the target description performance of an
algorithm. IoU is calculated as the ratio of intersection and the
union areas between the target predictions and target labels.
The IoU is defined as

IoU = Targetinter

TargetUnion
(16)

where Targetinter and TargetUnion represent the interaction areas
and union areas between target prediction and target label,
respectively.

4) 3-D ROC: ROC [45] analysis is widely applied in object
detection. Common ROC curves generally include a 3-D ROC
curve specified by threshold τ , probability of detection Pd ,
and false alarm rate Fa , and three 2-D ROC curves of (τ ,
Pd ), (τ , Pd(τ )), and (τ , Fa(τ )). Both Pd(τ ) and Fa(τ ) can
be calculated in (14) and (15) by changing the predicted
pixel threshold τ . The 2-D ROC curves of (Fa , Pd ), (τ , Pd ),
and (τ , Fa) indicate overall detection effectiveness, target
detection ability, and background suppression ability of dif-
ferent methods, respectively. A good detector has 2-D ROC
curves of (Fa , Pd ), (τ , Pd ), and (τ , Fa) close to the top-
left, top-right, and bottom-left corner of the coordinate axis,
respectively. However, due to the existence of intersection
between ROC curves, it is difficult to judge which one has a
better performance for the closer ROC curve. To quantitatively
evaluate all methods, AUC values of three 2-D ROC curves are
introduced, which are expressed as AUC(Fa ,Pd ), AUC(τ,Pd ), and
AUC(τ,Fa). Higher AUC(Fa,Pd ) and AUC(τ,Pd ) values represent
better detection performance, while lower AUC(τ,Fa) values
denote better background supression capability. AUCOA and
AUCSNPR further represent the overall accuracy (OA) and
signal-to-noise probability ratio (SNPR) based on the above
three AUC values, and the expression is given as follows:

AUCOA = AUC(Fa,Pd ) + AUC(τ,Pd) − AUC(τ,Fa) (17)

AUCSNPR = AUC(τ,Pd )

AUC(τ,Fa)
. (18)

Similarly, higher AUCOA and AUCSNPR values denote better
detection performance and background clutter suppression
capability, respectively.

B. Implementation Details

The NUDT-SIRST-Sea dataset contains 41 images for train-
ing and seven images for test. These real images were captured
by sensors mounted on a low Earth-orbiting satellite. All input
images with a resolution of 10 000 × 10 000 were first cut into
patches with a resolution of 1024 × 1024. Before training, all

input images were first normalized. Then, these normalized
images were sequentially processed by random image flip,
Gaussian blurring, and CRRP for data augmentation before
being fed into the network. ResNet-18 [40] was chosen as our
segmentation backbone. The number of downsampling layers
i was 4. Our network was trained using the FocalIoU loss
function and optimized by the Adagrad method [46] with the
CosineAnnealingLR scheduler. We initialized the weights and
bias of our model using the Xavier method [47]. We set the
learning rate, batch size, and epoch as 0.05, 8, and 1500,
respectively. All models were implemented in PyTorch [48]
on a computer with an AMD Ryzen 9 3950X @ 2.20-GHz
CPU and an Nvidia RTX 3090 GPU.

C. Comparison to the SOTA Methods

To demonstrate the superiority of our method, we compare
our MTU-Net with several SOTA methods, including tradi-
tional methods (filtering-based methods: Top-Hat [6] and Max-
Median [7]; local contrast-based methods: TLLCM [10] and
WSLCM [11]; local rank-based methods: NRAM [15], RIPT
[16], and PSTNN [17]; and CNN-based methods, including
DNA-Net [27], MDvsFA-cGAN [25], ACM [23], ALC-Net
[24], and ResU-Net [49]) on the NUDT-SIRST-Sea dataset.
For a fair comparison, we retrained all the CNN-based meth-
ods on our NUDT-SIRST-Sea dataset.

1) Qualitative Results: Qualitative results on our NUDT-
SIRST-Sea are shown in Fig. 6. Compared with traditional
methods, our method can generate more precise localization
and classification results with smaller Fa . The results achieved
by traditional methods easily lose dense small-scale targets
[Fig. 6(a)] and targets in port [Fig. 6(b)]. Traditional methods
generate bad shape segmentation in dim targets [Fig. 6(c)].
The CNN-based methods (MDvsFA-cGAN, ResU-Net, ACM,
ALC-Net, and DNA-Net) perform much better than traditional
methods. However, due to the extremely dim targets [Fig. 6(a)
and (c)] in our NUDT-SIRST-Sea, MDvsFA-cGAN loses more
targets. Our MTU-Net can generate better shape segmentation
[Fig. 6(c)] than DNA-Net, ACM, and ALC-Net. Our MTU-Net
can generate better target localization in scenes with port
ships [Fig. 6(b)]. This is because our MTU-Net can effectively
capture long-distance dependency with the help of coarse-to-
fine MVTM.

2) Quantitative Results: Similar to DNA-Net [27], we first
obtained their predicts and then performed noise suppression
by setting a threshold to remove low-response areas for all
the compared algorithms. Specifically, the adaptive threshold
(Tadaptive) was calculated for traditional methods according to

Tadaptive = Max[0.7Max(P), 0.5σ(P) + Avg(P)] (19)

where Max(P) represents the largest value of output, Tadaptive

is an adaptive threshold, and σ(P) and avg(P) denote the
standard derivation and average value of output, respectively.

For deep learning-based methods, we followed their original
papers and adopted their fixed thresholds (i.e., 0, 0, 0, 0,
and 0.5 for DNA-Net [27], ResU-Net [49], ACM [23], ALC-
Net [24], and MDvsFA-cGAN [25], respectively). We kept all
remaining parameters the same as their original papers.
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Fig. 6. Qualitative results achieved by different SIRST detection methods in three typical scenes: (a) dense targets, (b) port ships, and (c) dim targets. For
better visualization, the target area is enlarged. The correctly detected target, false alarm, and miss detection areas are highlighted by red, yellow, and green
dotted circles, respectively. Our MTU-Net can generate output with precise target localization and shape segmentation under a smaller Fa .

TABLE II

IOU, Pd , AND Fa VALUES ACHIEVED BY DIFFERENT TRADITIONAL AND CNN-BASED SOTA METHODS ON THE NUDT-SIRST-SEA DATASET. FOR

IOU AND Pd , LARGER VALUES INDICATE HIGHER PERFORMANCE. FOR Fa , SMALLER VALUES INDICATE HIGHER PERFORMANCE. THE BEST

RESULTS ARE IN RED AND THE SECOND BEST RESULTS ARE IN BLUE

Quantitative results are shown in Table II. Our MTU-Net
outperforms traditional methods significantly. This is because
NUDT-SIRST-Sea contains challenging images with vari-

ous scales, orientations, and brightness of tiny ship targets.
Our MTU-Net can effectively capture long-distance features
between background and targets. Limited by manually selected
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Fig. 7. 3-D ROC and three corresponding 2-D ROC curves of different
comparing methods. (a) 3-D ROC curve. (b) 2-D ROC curve of (Fa , Pd ).
The curve of (Fa , Pd ) closer to the top-left corner of the coordinate axis
indicates a higher detection effectiveness. (c) 2-D ROC curve of (τ , Pd ). The
curve of (τ , Pd ) closer to the top-right corner of the coordinate axis indicates
a better target detection ability. (d) 2-D ROC curve of (τ , Fa). The curve
of (τ , Fa ) closer to the bottom-left corner of the coordinate axis indicates a
better background suppression ability.

parameters, those model-driven traditional methods cannot
well cope with such challenging scenes. It is worth noting
that the improvements achieved by MTU-Net over other deep
learning-based methods (i.e., MDvsFA-cGAN, ACM, ALC-
Net, and DNA-Net) are obvious. Our MTU-Net achieves
64.14% on IoU, 85.44% on Pd , and 11.72 × 10−6 on Fa .
Our MTU-Net outperforms other deep learning methods more
than 15% on IoU and Pd . Besides, our MTU-Net only suffers
a decrease of 3.82 × 10−6 in terms of Fa than ResU-Net. This
is because our MTU-Net can effectively capture long-distance
dependency with the help of coarse-to-fine MVTM. The
long-distance dependency helps network detect small targets
and generate less false alarm in suspicious targets.

3) 3-D ROC Analysis: Fig. 7 shows four types of ROC
curves corresponding to the detection maps. It can be observed
that the 2-D ROC curve of (Fa , Pd ) of our MTU-Net is
much closer to the top-left corner than that of other methods
in Fig. 7(b). The 2-D ROC curves of (Fa , Pd) show that
our MTU-Net has a better detection effectiveness than other
methods. The 2-D ROC curve of (τ , Fa) of our MTU-Net in
Fig. 7(c) achieves a much higher Pd when τ is smaller than
0.6. The 2-D ROC curves of (τ , Fa) in Fig. 7(b) show that our
MTU-Net has a much better detection background suppression
ability than traditional methods and the same ability as other
deep learning-based methods. Our MTU-Net achieves the best
overall performance on detection effectiveness, target detection
ability, and background suppression ability.

To quantitatively evaluate the effectiveness of our method,
we test five commonly used AUC indicators on NUDT-
SIRST-Sea. The experimental results are listed in Table III.
Table III shows that our MTU-Net obtains a good AUC(τ,Fa),
the best AUC(τ,Pd), and the best AUC(Pd ,Fa). It indicates that
our MTU-Net has good background suppression ability and

detection ability. Since it is difficult to judge which method has
better detection performance by any of AUC(Fa,Pd ), AUC(τ,Pd),
and AUC(τ,Fa), we use AUCOA and AUCSNPR to fully evaluate
the performance of all methods. The best AUCOA and the
second best AUCSNPR obtained by MTU-Net represent that
our MTU-Net can accurately detect targets and effectively
suppress background clutters and noise.

D. Ablation Study

In this section, we compare our MTU-Net with several
variants to investigate the potential benefits introduced by
our MVTM, CRRP data augmentation, and FocalIoU loss
function. The results are shown in Tables IV–VI.

1) Multilevel ViT Module: The MVTM is used to achieve
coarse-to-fine feature extraction. In our MVTM, ViT refines
the CNN features by capturing the long-distance dependency
of these extracted high-level features. To demonstrate the
effectiveness of our MVTM, we introduced the following
network variants.

1) MTU-Net w/o level k ViT: Level k denotes that we
removed 1 ∼ k ViT branches from our MVTM. For
a fair comparison, we made a model size comparable
and retrained these variants in NUDT-SIRST-Sea.

2) MTU-Net w/o MVTM: We removed MVTM from our
MTU-Net. For a fair comparison, we made a model size
comparable and retrained this variant on NUDT-SIRST-
Sea.

As shown in Table IV, MTU-Net w/o level 1 ViT suffers
decreases of 3.93% and 2.85% and an increase of 0.86 × 10−6

in terms of IoU, Pd , and Fa values over MTU-Net on the
NUDT-SIRST-Sea dataset. As the number of ViT branch
decreases, the values of MTU-Net in IoU and Pd gradually
decrease and the value of Fa gradually increases. This is
because fewer multilevel features are extracted by MVTM
in the multilevel ViT CNN hybrid encoder. Since fewer
long-distance information is used, the performance is poor.
Specifically, when all ViT branches are pruned and MVTM is
removed, MTU-Net suffers decreases of 11.20% and 7.06%
and an increase of 32.04 × 10−6 in terms of IoU, Pd , and Fa

values.
2) CRRP Data Augmentation: Since the distribution of the

labels and background of the dataset is extremely imbalanced.
This problem misleads the network to focus more on the
background region of the image. The imbalance causes more
false alarm and reduces the convergence speed. Therefore,
we use a data augmentation method as a parameter-free
solution to alleviate this problem.

1) MTU-Net w/o DA: We removed CRRP data augmen-
tation in this variant and retrained our MTU-Net on
NUDT-SIRST-Sea.

2) MTU-Net With CP-DA: We used the CP data augmenta-
tion method in this variant and retrained our MTU-Net
on NUDT-SIRST-Sea.

3) MTU-Net With CRRP-DA: We used the CRRP data
augmentation method in this variant and retrained our
MTU-Net on NUDT-SIRST-Sea.
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TABLE III

DETECTION ACCURACY AND BACKGROUND SUPPRESSION CAPABILITY OF DIFFERENT COMPARISON METHODS ON THE NUDT-SIRST-SEA DATASET.
THE BEST RESULTS ARE IN RED AND THE SECOND BEST RESULTS ARE IN BLUE

Fig. 8. Visualization maps of MTU-Net output. The output of MTU-Net is marked by a red solid frame. The correctly detected target, false alarm, and
miss detection areas are highlighted by red, yellow, and green dotted circles, respectively. (a) Input Image. (b) Final probability density map from the output
of MTU-Net (SoftIoU loss). The map shows the responses low in the background area and loses more small-scale targets. (c) Final probability density map
from the output of MTU-Net (focal loss). The map shows the output of MTU-Net (focal loss) responses more in small-scale targets area and causes more
false alarm. (d) Final probability density map of MTU-Net (FocalIoU loss). The map has a low response in the background area and focuses on small-scale
targets.

TABLE IV

IOU, Pd , AND Fa VALUES ACHIEVED BY MAIN VARIANTS OF MTU-NET

ON THE NUDT-SIRST-SEA DATASET

As shown in Table V, MTU-Net with CP-DA suffers
decreases of 2.69% and 2.80% and an increase of 5.52 × 10−6

in terms of IoU, Pd , and Fa values over MTU-Net with
CRRP-DA on our NUDT-SIRST-Sea dataset. MTU-Net w/o
DA suffers decreases of 5.17% and 5.05% and an increase
of 11.96 × 10−6 in terms of IoU, Pd , and Fa values over
MTU-Net with CRRP-DA on our NUDT-SIRST-Sea dataset.
Note that, Fa of the MTU-Net drops a lot using our CRRP data
augmentation method. This is because there are a large number

TABLE V

IOU, Pd , AND Fa VALUES ACHIEVED BY MAIN VARIANTS OF DATA

AUGMENTATION USED BY MTU-NET ON THE NUDT-SIRST-SEA

DATASET. CP REPRESENTATIVES USING THE CP METHOD FOR

DATA AUGMENTATION

of highlighted complex backgrounds and suspicious targets.
These highlighted complex backgrounds and suspicious targets
occupy much more area than real targets in the space-based
infrared image. Without data augmentation, MTU-Net causes
more false alarms on highlighted complex backgrounds and
suspicious targets. Our CRRP data augmentation method can
preserve the long-range information and contextual informa-
tion of targets. Thus, MTU-Net can better learn the long-range
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TABLE VI

IOU, Pd , AND Fa VALUES ACHIEVED BY DIFFERENT LOSS FUNCTIONS
USED WITH MTU-NET ON THE NUDT-SIRST-SEA DATASET

Fig. 9. FocalIoU loss analysis. (a) Input image. (b)–(d) Visualization maps
of MTU-Net output in different IoU’s. The output of MTU-Net is marked
by a red solid frame. The correctly detected target, false alarm, and miss
detection areas are highlighted by red, yellow, and green dotted circles,
respectively. MTU-Net shifts from focusing on large-scale targets to focusing
on small-scale targets as IoU rises from 0.2 to 0.6.

information of targets and achieve a better performance on
IoU, Pd , and Fa .

3) FocalIoU Loss: The FocalIoU loss helps MTU-Net focus
more on images with low IoU and reduces the weights of
difficult samples relative to simple samples when IoU is small.
FocalIoU loss achieves the “double-win” of target localization
and shape description. To demonstrate the effectiveness of our
FocalIoU loss, we retrained our MTU-Net using the SoftIoU
loss and the focal loss for a fair comparison.

Visualization maps shown in Fig. 8 also demonstrate the
effectiveness of our FocalIoU loss. The focal loss focuses on
hard samples (e.g., small-scale targets and the edges of tar-
gets). However, the focal loss causes a higher response in the
background area, resulting in more false alarm. The SoftIoU
loss focuses on large-scale targets and loses small-scale targets
because large-scale targets contribute much more in IoU than
small-scale targets, resulting in miss detection of small-scale
targets. The FocalIoU loss combines the advantages of both
focal loss and SoftIoU loss, with a low response in the
background area, and focuses on small-scale targets.

As shown in Table VI, MTU-Net with the focal loss suffers
a decrease of 11.02% and an increase of 22.21 × 10−6 in
terms of IoU and Fa values over MTU-Net with the FocalIoU
loss. MTU-Net with the focal loss achieves an increase of
0.74% in Pd value. This is because the focal loss focuses on
difficult positive samples (e.g., small-scale targets) but leads
to a high Fa value and a low IoU value. MTU-Net with
the SoftIoU loss suffers decreases of 2.14% and 10.22% in
terms of IoU and Pd values over MTU-Net with the FocalIoU
loss. MTU-Net with the SoftIoU loss achieves a decrease of
2.3 × 10−6 in Fa value. This is because the SoftIoU loss is
calculated by the IoU of output, leading to more focus on
large-scale targets. Numerous small-scale targets contribute
less to IoU, resulting in higher IoU and smaller Fa but
smaller Pd .

As shown in Fig. 9, MTU-Net shifts from focusing on
large-scale targets to focusing on small-scale targets as IoU

rises. The above results demonstrate that our FocalIoU loss
can achieve the “double-win” of target localization and shape
description.

VI. CONCLUSION

In this article, we propose the first and largest manually
annotated dataset for space-based infrared tiny ship detection.
Besides, we propose a novel pipeline for space-based infrared
tiny ship detection, which contains MTU-Net, the CRRP
data augmentation method, and FocalIoU loss. Specifically,
a multilevel feature extraction module is designed to adaptively
extract multilevel long-distance features in our MTU-Net. The
CRRP data augmentation method is designed to alleviate
the imbalance between target and background samples. The
FocalIoU loss is proposed to achieve accurate target local-
ization and shape description. Experimental results on the
NUDT-SIRST-Sea dataset show that the proposed MTU-Net
model outperforms traditional SIRST methods and existing
deep learning-based SIRST methods in a set of evaluation
metrics.

REFERENCES

[1] J. Tang, C. Deng, G. B. Huang, and B. Zhao, “Compressed-domain ship
detection on spaceborne optical image using deep neural network and
extreme learning machine,” IEEE Trans. Geosci. Remote Sens., vol. 53,
no. 3, Mar. 2015.

[2] N. Wang, B. Li, X. Wei, Y. Wang, and H. Yan, “Ship detection in
spaceborne infrared image based on lightweight CNN and multisource
feature cascade decision,” IEEE Trans. Geosci. Remote Sens., vol. 59,
no. 5, May 2021.

[3] M. Teutsch and W. Kruger, “Classification of small boats in infrared
images for maritime surveillance,” in Proc. Int. WaterSide Secur. Conf.,
Nov. 2010, pp. 1–7.

[4] H. Deng, X. Sun, M. Liu, C. Ye, and X. Zhou, “Small infrared target
detection based on weighted local difference measure,” IEEE Trans.
Geosci. Remote Sens., vol. 54, no. 7, Jul. 2016.

[5] Y. Sun, J. Yang, and W. An, “Infrared dim and small target detection via
multiple subspace learning and spatial–temporal patch-tensor model,”
IEEE Trans. Geosci. Remote Sens., vol. 59, no. 5, May 2020.

[6] J.-F. Rivest and R. Fortin, “Detection of dim targets in digital infrared
imagery by morphological image processing,” Opt. Eng., vol. 35, no. 7,
pp. 1886–1893, Jul. 1996.

[7] S. D. Deshpande, M. H. Er, R. Venkateswarlu, and P. Chan, “Max-
mean and max-median filters for detection of small targets,” Proc. SPIE,
vol. 3809, pp. 74–83, Oct. 1999.

[8] C. L. P. Chen, H. Li, Y. Wei, T. Xia, and Y. Y. Tang, “A local contrast
method for small infrared target detection,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 1, Jan. 2014.

[9] J. Han, Y. Ma, B. Zhou, F. Fan, K. Liang, and Y. Fang, “A robust infrared
small target detection algorithm based on human visual system,” IEEE
Geosci. Remote Sens. Lett., vol. 11, no. 12, pp. 2168–2172, Dec. 2014.

[10] J. Han, S. Moradi, I. Faramarzi, C. Liu, and Q. Zhao, “A local contrast
method for infrared small-target detection utilizing a tri-layer window,”
IEEE Geosci. Remote Sens. Lett., vol. 17, no. 10, pp. 1822–1826,
Dec. 2019.

[11] J. Han et al., “Infrared small target detection based on the weighted
strengthened local contrast measure,” IEEE Geosci. Remote Sens. Lett.,
vol. 18, no. 9, pp. 1670–1674, Sep. 2021.

[12] S. Kim and J. Lee, “Scale invariant small target detection by optimizing
signal-to-clutter ratio in heterogeneous background for infrared search
and track,” Pattern Recognit., vol. 45, no. 1, pp. 393–406, Jan. 2012.

[13] X. Wang, G. Lv, and L. Xu, “Infrared dim target detection based
on visual attention,” Infr. Phys. Technol., vol. 55, no. 6, pp. 513–521,
Nov. 2012.

[14] C. Q. Gao, D. Meng, Y. Yang, Y. Wang, X. Zhou, and A. G. Hauptmann,
“Infrared patch-image model for small target detection in a single
image,” IEEE Trans. Image Process., vol. 22, no. 12, pp. 4996–5009,
Dec. 2013.



5601015 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

[15] L. Zhang, L. Peng, T. Zhang, S. Cao, and Z. Peng, “Infrared small
target detection via non-convex rank approximation minimization joint
l2,1 norm,” Remote Sens., vol. 10, no. 11, p. 1821, Nov. 2018.

[16] Y. Dai and Y. Wu, “Reweighted infrared patch-tensor model with
both nonlocal and local priors for single-frame small target detection,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 8,
pp. 3752–3767, Aug. 2017.

[17] L. Zhang and Z. Peng, “Infrared small target detection based on partial
sum of the tensor nuclear norm,” Remote Sens., vol. 11, no. 4, p. 382,
Feb. 2019.

[18] H. Zhu, S. Liu, L. Deng, Y. Li, and F. Xiao, “Infrared small target
detection via low-rank tensor completion with top-hat regularization,”
IEEE Trans. Geosci. Remote Sens., vol. 58, no. 2, Oct. 2020.

[19] Y. Dai, Y. Wu, Y. Song, and J. Guo, “Non-negative infrared patch-
image model: Robust target-background separation via partial sum min-
imization of singular values,” Infr. Phys. Technol., vol. 81, pp. 182–194,
Mar. 2017.

[20] J. Shermeyer, T. Hossler, A. V. Etten, D. Hogan, R. Lewis, and D. Kim,
“RarePlanes: Synthetic data takes flight,” in Proc. IEEE Winter Conf.
Appl. Comput. Vis. (WACV), Jan. 2021, pp. 207–217.

[21] M. Liu, H. Y. Du, Y. J. Zhao, L. Q. Dong, and M. Hui, Image Small
Target Detection Based on Deep Learning With SNR Controlled Sample
Generation, 2018, pp. 211–220.

[22] B. McIntosh, S. Venkataramanan, and A. Mahalanobis, “Infrared target
detection in cluttered environments by maximization of a target to clutter
ratio (TCR) metric using a convolutional neural network,” IEEE Trans.
Aerosp. Electron. Syst., vol. 57, no. 1, pp. 485–496, Feb. 2021.

[23] Y. Dai, Y. Wu, F. Zhou, and K. Barnard, “Asymmetric contextual
modulation for infrared small target detection,” in Proc. IEEE Winter
Conf. Appl. Comput. Vis. (WACV), Jan. 2021, pp. 949–958.

[24] Y. Dai, Y. Wu, F. Zhou, and K. Barnard, “Attentional local contrast
networks for infrared small target detection,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 11, Nov. 2021.

[25] H. Wang, L. Zhou, and L. Wang, “Miss detection vs. false alarm: Adver-
sarial learning for small object segmentation in infrared images,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 8508–8517.

[26] Y. Guo, M. Choi, K. Li, F. Boussaid, and M. Bennamoun, “Soft exemplar
highlighting for cross-view image-based geo-localization,” IEEE Trans.
Image Process., vol. 31, pp. 2094–2105, 2022.

[27] B. Li et al., “Dense nested attention network for infrared small target
detection,” IEEE Trans. Image Process., early access, Aug. 22, 2022,
doi: 10.1109/TIP.2022.3199107.

[28] M. Zhang, R. Zhang, Y. Yang, H. Bai, J. Zhang, and J. Guo, “ISNet:
Shape matters for infrared small target detection,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 877–886.

[29] A. Dosovitskiy et al., “An image is worth 16×16 words: Transformers
for image recognition at scale,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2021, pp. 437–446.

[30] J. Chen, K. Chen, H. Chen, Z. Zou, and Z. Shi, “A degraded recon-
struction enhancement-based method for tiny ship detection in remote
sensing images with a new large-scale dataset,” IEEE Trans. Geosci.
Remote Sens., vol. 60, 2022.

[31] J. Wu, Z. Pan, B. Lei, and Y. Hu, “LR-TSDet: Towards tiny ship
detection in low-resolution remote sensing images,” Remote Sens.,
vol. 13, no. 19, p. 3890, Sep. 2021.

[32] H. Li, L. Deng, C. Yang, J. Liu, and Z. Gu, “Enhanced YOLO v3 tiny
network for real-time ship detection from visual image,” IEEE Access,
vol. 9, pp. 16692–16706, 2021.

[33] C. Xia, S. Chen, X. Zhang, Z. Chen, and Z. Pan, “Infrared small target
detection via dynamic image structure evolution,” IEEE Trans. Geosci.
Remote Sens., vol. 60, 2022.

[34] H. Ye et al., “Contrastive triple extraction with generative trans-
former,” in Proc. AAAI Conf. Artif. Intell., 2021, vol. 35, no. 16,
pp. 14257–14265.

[35] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), A. Vedaldi, H. Bischof, T. Brox, and
J.-M. Frahm, Eds., 2020, pp. 213–229.

[36] J. Chen et al., “Transunet: Transformers make strong encoders for
medical image segmentation,” 2021, arXiv:2102.04306.

[37] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Medical Image Com-
puting and Computer-Assisted Intervention—MICCAI 2015, N. Navab,
J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., 2015, pp. 234–241.

[38] F. Liu, C. Gao, F. Chen, D. Meng, W. Zuo, and X. Gao, “Infrared small-
dim target detection with transformer under complex backgrounds,”
2021, arXiv:2109.14379.

[39] M. Qi et al., “FTC-Net: Fusion of transformer and CNN features for
infrared small target detection,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 15, pp. 8613–8623, 2022.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[41] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing connected component
labeling algorithms,” Proc. SPIE, vol. 5747, pp. 1965–1976, Apr. 2005.

[42] G. Ghiasi et al., “Simple copy-paste is a strong data augmentation
method for instance segmentation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 2917–2927.

[43] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for
dense object detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42,
no. 2, pp. 318–327, Feb. 2020.

[44] Y. Huang, Z. Tang, D. Chen, K. Su, and C. Chen, “Batching soft IoU for
training semantic segmentation networks,” IEEE Signal Process. Lett.,
vol. 27, pp. 66–70, 2020.

[45] C.-I. Chang, “An effective evaluation tool for hyperspectral target
detection: 3D receiver operating characteristic curve analysis,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 6, Jun. 2020.

[46] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, no. 7, pp. 1–39, 2011.

[47] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. Int. Conf. Artif. Intell. Statist.
(ICAIS), 2010, pp. 249–256.

[48] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS),
2019, pp. 8026–8037.

[49] F. I. Diakogiannis, F. Waldner, P. Caccetta, and C. Wu,
“ResUNet—A: A deep learning framework for semantic segmentation
of remotely sensed data,” ISPRS J. Photogramm. Remote Sens., vol. 162,
pp. 94–114, Apr. 2020.

Tianhao Wu received the B.E. degree in electronic
engineering from the National University of Defense
Technology (NUDT), Changsha, China, in 2020,
where he is currently pursuing the M.E. degree with
the College of Electronic Science and Technology.

His research interests include infrared small target
detection, light field imaging, and camera calibra-
tion.

Boyang Li received the B.E. degree in mechani-
cal design manufacture and automation from Tian-
jin University, Tianjin, China, in 2017, and the
M.S. degree in biomedical engineering from the
National Innovation Institute of Defense Technol-
ogy, Academy of Military Sciences, Beijing, China,
in 2020. He is currently pursuing the Ph.D. degree
in information and communication engineering with
the National University of Defense Technology
(NUDT), Changsha, China.

His research interests include infrared small target
detection, weakly supervised semantic segmentation, and deep learning.

http://dx.doi.org/10.1109/TIP.2022.3199107


WU et al.: MTU-Net: MULTILEVEL TransUNet FOR SPACE-BASED INFRARED TINY SHIP DETECTION 5601015

Yihang Luo received the B.E. degree in communi-
cation engineering from Hunan Normal University,
Changsha, China, in 2020. She is currently pursuing
the M.E. degree with the College of Electronic
Science and Technology, National University of
Defense Technology (NUDT), Changsha.

Her research interests include infrared image
denoising and infrared small target detection.

Yingqian Wang received the B.E. degree in electri-
cal engineering from Shandong University (SDU),
Jinan, China, in 2016, and the M.E. degree in
information and communication engineering from
the National University of Defense Technology
(NUDT), Changsha, China, in 2018, where he is
currently pursuing the Ph.D. degree with the College
of Electronic Science and Technology.

His research interests focus on low-level vision,
particularly on light field imaging and image super-
resolution.

Chao Xiao received the B.E. degree in communica-
tion engineering and the M.E. degree in information
and communication engineering from the National
University of Defense Technology (NUDT), Chang-
sha, China, in 2016 and 2018, respectively, where
he is currently pursuing the Ph.D. degree with the
College of Electronic Science.

His research interests include deep learning, small
object detection, and multiple object tracking.

Ting Liu received the B.E. degree in electrical
engineering and automation from the Hunan Institute
of Engineering, Xiangtan, China, in 2017, and the
M.E. degree in control engineering from Xiangtan
University (XTU), Xiangtan, in 2020. She is cur-
rently pursuing the Ph.D. degree with the College of
Electronic Science, National University of Defense
Technology (NUDT), Changsha, China.

Her research interests focus on signal processing,
target detection, and image processing.

Jungang Yang received the B.E. and Ph.D.
degrees from the National University of Defense
Technology (NUDT), Changsha, China, in 2007 and
2013, respectively.

He was a Visiting Ph.D. Student with The
University of Edinburgh, Edinburgh, U.K.,
from 2011 to 2012. He is currently an Associate
Professor with the College of Electronic Science,
NUDT. His research interests include computational
imaging, image processing, compressive sensing,
and sparse representation.

Dr. Yang received the New Scholar Award of Chinese Ministry of Education
in 2012 and the Youth Innovation Award and the Youth Outstanding Talent
of NUDT in 2016.

Wei An received the Ph.D. degree from the National
University of Defense Technology (NUDT), Chang-
sha, China, in 1999.

She was a Senior Visiting Scholar with the Univer-
sity of Southampton, Southampton, U.K., in 2016.
She is currently a Professor with the College of
Electronic Science and Technology, NUDT. She has
authored or coauthored over 100 journal and con-
ference publications. Her research interests include
signal processing and image processing.

Yulan Guo (Senior Member, IEEE) received the
B.E. and Ph.D. degrees from the National University
of Defense Technology (NUDT), Changsha, China,
in 2008 and 2015, respectively.

He has authored over 100 papers at highly referred
journals and conferences. His research interests
focus on 3-D vision, particularly on 3-D feature
learning, 3-D modeling, 3-D object recognition, and
scene understanding.

Dr. Guo is a Senior Member of ACM. He served
as the Area Chair for CVPR 2021, ICCV 2021,

and ACM Multimedia 2021. He also served as an Associate Editor for
IEEE TRANSACTIONS ON IMAGE PROCESSING, IET Computer Vision, IET
Image Processing, and Computers & Graphics. He organized several tutorials,
workshops, and challenges in prestigious conferences, such as CVPR 2016,
CVPR 2019, ICCV 2021, 3DV 2021, CVPR 2022, ICPR 2022, and ECCV
2022.


