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Abstract— Climate-driven sea ice loss has exposed the Arctic
to increased human activity, which comes along with a higher
risk of oil spills. As a result, we investigated the ability of
C-band polarimetric parameters in a controlled mesocosm to
accurately identify and discriminate between oil-contaminated
and uncontaminated newly formed sea ice (NI). Parameters, such
as total power, copolarization ratio, copolarization correlation
coefficient, and others, were derived from the normalized radar
cross section and covariance matrix to characterize the temporal
evolution of NI before and after oil spill events. For separation
purposes, entropy (H) and mean-alpha (α) were extracted from
eigen decomposition of the coherency matrix. The H versus
α scatterplot revealed that a threshold classifier of 0.3-H and
18◦-α could distinguish oil-contaminated NI from its oil-free
surroundings. From the temporal evolution of the polarimetric
parameters, the results demonstrate that the copolarization
correlation coefficient is the most reliable polarimetric parameter
for oil spill detection, as it provides information on a variety of
oil spill scenarios, including oil encapsulated within ice and oil
spreading on top of ice. Overall, these findings will be used to
support existing and future C-band polarimetric radar satellites
for resolving ambiguities associated with Arctic oil spill events,
particularly during freeze-up seasons.

Index Terms— Arctic, discrimination, eigen decomposition, oil
spill, polarimetric parameter, radar, sea ice.

I. INTRODUCTION

ACCURATE detection of oil spills in the Arctic ice-
laden waters is critical, as climate-driven reductions in

sea ice thickness and concentration have increased marine
operations in the region, including vessel navigation and
natural resource extraction [1], [2], [3], [4]. To monitor
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marine oil pollution, a combination of satellite- and aircraft-
based single polarization active microwave remote sensing
[e.g., synthetic aperture radar (SAR) and scatterometer]
has been used to detect low backscatter areas caused by
oil dampening ocean surface waves that scatter in the
Bragg limits [5], [6], [7]. However, in ice-laden waters, the
distribution of sea ice, particularly newly formed sea ice (NI)
types, such as frazil, grease ice, and nilas, complicates the
detection of oil spills due to their low backscatter response
[8]. Using polarimetric radar may improve the discrimination
between oil-contaminated and uncontaminated NI, allowing
for correct identification of when and where oil is spilled.

In a polarimetric radar system, it is possible to
mathematically combine multipolarization backscatter
responses to derive polarimetric parameters that increase
contrast between different scattering mechanisms. However,
the use of polarimetric parameters for discriminating oil
spills in ice-laden waters has not yet been fully established.
Parameters, such as total power (SPAN), copolarization
ratio (Rco), cross-polarization ratio (Rxo), copolarization
difference (PD), copolarization correlation coefficient (ρco),
entropy (H ), and mean-alpha (α), have seen limited use
(e.g., [8], [9], [10]). Other parameters, including conformity
coefficient (μ) and geometric intensity (ν), to the best of
our knowledge, have not been presented in the peer-reviewed
literature. We refer to Section II-C for a detailed explanation
of these polarimetric parameters, as well as their derivation
and physical meaning.

Among the few recent studies to establish polarimetric
radar as a means for detecting oil in sea ice, Brekke et al.
[8] simulated the Rco values and used them to distinguish
between uncontaminated and oil-contaminated NI. Because the
Rco-parameter exhibits some separation capability, additional
studies evaluated its performance with the H , α, and PD
parameters on pairs of SAR images; one containing oil-
contaminated open water (OW) and the other, oil-free NI
[9], [10]. With the exception of the PD-parameter, the
results showed that the Rco, H , and α parameters at lower
incidence angle (<35◦) have the greatest separability between
oil-contaminated OW and NI, but the paired image lacks
comparable geographic reference, and their applicability is
limited to only oil-contaminated OW between ice-laden
waters. Apart from oil-in-sea ice research, previous literature
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has shown the potential of ρco, μ, and ν parameters in
distinguishing between oil-contaminated and uncontaminated
OW [11], [121], [13], [14], [15], as well as the use of SPAN,
ρco, and Rxo parameters in classifying different NI types [16],
[17], [18], [19]. However, to the best of our knowledge,
no attempt has been made to use C-band polarimetric radar to
discriminate between oil within or on sea ice; thus, prompting
our investigation.

NI is a complex heterogeneous material made up of high
volume of liquid brine and to a lesser extent, air inclusions
in a pure ice background. During its initial formation,
the topmost layer is highly saline, causing the surface to
be brine-wetted or covered with frost flowers, when given
favorable atmospheric conditions [20]. Because of the dynamic
environmental conditions of the Arctic region, the geophysical
and thermodynamic states of NI undergo rapid change, making
its backscattering response highly variable [18]. Moreover,
the introduction of oil below, within, and on the ice is
expected to add to its already complicated backscattering
behavior [21]. When oil is distributed beneath the ice under
quiescent freezing conditions, it slowly infiltrates the ice–water
interface and migrates through the ice medium until it becomes
encapsulated [22], [23], [24]. This encapsulation event can
occur rapidly due to a low oil volume fraction (<2%) [25],
[26] or due to granular brine pockets within the ice topmost
layer [24]. If the ice temperature begins to warm, the oil
migrates onto the ice surface [22], [23], [24], [25], [26],
which in turn reduces the backscatter responses [27], [28],
[29], [30], [31]. Prior to the oil migration on the ice surface,
previous studies in [31] found that the copolarized backscatter
increases with a coincident decrease in cross polarization.
As such, we expect that when oil migrates onto the ice surface
(or its near surface), the time-series response of polarimetric
parameters will be uniquely sensitive.

Polarimetric radar response of a homogenous level sea
ice is dominated by a complex combination of surface and
volume scattering mechanisms. The former is caused by
small-scale roughness on the sea–ice interface (e.g., air–ice
interface), while the latter is caused by the heterogeneity
within the sea ice medium [17]. These scattering mechanisms
can be separated using target decomposition (TD) theorems,
which are extensively discussed in [32]. Among the various
TD theorems, Cloude’s eigen-based decomposition method
will be used in this study because it allows for the
derivation of H and α parameters required for natural terrain
classification [33]. The H -parameter measures a medium’s
scattering inhomogeneity, whereas the α-parameter measures
the dominant scattering mechanism, and when related, they
provide the framework for separating several natural terrains,
including homogenous level sea ice, which was classified as
surface scattering low entropy (SSLE) [33]. We hypothesize
that oil-contaminated NI will fall within the SSLE zone, but
it will cluster separately from the uncontaminated ones. This
is because we expect oil to modify the ice volume dielectrics
via thermophysical processes [22], [23], [24], [25], [26], [34],
as well as the ice surface dielectric via a dampening effect
[28], [29], [31]. Thus, we suggest that setting a threshold of
H and α parameters within the SSLE zone may be useful in
identifying oil spills in NI.

The main objective of this study is to investigate the
potential of C-band polarimetric parameters for discriminating
oil spills in NI types, such as dark nilas and light nilas,
in relation to their scattering mechanisms. To achieve this,
we will derive eight well-known polarimetric parameters from
surface-based C-band polarimetric scatterometer data that were
initially presented in [31]. As such, this manuscript extends
the interpretation in [31] and is the first attempt toward
using ground-truth scatterometer data to assess the optimum
polarimetric parameters for oil in sea ice discrimination.
On the basis of our analysis, we pose two novel research
questions.

1) Which time-series responses of SPAN, Rco, Rxo, ρco, μ,
and ν of NI is the most sensitive to an oil within or on ice
spill event?

2) Is it possible to effectively separate oil-contaminated NI
from oil-free NI by using the relationship between H and α
parameters?

The remainder of this manuscript is organized as follows.
Section II provides an overview of the experimental site and
data description, as well as how the polarimetric parameters
and threshold classifier were derived. Section III presents the
results of the derived polarimetric parameters. In addition,
we demonstrated the threshold classifier results on trained
and tested datasets. Section IV discusses the discrimination
analysis, and Section V concludes with a summary and
recommendations.

II. MATERIAL AND METHODS

A. Experimental Site

The experimental site for this study is located in Canada at
the University of Manitoba’s Sea-ice Environmental Research
Facility (SERF; e.g., see [20], [28], [29], [31], [35], [36]).
In February 2020, two phases of experiment were carried out
in two separate cylindrical tubs at the outdoor facility [31].
Phase-1 began at midnight on February 7 and lasted
approximately 40 h, during which oil was injected beneath
an established ice, which grew (7.5 cm thick) from artificial
seawater in a 13-m3 uninsulated cylindrical tub. Phase-2 began
at 4 PM on February 12 and lasted 19 h, involving an
ice regrowth (5 cm thick) that follows the melting of the
existing oil-contaminated ice in phase-1. For control purposes,
we developed an oil-free ice (8 cm thick) using a 9-m3

fiberglass-insulated cylindrical tub in close proximity to the
oil experimental tub. Each tub was outfitted with thermocouple
strings through a polyvinyl chloride pipe, and a scatterometer
was mounted on a nearby scaffolding tower at a height of
5.3 m above the seawater surface. In a separate study (February
2021), we used a different experimental setup with the SERF
main pool (see detailed descriptions in [20], [35], and [36]), in
the absence of oil contamination. These experimental results
are used to verify the robustness of our proposed threshold
classifier (see Section II-D).

B. Data Description

Meteorological data, in situ physical sampling data,
LiDAR/UAV data, and scatterometer data were all collected
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during phases 1 and 2 experiments. The full explanation of
these datasets can be found in [31]; however, we describe
herein a summary of how oil on the ice surface influenced
the ice geophysical and thermodynamic states, as well as the
ice backscattering response.

1) Meteorological Data: Mean hourly measurements of
atmospheric pressure, shortwave irradiance, and temperature
were taken from a meteorological station positioned 15 m
away from the experimental tubs, characterizing the local
weather conditions prior to, and post, oil injection. Although
no quantitative wind speed or direction data were collected
directly over the tubs, we observed a very calm wind effect,
and the ice grew in a quiescent state. The atmospheric pressure
in phase-1 was relatively close to the standard atmospheric
pressure (101.325 kPa), while it was slightly higher in
phase-2. In both experiments, the downwelling shortwave
irradiance was constant, with some localized major spikes.
For the phase-1 experiment, the air temperature fluctuated
from −22 ◦C to −9 ◦C, whereas the ice surface temperature
followed a similar trend but was on average 8 ◦C warmer.
At 32 h, a steady increase in air temperature initiated
the migration of mixed brine and oil onto the ice surface
(see the associated microwave scattering in Section II-B4).
Throughout the phase-2 experiment, the air and ice sur-
face temperatures remained relatively constant at −23 ◦C
and −17 ◦C, respectively.

2) Physical Sampling Data: The physical sampling data,
consisting of salinity, ice volume temperature, and ice
thickness, were obtained from the sampled ice cores to
characterize their geophysical and thermodynamic states. The
ice cores sampled during the phase-1 experiment revealed
a continuous ice growth, which were highly saline at the
topmost layer and had a low oil-volume fraction (0.7%) when
the oil migrated onto the ice surface in the oil tub. For
the phase-2 experiment, the ice core from the oil tub had
a higher oil-volume fraction (3%). This resulted in a 29%
and 20% decrease in the ice growth rate and surface salinity,
respectively, when compared to the corresponding control tub.

3) LiDAR/UAV Data: The LiDAR and UAV datasets were
only collected during the phase-1 experiment to characterize
the ice surface roughness. Prior to, and following, the oil
injection, the data showed that the ice surface was slightly
rough according to Fraunhofer roughness criterion [37].

4) Scatterometer Data: The polarimetric normalized radar
cross section (NRCS) was calculated from C-band scatterom-
eter data to establish the ice radar backscattering at 22.5◦
incidence angle from the control tub and 24.5◦ incidence angle
from the oil tub. We chose these incidence angles due to
the constraints imposed by the tub size (i.e., these angles
were not affected by the tub edges). Prior to data collection,
we performed a corner reflector calibration routine for our
scatterometer system to determine the optimal backscatter
response [38]. A total of 422 scatterometer samples were
collected for phases 1 and 2 experiments: 201 from the
phase-1 oil tub, 98 from the phase-1 control tub, and 123 from
the phase-2 oil tub.

During the phase-1 experiment, in the oil tub, two local
scattering maxima were observed in the time-series response

TABLE I

DEFINITION OF ICE REGIMES IN RELATION TO THE TIME-SERIES
RESPONSE OF C-BAND POLARIMETRIC NRCS DURING

PHASE 1 EXPERIMENT

of the copolarized NRCS (see Fig. 1, left). The first maximum
occurred prior to the oil injection and was associated with a
rapid surface brine expulsion. The second maximum occurred
immediately before oil migrated onto the ice surface and was
attributed to a combined effect of upward brine expulsion
and oil migration, resulting in a distinctive backscattering
response of oil on the ice surface [30]. Five distinct ice
regimes were identified and characterized by relating the ice
backscattering response to its physical state, as described in
Table I. In contrast to the oil tub, we identified two ice regimes
in the control tub (see Fig. 1, middle). We configured the
scatterometer to scan over the oil tub for the first eight hours
and then alternated between tubs approximately every hour
[30]. In the phase-2 experiment (only oil tub), the time-series
response of the polarimetric NRCS was relatively constant at
lower magnitudes (<−35 dB, see Fig. 1, right), indicating a
specular reflection despite the ice growing beneath an oil layer.

C. Derivation of Polarimetric Parameters

The polarimetric radar response of NI can have many
variations based on the specific physical conditions of the
ice. We calculated the polarimetric parameters by spatially
averaging 39 independent samples within a 10◦ azimuthal
width. During the spatial averaging process, a ±3�R range
window was used, where �R is the scatterometer range
resolution (30 cm) [39]. To better describe, the full scattering
mechanism requires a statistical approach, in which the
directly measured 2 × 2 scattering matrix is translated into a
second-order 4 × 4 matrix, such as the covariance matrix [C4]
and the coherency matrix [T4]. These matrices were included
in the scatterometer data products, and we reduced them
to 3 × 3 averaged matrices for a monostatic configuration,
as expressed in [32], (1) and (2), as shown at the bottom
of the next page, where �·� represents the spatial ensemble
averaging operator and superscript ∗ represents the complex
conjugate. Svh is the complex scattering element of vertical (v)
transmitting and horizontal (h) receiving polarizations, while
Svv , Shh , and Shv are defined in similar routine. Although both
elements in [C3] and [T3] describe the statistical scattering
process, the elements in [T3] are much more physically
meaningful due to their close association with the physical
and geometrical properties of the natural terrain surfaces
[33], [40], [41]. As a result, the diagonal elements in (2)
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Fig. 1. Time-series response of polarimetric NRCS measured during phases 1 and 2 experiments at 22.5◦ incidence angle on the control tub and 24.5◦
incidence angle on the oil tub. Markers show the raw measured data with corresponding best-fit lines. The black vertical line illustrates the period when oil
was injected beneath the sea ice, and the vertical dotted line shows the period when the initial oil migrated onto the ice surface. Backscattering responses in
phase-1 oil tub were categorized into five regimes (I–V) based on the sampled ice thickness, when oil was injected beneath the ice, and when oil migrated
on the ice surface, whereas phase-1 control tub was categorized into two groups of ice regimes (II + III and IV + V) based on their sampled ice thickness.
On the x-axis, the asterisks indicate the sampling hours for ice cores; their average thicknesses are I = 1.8 cm, II = 3.4 cm, III = 5 cm, and V = 7.5 cm in
phase 1 oil tub, II + III = 5 cm and IV + V = 8 cm in phase 1 control tub, and 5 cm in phase 2 oil tub (see details in [31]). The horizontal lines at −45
and −50 dB represent the NESZ for copolarized and cross-polarized NRCS, respectively.

correspond to contributions from surface scattering, double-
bounce scattering, and volume scattering, respectively [32].

Under calm conditions, the scattering mechanism of
homogenous level NI can be described as surface scattering or
as both surface and volume scattering if the sea ice is covered
with snow (mostly, in wet snow) [42]. All elements correlated
with double-bounce scattering are negligibly small [42] and,
thus, must be approximated to zero in order to accurately
model both the surface and volume scattering behaviors from
the coherency matrix in (2). This is achieved as follows:

���T 3
��= 1

2

⎡
⎢⎣

�|Svv + Shh |2
� ∼ 0 2�(Svv + Shh)Svh

∗�
∼ 0 ∼ 0 ∼ 0

2
�

Svh(Svv + Shh)
∗� ∼ 0 4

�|Svh |2
�

⎤
⎥⎦
(3)

where �[ �T3]� represents the 3 × 3 averaged coherency
matrix after minimizing the double-bounce scattering effect.
It is worth noting that the symbol, ∼ assigned to these

approximated elements signifies that 0 is equivalent to 10−6

in order to avoid matrix singularity.
Polarimetric parameters, including Rco and Rxo, are derived

from the NRCS; SPAN, ρco, and μ are derived from �[C3]�
in (1); and ν is derived from �[T3]� in (2). Additional
polarimetric parameters, such as H and α, are derived from
eigen decomposition of �[ �T3]� in (3). Formulations of these
are expressed in Table II.

The SPAN parameter measures the total backscatter
response [16]. We expect it to be less sensitive to changes in
scattering mechanisms. For example, a study in [43] has shown
that it becomes less sensitive to volume scattering of sea ice
as the incidence angle increases in the C-band frequency.

The Rco-parameter is sensitive to changes in surface
scattering (e.g., bare sea ice [44]), which increases with
increasing incidence angle [8], [9]. Meanwhile, Rxo is strongly
associated with changes in volume scattering [45]. As such,
any depolarization effect within a homogenous ice volume
is expected to enhance the Rxo-parameter (e.g., brine pocket

�[C3]� =
⎡
⎢⎣

�|Svv |2
� √

2�Svv Svh
∗� �Svv Shh

∗�√
2�Svh Svv

∗� 2
�|Svh |2

� √
2�Svh Shh

∗�
�Shh Svv

∗� √
2�Shh Svh

∗� �|Shh |2
�

⎤
⎥⎦ (1)

�[T3]� = 1

2

⎡
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�|Svv + Shh |2
� �

(Svv + Shh)(Svv − Shh)
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∗��
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∗�

2
�
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∗� 2

�
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∗� 4
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TABLE II

INVESTIGATED POLARIMETRIC PARAMETERS
AND THEIR FORMULATIONS

rearrangements within sea ice volume [16] or oil movement
within the ice volume [31]).

The ν-parameter is associated with the geometric mean
of the eigenvalues of �[T3]� [46], [47]. Because it con-
tains information about cross products between copolarized
backscattering element, we expect it to be sensitive to
depolarization effects within the ice volume.

The ρco-parameter ranges from 0 to 1. During a continuous
sea ice growth, it approaches 1, making it useful for
distinguishing between NI with thicknesses <6 cm and >8 cm
in the C-band microwave frequency range [18]. When ρco

approaches 0, it is expected that inhomogeneities within
the sea ice will be discernable (e.g., anisotropic distribution
of brine pockets [48] or oil-in-sea ice encapsulation [31]).
Meanwhile, the μ-parameter is an indicator that assigns
positive and negative values to slightly rough and smooth
surfaces, respectively [12]. Based on the formulation of the
μ-parameter in Table I, it is contrasting the correlation between
the copolarized scattering responses and a sensor-dependent
threshold that is typically provided by the cross-polarized
scattering response. This μ-parameter ranges from −1 to 1
and has been reported to provide an excellent measure to
discriminate oil-contaminated OW from the oil-free ocean
surroundings [12]. Based on the past studies, we expect a low
ρco values [11] and negative μ values [12] when oil migrates
through the topmost layer of the ice or when oil covers the
ice surface.

The H and α parameters extracted from eigen decomposi-
tion of �[ �T3]� can be used as a powerful tool for unsupervised
natural terrain classification. This method of classification was
first reviewed in [40] and applied in [33], where polarimetric
SAR imagery of various natural terrain was segmented into
eight zones [33]. In [49], similar analysis was used to
distinguish different sea ice types, with bare seasonal ice
classified as SSLE zone. We intend to extend this H /α
classification criterion in an oil-contaminated NI situation.
However, the disadvantage is that the classification will be
degraded due to the large radar footprint from the inherent
sampling of polarimetric SAR [39]. This means that the

SAR footprint contains a variety of terrain types, making
it difficult to directly relate the pure homogenous area to
its geophysical properties. With ground-truth scatterometer
measurements, it is possible to achieve sampling homogeneity,
which links the polarimetric backscatter to its geophysical
properties [39], and thus obtain a better physical interpretation
for the H and α parameters. Another issue is that the
linearly fixed boundaries in the H /α plane oversimplify the
classification, as multiple clusters with distinct geophysical
properties may fall into the same zone [50]. To refine
this classification into subclasses, studies in [51] included
a new parameter called anisotropy, which was found to be
effective in separating highly random surfaces enclosed in
the same zone. Another refinement approach is to use fuzzy
logic techniques, which have been shown to be successful
for complex natural terrain types [52]. Despite the benefits
of these refinement techniques, major obstacles remain for
NI classification due to its predominately homogenous and
undeformed surface. Outside of the H /α plane, some sea
ice analysts (e.g., [53], [54] and references therein) directly
applied NRCS thresholds to different sea ice types, and it
is currently used by the Canadian Ice Service for shipping
navigation within the Canada’s Arctic territory [55]. Here, our
motivation is to leverage the threshold classification scheme
within the H /α SSLE zone to characterize the scattering
behavior of NI terrain. As such, we anticipate that if NI
becomes contaminated with oil, it will fall within the SSLE
zone.

D. Threshold Classifier Algorithm

Our proposed threshold classifier is simple to implement,
adaptable to changing environmental conditions, and effective
for homogenous-level NI terrain. Fig. 2 illustrates how the
threshold classifier algorithm works. First, we extract the
H and α parameters from the eigen decomposition of
the coherency matrix data. Next, we apply the H /α classi-
fication scheme and select SSLE zone. Then, we partitioned
the selected zone using a pair of H and α thresholds estimated
as follows:

Hth =
��

H̃no_oil + H̃oil
 ±

���SH̃
no_oil − SH̃

oil

�����2 (4)

αth = ��
α̃no_oil + α̃oil

 ± ��Sα̃
no_oil − Sα̃

oil

����2 (5)

where H̃ and α̃ are the average values of H and α,
respectively, and S is the standard deviation. The subscripts
“no_oil” and “oil” denote the H and α parameters derived
from the uncontaminated and oil-contaminated ice regimes.
It should be noted that descriptive statistics (specifically, the
average and standard deviation values) play an important role
in estimating this pair of thresholds. Only those clusters within
the SSLE zone are considered to be eligible for the threshold
boundary decision. In the event of an oil spill, any cluster
above the threshold pair is labeled as “oil-contaminated ice;”
otherwise, it is labeled as “oil-free ice.”

To implement this classifier on our scatterometer (coherency
matrix) datasets, we trained the algorithm on the phase-1 oil
tub because they contain backscattering responses from both
oil-free and oil-contaminated ice regimes. Regimes II and III
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Fig. 2. Threshold classifier algorithm used to discriminate between oil-
contaminated and oil-free sea ice in the SSLE zone of entropy/mean-alpha
classification plane. SSLE refers to “surface scattering low entropy.”

were merged to group oil-free ice and regimes IV and V
were merged to group oil-contaminated ice, based on the
NRCS sensitivity at C-band frequency. Afterward, we tested
the threshold classifier on phase-1 control tub and phase-2
oil tub.

Given that the trained and tested datasets were obtained
using similar experimental designs over a shorter duration
(<2 days), we expanded the classification analysis with a
different experimental setup over a longer duration (8 days)
to assess the robustness of the proposed classifier. As a result,
in February 2021, we embarked on new SERF campaign to
collect C-band scatterometer measurements from a growing
ice in the main pool. Hereafter, this experiment is referred
to as phase-3 experiment. The scatterometer was configured
to scan at incidence angles ranging from 25◦ to 60◦ (in five
steps). We collected 775 scatterometer samples and considered
39 independent samples (at 30◦ incidence angle) during the
spatial averaging process. Throughout the experiment, under
cold temperature (<−25 ◦C), the ice grew (38 cm thick) in
the absence of oil contamination, with frost flowers covering
the surface.

III. RESULTS

Following the methods in Section II, we present our
results into two subsections that correspond to the research
questions posed in Section I. First is a time-series response
of SPAN, Rco, Rxo, ν, ρco, and μ parameters to observe
their responses when the NI is contaminated with oil. Second
is a scatterplot of H and α parameters, where a threshold
classifier was applied within the SSLE zone of the H /α clas-
sification plane to distinguish between oil-contaminated and
uncontaminated ice.

A. Time-Series Response of Polarimetric Parameters

Fig. 3 shows the time-series response of SPAN, Rco, Rxo,
ν, ρco, and μ parameters for phase-1 and phase-2 experiments
(see Section II-A for the description of each experimental
phases).

1) Total Power (SPAN): The SPAN values were relatively
constant across all phases, averaging 2.5 dB. However,
in phase-1 oil tub, we noticed minor deviations from the mean
value between 4 and 6 h (1.5 dB decrease), 22 and 32 h (2.5 dB
increase), and 32 and 36 h (0.5 dB decrease).

2) Copolarization Ratio (Rco) and Cross-Polarization Ratio
(Rxo): Rco and Rxo displayed highly variable characteristics,
with upward and downward trends throughout the experiment
[see Fig. 3(a), left]. When a short-lived frost flower covers
the ice surface at 6 h, we observed a continuous transient
maximum (20 dB increase) and minimum (10 dB decrease)
for Rco, as well as a coincidental minimum (10 dB decrease)
for Rxo immediately after the ice transitioned from Regime-
I to Regime-II (refer to Section II-B4 for ice regime
definitions). Following the ice transition and oil injection, the
Rco-parameter monotonically decreased between 13 and 22 h
and then was accompanied by a weak oscillation in Regime-IV.
Conversely, the Rxo-parameter monotonically decreased over
the same time range, followed by a local maximum (12 dB
increase) in the same ice regime. Prior to oil migration on the
ice surface between 31 and 34.5 h, Rco gradually increased
by 2 dB and then abruptly decreased by 7 dB, whereas Rxo

responded with a strong minimum (18 dB decrease). Once the
oil migrated on the ice surface at 34.5 h, both Rco and Rxo

values strictly trended upward.
In phase-1 control tub, the Rco-parameter began with a slow

upward trend from 0 to 2 dB for 2 h and remained relatively
constant until 32 h (within Regime-IV + V), when it gradually
trended downward to −2 dB [see Fig. 3(a), left]. The Rxo-
parameter, on the other hand, had a monotonic downward trend
until 32 h, when it became highly variable and trended in a
sinusoidal fashion.

With regard to phase-2 oil tub, the parameters (Rco and
Rxo) remained relatively constant throughout the experiment
at approximately 3 and −4 dB, respectively [see Fig. 3(a),
right].

3) Geometric Intensity (ν): The ν-parameter followed the
same trend as the Rxo-parameter. For example, we observed
that the ν-parameter experiment, as well as the presence of
two local minima—the first when the ice transitioned into
Regime-II and the second when the ice transitioned into
Regime-V. Prior to the oil migration, similar local maximum
was observed within Regime-IV. Our analysis of Pearson’s
correlation between the ν- and Rxo values revealed a strong
positive relationship (i.e., correlation coefficient >0.75 at
0.0001 significance level). The only difference between the
ν- and Rxo-parameters is that the ν-parameter has a lower
magnitude response than the Rxo-parameter. As such, we will
exclude the ν-parameter from the discussion section to avoid
redundancy.

4) Copolarization Correlation Coefficient (ρco) and Confor-
mity Coefficient (μ): The ρco values were highly variable from
the start of the phase-1 oil tub experiment, rising sharply from
0.40 to 0.90 as the ice transitioned from Regime-I to Regime-
II, and then dropping to 0.65 at about 8 h [see Fig. 3(b), left].
Following the oil injection beneath the ice, the ρco-parameter
increased from 0.8 to 0.95 between 13 and 22 h; however,
as the ice changed from Regime-III to Regime-IV, it decreased
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Fig. 3. Time-series response of polarimetric parameters for phases 1 and 2 experiments. (a) Total power (SPAN), copolarization ratio (Rco), cross-polarization
ratio (Rxo), and geometric intensity (ν). (b) Copolarization correlation coefficient (ρco) and conformity coefficient (μ). The ice regimes definitions (in phase-1
oil tub: I–V; and in phase-1 control: II + III and IV + V) are explained in Table I. Note that the incidence angle is 24.5◦ , except for the phase-1 control
tub which is 22.5◦. In the top panel (left), the observed Rco and Rxo spikes at 6 h represent a short-lived frost flower growth Similarly, in the bottom panel
(left), the μ-parameter displayed transitory upward and downward spikes between 4 and 6 h, which represent a period of rapid ice growth and short-lived
frost flower growth, respectively (see more details in Section IV-A1).

to 0.7 at 24 h, with a minor uplift between 24 and 31 h. Close
to 32 h, the ρco-parameter trended upward from 0.60 to 0.98,
but once the oil migrated onto the ice surface in Regime-V,
the trend reverted back to 0.60. Considering the μ-parameter,
it remained relatively constant below 0 within the Regime-I.
However, as the ice grew into dark nilas (Regime-II) and
was sparsely cover with a short-lived frost flower between
4 and 6 h, we observed a transitory behavior in which the

μ values oscillated above and below zero. Following the oil
injection, the μ-parameter exhibited similar behavior to that of
ρco-parameter (e.g., first, the μ-parameter trended upward
from 0.2 to 0.4 between 13 and 22 h; second, as the ice tran-
sitioned from Regime-III to Regime-IV, it abruptly decreased
to 0 at 24 h, followed with a minor uplift between 24 and
31 h; and third, it increased from −0.1 to 0.4 close to 32 h).
When the oil migrated onto the ice surface, the μ-parameter
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depicted a variable characteristics with values greater than
zero.

In phase-1 control tub, the ρco-parameter gradually
decreased from 0.80 to 0.70 within Regime-II + III, and
then gradually increased from 0.70 to 0.95 between 10 and
22 h. From 32 h, the ρco values slightly dropped from
0.95 to 0.80 until rapidly reverting to an upward trend
direction [see Fig. 3(b), left]. Meanwhile, the μ-parameter
began with a slight decrease from 0.4 to 0.3 in Regime-II + III
and then gradually increased to 0.4 between 10 and 22 h.
In Regime-IV + V, it remained relatively constant at 0.4 until
32 h when the μ-parameter exhibited an oscillatory behavior.

Regarding the phase-2 oil tub, throughout the experiment,
both parameters (ρco and μ) were relatively stable at 0.45 and
−0.4, respectively [see Fig. 3(b), right].

B. Entropy/Mean-Alpha Classification and Threshold
Classifier

The scatterplots of entropy (H ) versus mean-alpha (α) for
phases 1 and 2 experiments are shown in Fig. 4. Notably,
the H and α parameters were calculated from the eigen
decomposition of the coherency matrix, where the former and
latter are directly related to the eigenvalues and eigenvectors,
respectively (refer to Section II-C).

Fig. 4(a) shows that almost all of the measurements in
each of the ice regimes (hereafter referred to as clusters)
were enclosed in the SSLE zone of the H /α classification
plane. There are few exceptions that occur on and outside the
boundary, but the mean value generally lies within the SSLE
zone (see Table III). As such, only the oil tub samples from
phases 1 and 2 were reduced by 13% (from 201 to 174) and
3% (from 123 to 119), respectively. We observed that the oil-
free clusters in phase-1 oil tub (Regimes II and III) and control
tub (Regimes II + III and IV + V) are mostly located between
0.1 and 0.3 along the entropy axis and below 18◦ along the
mean-alpha axis. Note that the only exception is Regime-I
of phase-1 oil tub, which exhibit high variability, resulting in
some measurement points falling within the medium entropy
zones. Meanwhile, the oil-contaminated clusters in phase-1 oil
tub (Regimes IV and V) were highly variable and distributed
linearly along the SSLE zone from the lower left corner
to upper right corner. In the phase-2 experiment, the oil-
contaminated clusters are found above 0.3 along the entropy
axis and above 18◦ along the mean-alpha axis. Moreover, the
variability of these clusters is lower than that of the phase-1
experiment.

Fig. 4(b) illustrates the use of the threshold classifier within
the SSLE zone to separate oil-contaminated NI from its
oil-free surroundings. The threshold classifier algorithm is
explained in Section II-D. Based on the descriptive statistics
of phase-1 oil tub, which serve as the training dataset,
we calculated the H -parameter to be 0.30 ± 0.02 and the
α-parameter to be 19◦ ± 2◦ (see Table III). However, with
careful visual inspection, we optimally chose our boundary
decision on 0.3-H and 18◦-α. These boundary decisions were
tested on the existing ice regimes in phase-1 control tub
and phase-2 oil tub, where clusters above the threshold are

labeled “oil-contaminated ice;” otherwise, “oil-free ice.” The
label accuracy of the ice regimes is summarized in Table IV.
As seen in phase-1 oil tub, the true labels for oil-free and oil-
contaminated ice were 87% and 57%, respectively. Meanwhile,
in the phase-1 control tub, which contains only oil-free ice
was 96% correct for Regime-II + III and 92% correct for
Regime-IV + V. The true labels for phase-2, in which ice is
contaminated with oil, are 100%.

The threshold levels and approach were developed and
demonstrated using data from our SERF 2020 experiment.
To test the approach on a completely unique dataset,
we applied the thresholding approach to the measurements
from our SERF 2021 experiment. We knew in advance that
there was no oil present, so the algorithm was expected to
show that all of the clusters would fall below our boundary
decision. Fig. 5 shows the results and clearly demonstrates
the robustness of the threshold classifier using the phase-3
scatterometer dataset acquired from the experimental pool. The
classification correctly identifies the sea ice as oil-free with
100% accuracy.

IV. DISCUSSION

The goal of this study was to evaluate the potential of
C-band polarimetric parameters for discriminating oil spills
on NI based on the backscatter mechanisms associated with
changes in geophysical and thermodynamics states. This
section discusses the interpretations based on the two sets
of results presented in Section III. To begin, we perform a
sensitivity analysis on the temporal evolution of polarimetric
parameters to ascertain which parameterization best responds
to oil-contaminated NI. Following that, we conduct a
separation analysis using the H /α classification plane to isolate
oil-contaminated NI from its oil-free ice surroundings.

A. Sensitivity Analysis

Sensitivity analysis provides a premise for understanding
the responsiveness of polarimetric parameters to changes in
different sea ice scattering mechanisms and will be employed
to answer our first posed research question in Section I,
“which time-series responses of SPAN, Rco, Rxo, ρco, μ, and
ν of NI are the most sensitive to an oil within or on ice spill
event?” The time-series response of polarimetric parameters in
Fig. 3 revealed the sensitivity toward the contributions from
both surface and volume scattering mechanisms.

1) Phase-1 Oil Tub Experiment: In the phase-1 oil tub, the
ice grew from calm open water through frazil. When the ice
became dark nilas, oil was injected beneath the ice. The dark
nilas developed into light nilas and the oil eventually migrated
through it and onto the ice surface. Throughout the experiment,
the SPAN parameter remained relatively constant with some
minor deviations at particular time intervals [see Fig. 3(a),
left]. This constant behavior suggests that the SPAN parameter
is insensitive to the growth of NI, whereas the small anomalous
deviations indicate an extremely weak sensitivity to changes in
scattering mechanisms that are the functions of surface brine
expulsion (between 4 and 6 h), oil encapsulation (between
22 and 32 h), and surface oil migration (between 32 and 36 h).
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Fig. 4. Scatterplot of entropy (H ) versus mean-alpha (α) for phases 1 and 2 experiments. (a) H /α classification plane for ice regimes. (b) SSLE zone within
the H /α classification plane. The vertical and horizontal dotted lines represent the set of threshold of 0.3-H and 18◦-α used to segment oil-contaminated ice
from oil-free ice. The ice regimes definitions (in phase-1 oil tub: I–V; and in phase-1 control: II + III and IV + V) are explained in Table I. Note that the
incidence angle is 24.5◦ , except for the phase-1 control tub, which is 22.5◦ .

This is the first time, to the best of our knowledge, that
this result has been observed for oil-contaminated sea ice,
so additional time-series data are required for confirmation.

The Rco and Rxo parameters were highly variable,
minimizing, and maximizing changes in physical scattering
processes. Although the Rco-parameter exhibited a local
minimum due to the complex physical processes involved
in rapid ice growth, its trend was dominated by two
maxima similar to the local scattering peaks observed in the

copolarized NRCS (see Fig. 1, left). The first maximum can be
related to rapid surface brine expulsion [55], which triggered a
short-lived frost flower growth at 6 h [see Fig. 4(a), left]. This
short-lived growth was due to a shallow temperature gradient
between the ice surface and its near-surface atmosphere
[31]. The second maximum can be related to a combination
of upward brine expulsion and oil migration [31]. This
suggests that Rco is sensitive to changes in surface scattering.
In contrast, the trend of the Rxo-parameter was dominated by
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TABLE III

STATISTICS OF ENTROPY (H ) AND MEAN-ALPHA (α) PARAMETERS WITHIN THE SSLE ZONE FOR PHASES 1 AND 2 EXPERIMENTS

TABLE IV

THRESHOLD CLASSIFIER USING 0.3-ENTROPY AND 18◦-MEAN-ALPHA

Fig. 5. Scatterplot of entropy (H ) versus mean-alpha (α) for phase-3 uncontaminated pool experiment at an incidence angle of 30◦ .

two local minima and one local maximum. With the exception
of the first minimum, the remaining minimum and maximum
values were consistent with the scattering spikes observed
in the cross-polarized NRCS (see Fig. 1, left). As such,
we associated the first minimum to a depolarization effect from
the rearrangement of brine pockets during rapid ice growth
[16]. There is a lack of detailed microstructural analysis of the

depolarization effect during initial ice formation, making the
interpretation difficult and necessitating further investigation.
Meanwhile, the second minimum was linked to an upward
oil migration caused by increasing ambient temperatures
approaching the freezing point [31, Fig. 4]. Prior to the oil
migration, the only maximum within Regime-IV indicates a
heterogeneous NI layer, which Asihene et al. [31] attributed
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to volume scattering caused by the oil encapsulation within
the ice medium.

Regarding the ρco-parameter, its trend in Fig. 3(b) (left)
followed a similar scattering pattern to the copolarized
NRCS in Fig. 1 (left), indicating that this parameter was
susceptible to changes in both surface and volume scatterings.
In response to the changes in surface scattering: first, the
ρco values strictly increased during the growth of frost
flowers; second, it exhibited a rapidly increasing trend
during the ice thickening; and third, it decreased when
oil migrated and wetted the ice surface. In response to
changes in volume scattering, the ρco values decreased when
oil migrated and became encapsulated, thereby introducing
inhomogeneity within the ice [31]. We observed that
this parameter de-emphasized oil encapsulation, which is
opposite to the response observed in the Rxo-parameter.
This decrease occurs because the ρco-parameter is expected
to suppress decorrelation from cross-polarized scattering
responses within the ice volume. In comparison to a previous
study, Nghiem et al. [17, Fig. 18(b)] reported the ρco value to
be 0.50 at 25◦ incidence angle, where the ice thickness was
<4 cm. This value was less than what we observed, which
was 0.80 at 24.5◦ incidence angle, where the ice thickness
was 3.4 cm at 8 h [31, pp. 5]. Our higher value was due
to the presence of frost flowers, which enhance the surface
dielectrics; however, the enhancement was not prominent due
to the sparse distribution of frost flowers on the ice surface
[31, Fig. 3(c)]. Therefore, a wide distribution of frost flower
growth is required to be discernible using the ρco-parameter.

As shown in Fig. 3(b) (left), the μ-parameter demonstrated
a logical trend that characterized the ice regimes into
slightly rough (Bragg) and specular (non-Bragg) types of
surface scattering behavior. This trend was evident in a
study of mapping ocean surface oil slicks conducted by
Zhang et al. [12]. They found that Bragg scattering is linked
to oil-free water and non-Bragg scattering to oil-slick water.
In our case, we attributed the Bragg scattering to the highly
saline nature within the topmost layer of the NI surface
(or its near surface) and the non-Bragg scattering to the oil
dampening effect on the ice surface. Within Regime-II (i.e.,
dark nilas), the unexpected behavior of negative μ values at
6 h was caused by a short-lived frost flower cover that formed
after the rapid ice growth in 4 h. We attributed the short-
lived growth event to a weak temperature gradient between
ice surface and its relative near-surface atmosphere [31]. Prior
to the oil migration, the μ values were positive and close to
the zero-level, indicating that it was sensitive to the changes
in volume scattering as the oil became encapsulated within
the ice. We observed similar behavior with the ρco-parameter,
implying that both the μ and ρco parameters are related
in terms of being sensitive to oil encapsulation within the
ice. When the oil became visible on the ice surface, the μ
values remained positive. This is in contrast to the findings of
Zhang et al. [12], where a high volume of oil slick on the ocean
surface were detected with negative μ values. We speculate
that the low fractional oil volume (0.7%) was the reason that
the μ-parameter did not indicate the presence of the oil [31],
but when compared to phase-2 oil tub in Fig. 3(b) (right), the

fractional oil volume (3%) was much higher [31], resulting
in the expected negative μ values. This means that a greater
volume of oil is required for the μ-parameter to be sensitive
to oil spill on ice.

2) Phase-1 Control Tub Experiment: Nilas ice was grown
in oil-free seawater in the phase-1 control tub. As shown in
Fig. 3(a) (middle), the SPAN was strictly constant throughout
the experiment and is in agreement with the phase-1 oil tub,
especially when no oil has been injected beneath the ice.
This means that it lacks sensitivity to changes in surface
scattering as the ice grows. Previous studies by Isrealsson and
Askne [43, Fig. 2(b)] found that SPAN values were constant
at different incidence angles within the C-band frequency,
whereas we observed the temporal variation at a single
incidence angle (22.5◦). Despite this lack of responsiveness,
the relative temporal consistency of the SPAN values may be
useful for evaluating the quality assurance and quality control
of NI scatterometer measurements at C-band; however, this
requires further investigation.

The Rco-parameter depicted a gradual upward trend within
Regime-II + III, and when compared to the phase-1 oil
tub, a similar pattern was observed, albeit with a monotonic
behavior. This demonstrates a low response to changes in
surface scattering as the dark nilas thickens. Because this
parameter increases with increasing incidence angle [8], [9],
we anticipate it to be more responsive as the ice grows at
higher incidence angles (>35◦). In contrast, Rxo maintained
a steady downward trend, which was expected given that
both parameters are more sensitive to volume scattering (as
discussed in Section IV-A1). As the ice transitioned from
Regime-II + III to Regime-IV + V, these parameters (Rco and
Rxo) were relatively constant, indicating a period during which
the ice developed from dark nilas to light nilas. From 32 h,
the Rco-parameter gradually trended downward, whereas the
Rco-parameter fluctuated with momentary spikes. This behav-
ior was not anticipated because Rco was expected to increase
while Rxo is expected to decrease. We attributed this effect
to the accumulation of snowfall traces on the ice surface
[31, Fig. 3(e)]. Although similar snow traces were visible in
the phase-1 oil tub, their effect was minimal when compared
to phase-1 control tub. As a result, it is clear that in the
absence of snowfall, the Rco and Rxo parameters are suitable
for discriminating between dark nilas and light nilas.

The ρco values gradually increased within dark nilas, and
it approaches one as the ice transitioned into light nilas
[see Fig. 3(b), middle]. This means that the ρco-parameter is
sensitive to surface scattering as the ice grows, similar to what
we observe in phase-1 oil tub. A study by Isleifson et al.
[18] demonstrated that the ρco parameter is capable of
distinguishing NI with ice thicknesses <6.0 and >8.0 cm. At a
25◦ incidence angle, the average ρco value for ice thickness
<6.0 cm was 0.55, while for ice thickness >8.0 cm was 0.90;
they found a resulting difference of 0.35 [18]. In comparison,
our values at a 24.5◦ incidence angle were 0.80 and 0.90 for
<6.0 and >8.0 cm ice thicknesses, respectively, resulting in
a 0.1 difference. This is within the error bounds shown in
[18, Fig. 4]. The highly saline topmost layer of NI contributed
to the lower contrast between the two ice regimes in our



4300115 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

study [31]. Similar to the abnormal characteristics observed
in Rco-parameter from 32 h, the ρco-parameter changed from
the expected upward trend to a downward trend. This is a
confirmation that the contribution of snow has altered that ice
scattering behavior.

Regarding the time-series response of the μ-parameter
[see Fig. 3(b), left], we found a logical trend, in which positive
μ values are assigned to both dark nilas (Regime-II + III) and
light nilas (Regime-IV + V). This logical trend was consistent
when compared to the phase-1 oil tub, except during the initial
ice growth and when our C-band scatterometer measurement
became responsive to the oil within the ice volume. Unlike
the ρco-parameter, the μ-parameter lacks the sensitivity of
increasing ice growth because no discernible contrast was seen
between the dark nilas and light nilas.

3) Phase-2 Oil Tub Experiment: In the phase-2 oil tub, nilas
ice was grown in oil-contaminated seawater. The time-series
responses of SPAN, Rco, Rxo, ρco, and μ in Fig. 3 (right)
showed relatively stable characteristics that were consistent
with all of the polarimetric NRCS in Fig. 1 (right), indicating
specular scattering behaviors. This specular scattering is
caused by an oil layer on the ice surface, which obscures
NRCS detection of the ice growth beneath, potentially posing
a safety risk to vessel navigation [31]. In terms of SPAN,
its scattering behavior is steady and consistent with that
of the phase-1 control, implying that this parameter is less
informative at C-band for oil spill detection.

With the exception of the SPAN and Rco parameters,
other polarimetric parameters exhibited a substantial contrast
from those in phase-1 control tub. Furthermore, these
other parameters displayed no trending patterns compared
to trending patterns in phase-1 control tub (decreasing
trends for Rxo and variable trends for ρco and μ). This
implies that the Rxo, ρco, and μ parameters are sensitive
to the scattering contributions of when NI is oil-free and
oil-contaminated. In particular, the μ-parameter would be
effective for discriminating between uncontaminated and oil-
contaminated light nilas because the former is explicitly
discernable by negative μ values and the latter by positive
μ values [see Fig. 3(b), left and right].

B. Separation Analysis

To answer the second research question in Section I, “is it
possible to effectively separate oil-contaminated NI from oil-
free NI by using the relationship between H and α parame-
ters?” we used these parameters to establish a classification
scheme that delineates the scattering contributions of our
experimental ice regimes as SSLE zone. Within this zone,
we developed a threshold classifier to discriminate between
oil-contaminated and oil-free NI (see Figs. 4 and 5). Phase-1
oil experiment was used to train the threshold algorithm, while
phase-1 control tub, phase-2 oil tub, and phase-3 oil-free pool
were used to validate the results.

With the exception of a few cluster points (which represents
the ice regimes), we observed that almost all of the ice regimes
in Fig. 4(a) resulted in similar dominant scattering behavior
as they clustered within the SSLE zone. This clustering is

expected because homogenous-level sea ice is modeled as
surface Bragg scatterer, which strongly contributes to SSLE
classification [33]. Even when oil masked the ice surface,
during phase-1 oil tub (Regime-V) and phase-2 oil tub, the
dominant specular surface scattering mechanism was still
within the SSLE region. This is because the presence of
oil smoothens the ice surface, which in turn acts a specular
reflector to the incoming radar signals. In phase-1 oil tub
[see Fig. 4(a), upper panel], those few clusters outside the
SSLE region were associated with high depolarization effect
that occurred during the upward brine expulsion as the ice
rapidly transitioned from Regime-I to Regime-II, as well as
oil encapsulation within Regime-IV. When all the cluster
points within the SSLE zone were considered, the H versus
α scatterplot revealed how highly variable the backscattering
response of NI is [see Fig. 4(b)]. This high variability
appeared to reveal a decision boundary, in which Regime-I
was distributed on the extreme middle right, Regimes II and III
were distributed around the bottom left, and Regimes IV and V
were linearly distributed from the bottom left to the upper
right.

Visual inspection, analysis, and interpretations are the
common approaches used by sea ice analysts (e.g., see [49],
[53], [54], [56]). Given the high variable nature of sea ice
physical properties, a sea ice expert can incorporate a priori
information from ambient environments, as well as other
events such as oil spills, to determine the optimal set of
thresholds that imposes a suitable boundary on the actual
data at hand [53]. For example, as shown in Table III,
the statistics of both the oil-free and oil-contaminated NI
were almost differentiated by values above and below the
optimized threshold pair (0.3-H and 18◦-α). Although, this
is the first time an oil-in-ice experiment involving the H and
α parameters has been performed, our average values for the
uncontaminated and oil-contaminated NI were consistent with
those reported by Johansson et al. [9, pp. 4] at lower incidence
angles.

The label accuracy of the H /α threshold classifier on
phase-1 oil tub, phase-1 control tub, phase-2 oil tub, and
phase-3 oil-free pool was shown in Table IV. A complete
false label was achieved for Regime-I (open water/frazil),
as expected, because the backscattering response had been
affected by noise equivalent sigma zero (NESZ), which is
the receiver noise floor in our scatterometer system. The
estimated average NESZ in this study was −45 dBm2/m2 for
the copolarized NRCS and −50 dBm2/m2 for cross-polarized
NRCS [31]. When compared to the magnitude of NRCS
in Regime-I (Fig. 1, left), the copolarized NRCS was on
average −43.5 dB, whereas the cross-polarized NRCS was
relatively at −50 dB, indicating that the NRCS was essentially
at the instrument noise floor. These noise-affected H and α
values were presented to illustrate the usefulness of NESZ
estimation for quality assurance and quality control purposes
during separation analysis (e.g., see [57]). Another reason for
the completely false label is that the H /α threshold classifier
method is not applicable when ice thickness is less than
2 cm, and further investigation is required for this specific
situation.
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Based on C-band NRCS sensitivity to oil spill in
phase-1 oil tub (see Section II-D), Regimes II and III
were combined to form Regime-[II–III]∗ (oil-free dark
nilas) and Regimes IV and V were combined to form
Regime-[IV–V]∗ (oil-contaminated light nilas). As shown
in Table IV, our proposed threshold classifier successfully
distinguished between oil-free and oil-contaminated ice in
both the training and testing datasets. We attributed all
misclassifications of the oil-free NI to transitional growth
between ice regimes, as well as snowfall accumulation. This
snow accumulation is the same reason we observed unexpected
sensitivities from 32 h in the time-series response of phase-1
control tub’s NRCS (see Fig. 1) and polarimetric parameters
(except SPAN, see Fig. 3). For the oil-contaminated NI,
we attributed all misclassifications to oil migrating upward
toward the ice surface. These findings suggest that the H and
α relationship could be used to detect oil in ice-laden waters
at a C-band radar frequency, especially when the oil forms a
skim layer on the ice surface.

The separation analysis clearly demonstrated that our pro-
posed H /α threshold classifier possesses enormous potential
for discrimination of oil spill in ice-laden waters; however,
the small sample size and similarities of phases 1 and 2
experiments initiated further investigation. This is why phase-
3 dataset was included, as its sample size (n = 775) is
significantly larger than that of the previous phases (see
Table IV) and was collected using a different experimental
setup (see Sections II-A and II-D). Fig. 5 revealed that all the
phase-3 clusters fall below the boundary decision, indicating
that the ice regime was oil-free. This result is unique because
it validates the robustness of our threshold classifier and also
illustrates that its performance is not constrained by sample
size. Future work will include investigating the thresholding
algorithm approach to other oil spill and nonoil spill remote
sensing data, such as those we plan to conduct at the Churchill
Marine Observatory [58].

V. CONCLUSION

This manuscript has presented an analysis of C-band
polarimetric parameters extracted from the normalized radar
cross section, covariance matrix, and coherency matrix of oil-
free and oil-contaminated NI. The derived eight polarimetric
parameters include SPAN, Rco, Rxo, ν, ρco, μ, H , and α.
We related all these parameters to backscatter mechanisms
associated with changes in thermophysical properties, using
the ice cores sampled during two phases of oil-in-sea ice
mesocosms: 1) oil was injected beneath an established ice and
2) ice was grown in an oil-contaminated artificial seawater.

Results from the time-series responses of SPAN, Rco, Rxo, ν,
ρco, and μ were observed to determine which one was respond
best in the aftermath of an oil spill (see Fig. 3). We found that
the ρco-parameter is the most reliable polarimetric parameter
in an oil spill detection because it provides information on
both surface and volume scattering, which are related to
various oil spill scenarios, including oil encapsulated within
ice and oil spreading on the ice. Meanwhile, we found
that the SPAN parameter is the least reliable parameter for

temporal discrimination between oil-contaminated NI and its
oil-free surroundings; however, we recommend it for data
quality control purposes. Other parameters, such as Rco, can
be used as an auxiliary to diagnose the changes in surface
scattering mechanisms, whereas Rxo and ν are useful for
responding to changes in volume scattering. Because Rxo

and ν parameters have similar sensitivity behavior, only one
should be employed to avoid redundancy. We recommend the
Rxo-parameter because it is less computationally demanding
and less susceptible to the scatterometer noise floor. One
unique observation about the μ-parameter is that it can
differentiate between oil-contaminated ice (with negative μ
values) and the oil-free ice (with positive μ values). This is
feasible if the amount of oil spill volume is large enough and
the ice thickness is ≥5 cm. Overall, no single polarimetric
parameters should be used in isolation, particularly in an
oil spill event where we want to eliminate oil-lookalikes to
accurately detect and monitor oil within and on the ice.

We investigated the possibility of distinguishing oil-
contaminated and oil-free NI using the H /α classification
plane (see Fig. 4). Results showed that both NI with and
without oil inclusion will usually fall within the SSLE
zone. This zone revealed segmented distributions for different
ice regimes, so we developed a threshold classifier for
discrimination (see Section II-D). Using the phase-1 oil
experiment as a training dataset, we found that a threshold
pair of 0.3-H and 18◦-α truly labeled 87% of oil-free ice
and 57% of oil-contaminated ice (see Table IV). When tested
on dataset with phase-1 oil-free experiment and phase 2
oil experiment, we obtained >90% and 100% accuracy,
respectively. Misclassifications were attributed to transitional
growth between ice regimes, snowfall accumulations, and
upward oil migration. Later, we extended our validation
with a different experimental design, where ice was grown
without oil-contamination (phase-3), and the data collected
was much larger than in previous phases. The threshold
classifier correctly classified the phase-3 data as oil-free ice
(see Fig. 5), demonstrating its robustness and performance
with a larger sample size (see Table IV). The significance
of this separation analysis is that, despite the high degree of
variability in NI physical properties, it is possible to develop a
simple and adaptive threshold classifiers within the H /α plane
that accurately discriminate between oil-contaminated and oil-
free NI.

This study has improved our capability for discriminating
oil-contaminated NI from uncontaminated NI. The combina-
tion of polarimetric parameters can serve as a complimentary
data interpretation for oil detection in the Arctic Ocean using
current and future C-band polarimetric radar satellites. The
findings of this study are limited to low incidence angles,
absence of snowfall, calm conditions, and cold temperatures.
Future work will consider analyzing polarimetric parameters
with higher incidence angles (>35◦), as well as longer
wavelength such as L-band. To improve the interpretation
of the polarimetric parameter results, this study should be
extended to a large field scale in the Arctic, where we can
collect well-representative meteorological variables, in situ
physical ice samples, and sea ice backscatter response;
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Canada’s Churchill Marine Observatory facility has been
proposed to accomplish this in [58].
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