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Development of a Concrete Floating
and Delamination Detection System

Using Infrared Thermography
Pang-jo Chun and Shogo Hayashi

Abstract—Spalling of concrete fragments due to the de-
terioration of concrete structures can cause property dam-
age or serious and even fatal accidents; thus, there is a
need to detect such deterioration. Generally, the hammer-
ing test is employed as the main inspection method to
prevent such concrete spalling; however, it requires close
contact with the structure being tested. Getting close to
the structure for inspection is expensive and time con-
suming, and if the structure is high up, there is a risk of
falling. Therefore, in this study, we developed a system for
inspecting concrete structures without approaching them,
using infrared thermography. In order to detect floating and
delamination using infrared thermography, it is necessary
to find temperature irregularities caused by such damage
from an infrared image, but such an inspection method has
not been realized so far. There are two main reasons for
this. First, it is difficult to evaluate whether the concrete
structure is in an appropriate temperature condition suit-
able for detecting the floating and delamination. Second,
it is difficult to detect temperature irregularities caused
by floating and delamination among the various causes of
temperature irregularities. In this study, we resolved these
issues by developing equipment to investigate whether the
object is in an appropriate temperature condition for proper
photography and by developing a machine learning-based
method to automatically detect only the temperature irreg-
ularities caused by floating and delamination. By resolving
these issues, we have developed a promising novel inspec-
tion method for the prevention of concrete spalling, which
is reported in this article.

Index Terms—Boosting, civil engineering, concrete, in-
frared surveillance, inspection, machine learning.

I. INTRODUCTION

D ETERIORATION of concrete structures, including
bridges, is a problem in many countries around the world.
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In Japan, for example, most structures built during the high
economic growth period (1960–1970s) are already aging. Ac-
cording to the Ministry of Land, Infrastructure, Transport, and
Tourism in Japan, by 2028, half of the bridges will be more than
50 years old and will start deteriorating; by 2033, two-thirds of
all bridges will have been affected [1]. Additionally, according to
the ASCE (American Society of Civil Engineers) infrastructure
report card published in 2017, approximately 40% of the 614387
bridges in America are more than 50 years old [2]. Concrete is
a brittle material consisting of water, cement, and aggregates
such as crushed stone or sand. It is resistant to compression but
weak in tension. The cement gradually reacts with the water and
connects the aggregates, reaching its optimal design strength
in about a month. There are many problems caused by the
deterioration of concrete structures. In this study, we developed
an inspection method to prevent concrete spalling, which is one
of the most serious problems.

Spalling of concrete fragments occurs frequently. For exam-
ple, on August 24, 2019, 1.3 tons of concrete fragments peeled
off a bridge managed by the West Japan Railway Company
due to steel rebar corrosion and fell onto a passenger vehicle
passing directly below it. If concrete fragments fall and land
on pedestrians and vehicles passing underneath, large-scale
accidents, including fatal ones, could result. In the guidelines
for regular inspections of bridges in Japan, the discovery of
floating and delamination is required to prevent the occurrence of
such accidents. Floating and delamination are damage in which
the surface of the concrete and the interior of the concrete lose
their integrity. Although the terms floating and delamination are
similar, the distinction between them is that concrete fragments
do not fall when subjected to a strong impact (floating) and fall
(delamination).

A hammering inspection is the traditional method for de-
tecting floating and delamination; in this method, the surface
of the concrete is struck with a hammer [3]–[6]. In the test,
if an abnormal noise is produced, it indicates that floating or
delamination may have occurred, and the test is considered to
be very reliable. However, as the hammer test can only be used
to inspect the location hit by the hammer, it requires that all areas
of the structure be exhaustively struck to inspect an entire bridge
which entails considerable labor. Additionally, when inspecting
parts of a bridge situated at high locations, it is not easy to
get close to them to perform the hammering test. Methods
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Fig. 1. Example of inspection using (a) rope access and
(b) high-location work vehicle for bridge inspection.

Fig. 2. Temperature unevenness when the concrete temperature is
higher than the external temperature.

to approach high up include, for instance, rope access [see
Fig. 1(a)] or using a high-location work vehicle [see Fig. 1(b)];
however, these methods are costly and highly dangerous. Hence,
there is a need for inspection methods that can be performed
remotely from the ground and with less effort, and that can be
applied to the entire structure with high precision. In Japan, as a
part of CIM (construction information modeling/management),
the utilization of information-based techniques such as image
analysis technology, artificial intelligence (AI) technology, and
cloud servers has been promoted. This study aims to use this
framework to make the inspection of floating and delamination
more efficient.

As for the detection of concrete damage using image analysis
and AI technologies, much research has been conducted on the
detection of cracks in visible images [7]–[11]. However, since
floating and delamination often proceed from the inside, they
are undetectable from the analysis of visible images. On the
other hand, considering that the temperature distribution caused
by floating and delamination is different from the surrounding
area due to the internal cavities as shown in Fig. 2, the use of
infrared images is effective. In fact, such infrared images have
been utilized for studying tile delamination and similar activities
[12], [13]. In [12], mathematical investigations and experiments
showed that tile delamination can be detected by an infra-red
camera, and in [13], the appropriate camera performance for
detecting tile delamination was investigated and then damage
detection was performed in a real building. However, the temper-
ature distribution of concrete structures targeted in this study is
less clear than that of tiles, which makes detection more difficult.
The authors in [14]–[16] worked on the detection of floating and
delamination in concrete structures with such a complex tem-
perature distribution. A significant study in [14] shows the effect

of various delamination features on detection accuracy through
precise experiments using full-scale specimens. However, the
authors only mention that the automatic detection method using
machine learning is promising. Ellenberg et al. [15] describe an
inspection by UAV equipped with an infra-red camera, which is
a very promising application; however, the automatic detection
in this study did not use machine learning and was limited to
detecting only damaged areas that could be found from simple
image processing. Similarly, Sultan and Washer [16] define
thresholds based on experimental situations and only uses simple
image processing to determine damage. However, the actual
temperature irregularities caused by floating and delamination
are complex, and simple image processing such as fixing thresh-
olds and parameters can cause errors, especially if the structure
changes. In addition, since there are many factors other than
floating and delamination that cause temperature irregularities,
human judgment is currently required to distinguish between
these factors. However, in order to improve the efficiency of
inspection, automation is necessary; therefore, this research aims
to realize an automated damage detection system. Such a system
has not been achieved so far for two major reasons. First, it
is difficult to assess whether the concrete structure is in an
appropriate temperature condition for the detection of floating
and delamination from an infrared image to be possible. Second,
no methodology has been established for automatically selecting
temperature irregularities due to floating and delamination from
a large array of temperature irregularities in infrared images.
The purpose of this study is to develop a method for detect-
ing floating and delamination of concrete structures using an
infrared camera by resolving the above-mentioned two issues.
The former issue was resolved by developing an instrument to
examine the temperature condition of concrete structures that
is suitable for detecting floating and delamination, whereas
the second issue was resolved by developing an automatic
detection method using a LightGBM (Light Gradient Boosting
Machine), a machine learning method, after constructing a cloud
server system that collects and accumulates data from many
operators.

With the realization and implementation of this system, it is
now possible to automatically detect floating and delamination
from infrared images with high accuracy, and to take efficient
measures to prevent spalling. A total of more than 3 million
m2 was surveyed in Japan and the USA using this system, and
the effectiveness of the system has been confirmed by practi-
tioners. Thanks to such extensive inspection works by many
inspectors, data have been accumulated, contributing to further
improvements in accuracy. Details of the developed equipment
and technology for detecting floating and delamination with high
accuracy are presented in the subsequent sections.

II. ACQUIRING INFRARED IMAGES USING AN

INFRARED CAMERA

A. Experiment for Selecting the Infrared Camera

In this section, we first determined the required performance
of an infrared camera to acquire infrared images. These images
are necessary for the detection of floating and delamination.
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Fig. 3. Concrete specimens and the positions and depths of the cavity.

TABLE I
INFRARED CAMERAS USED IN THE COMPARISON TEST

Although there are many performance parameters for infrared
cameras, such as the number of pixels and the frame rate, the
noise equivalent temperature difference (NETD) is the most im-
portant performance parameter when considering the detection
of temperature irregularities caused by floating and delamina-
tion. In order to detect this damage, the temperature difference in
the floating and delamination region needs to be larger than the
NETD of the infrared camera. In this study, we used specimens
with varying depths of cavities to compare the infrared images
obtained using the infrared cameras with different NETDs and
then investigated the required NETD performance based on the
obtained results.

1) Creating Specimens With Cavities: The test specimens
were provided with cavities of 100 mm x 100 mm (t = 10 mm)
at depths of 20, 30, 40, and 60 mm from the surface (see Fig. 3).
These depths were determined based on the general rebar cover
thickness of 30–40 mm in the superstructure of concrete bridges.
The specimens were installed in shaded areas below bridges
and photographed at 11 PM when the diurnal temperature was
≥7 °C. The reason for doing the photography at night was to
create temperature irregularities around the cavity, as shown in
the mechanism in Fig. 2.

2) Infrared Camera Comparison: In order to investigate the
effect of the difference in NETD on the detection performance,
the two types of cameras shown in Table I were placed side by
side and the specimens were photographed simultaneously.

The major difference between the SC6000 and the SC660
lies in the NETD. This difference is caused by the difference
in the detecting element installed in the infrared camera. An
infrared camera using an uncooled micro bolometer as a detector
obtains a temperature distribution based on the principle of
converting thermal energy into electrical resistance, but in such
a case, the temperature resolution is generally in the range of
0.06 to 0.08 K. On the other hand, when indium antimonide
is used as a detector, the detection sensitivity is high because
it detects electrical phenomena caused by light energy, and the

Fig. 4. Thermal images of concrete specimen with cavities.
(a) Capture results using SC660. (b) Capture results using SC6000.

temperature resolution is 0.02–0.03 K. In addition, the response
speed of such a system is fast.

The results are shown in Fig. 4, where the infrared image
of SC6000 with the minimum detection temperature of 0.02–
0.03 K can detect damage as deep as 40 mm, whereas the
image of SC660 cannot detect the damage except at a depth
of 20 mm. These results indicate that the variation in NETD
makes a significant difference to the detection of floating and
delamination. In particular, for the detection of defects 40 mm
in depth required for concrete bridges, it is necessary to use an
infrared camera with a cooled indium antimonide detector. On
the other hand, it was found that defects at a depth of 60 mm
could not be detected. However, considering that the typical
rebar cover thickness of bridge superstructures is 40 mm, it can
be said that this method is suitable for detecting floating and
delamination in concrete structures.

B. Methods for Evaluating the Thermal Environment in
Actual Structures

Although we determined the required performance of infrared
cameras using the specimens in the previous section, heat flows
in actual structures are complex and the environmental condi-
tions change. Consequently, there is no guarantee that floating
and delamination can be detected as expected. Therefore, we de-
veloped a concrete specimen (hereafter, “attachable specimen”),
which can be directly attached to a bridge to evaluate the thermal
condition and thereby confirm if the concrete structure is in the
appropriate capture environment.

The attachable specimen consists of a 30 cm x 30 cm concrete
plate with a thickness of t cm and a 1-mm thick thermal conduc-
tive sheet. By attaching the attachable specimen to the bridge, a
simulated internal cavity of 10 cm × 10 cm in size and 1 mm in
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Fig. 5. Structure and installation situation of attachable specimen.
(a) Structure of attachable specimen. (b) Installation situation.

Fig. 6. Visible image and thermal image of attachable specimen
(t = 3 cm).

thickness can be created in the investigated concrete structure at
an arbitrary depth (t cm) (see Fig. 5). The heat conduction sheet
between the concrete plate and the concrete structure allows the
attachable specimen to be thermally integrated with the concrete
structure. If this simulated damage can be detected by the
infrared camera, then the temperature condition is appropriate
for detecting actual damage at a similar depth. For example, to
enable the detection of floating with a depth of 3 cm, t can be
set as 3 cm. An example of the detection of a simulated cavity
is shown in Fig. 6. The appearance of the cavity with a depth
of 3 cm that cannot be determined from a visible image can be
determined by the temperature difference in the central section
when looking at the infrared image.

In addition, to confirm whether the thermal conductive sheets
are really functioning to form a thermally integrated structure,
we attached the attachable specimen to the bridge and measured
the temperature. On good days, when the diurnal temperature
range was ≥7 °C, temperature measurements were conducted
every hour of the lower surface of the concrete bridge slab,
areas 5-cm below the lower surface of the slab, the Stevenson
screen installed around the bridge abutment, and the sound area
of the attachable specimen. Fig. 5(a) shows the temperature
measurement position of the attachable specimen, and Fig. 7

Fig. 7. Attachable specimen verification results.

shows the measurement results. The temperature of the lower
surface of the concrete bridge slab and that of the sound area of
the attachable specimen showed the same transition, indicating
that the concrete bridge and attachable specimen were thermally
integrated. After confirming that the concrete structure is in an
appropriate thermal environment using the attachable specimen,
internal damage can be detected from thermal images. In the next
section, a method to select which of the detected temperature
irregularities are due to floating or delamination by machine
learning is presented.

III. METHOD FOR DETECTING DAMAGE USING MACHINE

LEARNING

The infrared thermography method has the problem of miss-
ing or incorrectly detecting floating and delamination when the
inspector manually evaluates these from infrared images. To
resolve this issue, we constructed a system in which floating
and delamination in infrared images can be automatically and
accurately detected using machine learning.

A. Data Collection

In order to improve the accuracy of a classifier developed by
machine learning methods, it is necessary to train it using a large
amount of data obtained in various environments. However,
there is a limitation to the amount of data that can be collected by
our institution alone, so we have built a cloud server, as shown in
Fig. 8, which is a system for collecting data from users who have
performed inspections in various environments. This improves
the accuracy of the system, which is of great benefit to the users.
The details of the data collection procedure are as follows.

1) Upload the infrared image to the cloud server.
2) The cloud server analyzes the image and returns the

results to the user.
3) Whether the answers given by the system are really

correct will be revealed during detailed inspections and
repairs. The results are returned to the cloud server.

4) The classifier is periodically retrained using the newly
stored results in the cloud server to improve its accuracy.

This system is frequently used by the Nippon Expressway
Company, which manages most of the expressways in Japan, and
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Fig. 8. Link between cloud server and user.

the Honshu–Shikoku Bridge Expressway, which manages many
long-span bridges, so data are collected at various locations in
various environments. Until now, a total of 4139 sets of data have
been collected from reinforced concrete bridges, steel bridges,
and box girder bridges.

B. Detection of Floating and Delamination Using
Machine Learning

1) Overview: In this section, we describe a method for devel-
oping a classifier for detecting floating and delamination from
the obtained infrared images using machine learning. Even if a
thermal irregularity is discovered in the infrared image, it does
not necessarily mean that the area has floating or delamination
damage. For example, on the surface of concrete structures, free
lime adhesion is generated by rainwater infiltration, and un-
evenness created during construction, which causes temperature
irregularities. Therefore, machine learning is used to determine
whether the cause of the temperature irregularity is floating or
delamination, or something else. Table II shows the factors that
cause temperature irregularities and gives a comparison between
visible and infrared images in each case. The details of each
factor are described in the next section.

2) Factors Causing Temperature Unevenness:
a) Floating Area: A floating area is a place where an

abnormal noise can be heard when the area is struck with an
inspection hammer, although no concrete fragments fall off. As
shown in Table II, although these floating areas are difficult to
discern from visible images, the temperature irregularities can
be confirmed from infrared images.

b) Delamination Area: A delaminated area is an area
where concrete fragments fall off when the location is struck with
an inspection hammer. Although the appearance of the infrared
image is different from that of the floating area, clear temperature
irregularities can also be observed.

c) Adhered Slag: Slag adhering to formwork joints dur-
ing concrete casting is 2–5-mm thick, so it can be clearly detected
by infrared thermography as elongated temperature changes
along the joints. The shape of the slag is clearly different from
that of the floating area and the delamination area.

TABLE II
FACTORS CAUSING TEMPERATURE IRREGULARITIES

d) Foreign Substances: If foreign substances such as
wood fragments, and other, enter the cover concrete, they can
be detected as temperature irregularities from infrared images.
The image in Table II shows an area in which wooden fragments
have infiltrated. As with the adhered slag, the shape of foreign
substances differs from the floating area and the delamination
area.

e) Repair Marks: When concrete is broken, it is repaired
with a material such as nonshrinking mortar. Since the thermal
conductivity of the repair material is generally different from that
of the concrete, a temperature irregularity occurs. The figure in
Table II shows an example of temperature irregularities at the
site of a cross-sectional repair. In this case, a rectangular shape
is often detected.

f) Free Lime: When free lime adheres to the concrete
surface, it is detected as a peculiar temperature irregularity. This
is due to the fact that the reflectance and thermal conductivity of
the free lime are different from those of the sound concrete, and
that there is space between the free lime and the concrete. The
figure in Table II shows a case with free lime of approximately
t = 1 mm.
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g) Sound Area: This is a case in which temperature
irregularities appear in a sound section. This may happen for
example, if the concrete is wet or dirty, which changes the solar
energy absorption rate. Table II shows some examples of this.

C. Classification Based on Machine Learning

Here, cases (1)–(7) are classified using a machine learning
technique. As a result of trying various methods by trial and error,
we found that the most accurate method was a rather classical
one, which is to quadratize the infrared image and then classify
it by LightGBM [17] using shape features. Note that the authors
have been actively conducting research on damage detection
and evaluation using deep learning [18], [19], and also tried to
use methods such as YOLOv5 in this study, but were unable
to obtain sufficient accuracy. This may be due to the fact that
the amount of infrared image data was still not sufficient for
YOLOv5 and other deep learning methods to find features by
themselves. Although this may be resolvable by accumulating
data in future, we will not use it in this article. On the other hand,
the method proposed in this study is considered to be sufficiently
accurate even with the amount of data prepared in this study by
setting the shape features to be focused on.

First, we perform quadration. As a preprocessing step, we
first calculate the difference from the average value of the
surrounding images using the following formula:

Ia (p, q) = Ib (p, q)− 1

2(n+ 1)2

n∑

l=−n

n∑

k=−n

Ib (p+ k, q + l)

(1)
where p and q denote the position of the target pixel, Ia denotes
the image after correction, and Ib denotes the image before the
correction. We set this Ia threshold value to 0.12 °C, 0.08 °C, and
0.04 °C, respectively, and perform quadration. In the following
figures, the area above 0.12 °C is red, the area between 0.08 °C
and 0.12 °C is yellow, the area between 0.04 °C and 0.08 °C
is blue, and the area below 0.04 °C is colorless. Examples
of quadratized infrared images for each of the damage types
shown in Tables II and III. The figures in Table III, which show
different aspects of each damage type, suggest that the shape and
location of these red, yellow, and blue regions are important for
damage classification. For example, if the red region is far from
the center of the entire region, the possibility of delamination
increases. Given this, it is expected that the distance between the
centers of gravity of the red, yellow, and blue areas may function
as effective feature values for classification. As shown in the
schematic diagram in Fig. 9, there are three distances between
the centers of gravity, namely between the red and yellow areas
(dRY), between the red and blue areas (dRB), and between the
yellow and blue areas (dYB).

In addition, the shapes of the red, yellow, and blue areas are
also important. In particular, the occupancy rate, complexity,
and circularity promise to function as means of judging the
infiltration of foreign substances and repair marks; therefore,
they have been included as feature values in this study.

occupancy ratei =
Si

hi × wi
(i = R,R+ Y,R+ Y +B)

TABLE III
TREND OF QUADRATIZED INFRARED IMAGES FOR EACH DAMAGE

Fig. 9. Schematic showing calculation of shape feature values for a
quadrated image.

complexityi =
Li

Si
(i = R,R+ Y,R+ Y +B)

circularityi =
4πSi

Li
2 (i = R,R+ Y,R+ Y +B). (2)

In (2), L is the perimeter length, S is the area, h is the height,
and w is the width. In addition, the subscripts R, R + Y, and R +
Y + B indicate the red area, the combined red and yellow areas,
and the combined red, yellow, and blue areas, respectively. In
other words, we can acquire a total of 3 × 3 = 9 feature values
from (2).

In addition, the co-occurrence matrix [20], which is another
texture analysis method that can quantify the light and shade
changes in an image was used. As shown in Fig. 10, the method
calculates a probability matrix whose elements are the probabil-
ities Pδ = (ci, cj) that the pixel value of a point at a distance of
a certain displacement δ = (r, θ) from a point with pixel value
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Fig. 10. Relationship between two points on the co-occurrence matrix.

ci is cj. From this matrix, it is known that several features can
be calculated.

Here, in particular, we will calculate a total of four feature val-
ues, namely variance, sum average, sum variance, and contrast,
as defined in (3). Variance represents the size of the distribution
of the image as a whole, so it can be used to evaluate the disparity
between light and darkness. Because the sum average is the sum
of the pixel value changes of the two points, k, multiplied by
the probability of the case, the value of sum average is larger
for images with large pixel value changes. Sum variance is the
square of the difference between k and the sum average, so this
value will be small in a uniform image. Additionally, contrast
evaluates the local variance in light and darkness in the image.
Here, as for the damage classification, change and disparity in
the light and darkness are considered to be important variables;
thus, it is reasonable that these should be used as feature values.

Variance =
n−1∑

i=0

n−1∑

j=0

(1 − μx)
2Pδ (i, j)

Sum average =

2n−2∑

k=0

kPx+y (k)

Sum Variance = (k − Sum average)2Px+y (k)

Contrast =

n−1∑

k=0

k2Px−y (k). (3)

Here,

μx =
n−1∑

i=0

(iPδ (i, j))

Px+y (k) =

n−1∑

i=0

n−1∑

j=0

Pδ (i, j) where i+ j = k

Px−y (k) =

n−1∑

i=0

n−1∑

j=0

Pδ (i, j) where |i− j| = k.

In this study, r in δ = (r, θ) was set to two patterns 1 or 2, and
θ was set to eight patterns 0°, 45°, 90°, 135°, 180°, 225°, 270°,
and 315°, then the mean value using (3) for each of the values
of r and θ was set as the feature value. In other words, there
are four feature values (variance, sum average, sum variance,
and contrast) obtained from the co-occurrence matrix in (3).

TABLE IV
PARAMETERS USED IN LIGHTGBM

TABLE V
ANALYSIS RESULTS (7 CLASSES)

There are other known features of the co-occurrence matrix,
such as angular second moment, correlation, and difference
entropy. However, as a result of exhaustive multiple comparisons
using the Tukey–Kramer method, we decided not to use any of
these other features, as they did not have a significant impact on
improving accuracy.

From these obtained 16 features, classification was performed
by the classifier trained using the supervised machine learning
method. In this study, we used LightGBM, which is a gradient-
boosting framework that uses tree-based learning algorithms
[17]. LightGBM is also known to have the following merits:
fast training speed, high efficiency, low memory usage, high
accuracy, and the ability to handle large-scale data. Table IV
shows the list of LightGBM parameters that were used in this
study. Their details are described in [21]. However, although
we examined the effect of these parameters on the accuracy, we
found that doubling or halving the values did not significantly
affect the results.

D. Analysis Results and Implementation

The analysis results using this method are shown in Table V.
Here, the analysis performs leave-one-out cross validation. This
is a validation method that trains all but one datum, and the
prediction is made for that one datum. The process was repeated
until the rest of the overall dataset was trained.

As can be seen from Table V, the accuracy of 70.0%
(2899/4139) was obtained. It may appear that the accuracy is
not very high. However, if we look at Table V, there are many
mistakes that are not particularly serious. For example, there are
many cases in which (6) free lime and (7) sound areas are mis-
taken but if the objective is to detect floating and delamination
from infrared images, these mistakes do not represent a major
problem. Therefore, Table VI shows the confusion matrix of a
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TABLE VI
ANALYSIS RESULTS (2 CLASSES)

TABLE VII
FLOATING AND DELAMINATION DETECTION ORDER

TABLE VIII
NUMBER OF MISJUDGMENTS AS FLOATING OR DELAMINATION

summary of (1) and (2), which we wish to detect, and the others,
i.e., (3)–(7). By doing this, we can see that the high accuracy of
93.4% (3864/4139) was achieved.

However, on the other hand, there are a certain number of
cases that are judged to be sound despite the fact that there is
actually floating or delamination (101/474). When considering
the goal of preventing concrete fragments from falling, it is
necessary to keep to a minimum the cases in which actual
damage is overlooked. On the other hand, judging damage to
have occurred even though it has not is not a major problem
compared to oversight. Therefore, after finding the top three
cases, we found the probability of these occurring and presented
them to the user. By doing this, it was possible to alert the
inspectors to damage that was occurring, based on the situation.

In case there is actual floating and delamination, the proba-
bility of the first candidate being output by LightGBM is 78.7%
(373/474). However, when we examined the results thoroughly,
we found that floating and delamination were evaluated as the
second candidate in many cases. Table VII shows the number of
candidates for which floating and delamination are evaluated. As
shown in the table, 98.9% (469/474) of the samples are included
in the top two and 100% in the top three, indicating that the
method demonstrates sufficient performance as a floating and
delamination detection system to prevent floating and delami-
nation from being overlooked. Table VIII shows the results of
misjudgments such as floating and delamination, even though
the correct answers are (3)–(7). Although there are few results
that are incorrectly identified as the first candidate (66/3665 =
1.8% for floating, 108/3665 = 2.9% for delamination), there
are many misjudgments when considering the first through
third candidates together (826/3665 = 22.5% for floating and

Fig. 11. Example of automatic detection results. From the left side,
respectively, these are visual images, infrared images, and quadratized
infrared images. The top three classification results are listed below
each image. (a) Detection (1): Floating: 97.8%, Delamination: 1.2%,
Free lime: 0.8%. (b) Detection (1): Free lime: 72.3%, Repair marks:
21.4%, Sound area: 6.3% Detection (2): Delamination: 82.1%, Free
lime: 11.3%, Sound area: 6.1% Detection (3): Delamination: 91.3%,
Free lime: 7.9%, Floating: 0.5%. (c) Detection (1): Repair marks: 41.2%,
Delamination: 37.9%, Sound area: 21.0% Detection (2): Delamination:
88.0%, Free lime: 7.1%, Repair marks: 4.0% Detection (3): Delamina-
tion: 42.9%, Sound area: 39.4%, Repair marks: 17.9%. (d) Detection (1):
Free lime: 72.4%, Delamination: 20.1%, Floating: 4.3%. (e) Detection
(1): Sound area: 98.1%, Adhered slag: 1.1%, Repair marks: 0.8%.

1295/3665 = 35.3% for delamination), and there is still room
for improvement. However, from the viewpoint of preventing
serious accidents, if the number of overlooking is small, as
shown in Table VII, the method is worthwhile even if there are
a certain number of over detections, as shown in Table VIII.

Fig. 11 shows an example of the analysis results. From the
left side, respectively, these are visual images, infrared images,
and quadratized infrared images. Fig. 11(a) shows the result of
detecting floating as the first rank. The infrared image clearly
shows the existence of floating, and the detailed investigation
showed that it existed. Fig. 11(b) shows a case where there
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Fig. 12. Photographs taken during a bridge inspection using the de-
veloped system and the monitor displayed on the tablet. Note that the
evaluation results were originally displayed in Japanese, but for this
figure, they will be translated to English.

are three temperature irregularities represented by (1)–(3) in
the image, where (1) was classified as free lime, and (2) and
(3) as delamination. The results of the detailed investigation
showed that all of these were correct. Fig. 11(c) also shows
three temperature irregularities indicated as (1)–(3) in the image,
and the delamination is classified as second, first, and first, re-
spectively. According to the detailed investigation, delamination
existed in all positions (1)–(3). In (1), the delamination was
classified as second place, but the inspector was able to take
appropriate action because it was clear from the visible image
that the repair marks classified as the first place did not exist.
Fig. 11(d) shows a case in which free lime is in first place,
whereas Fig. 11(e) shows an example in which sound areas
are in first place. Detailed investigations later proved that both
results were correct. It is difficult for humans to classify these
damage types from infrared images, indicating that the automatic
detection method employing machine learning developed in this
study works appropriately.

In addition, we implemented a system for site inspections
by combining a tablet that included this analysis program with
an infrared camera. Fig. 12 shows an image of an inspection
that used this system and an example of the infrared image and
analysis results displayed on the monitor. As shown in the figure,
the system displayed the damage in a very easy-to-understand
manner, and as a result of taking countermeasures based on the
results, we have been able to prevent accidents involving the
spalling of concrete fragments.

IV. CONCLUSION

In this article, we established a method for automatically
detecting floating and delamination of concrete structures us-
ing infrared thermography. We accomplished this through an
investigation of the required performance of an infrared camera,
development of an attachable specimen to understand the ther-
mal condition, and the development of a method for detecting
damage automatically and accurately using LightGBM. This
novel method has great significance even from a practical point
of view; it will fundamentally change the inspection work itself
and will contribute greatly to ensuring the safety of concrete
structures. In order to collect a large amount of data, the system
was configured to use a cloud server, which also contributed to
improving the detection accuracy. This system has been used

in Japan and the USA, but no case of overlooked damage has
been reported so far, and this is supporting evidence of its high
accuracy.

Future tasks are described as follows. This study dealt with
floating and delamination of concrete, however, since civil en-
gineering structures frequently use not only concrete but also
steel members, we would like to link the developed method in
this study to the detection of damage in steel members. For
example, the authors have shown in [22]–[25] that corrosion
and fatigue of steel members have a significant effect on the
safety of structures, but an effective method to evaluate them
from a distance has not been established, which is a topic that
needs to be solved. Since corrosion and fatigue may affect the
temperature distribution, our method using infrared images may
be useful to detect them. In addition, currently, we are able
to detect floating and delamination with 98.9% accuracy by
including the second candidate, and 100% accuracy by including
the third candidate; however, we would really like to detect them
with high accuracy as the first candidate. For this purpose, it is
still necessary to use the framework of deep learning, which
automatically generates a large number of features, instead of
manually determining the features as in this study. For this
reason, we are currently collecting bridge inspection data in a
wide variety of environments. In addition to this, we are also
considering including visible images in the analysis. Consider-
ing that visible images also contain various types of information,
we expect that simultaneous analysis of infrared and visible
images will improve the accuracy and prevent errors such as
(1) in Fig. 11(c).
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