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Robust Deep Learning-Based Diagnosis of
Mixed Faults in Rotating Machinery

Siyuan Chen, Yuquan Meng, Haichuan Tang , Yin Tian, Niao He , and Chenhui Shao

Abstract—Fault diagnosis for rolling elements in rotat-
ing machinery persistently receives high research interest
due to the said machinery’s prevalence in a broad range
of applications. State-of-the-art methods in such setups
focus on effective identification of faults that usually in-
volve a single component while rejecting noise from lim-
ited sources. This article studies the data-based diagnosis
of mixed faults coming from multiple components with an
emphasis on model robustness against a wide spectrum of
external perturbation. A dataset is collected on a rotor and
bearing system by varying the levels and types of faults
in both the rotor and bearing, which results in 48 machine
health conditions. A duplet classifier is developed by com-
bining two 1-D convolutional neural networks (CNNs) that
are responsible for the diagnosis of the rotor and bearing
faults, respectively. Experimental results show that the pro-
posed classifier can reliably identify the onset and nature
of mixed faults. In addition, one-vs-all classifiers are built
using the features generated by the developed 1-D CNNs
as predictors to recognize previously unlearned fault types.
The effectiveness of such classifiers is demonstrated using
data collected from four new fault types. Finally, the robust-
ness and ability to reject external perturbation of the duplet
classification model are analyzed using kernel density es-
timation. The code for the proposed classifiers is available
at https://github.com/siyuanc2/machine-fault-diag.

Index Terms—Condition monitoring, convolutional neu-
ral network (CNN), deep learning, fault diagnosis, Ker-
nel density estimation (KDE), model robustness, rotating
machinery, rotor and bearing systems.

I. INTRODUCTION

ROTATING machinery is an integral component in a broad
range of applications, including motors, gearboxes, and
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generators. Ensuring optimal operating conditions for these
components is essential for safety, efficiency, economy, and
comfort considerations. Although sophisticated maintenance
strategies exist for maintaining safe operation of many aforesaid
applications, it is desirable to incorporate real-time, predictive
monitoring methods to detect the onset, duration, possible cause
of mechanical faults and perform countermeasures as fast as
possible.

Detection of rotating machinery faults is most commonly
performed by analyzing vibration signals [1], [2], as most
mechanical faults, including eccentric rotor, bearing fault, and
misalignment, result in an imbalance in the rotating element that
materializes as shock response in the measured vibration signals.
In many cases, the informative fault signal component may well
be buried in the noise signal [3] and additional measures are
required to extract useful information from the noisy source
signal.

Popular signal processing techniques, ranging from time-
domain statistical figures to frequency-domain methods like fast
Fourier transform (FFT) [4], discrete wavelet transform [5], and
higher-order spectrum [6], have been applied to the monitoring
of mechanical faults in various rolling machinery with satisfac-
tory performance. In many cases, the abovementioned methods
are developed for a specific physical setup and do not give
further insight into the root cause of the problem. During the
last decade, there has been a rising interest in model-based fault
detection techniques [7]. Maki and Loparo [8] applied feed-
forward neural networks to a plant model and demonstrated the
model’s ability to operate on generic industrial process records.
Frank and Köppen-Seliger [9] evaluated the features generated
by neural networks using fuzzy logic. Bachschmid et al. [10]
studied model-based diagnosis of multiple present faults by the
means of least-square fitting in the frequency domain. Wang
et al. [11] developed a novel variational mode decomposition
method based on particle swarm optimization.

More recent works improve the performance of machinery
fault diagnosis systems in the form of expert systems engineered
with or without domain knowledge. Zhou et al. [12] examined
a rule-based expert system for rotor machinery fault diagnosis
that operates on a fault pattern library constructed with various
hand-engineered features including common rotor fault patterns,
root mean square values, peak-to-peak values, and FFT re-
sponses. Recent implementations of expert systems make use of
Bayesian networks [13], support vector machines [14], random
forest classifiers [15], and deep belief networks that operate
on images converted from vibration signals [16] requiring less
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domain knowledge specific to the physical setup. Sun et al. [17]
introduced kernel sparse locally linear embedding that reduces
data dimensionality by mapping the data to a low-dimensional
manifold.

With the vast success of neural networks in tasks including
image classification and semantic segmentation, many recent
works focus on applying state-of-the-art neural network archi-
tectures on signal fault diagnosis [18]. Zhao et al. [19] applied a
number of advanced neural network architectures including fire-
fly artificial neural network, particle swarm optimization neural
network, and genetic artificial neural network, and achieved
diagnosis accuracy of more than 98% on rotor fault types.
Additional works explored the effectiveness of generalized de-
modulation transform in adapting to varying speed of the rotating
element [20]. Wang et al. [21] tackled the same problem by intro-
ducing multiscale analysis windows from sensor signals. Most
recent works that employ neural networks for fault detections
focus on the general applicability of data-driven models over a
wide range of data or usage scenarios [22] and the ability of per-
forming transfer learning based on existing models [23]. Others
explore ensemble learning [24] and stacked sparse denoising
autoencoders [25] for bearing fault detection, obtaining salient
performance in their respective tasks.

At least two research gaps exist in the fault diagnosis of
rotating machinery. First, the aforementioned methods only con-
sidered faults of one component, whereas in real applications it is
possible that mixed faults in multiple components factor in the
measured signals. Moreover, whereas many works introduced
measures to passively reject noise and nonrelated factors such
as varying rotational speeds [20], [21], none of the reviewed
works actively evaluated the robustness of proposed methods
by testing them against strategically introduced interference or
perturbation signals. A robust model must reject a broader range
of noise originated from external sources like signal acquisition
process and varying operating conditions of the machinery, and it
is not to be assumed that no noise or perturbation is deliberately
introduced to disable the system. Such is especially true for
data-based models that operate more or less in a black-box
fashion, as it has been proven that most deep learning models are
vulnerable to external attacks [26]. It is also possible to strate-
gically engineer inputs to mislead the neural networks [26]. On
this front, it is necessary to evaluate the effect of perturbation, at
least those of a normally distributed nature, on the safety-critical
fault diagnosis models.

This article seeks to explore these areas by introducing a 1-D
CNN architecture for fault diagnosis under multiple mixed com-
ponent faults on a rotor/bearing fault simulator setup. A duplet
classification model is developed by combining two 1-D CNN
models, each independently responsible for identifying faults
from the bearing and the rotor. Experimental results suggest that
the duplet classifier can reliably identify each known component
fault cause with a combined accuracy of 95.93%. Using the
features generated by CNN models as predictors, linear models
are developed to distinguish unknown fault types from known
ones. The effectiveness of these models is demonstrated experi-
mentally. Additionally, we employ kernel density estimation to
investigate the probability distribution of the vibration signals

Fig. 1. Overall structure of the proposed rotor and bearing system fault
identification model. Inference is performed by evaluating preprocessed
data with the two independent fault diagnosis models before the decision
is drawn.

and examine the robustness of the proposed model, conclud-
ing that the rotor fault detection model is more robust against
Gaussian noise than its rotor fault detecting counterpart.

The rest of this article is organized as follows. In Section II, the
proposed 1-D CNN architecture is introduced along with details
on the collection and processing of the experimental data. In
Section III, the model performance on the dataset with mixed
faults is examined. In Section IV, we propose an approach to
recognize unknown mechanical faults and recognize robustness
of the proposed classifiers against external purturbation in the
form of Gaussian noise. Finally, Section V concludes this article.

II. METHODOLOGY

Though CNN allows for the learning of fault patterns with-
out extensive domain knowledge, examining the nature of the
fault is beneficial for gaining insight and further improving
the model performance. In this section, we first present the
proposed architecture of the 1-D CNN that is used to analyze
the vibration signals. The data acquisition process, experimental
setup, and data preprocessing are then detailed. Fig. 1 illustrates
the proposed processing flow.

A. 1-D CNN

As a nonsupervised feature selection method, deep learning
has been widely applied in the field of mechanical fault diagno-
sis [27], [28]. In many cases, due to limited data availability and
the characteristics of input signals, it is not feasible to apply deep
networks and models frequently settle at local optima [19]. In-
spired by demonstrated success of CNN in many image-related
tasks, some recent efforts sought to operate CNN on vibration
signals and FFT responses visualized as images [29]. However,
this formulation might prevent the CNN to properly extract
desired features from the input. For instance, the conversion
of time-domain or frequency-domain profiles into 2-D images
makes it necessary to divide a continuous signal into fixed-length
segments so that the information can be represented as 2-D
arrays. The 2-D filters then consider values across rows that
are not adjacent to each other in time or frequency domain. As
a result, the 2-D CNN might learn periodic features that are not
present in the input signal, but are solely a result of reshaping
signal to fit in input dimensions.

Instead of applying 2-D filters to 1-D signal of interest,
we employed 1-D convolution layers for the proposed neural
network architecture. As is suggested by the name, this operation
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TABLE I
1-D CNN STRUCTURE FOR THE BEARING FAULT DIAGNOSIS

TABLE II
1-D CNN STRUCTURE FOR THE ROTOR FAULT DIAGNOSIS

utilizes 1-D convolution kernels. Given an n× 1 vector input
x and an m× 1 convolution kernel w, the ith element of the
convolution output (x ∗ w) can be expressed as follows:

(x ∗ w)i =
m∑
j=1

wjx(i−j+m/2). (1)

Readers are referred to classic references for details on more
commonly used CNN structures, including but are not limited
to, ReLu activation layers [30] and batch normalization [31].

We hereby propose the use of 1-D CNN with filter dimensions
3 × 1 and 5 × 1. In this way, the 1-D convolution kernels will
only operate on contiguous information in time or frequency
domain. Considering that traces of fault in different components
of the system may not necessarily be related to each other, we
employ separate models each responsible to identify possible
faults in one component. In this case, one model is dedicated to
the detection of rotor faults and the other to bearing faults.

Based on the assumption that bearing fault state can be in-
dependent from that of the rotor’s, joint fault diagnosis can be
performed by simply bundling the two aforementioned models
in parallel as a duplet classifier. Specifically, an m-class bearing
state classifier and an n-class classifier can be combined to
output in m× n result space with a look-up table. It is demon-
strated below that in this layout, relatively simple two-layer or
three-layer 1-D CNN architectures are capable of identifying
the presence of various mechanical faults from the input signal.
As a comparison, we have also trained a separate m× n-class
classifier. Details on the model architecture are presented in
Tables I and II.

B. Data

A machine fault dataset was used to verify the effectiveness
of the proposed CNN architectures and the duplet classifier. The
dataset was collected on a specialized machinery fault simulator
(MFS) manufactured by Spectra Quest, Inc. [32], as shown in
Fig 2. The particular model used in this article, named MFS-LT,

Fig. 2. MFS-LT MFS [32] used for data collection. Motor (A), bearings
(B), rotor A (C), and rotor B (D) are labeled.

is equipped with two rotor disks and a shaft powered by an
electric motor. The setup can perform controlled simulations on
various mechanical fault conditions associated with rotor and
bearing.

Unlike a few existing works such as [13] and [19] that study
the identification of only rotor faults, we designed various com-
binations of both rotor and bearing faults, i.e., mixed faults,
which resulted in a much more challenging diagnosis task.
Details of the faults considered are provided below.

Rotor Faults: The MFS has two rotors where unbalanced rotor
conditions can be simulated by attaching additional standard
weights to the rotor plates. For simplicity, the left and right rotors
are referred to as rotor A and rotor B, respectively. We simulated
five fault conditions indicated by the location and number of
additional weights installed to the two rotor elements, described
as follows:

1) Normal condition: No additional weights were installed
on either of the rotors. By including additional normal
states to the collected data, it is desired to confirm that
apart from classifying the various error states, the diag-
nosis model can also reliably distinguish any fault states
from the normal state.

2) One weight on rotor A, one weight on rotor B, aligned
(A1B1A): In this configuration, each rotor was fitted with
an weight and the two weights were aligned to the same
angular position.

3) One weight on rotor A, one weight on rotor B, opposite
(A1B1O): Each rotor was fitted with a weight in opposite
angular positions relative to the shaft.

4) Two weights on rotor A, adjacent (A2A): Two weights
were installed on rotor A as close as possible. It is ex-
pected that this configuration will yield a similar vibration
profile with configuration “A1B1A.”

5) Two weights on rotor A, opposite (A2O): Two weights
were installed on rotor A in positions symmetric about
the shaft. It is expected that this configuration will yield
a similar vibration profile with configuration “A1B1O”
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and should generally result in lower magnitudes than the
“A1B1A” and “A2A” configurations.

6) Three weights on rotor A, adjacent (A3A): Three weights
were installed on rotor A as close to each other as possible.
It is expected that this configuration will yield a similar
vibration profile with configurations “A1B1A” and “A2A”
but with higher magnitude.

Four additional fault states for the rotor are also simulated but
are excluded from the following training process.

1) One weight on rotor A, large eccentricity (A1-L): Only
one weight was installed on rotor A, with its location as far
from the shaft as possible to create maximum unbalanced
condition.

2) One weight on rotor A, small eccentricity (A1-S): Similar
to “A1-L,” only that the weight was installed close to the
shaft for a less unbalanced condition.

3) One weight on rotor B, large eccentricity (B1-L).
4) One weight on rotor B, small eccentricity (B1-S).

These additional fault states are excluded from train-
ing data and are used exclusively for evaluating model ro-
bustness against unknown fault types, as later explained in
Section IV.

Bearing Faults: The two rotors on the MFS are installed
on a shaft by rigid connection, which is then mounted on the
test bed with two bearings. The MFS provides a few bearings
with mechanical faults, which help to simulate various bearing
fault conditions along with rotor fault conditions. In this work,
seven bearing conditions along with a normal bearing condition
were simulated. Details of the simulated bearing conditions are
provided as follows:

1) Normal condition: No mechanical fault associated with
bearings is present. This state is to be used with various
fault states of the rotor to verify the model’s ability to
identify the presence of multiple faulty components in
the input signal.

2) Bearing ball wear: Four levels of wearing in the bearing’s
rolling element: slight, light, moderate, and severe, have
been simulated on the test bed. The wearing levels are
referred to as level 1–4 correspondingly.

3) Inner/outer race: Damage to the inner and outer race of
the bearing.

4) Mixed: Combined bearing ball wear and damage to inner
and outer race.

The abovementioned eight classes of bearing and six classes
of rotor mechanical faults yield a combined 48-class dataset,
with the detailed labeling scheme presented in Table III.

The dataset consists of two channels collected from sensors
installed on the MFS test bed. Channel 1 is pulse width mod-
ulation (PWM) signal collected from a tachometer from which
the rotating speed of the shaft can be determined. Channel 2 is
collected from an accelerometer installed on the far end of the
shaft to depict lateral vibrations.

All data were collected with a sampling rate of 1.28 kHz. A
total of 82 h worth of data was collected, resulting in a dataset
encompassing 48 health conditions, including one normal state
and 47 mechanical fault combinations between rotor and bearing
faults. The dataset were collected in equal portions of five speed

TABLE III
LABELING SCHEME FOR THE 48-CLASS DATASET

setting: 12 Hz, 14 Hz, 16 Hz, 18 Hz, and 20 Hz to account for
variations resulted from different rotational speeds of the shaft.

Although the dataset was collected in five levels of rotating
speed, the data were processed into a single rotating speed,
10 Hz, by linear interpolation. This conversion is meant to
adapt the model to different operating conditions and has been
empirically proved to improve the model’s performance in
Section III.

C. Unknown Fault Classification

In real life, the fault types of a rotor and bearing system can
easily exceed the aforementioned 47 types. To identify faults
unknown to the dataset’s 48 classes, an unknown fault classifier
based on the duplet 1-D CNNs will be developed in Section IV.
In essence, if all the unknown faults can be grouped into a single
class known as the unknown fault, the problem can be formu-
lated as developing a classifier for 49 fault condition classes.
However, it is impossible to naïvely train a neural network for
the newly added class, as unknown fault conditions will not
appear in a dataset. A more realistic way is to develop a classifier
that determines whether the input data corresponds to a fault
condition known to us. To achieve this, 48 one-vs-all classifiers
are proposed in Section IV. Such one-vs-all discriminant can be
formulated as follows:

fi(x) =

{
1 if x ∈ Xi

0 otherwise
(2)

where x is a signal to be classified; Xi is a collection of possible
signals from a known machine condition i (or class i in general
terms).

Then unknown fault classifier is shown as follows:

F (x) = ∨48
i=1fi(x). (3)

Such a classifier outputs 1 if the input signal belongs to a known
class and 0 otherwise.

III. EXPERIMENTAL RESULTS

In this section, we present the performance of the proposed
1-D CNN architecture on the custom dataset. To demonstrate
the effectiveness of data interpolation and separated training of
bearing and rotor fault classifiers, we trained both separated and
48-class models and compare their performance on the test set.
The best models for bearing and rotor fault diagnosis were then
assembled to form a duplet classifier, while decision fusion is
made by the look-up table provided in Table III. Additionally,
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TABLE IV
BEST MODEL PERFORMANCE ON EACH VARIETY OF THE DATASET

TABLE V
CONFUSION MATRIX OF THE BEARING CNN MODEL

TABLE VI
CONFUSION MATRIX OF THE ROTOR CNN MODEL

the performance of the models on both interpolated and noninter-
polated data are compared. The results are presented in Table IV.
There models were trained using an 80-10-10 train-validation-
test split.

Overall, one can conclude that the 1-D CNN architecture
yields desirable performance on the dataset as it can classify the
rotor and bearing fault states with relatively simple two-layer and
three-layer structures. With carefully chosen hyperparameters
including dropout rate, learning rate decay, and proper weight
initialization, the rotor and bearing fault condition models
achieve testing accuracies of up to 97.0% and 98.90%, respec-
tively. Combining these models, and the bearing-rotor duplet
classification model yields 95.93% accuracy on the test dataset,
which consistently outperforms the 48-class model trained for
comparison. One can also conclude that converting the rotating
machinery data into uniform operating speed is a beneficial
measure, as interpolating accelerometer data according to the
rotational speed results in consistent performance improvements
across all model types shown in Table IV.

Failure Cases Analysis: Though both the bearing and rotor
CNN models in the duplet achieved high accuracy on the test
set, fail cases are highly concentrated in certain fault types and
prompts future improvement. Here, we examine the frequent
fail cases faced by the duplet model performance of the duplet
classifier on the test set is shown by confusion matrices presented
in Tables V and VI.

TABLE VII
FAILURE CASES THAT OCCURRED FOR MORE THAN TEN TIMES IN ROTOR

CONDITION TEST DATASET

The accuracy of the bearing fault classifier reached 98.9%,
almost all the test data were classified correctly. For the rotor
fault classifier, however, the errors are particularly concentrated
in a certain number of positions. Summarizing all errors that
occur for more than ten times yields Table VII .

Further inspection of Table VII suggests that the rotor CNN
model is most prune to the following two kinds of errors.

1) Confusion between states “Normal,” “A2O,” and
“A1B1O;”

2) Confusion between states “A1B1A,” “A2A,” and “A3A.”
We believe that the performance of the unbalanced rotor state

classifier may have been impacted by insufficient information
from the signal. Namely, the accelerometer was installed at the
end of the shaft and recorded only lateral acceleration only.
In this case, the vibration signal for “Normal,” “A2O,” and
“A1B1O” states may appear analogous, because in all three
cases, the additional weights, if any, were installed in a sym-
metric manner across from the shaft, whereas in the cases of
“A1B1A,” “A2A,” and “A3A” all the additional weights were
arranged in a highly unbalanced manner. The performance of
the rotor CNN classifier could be improved if inputs from
additional sensors strategically placed throughout the test bed
were available.

IV. DISCUSSION

It has been demonstrated in former sections that the proposed
duplet classifier achieves salient performance for the task of
rotor and bearing fault diagnosis. However, the proposed model
is trained on a 48-class dataset, which effectively limits it to
operating on these known fault types, despite that it is possible to
encounter new fault types that were not presented in the training
dataset in real-world applications. Moreover, it is not verified
that the model will survive deliberately introduced external
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noise and perturbation. This section focuses on these topics
and discusses the possibility of detecting unknown faults and
rejection to normally distributed noise.

A. Robustness Against Unknown Fault Types

A model that can identify previously unseen faults is highly
desirable. Here, we integrate the 1-D CNNs with principal
component analysis (PCA) in an effort to recognize unknown
fault types.

1) Problem Formulation and Proposed Method: In order to
separate known and unknown fault types, we set out to train one-
vs-all classifiers fi for each known fault types i for i = 0, . . ., 47,
as shown by (2). The following procedure is applied to train a
one-vs-all classifier for class i.

1) Train the duplet classifier to classify all known fault types.
2) Feed data x, which belongs to class i, to the neural

network, and obtain the output from intermediate layers as
an embedded vector yb = Gb(x) where Gb is effectively
the output of the second last convolutional layer of the
bearing fault CNN model. yb has a length of 64 which
matches with the output size of the corresponding layer.

3) Perform PCA transformation and acquire the threshold
h
(j)
b,i , which defines a class-distinguishing hyperplane,

from PC scores with nearly zero PC coefficients (here,
they are the 5th PC to the 64th PC), i.e.,

|Pb,i(yb)|(j) ≤ h
(j)
b,i , j = 5, . . ., 64 (4)

where Pb,i is the PCA transformation trained for class i,

h
(j)
b,i is the threshold such that 97% of jth PC score in

class i lies within a distance of h(j)
b,i .

4) Repeat (2)–(3) for rotor CNN and acquire Pr,i and h
(j)
r,i .

In this fashion, the trained network is considered as a means of
feature extraction function g that nonlinearly transforms the data
from data space to a refined feature space. Given the fact that the
data in same class should have similar governing hyperparame-
ters, the PCA model effectively reveals those hyperparameters
and rank them in order. PC with a smaller coefficient means
the feature has less variance, hence a better approximation of
hyperparameters. To account for input noise and other possible
perturbations, the threshold �hi has been introduced, shown in
Fig. 3. In this article, fi is taken as

fi(x) = 1|(Pl,i◦Gl)(x)|(j)≤h
(j)
l,i ,j=5,...,64;l=b,r

(5)

where g gives the output of the second last convolutional layer
of the bearing/rotor fault CNN models. Due to the nature of
convolution kernels, a CNN is intrinsically invariant under input
translation. Therefore, fi is guaranteed to be invariant under
translation of input data in time. Repeat the procedure for 48
classes, namely, i = 0, . . ., 47, and we have acquired 48 one-
vs-all classifiers that will distinguish each of the 48 classes
with others. If all 48 one-vs-all classifiers output 0, the input
is considered to belong to an unknown class.

2) Prediction Algorithm: The following algorithm is pro-
posed to generate a label for an input data:

Fig. 3. PC scores of “Normal” state data by the PC transformation
trained from the same state. Threshold is determined by the PCs with
small variance.

TABLE VIII
CLASSIFICATION ACCURACY OF PROPOSED ALGORITHM

1) Feed the data into each one-vs-all classifier fi and obtain
their decisions (0 or 1).

2) Examine the output from all 48 classifiers:
a) If at least one classifier outputs true (i.e., 1), then:

i) If classifier labelled “Normal” outputs false (0),
then feed the original data into the duplet CNN
model. Output the label with highest probability
excluding “Normal” class.

ii) Otherwise, feed the original data into the duplet
CNN model. Output the label with highest prob-
ability.

b) If none of the classifiers outputs true, then identify
the data as belonging to “Unknown Fault”.

Note that above algorithm will output one of the 48 known
state labels if the input data are recognized to belong to a known
fault condition. The lower bound of predicting the correct known
machine condition is given by

Pr(ĉf = k|k) ≥ 0.972 ×Pr(ĉCNN = k|k) (6)

where k is a class label of input data for one of the known
machine conditions, ĉCNN is the predicted label by the duplet
classifier, ĉf is the predicted label by the proposed algorithm
and 0.97 is the value chosen to determine the thresholds.

3) Performance Evaluation: To evaluate the performance of
the proposed hyperplane classifier, four data classes representing
new fault types are introduced with names “A1-L” “A1-S,”
“B1-L,” and “B1-S”, with detailed definitions available in Sec-
tion II.B. These four the 48 classes that were used to train the
original 1-D CNN models. Table VIII shows the classification
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Fig. 4. Performance of one-vs-all classifiers on all fault types. X-
axis represents 48 one-vs-all classifiers trained for each of the known
classes. Y-axis represents the fault type to be judged, including 48
known machine conditions and 4 unknown fault types.

accuracy of proposed algorithm against unknown data classes
and overall accuracy. The classifiers can identify unknown
classes with an overall accuracy of 88%, which is highly desir-
able and indicative that the proposed models are robust against
unknown fault types.

The classification accuracy of the one-vs-all classifiers and
proposed prediction algorithm is further visualized in Fig. 4
and Table VIII. One can observe that while the collection of
one-vs-all classifiers is robust against unknown fault types, it
achieves slightly lower performance than the duplet 1-D CNN
model on known machine conditions. There is a tradeoff between
recognizing unknown classes and maintaining high performance
for known machine conditions. However, equation (6) indicates
that the accuracy of the proposed model on known faults is
ensured by the duplet CNN model’s accuracy and the prede-
termined threshold and will not be significantly deteriorated by
the introduction of unknown fault detection.

In Fig. 4, diagonal entries of the confusion matrix represent
the accuracy of each one-vs-all classifier against their respective
known class. In this case, each entry has a value of 0.972, which
is dictated by the threshold predetermined during the training
process. At the same time, mis-classifications by individual
one-vs-all classifiers (off-diagonal entries) for known classes do
not have a decisive detrimental effect on the overall accuracy.
In fact, a lower accuracy of one-vs-all classifiers will increase
the overall accuracy, since for any known fault input, this will
make it more likely to be fed into the highly accurate duplet
CNN model that generates high-quality labels for known fault
types. On the other hand, all one-vs-all classifiers demonstrate
relatively high accuracy against unknown fault types, which
leads to high detection rate for unknown classes.

One may notice that a few areas of improvement exist for
the aforementioned collection of hyperplane classifiers. Firstly,

since the backbone bearing and rotor fault detection CNNs
provide embedding from data to feature space, the performance
of these CNNs greatly influence the performance of one-vs-all
classifiers. In this regard, improvements to the performance of
the backbone CNN are always desirable. Secondly, because there
is no guarantee that the learned embedding will convert data of
same classes into a high dimensional representation, replacing
the PCA method with a higher order, more expressive multivari-
ate polynomial that is aided by random sample consensus for
outlier rejection may bring significant improvement to model
performance.

B. Robustness Against Gaussian Noise

In this section, the robustness of the proposed 1-D CNN
classifiers against external noise and perturbation is assessed
by deliberately adding different levels of Gaussian noise to the
input signal, followed by analysis of the model robustness with
kernel density estimation (KDE).

Table IX summarizes the performance of the 1-D CNN models
after adding different levels of Gaussian noise to the raw signals.
Here, we denote the mean and standard deviation of raw data
as μ0, σ0, and the mean and standard deviation of the added
noise as με, σε, respectively. Under relatively small noise lev-
els, e.g., σε/σ0 = 0.0001, the bearing classifier retains a high
accuracy (greater than 90%), while the accuracy of the rotor
classifier declines dramatically to between 45% and 50%. Under
σε/σ0 = 2 or high noise levels, the bearing classifier maintains
an accuracy of around 77%, while the rotor classifier achieves
only approximately 20% accuracy.

To explain these observations, the input data are characterized
using KDE. KDE is a statistical technique that calculates a
probability density function (PDF) with derivatives of all orders,
where a kernel function is employed to interpolate the distribu-
tion density [33]. A typical estimator is expressed as

f̃ =
1
nb

n∑
i=1

K

(
x− xi

b

)
(7)

where b is predetermined bandwidth, n is the total number of
data points, xi is a data point, and K is the kernel function,
which can be uniform, Gaussian, Epanechnikov function, etc.
A preliminary analysis reveals that the temporal correlation
in the signals is weak. Therefore, we loosen the assumption
and assume that the signals are independent and identically
distributed random variables.

Fig. 5 shows the estimated PDFs of different fault types,
where the normal distribution is obtained based on the mean
and variance of the corresponding class. It can be concluded that
the distributions of rotor fault data can be well approximated by
normal distributions. Furthermore, it is revealed that rotor faults,
including A1B1A and A1B1O, do not alter the distribution
significantly, while bearing faults have a significant impact on
the distribution. Specifically, a higher bearing wear level leads
to increase in variance and deviation from the normal distribu-
tion. Bearing inner race fault data demonstrates a distribution
significantly different from the normal distribution. The same
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TABLE IX
CLASSIFICATION ACCURACY OF CNN CLASSIFIERS AFTER INTRODUCING GAUSSIAN NOISE TO RAW SIGNALS

Fig. 5. Comparison of PDFs that are estimated using KDE and normal distributions. (a) Rotor faults. (b) Bearing faults. (c) Mixed faults.

phenomenon occurs in mixed bearing fault type, where the
difference in distributions can be attributed to the bearing wear.

Since the bearing fault classes can be differentiated by ig-
noring the correlation between data points in different time, it
is reasonable to conclude the bearing fault classes are easier to
identify than rotor fault classes. By adding the Gaussian noise,
the difference between bearing fault classes is still significant
as seen in the corresponding PDF. Therefore, any classifier that
successfully captures the characteristics of signals from bearing
faults should be resilient to added Gaussian noise. However,
for rotor fault types, the distributions of the signals are largely
similar. To effectively identify each class, the classifier must

learn features that are more specific to the dataset, namely, the
correlation between data points must be accounted for. When
high levels of Gaussian noise is introduced to the input signals,
it may very likely alter the learned features, and consequently
impose a negative impact on the classification performance. In
conclusion, the rotor classifier is vulnerable to Gaussian noise.

V. CONCLUSION

A deep-learning-based approach was developed to diagnose
mixed faults from multiple components in rotating machinery.
A duplet classifier was established by assembling two 1-D CNN
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models that are responsible for classifying rotor and bearing fault
types, respectively. Experimental results show that the proposed
classifier can reliably identify the presence of 48 machine health
conditions that are combinations of eight bearing fault states and
six rotor fault states. Based on the developed 1-D CNN models,
one-vs-all classifiers were built to detect new, unlearned fault
types, and their effectiveness was experimentally demonstrated.
In addition, it was found that the bearing classifier is robust
to Gaussian noise but the rotor classifier is very sensitive to
Gaussian noise. A KDE-based analysis suggested that this is
due to the nature of the signal patterns. These findings indicated
that it is important to account for signal noises, which may
be introduced either unintentionally from the environment or
deliberately as a form of adversarial attacks, in the development
of safety-critical fault diagnosis methods.
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