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Run-Time Efficiency of Bilinear Model Predictive
Control Using Variational Methods, With
Applications to Hydronic Cooling

Michael B. Kane

Abstract—Effective real-time execution of nonlinear
model predictive control (NMPC) on embedded systems
is significantly dependent on the controller formulation.
This paper studies the effect of model structure and cost
functions on the computation time of scalar bilinear NMPC
using variational methods, with hydronic cooling applica-
tions. Two algebraically equivalent nonlinear model struc-
tures common in literature are primarily considered: a lin-
ear state equation with state-dependent control constraints
and a bilinear state equation with time-invariant rectangular
control constraints. Additionally, the effects of three cost
function formulations are also considered: minimum-time,
quadratic regulation, and efficient state constraints. High-
fidelity computer simulations, hardware-in-the-loop testing,
and experiments on a bench-scale hydronic cooling sys-
tem are used to study sources of computational complexity,
rates of convergence, initialization techniques, and overall
effectiveness of the different models and costs. These re-
sults suggest that NMPC with bilinear state equations, min-
imizing pump power and a one-sided quadratic state cost,
converges sufficiently fast and reliably. This presents an
attractive alternative to the traditionally constrained linear
quadratic regulator-based NMPC on embedded systems.

Index Terms—Bilinear system, control design, control-
affine system, microcontrollers, predictive control,
temperature control.

|. INTRODUCTION

tems, enabled by low-power microcontrollers and commu-
nication, is driving a shift toward an integrated cyber-physical

T HE control of ever more complex and interconnected sys-
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systems design paradigm [1]. Nonlinear model predictive con-
trol (NMPC) has proven its usefulness for many of these
constrained multi-physics control problems [2]. However, these
applications have been limited to systems with relatively slow
dynamics and/or expensive computational hardware [3]. For
systems with fast dynamics and/or cost constraints, the NMPC’s
online optimization may have excessive memory demands,
slower than real-time computation, or limited adaptability to
system parameter changes. This challenge is particularly appar-
ent for nonlinear systems, such as the scalar bilinear systems
(BLSs) considered here-in. This class of nonlinear dynamical
systems, also known as control-affine or bi-affine systems [4],
is characterized by a state equation

& (t) =ax (t)+ (bx (t) +bo)u(t) +g (1)

where the state x(t) and control u(t) are constrained to subsets
of R, a and b are strictly negative scalar constants, and by and g
are scalar constants that may take any real value.

BLSs model a variety of real-world plants. In semi-active
vibration control, a bilinearity is produced by dampers with
controllable viscosity [5]. In biological systems, enzyme con-
centration is a bilinear control input to metabolic processes [6].
Forced-air heating, ventilation, and air-conditioning (HVAC)
systems are bilinear with an air-flow control input and room
temperature state [7]. This paper is concerned with hydronic
heat transfer BLSs; specifically, the cooling of hot objects with
chilled water. This hydronic cooling control problem appears in
many industrial plants and HVAC systems.

The optimization of output and control trajectories for a con-
strained bilinear system is nonlinear. The solutions to which
are often nonanalytic, except for the minimum-time (MT) cost
formulation presented below. As such, linearization or other
suboptimal control strategies are often employed to improve
tractability. Analytical stabilizing and optimal feedback control
laws exist for subclasses of bilinear systems, e.g., those without
constraints [4], [8]. The passivity constraint and limited flow
in hydronic systems prevent the application of these analytical
control solutions to the problem at hand.

NMPC, capable of explicitly handling constraints and non-
linearities, has become a powerful tool for designing bilin-
ear control systems. Research in this field has provided valu-
able theory on convergence [9], stability [10], [11, p. 200],
applications [8], feedback linearization [12], [13], and design
tools [14]. The essential component of every NMPC is an algo-
rithm for optimizing open-loop (OL) control trajectories. The
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Fig. 1. Schematic of simplified hydronic plant.

optimality and computational and memory complexities are vi-
tal factors to deploy this dynamic optimization.

Indirect or variational approaches are based on the first-order
necessary conditions for optimality as defined by Pontryagin’s
maximum principle. In this case, the optimal OL control tra-
jectory is a solution to a two-point boundary value problem
(TPBVP) containing the states and co-states, linked by a feed-
back function. Alternatively, direct approaches solve the time-
coupled optimization directly with sequential or simultaneous
approaches. Recent advances in algorithms and code generation
have brought these to the mainstream with computation times
on the order of milliseconds or less [9]. The speed advantage
of direct approaches comes at a quadratic demand for memory,
as opposed to linear memory complexity with variational ap-
proaches [15, p. 375]. This is an important factor considering
the limited memory on low-cost micro-controllers. Elapsed time
to an optimal control trajectory can be further reduced with oft-
line explicit NMPC methods. These perform the optimization
a priori, generating a lookup table of feedbacks within similar
regimes [16]. Explicit NMPC methods, however, are slower to
adapt to system changes because the entire look-up table must
be recomputed. See [17] for a thorough survey of these and other
dynamic optimization strategies.

This paper presents a run-time efficiency study, which has
thus far been lacking in the literature, of variational approaches
to the real-time control of a hydronic cooling plant. Section II
derives a physics-based bilinear model of a hydronic cooling
testbed. The equivalency of this bilinear OL model with a lin-
ear state-equation based model is shown in Section III, along
with three approaches to representing the engineering objec-
tive. The variational calculus employed to optimize these six
cost-function—model pairs is derived in Section IV. Section V
applies these algorithms to NMPC. Additionally, the embed-
ded codes for these algorithms are discussed. Tests are then
described in Section VI, showing both computer and hardware-
in-the-loop (HiL) simulations and experimental results that pro-
vide insight into the run-time efficiency. Section VII concludes
this paper, discussing the benefits and trade-offs of the different
models and objective functions.

Il. BILINEAR MODEL OF HYDRONIC COOLING

Hydronic systems use liquid, e.g., water, as an efficient me-
dia for moving thermal energy. As such, hydronic heating and
cooling systems are found in many industries including building
energy systems, process control, and naval ships.

A. University of Michigan Chilled Water Demonstrator

The simple hydronic system used in this analysis is schemat-
ically shown in Fig. 1. A single pump delivers chilled water

through '4” flexible tubing from a reservoir to a single thermal
load that is heated with a resistive heater. Additional cooling
results from natural convection with the air. This system is re-
alized as just one possible flow path of the University of Michi-
gan Chilled Water Demonstrator (UMCWD) [18]. Each of the
thermal loads consists of a 17 x 27 x 4” aluminum block with
two '4” holes drilled through for the flow. On each side of the
paired thermal loads is mounted a LM35DT temperature sen-
sor. These measure the blocks’ temperature transients because
of heat flow to the chilled water, to the air, and from a 70-Watt
resistive heater affixed beneath each paired thermal load. Each
of these sensors and actuators is connected to a Martlet wireless
control platform in which the control algorithms are executed
[19].

B. Modeling hydronic cooling

The change in temperature 7}, of the thermal load with mass
m and specific heat capacity ¢, is a function of the rate of energy
transfer shown in Fig. | and modeled by

me, Ty (8) = Qu (1) + Qu () + Qn ©)
where

Qa (t) = (T =Ty (1)) ha 3)

Qu (t) = (T — Ty (1)) b (1) . 4)

Thermal energy enters from the resistive heater, Qh , leaves
through natural convection, ), to the air with constant tempera-
ture 7T}, and leaves through forced convection, @), , to the water
with constant temperature 7),. The heat transfer coefficients
from the block to the air and water are h, and h,,, respectively.
Control of the blocks’ temperature dynamics is achieved by ad-
justing h,, (t) through changes in flow rate ¢(¢) as modeled by
the Dittus—Boelter correlation [20].

— kw
" ADy

=5 00 (24) () et @

— ao(q (£)™, a0 € R*,a € (0,1].

hy (t) N, (1)

In this relation, the thermal conductivity k., , pipe surface area
A, hydraulic diameter Dy, water viscosity v, and water thermal
diffusivity « are condensed to empirical parameters o and o.
The monotonically increasing function h,, (t) maps ¢ — hy,.
Therefore, an inverse exists, and the problem of choosing a flow
rate can be algebraically abstracted to the problem of choosing
a heat transfer coefficient or vice versa.

Using (2), the dynamics of the block temperature can be
expressed in the following bi-affine form with respect to control
hy (t) and state Ty (t):

meTb (t) = - haTb (t) - hw (t) T, (t) + hw (t) Ty
+ (ha Ty + Qp). (©6)

The constraint imposed by the finite capacity of the pump adds
an additional nonlinearity that bounds the flow ¢(t) € [0, ¢max]
and thus heat transfer h,, (t) € [0, hy, . |-
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TABLE | where
MODEL PARAMETERS
ap :=apr, <0; by :=—bgy >0 (11)
L _ J
m=285g Gmax = 124 cp = 0.897 gr :=gpr €R (12)
ap =12 a, =055 he = 0.1 é bop L
Uy, (t) == (:EL (t) + b ) UBIL, (t) (13)
BL
\ ]uL(t) Uy, (.’BL) = {UL (t) Tur (t) ((bBLfEL (t) + bOBL)uBLmM
~bopy,
‘ " A0 —bpug () >0, Vt}. (14)
_bop umax
" Defining a state as x5, (t) = T, (t) — T, (6) is transformed
into the bilinear form (7) with the following parameters.
Fig. 2. Linear model state-dependent control constraints (figure is o
shown assuming bpp; < 0). UprL (t) = hy (t) = Oéo(q (t)) (15)
Umax = hwnmx = O‘O(Qmax)al (16)
Table I shows the empirically derived model parameters for apr = = bpr = %’ (17)
the UMCWD used in the simulations and experiments presented ! !
in the following sections. bopr, =0; gpr = m‘( (haTa + Qh) . (18)
o
IIl. MODELS AND COSTS FOR OL CONTROL OF BLSS Similarly, the parameters for (10) can be defined.
—hg . _ 1
Given the physical relations that describe a bilinear system, AL = e, by = me, (19)
a controller may be designed such that the system performs 1 )
as desired. But how does that controller achieve the desired gL = —— (haTa + Qh> . (20)
mce,

response? And what, specifically, is the desired response? Is
there more than one way of achieving such performance?

In this section, methods for generating effective OL control
trajectories will be studied across multiple definitions of the
control variable u(t) and objective functions. Section III-A will
discuss two possible model formulations: a linear state equation
with state-dependent constraints on control and a bilinear state
equation with rectangular control constraints.

A. Bilinear and Linear Model Equivalency

This paper studies the family of scalar bilinear control sys-
tems with state 25 1, (¢) controlled by u g, (¢) with time-invariant
bounds and subjects to detectable time-invariant disturbance

9BL-

tpr (t) =aprxpr (t) + (bprxsr (t)

+bopr)usr (t) + gBL @)

where

apr <0; bpr <0; gpr €R (8

0<upr (t) S UBLmax © UL

= {upy (t) 1 upr (t) (upL,.. —upL(t)) >0 Vit}.
)

This system can be equivalently modeled by a linear state
equation with state x, (¢) and controlled by uy, (t) with state-
dependent bounds (graphically depicted in Fig. 2) and subject
to time-invariant disturbance gy, .

ir (t) =apzp (t) +brug (t) + g1 (10)

B. Objective Functions

In general, the engineering goal of the controller in this
study is to maintain the state approximately within a safe set
X*:= {2 : & < Tyax}, subject to initial conditions x¢ and ex-
ternal disturbances, while minimizing the power consumed by
bounded control v over a time horizon ¢ ;. This general objective
can be represented by a variety of exact and approximate cost
functions J(z, u;t) to be minimized.

min
w(t)eU ()
#(t)=f(z,u;t)
z(0)=z¢

t
/ ' J(x,u;t)dt. 21
0

Three cost functions are studied herein. The MT and quadratic
regulator are common in industry. The third, efficient cooling
(EC), better captures the engineering objective.

The MT objective aims to drive the state to within the safe re-
gion as quickly as possible, with no penalty added for exercising
control. The cost function is defined as

j]WT (x,u;t) =1 (22)

and the integration bound ¢ is the time at which the state enters
the safe set. Equation (21) must be augmented to include ¢ as
a free variable in the minimization. If the system begins within
X", then no control is prescribed by this objective, and a constant
control should be used that maintains the state within X'*. Any
realization of a controller with this objective must include an
analysis of parameters that will resultin ¢y — oo.
The quadratic regulator (Q) objective integrates the cost

Jo (z,ust) = (2 (t) — xmax)z + pu? (t) (23)
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over a fixed horizon ¢ defined a priori. This objective adds a
penalty both when the state is above and below ., Which
causes tuning difficulties in certain circumstances shown below.
The control cost pu?® represents the pumping energy cost; how-
ever, this approximation depends upon the model formulation
used, i.e., the physical definition of w. As such, even with an
identical p weighting term, the optimal trajectories will differ
if a linear or bilinear model is used.

The EC objective function is an accurate mathematical rep-
resentation of the design goal. This is the sum of two costs. A
quadratic penalty is placed on states outside the safe set, other-
wise the state cost is zero. The second cost is proportional to the
power consumed P(t) by the controller over a fixed horizon ¢;
defined as a priori.

1

Tre (oust) = (5 (0 0) = 2ma) + 2(0) = )

+ pP (z,u;t) . (24)

The function P(z,u;t) shall be monotonic with respect to
u € U and maps the state and control to the power consumed by
the system. The resulting objective function is independent of
the definition of « in the system model. The soft-constraint may
allow the state to rise above the set point, but only in-so-much-as
it offsets the additional positive p-weighted cost incurred by the
additional power consumed.

[V. DERIVING THE OPTIMIZATION APPROACHES

The following three sections will derive the control policies
that minimizes each of these objective functions, for both linear
and bilinear system models.

A. MT Cost

Given the following system' with zy ¢ X,
i (t) = f(,u;t);

The goal of the MT controller is to drive the final state of the
system z(t ) into X as quickly as possible given the constraints
on the control u(t) € U(x,u;t)Vt € [0,ts]. The scalar problem
isreduced to driving the state to the boundary of X'*,i.e., xyax =
x(ty) = xy. This problem can be described by the following
minimization

x(0) =129 €R. (25)

Ly
min / dt. (26)
&(t)=f(z,ust) JO
u(t)eU (z,ust)
x(tg):z()%)(*
I(tf )EX*
0<ty

From this point, an analytical feedback control law is derived
from Pontryagin’s maximum principle [15]. Using the calculus
of variations [21] and a Hamiltonian defined by (27), the three
necessary conditions for optimality of the state, co-state, and
control trajectories, *, p*, and u* respectively, over horizon

'Within this paper, the notation f(g,h;t) is an abbreviated notation for
f(g(t),h(t)). It describes a function f of two time-varying inputs g(¢) and
h(t), but the function f is time invariant, i.e., the variable ¢ does not explicitly
show up in f.

TABLE Il
FEASIBLE PERMUTATIONS OF Z¢ ), Ze,, oy » 0, T, AND T

Xey < Xp < Xo < Xepo < Xs Xey = Xepar < Xf < X5 < Xg
Xey < Xp < Xe < Xg < X X5 < Xep < Xp < X < Xg
Xey < Xp < Xep < X < X X < Xy < Xp < Xey < Xg
Xeyg < Xeppr < Xp < Xo < X Xs < Xepgy < Xey < Xp < Xg
Xep = Xepar < Xs < Xp < Xg

,t¢| are defined by — .
0, defined by (28)—(30)

H(w,u,pst) = 1+p" (1) f (z,u5t) 27)
H (2", u", p"it) < H (2", u,p"st)

Vt € [0,t5]andVu € U (z, u;t) (28)
H(z",u", p*;t) = 0Vt € [0, 7] (29)
88—7; =H, =" =p" fo. (30)

1) Bilinear State Equation Model: Solving (28) for u* with
Hamiltonian (27) using the bilinear state (7) and the monotonic
co-state equation asymptotically approaching the origin (30)
yield an optimal control that switches between two modes, i.e.,
a bang-bang type control, and satisfies (29).

0, (p(t) > 0) A (:r(t) <z, = _bboszL>

ur () = 4 (p(t) 2 0) A (t) > w5)
UYmax, (p(t) <O) A (z(t) < z)
0, (p(t) <O)A (2 (t) > z,)

&1V

Switching between the two modes (A and B) occurs when
the state touches the guard, G(A, B) = z;. In the time domain,
mode A is modeled by (35) when it enters with state x, and
monotonically approaches z.,. Likewise, the state in mode B
(36) monotonically approaches z._ . . Thus, not all values of
x(t) are reachable from all initial states zg if ., # z.,,.. -

as =apr; 9a =JgsL (32)

ap = apr +bprusr,,, (33)

95 =bopruBL,,, +98L (34)

z(t) = (20 — Te,) €™ + ey, Tey = —94 (35)
aA

P0) = (20— T )€ e = D2 36)

The automaton’s analytical time domain solution results in a
piece-wise function switching at-most one time before ¢ . Only
nine permutations of ., ., . , o, L, and x, shown in Table I
result in feasible solutions given the following conditions:

1) max {z.,, z.,, } < xf
2) xp < Ty

3) a<0; b<0

4) sign (p (t)) = const.
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Once the final time has been reached, another control algo-
rithm must take over to keep the state within the safe set. For
example, hysteresis could be built into the bang—bang controller
or a constant control with an equilibrium state equal to @y,
could be used.

2) Linear State Equation Model: Solving (27)—(30) with the
linear state, (10) yields a control exactly equivalent to (32)—(36).

B. Quadratic Regulation

Given (25), a trajectory u” is to be found that solves (37).
Without loss of generality, the system has been defined and/or
shifted such that z,,x = 0 and p > 0. The feedback law is
derived using the same calculus of variations and Pontryagin’s
maximum principle used to derive the control law for the MT
case. First, a Hamiltonian is defined by (38) with respect to
the state, co-state, and control at each moment. (For simplicity,
variation with respect to time will no longer be shown and will
be implied from here forward for x, u, and p.)

Ly
min / (2 (t) +u?(t)p)dt (37)
@ (t)=f(z,u;t) JO
u(t)eU (z,u;t)
z(0)=xz¢
H(z,u,p) = (2* +u’p) +pf(x,u). (38)

The four necessary conditions for optimality then become

i = @)

(39
vVt e [0,tf], x*(0) =0
vt e [0,tr], p*(ty) =0
H m*’u*’ >k SH :L,*’u, >k
( P) ( PY) @D
Vueld(z,u), tel0,ty]
H(z*,u*,p*) =0 Vte[0t]. (42)

The first three conditions lead to an optimization problem in
which u(k) is decoupled from w(k) at all other time steps. This
property results in a more computationally tractable optimiza-
tion compared to directly optimizing (37). The fourth condition
should be automatically satisfied by the optimized trajectories,
as verified numerically.

1) Linear State Equation Model (QL): The linear model im-
plementation of these conditions yields

] =arx; +bru; +9r

(43)
Vte[0,t], 2 (0) =10
pp = —arpy — 2x7
L LPL L (44)
vt € [0,t],pr (ty) =0
min  Hy (p},uz) V€ 0,t] (45)
ur €49z, (a:i ,uL)
((fﬂ‘i)2 + (uz)zp) + (apxy +bruy +g1)p; =0 “6)
Vit € [0, tf]
Hy (pp,ur) = pui +brpjuz. 7)

The Hamiltonian was simplified to 7 by removing terms in
which % = 0, resulting in no effect on (45). When the solu-
tion to (45) violates the control constraint, the control saturates
according to

upye (py),  ifuy, (pp) €Up (27)
up = S uj (@) elseif Hy (pp,up ) <0 (48)
0, otherwise
where
—brp},
. ) — 49
ur: . (pr) 2R, (49)
b %+ b
wge (&) = (bprz; + OBL)UBL,MX. (50)

br

The forward state dynamics (43), the backward co-state dy-
namics (44) and feedback law (48) form a TPBVP. The TPBVP
solution, 7} , u} , and p; meet the necessary optimality condi-
tions.

(5D

(52)

&tr =arxr +brur + 91, v (0) = 21,

pr = —arpr — 2z, pr (ty) =0

ur,. (pr), ifug,. (pr) €Uy (zr)
ur (zp,pr) =R ur,,. (z),elseif Hy (pr,ur,,, ) <0
0, otherwise
(53)
where
7'_([/ (pL’uLm;Lx) = PLU%MX + przuLmux (54)
_(bLPL)2
= T 4R, 55
ur,, (pr) iR, (55)
b b
ur, . (xp) = (bprer + bOLBL)UBLmx . (56)

2) Bilinear State Equation Model (QBL): Similarly, the nec-
essary conditions for the optimal control of the bilinear plant
described by (7) become (57) to (60) with the Hamiltonian sim-
plified to (61).

ipy =apray + (bprrpy +bopr) upy + 9nL

Vt € [0,t]52pL(0) = TBL, 57)
Ppr = —aBLppL —bpruprppr —2xpL -
Vit € [0,tr];ppL (t;) =0
0§1‘312%gﬁxnax Hpr (€1, Ppr,uss) Yt € [0,f] (59)
0= (@) + (i Vpor ) + (apsai
+ (bprxpy +bopr) upr +9sL)Pp LVt € [0,t7]  (60)
Hpe (Tpr,PpL uBL) = PBLUZBL
+ (bprap +bopr) PpLUBL- (61)

Following the same process as for the linear system, a TP-
BVP is defined that yields a solution that satisfies the necessary
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conditions for optimality.

tpr =aprepr + (berrer +bopr)usr + 9sr, x5 (0)

=B, (62)
ppr = —aprppr —bprupLppr —2vpr,ppr (ty) =0
(63)
upr, (TBL,PBL)
upr,, (*BL,PBL),
if0 <wupr,, (Br,pr) <uBL,,.
=< UBL,.. (64)

elseif H (zpr,pp1L, uBL,,. ) <0

max

0, otherwise

where:

- 2
Hpr (¥BL,PBL,UBL) = PBLUBY

+ (bprxpr +bopr)PBLUBL
(65)

— (bprzpL +b
uprL,. (BL,pBL) = (bpL 32L 0BL)PBL 66)
PBL

these TPBVPs

Methods for solving
Section IV.D of this paper.

are presented

C. Efficient Control with Soft-constraint

Given (25), a trajectory u* is to be found that balances vio-
lation of a soft constraint with an explicit accounting of power
consumption, resulting in the minimization problem

ty
min R*(z) + pP(x,u)dt (67)
i(t)=1 (z,ust) JO
u(t)el (z;t)
z(to)=w0
where,
2 1 : 2
Ri(z)=(5@+]zl)) =(e1(2) (68)
P (2,0) = Oandw >0 Y(wel) (69)

As with the quadratic regulator, and without loss of generality,
the system has been defined and/or shifted such that 2, = 0
and p > 0. The same calculus of variations used in the previ-
ous section applies here to derive the following four necessary
conditions for an optimal solution to (67).

@* = f(a",u")Vt € [0,t7] ;2" (0) = @o; (70)
P =M, (a"u",p")VE € [0, 87];p" (E) =0 (TD)
H (2%, u, p*) < H (2%, u, p*
( p) < H (2", u,pY) 2
Vu e U (z,u),t € [0,ty]
H (z*,u*,p*) = OVt € [0, /] (73)

1) Linear State Equation Model (LEC): Applying these the
four necessary conditions to the linear model (10) yields (74) to

(77) as a function of the (78), (79), P(x*, u*), and (P(x*, u*)),.

&; =apxp +bruy + gVt € [0,¢4] ;27 (0) = o (74)
p; =—(R}(x})), — pPr, (z},u}) —aLp (75)
Vt € [O,tf} ;pz (tf) =0
up = argmin Hp (27, ur,pp )Vt € [0,%y] (76)
ULEZ/{L ((I,'L)
Hr (x7,up,pr) =0Vt € [0,¢/] (77)

Hi (zr,ur,pr) =R} (xr) + pPr (xr,ur) + fr (xr,ur)p
(78)

(R (21)), = nz} "1 (zz) (79)

Derivation of the feedback control law shows that the optimal
control is the solution to the convex program (80) that can
be solved numerically using efficient computer programs (e.g.,
gradient descent or simplex algorithms).

uy = argmin (pPr (x,ur)+ Brurpy) (80)

wy €UL (.’EZ )

As in the previous section the state dynamics, co-state dy-
namics, and feedback are combined into a TPBVP.

T, =apxr +brup +9L, 2L (O):xLo 81
pr = — (nxz_]]l (xL)) —pPr, (xr,ur) —aLpr,pr (tf)ZO

(82)
(83)

wr, = argmin (pPr (vr,ur)+brurpr)

ur, GML (:EL )

2) Bilinear State Equation Model (BLEC): For the bilinear
model (7), the same processes can be followed to derive the
TPBVP which solves for a solution that meets the necessary
conditions for optimality of (67).

tpr =aprepr + (bprxpr +bopr) UL

+ 951, 21 (0) = xB1, (84)
PBL = — (77 a1 (xBL)> —pPsr, (uBL)
—aprpsr, per (ty) =0 (85)

upr = argmin (pPpr (upr)+(bprxpr+bopr) uBLPBL)
upr €UpL
(86)

The run-time efficiency of EC control algorithms will be
greater than that of the quadratic regulation algorithms due to the
secondary optimization required in (83) and (86), as opposed to
the analytic feedback law of (53) and (64). The advantage of the
EC algorithms may be in the ease of tuning due to the one-sided
thermal cost that closely represents the engineering objective (as
opposed to the two-sided regulation behavior), accurate model
of pump power, and the equivalency of linear and bilinear state
equation formulations.

D. Solving the TPBVP

General methods for solving TPBVPs fall into three cate-
gories: gradient projections, shooting methods, and first-order
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gradient methods [15]. The gradient projection method itera-
tively optimizes the entire control trajectory in a single gradient.
Shooting methods iteratively estimate py and forward integrate
the system to match py. First-order gradient methods integrate
state and co-state trajectories with estimated control trajectories,
then update the control to better satisfy the feedback law with
the updated states and co-states.

Synthesizing on-line embedded gradient projection con-
trollers demand potentially prohibitive amounts of memory.
Shooting methods have minimal memory requirements, an ideal
feature for embedded applications. However, numerical stabil-
ity issues arise when the control can bang between the lim-
its, causing large fluctuations in the co-state final value due
to minor changes in the initial values. The first-order gradient
method balances numerical stability with a memory require-
ment of O(MK + NK) where M, N, and K are the number
of control inputs, the number of states, and the number of time
steps in the control horizon, respectively.

The first-order gradient algorithm used in this work is adapted
from [15], pp. 335-337] to systems with constraints. The itera-
tive algorithm consists of the following steps:

1) Forward integrate the state equations from z, along the
horizon using w( =) and p’ — ) from the previous iter-
ation. Store the updated state trajectory estimate ().

2) Backwards integrate the co-state equation from p;, along
the horizon using w!’ ~ ! and ("),

3) Apply the feedback law to compute @'") from a(?)
and p().

4 Stop if [u') — @] < e.

5) Perturb each value of w(?) (t;;) towards the value of
@'V (t;,) by some percentage 7.

6) Go to step 1.

The speed of decent parameter 7 should be selected to balance
potential oscillations (and lack of convergence) if too large,
and slow convergence if too small. Kirk proposes adjusting 7
after each iteration: slightly increasing (e.g., 1%) if the cost
J descreased from the previous iteration, or more significantly
decreasing (e.g., 5%) if the cost J increased from the previous
iteration [15], pp. 335-337].

V. NMPC oF BLSs

The adverse effect of modeling errors, sensor errors, and
unknown disturbances on control performance are mitigated by
recalculating the optimal OL trajectories at fixed intervals in
time, i.e., NMPC [22]. The optimizations are initialized with
the solution at the previous NMPC step, appropriately shifted
forward in time. If full convergence is slower than real-time, a
“fast NMPC” approach [23] stops the iterations at the end of the
time interval, and applies the suboptimal results, converging as
the system evolves.

A. Embedded NMPC of BLSs

The experiments below compare the performance of NMPC
realizations synthesized using the two model formulations and
three cost functions for the simple hydronic cooling system.
The synthesized digital controls were deployed using a Mart-
let wireless control platform which contains an 80 MHz 16-bit
microcontroller capable of 32-bit hardware floating point cal-

TABLE Il
CONTROLLER PARAMETERS FOR EMBEDDED TESTS (AND SIMULATIONS)

QL QBL LEC BLEC
p 0.0095 0.0449 1 1
Ty 0.01 0.05 0.01 0.05

culations [19]. The first-order gradient procedure for solving
the TPBVPs was codified in the C language, integrated into the
Martlet firmware, compiled using Code Composer Studio v5
[24] and embedded into the Martlet wireless controller.

The GNU Scientific Library (GSL) [25] was ported to the
Martlet in its native single floating point precision. The GSL
Runge-Kutta 4-5 ODE solver forward integrates the state and
backwards integrates the co-state. The GSL one-dimensional
minimization routine, using the Brent minimization algorithm,
solves the convex optimization required at each step along the
prediction trajectory for the LEC and BLEC optimizations. The
TPBVP solver extends the GSL architecture, i.e., passes func-
tion pointers for the application specific functions. Execution
time was minimized by avoiding nested functions, passing of
large variables (instead pointers to structures are used), and re-
casting of structures. The NMPC step was extended to ensure
convergence. However, ‘“fast NMPC” was also tested.

B. Controller Tuning

The goal of this work is to compare the four controllers (i.e.,
QL, QBL, LEC, and BLEC). Each require tuning of eight pa-
rameters: P, Twmin, 70> Tmax,> I, dt, imax, and €,. As such, a
tuning procedure was developed to achieve a fair comparison
among the controllers with different objectives. The parameters
Tmin» Tmax»> K dt, imax, and €, essentially have the same effect
on all four controllers, so they were set consistently across all
the controllers. A step size of 5s was defined approximately
an order of magnitude faster than the system dynamics, while
the prediction horizon of K - dt = 500 s was selected conser-
vatively as two orders of magnitude longer than the system
dynamics. Convergence is defined as an RMS change in the
control trajectory of less than €, = 1FE6, or when 4,,,, = 250
iterations are reached. Values of 7,,;, = 0.005 and 7, = 0.3
were selected such that convergence was achieved robustly, yet
quickly in all controllers and all cases. The linear controllers
were particularly sensitive to smaller 7y,;,, values or larger 7y, .«
values which prevented convergence either due to oscillation or
slow descent. The embedded GSL ODE solver and minimizer
also have ¢ parameters for stopping criteria. These were set to
the largest values that produced results comparable to the re-
sults generated by the equivalent MATLAB functions with the
default parameters.

Thus, only two parameters are left to be tuned for each con-
troller, p and 7. Values of 7y were selected such that convergence
was achieved quickly, yet robustly in all cases. For the LEC and
BLEC controllers, p was tuned to subjectively achieve the de-
sired performance. Then, the QL and QBL controllers were
each tuned by a line-search on p. This search minimized the
aggregate retroactively computed EC cost of the simulated tra-
jectories from test cases A—D presented below. Table III shows
the values of p and 7 from the tuning procedure.
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TABLE IV
TEST CASE PARAMETERS

()

L, CO T (CO T,C0 T, CO
Case A 21 30 24 22 35
Case B 60 30 20 22 0
Case C 60 30 20 22 35
Case D 21 30 24 22 0
Case E 36 40 22 24 varies

VI. EXPERIMENTAL AND SIMULATED TESTING
A. Test Scenarios

Five test procedures are used to study the four controllers in
Table III and the three benchmark controllers (i.e., zero-flow,
max-flow, and min.-time). These cases capture the following
primary characteristics of standard test procedures for thermal
control (i.e., neglecting humidity as a control variable) of single-
zone HVAC system control algorithms (e.g., [26]):

1) Case A: Maintain a safe temperature under heating

2) Case B: Get to a safe temperature

3) Case C: Get to a safe temperature under heating

4) Case D: Trivially maintain a safe temperature

5) Case E: Maintain safe temperature under changing heat

Case A and Case D are identical, as are Case B and Case
C, except for the heater state (off or on). Cases A-D are pri-
marily used for tuning and studying OL behavior. Case E com-
bines much of the same characteristics of Cases A-D into a
time-varying system that will demonstrate the CL behavior of
the proposed NMPC. Specifically, the heater switches on for
10 minutes, off for 5 minutes, on for 30s, off for 30s, on for
1 minute, off for 1 minute, on for two minutes, and then off.

B. Results and Analysis of OL Testing

Simulations and HiL tests were conducted with Cases A
through D to provide new understanding into the sources of
computational complexity, rates of convergence, appropriate
initialization techniques, and overall effectiveness of the four
controllers (QL, QBL, LEC, and BLEC) and three benchmarks
controls (zero flow, max flow, and MT).

Timing data were collected from HiL tests conducted on the
Martlet for each of the four cases and four controllers, where
sensor data were emulated according to Table IV. Three of the
Martlet’s GPIO pins were programmed to mark the start and
end of code execution for the state forward integration, co-
state backwards integration, and the feedback calculation and
update for each iteration. The timing of these pins was measured
with a digital oscilloscope connected to the Matlab based HiL
simulation environment.

The boxplot in Fig. 3 shows statistics on computation times
collected for every iteration of every case for each of the four
controllers. The data show that the forward integration time is
consistently short among all the controllers. However, there are
large timing variations in the co-state reverse integration, i.e.,
due to small adaptive-step-sizes in the GSL rkf45 algorithm,
particularly for the LEC. This stems from the ill-conditioned
reverse integration as 7, — T, due to the presence of (T, — T,)
in the denominator of P (z, u) for LEC. As expected from (53)

Martlet Computation Time / lteration (sec)

aL |-

QBL (®

LEC |®

BLEC @ , , ,
aL [«

QBL |®0®

LEC — e o
BLEC |@s5e®
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QBL @

LEC | @

BLEC | —Commmm—— .

QL . ' ' '

QBL | ®o®@

LEC — . o

BLEC| — wmmm— ,
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Fig. 3. Computation time of each iteration measured during HiL testing

on the Martlet for all four test Cases A-D.
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Fig. 4. Retroactively calculated EC cost function value versus HiL com-
putation time for four controllers and four test case. “Init” results are ini-
tialized with the OL trajectories calculated with the system having the
opposite heater state.

and (64), the control update execution time for QL and QBL
is negligible. However, control updates for LEC and BLEC are
lengthy due to the iterative optimization required in (83) and
(86). This calculation for BLEC can take a significantly longer
time. The total computation time per iteration is driven by the
complexity of the co-state reverse integration, and the feedback
optimization for LEC and BLEC. The BLEC converges to the
same result as LEC, yet computes faster per iteration.

The total calculation time for each optimal OL trajectory is a
factor of both the time per iteration, and the number of iterations
required to converge. Fig. 4 shows these rates of convergence.
For a fair comparison, the EC cost, which most closely repre-
sents the engineering goal, was retroactively calculated for each
of the four controllers and each of the cases. The “init” results
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TABLE V Case C
RETROACTIVELY CALCULATED EC COSTS - ! !
————— Set Point == == Lin Eff. Cooling
Zero Flow == == BL Eff. Cooling
Configuration QL QBL LEC BLEC g s Max. Flow [Matlab:init]
QO Min. Time [Martlet)
MatLabo 7,086 6,073 4,576 4,552 s — — Quad Lin Martlet:init
< Matlabinit 7,074 6,813 4,576 4,552 - Quad. Bilin
b3 & 401 ’ :
¥ Martleto 7,036 7,155 9,037 4,193
© Martletin 7,053 7,170 9,037 4,193
MatLabo 17,247 16,909 16,279
ﬁ Matlabinit 16,616 16,412 16,279
¥ Martleto 36,425 18,982 | 16,148 | 16,169 @ 4 -
“  Martletin: 23,943 17,948 1
MatLabo 24,147 24,448 =
z Matlabinit 23,378 23,444 E T R e
¥ Martleto 91,612 23,859 >
Y Martletin 23,859
MatLabo
O Matlabini ’ ’ ’ ’
g @bt 0 100 200 300 400
@ Martleto time (s)
© Martletint
Subscripts %, indicate the optimization was initialized with zeros, while *;,;; indicate Fig. 5. OL temperature and flow trajectories for Case C, simulated in

initialization with the results of the same parameters, but with opposite heater state.

(solid line) are initialized with the OL trajectories calculated
with the system having the opposite heater state (emulating
NMPC where the heater state just changed), while the other
results (dashed line) are initialized with all control values equal
to zero (emulating a fresh start of the controller).

The QL and QBL controllers initially converge near the op-
timal solutions faster than LEC and BLEC; a surprising result
considering the QL and QBL controllers are optimizing a dif-
ferent objective function, albeit tuned to emulate EC. Case D
demonstrates the undesirable behavior of the QL and QBL reg-
ulators; i.e., even though the block temperatures are safe, the
controllers raise the temperature closer to the set point, possible
because the T, > T;. On the other hand, the LEC and BLEC
controller behave as expected for Case D, producing zero flow.
The convergence per iteration of LEC and BLEC approach that
of the QL and QBL controllers; however, the convergence per
second (the important measure for real-time performance) lags
significantly due to the increased calculation time per iteration
(Fig. 3). Upon close inspection, oscillations of varying ampli-
tudes are observed in the final solutions for all the controllers
and initializations in Case B and Case C.

The final values of the retroactively calculated EC costs for
Case A-D are shown in Table V. As expected, the best LEC
or BLEC implementations outperform the best costs from the
QL and QBL controllers, since the QL and QBL controllers
are optimizing a different objective function. The discrepancies
between simulation environments and initialization procedures
demonstrate that full convergence is not always achieved, es-
pecially for the HiL calculations. Poor final convergence is a
known behavior of the gradient method [15], and future work
should study these controllers and cases for different approaches
to solving the OL optimal control problem. The discrepancy is
particularly bad for trajectories with sharp edges, e.g., those that
exhibit bang-bang behavior, since the iterations converge slowly
to fill into the corners. This may pose a problem for NMPC using
these methods if, even though most of the trajectory has con-
verged, the first point (which is the only point applied during
NMPC) is slow to converge due to the proximity to a switch.

Matlab and HiL testing on the Martlet. “Init” results are initialized with the
OL trajectories calculated from Case B.

BLEC MPC - Long

45

O 40
o

Heater ON +

Start MPC (PASS)

!  |----- Teet +  Start MPC (FAIL)
g\s L I \leasurement == == MPC Trajectory
=)
0 |
0 500 1000 1500 2000 2500
time (s)
Fig. 6. Case E BLEC convergent NMPC experimental response.

In Fig. 5, the single-precision floating-point HiL trajectories
are compared with the double-precision Matlab trajectories for
Case C. The Matlab results demonstrate that the LEC and BLEC
yield nearly the same trajectory, regardless of initialization, as
expected from their mathematical equivalency. However, some
Martlet results differ significantly due to the lower-precision and
ill-conditioned reverse integration, among other factors. HiL and
Matlab results most closely match for BLEC control. On the
other hand, QL has the largest discrepancy between precision
and initialization, illustrating the difficulty of finding values for
7 that converge well across all cases and precisions.

C. Results and Analysis of Closed-Loop NMPC Testing

The BLEC controller, with reliable convergence properties,
moderate computational complexity, and straight forward tun-
ing, was selected for further study. Closed-loop NMPC experi-
ments using test case E were run on the UMCWD controlled by
a Martlet running the embedded NMPC algorithm. Two exper-
imental results are shown in Figs. 6 and 7. The green shadows
indicate when the heater is on (producing 35 W of heat). A “4-”
on the middle axis indicates convergence of the TPBVP in that
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BLEC Fast MPC - Long
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o I \leasurement + Start MPC (PASS)
\]\ 5| Start MPC (FAIL) == === MPC Trajectory
U‘ - - —— —‘
0
0 500 1000 1500 2000 2500
time (s
Fig. 7. Case E BLEC “fast NMPC” experimental response.

TABLE VI
RETROACTIVELY COMPUTED COSTS FOR EXPERIMENTAL RESULTS (CASE E)

Controller State Cost Control Cost Total Cost
‘full’ BLEC 0.89 415 416
‘fast’ BLC 0.00 395 395

NMPC step, while an “-” denotes the TPBVP did not converge.
The trajectory resulting from each online optimization is shown
as a dotted line that starts dark blue and slowly fades to red.

The trajectories in Fig. 6 show an NMPC implementation
where each TPBVP ran until completion, even if that was longer
than the allotted time window. The convergence slows when the
heater switches on or off, as seen by the spacing of the crosses.
This delay resulted in an undesirable overshoot of the set point.

The “fast” NMPC implementation is intended to mitigate this
delay. The experimental results shown in Fig. 7 closely resemble
the trajectories in Fig. 6, without the overshoot. When the costs
are retroactively computed for the two NMPC implementations,
shown in Table VI, the “fast” NMPC implementation is closer
to optimal: the optimality loss in non-convergence is made up
for in a faster dynamic response.

Inaccuracies in the online model used for NMPC (primarily,
unmodeled nonlinearities in the voltage to flow relationship) re-
sult in discrepancies between prediction trajectories (the dotted
lines in Figs. 6 and 7) and measured trajectories (the thick black
line). However, due to the closed-loop constantly iterating na-
ture of NMPC, the measured temperature trajectories are robust
to these divergences (a well-known feature of MPC [3]) and
generally maintain a safe temperature (e.g., the “state cost” is
less than 1% of the “control cost”).

The drop in flow and temperature flare at the end of the pre-
diction trajectories is an artifact of the finite prediction horizon
that could be correct with a terminal penalty in the optimization
[3]. However, such a correction is not strictly necessary since
the artifact is sufficiently down the horizon that the zero flow
and high temperature are never implemented.

VIl. SUMMARY AND CONCLUSIONS

This paper provides new insight into the computational
complexity and convergence characteristics of variational ap-
proaches to model predictive control of scalar bilinear systems.
Two mathematically equivalent models were considered: lin-

ear state equations with state-dependent control constraints, and
bilinear state equations with rectangular control constraints. Op-
timization occurred over a receding horizon with MT, quadratic,
and EC cost functions.

The MT objective, or thermostatic controller is most com-
mon in practice due to computational simplicity; however, per-
formance can be poor when the engineering objective requires
balancing constraint violation with control energy use.

Quadratic objectives can be tuned to closely match the engi-
neering objective (see Table V); however, the tuning parame-
ters lack intuitive physical meaning. NMPC using bilinear state
equations with quadratic costs (QBL) more closely represent the
engineering objective and converge more reliably than NMPC
with linear state equations in the system model (QL). However,
the QBL TPBVP contains a poorly conditioned reverse integra-
tion of the co-state, resulting in computation times per iteration
that are twice that of QL; although slightly faster convergence
per second.

The engineering objective can be accurately represented with
a one-sided quadratic cost for violation of the safety thresh-
old, and a 3rd order polynomial of pump power with respect
to flowrate. Synthesizing an NMPC with such a cost function
requires solving the standard TPBVP, with an additional scalar
optimization required at each control step along the prediction
horizon. Here the linear state equation model (LEC) and bilinear
state equation model (BLEC) yield mathematically equivalent
controllers, yet with different computational complexity and
convergence properties: Compared with LEC control, the BLEC
control demonstrated faster computations per iteration, due to a
better conditioned co-state reverse integration, and faster con-
vergence per iteration. Compared to QL and QBL, the BLEC
control converges about half as fast, yet still well within the 5s
control period, except when system properties change. In such
a case, a “fast NMPC” was successfully employed.

These variational approaches employed have linear memory
complexity in the length of the prediction horizon, making it
ideal for implementation on devices like the Martlet. This is in
comparison to direct approaches with quadratic memory com-
plexity [27], or worse [28], for bilinear NMPC. Unlike implicit
NMPC approaches, the methods shown herein are easily cou-
pled with system ID algorithms. Thus, the controller can adapt
online to system parameter changes.

These properties and the promising experimental outcomes
present designers with new insight into effective design of model
predictive controllers, especially those run as part of wirelessly
networked control systems. For example, the BLEC controller
presented herein has been extended from the simple pump and
load scenario to a redundant network of pumps, valves, and
loads [29].
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