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Abstract—Muscle activity and human motion are useful
parameters to map the diagnosis, treatment, and rehabilita-
tion of neurological and movement disorders. In laboratory
and clinical environments, electromyography and motion
capture systems enable the collection of accurate, high-
resolution data on human movement and corresponding
muscle activity. However, controlled surroundings limit both
the length of time and the breadth of activities that can be
measured. Features of movement, critical to understanding
patient progress, can change during the course of a day
and daily activities may not correlate to the limited motions
examined in a laboratory. We introduce a system to mea-
sure motion and muscle activity simultaneously over the
course of a day in an uncontrolled environment with min-
imal preparation time and ease of implementation that en-
ables daily usage. Our system combines a bespoke inertial
measurement unit (IMU) and mechanomyography sensor,
which measures the mechanical signal of muscular activity.
The IMU can collect data continuously, and transmit wire-
lessly, for up to 10 h. We describe the hardware design and
validation, and outline the data analysis (including data pro-
cessing and activity classification algorithms) for the sens-
ing system. Furthermore, we present two pilot studies to
demonstrate utility of the system, including activity identifi-
cation in six able-bodied subjects with an accuracy of 98%,
and monitoring motion/muscle changes in a subject with
cerebral palsy and of a single leg amputee over extended
periods (∼5 h). We believe these results provide a founda-
tion for mapping human muscle activity and corresponding
motion changes over time, providing a basis for a range of
novel rehabilitation therapies.

Index Terms—Heterogeneous sensing, inertial measure-
ment unit (IMU), mechanomyography (MMG), pervasive
monitoring.
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I. INTRODUCTION

M ECHATRONIC systems monitoring human activity are
now accepted as fundamental components in biophysical

analysis, with strong impact in fields such as physiotherapy,
motor control, rehabilitation, and sports performance [1]–[5].
Simultaneous measurement of physical movement and muscle
activity can identify physiological features indicative of health,
neural functionality, and response to rehabilitation or training.
Their fusion, however, is normally conducted in laboratory or
clinical environments, which restricts the activities that can be
tracked as well as the collection time window; pervasive data
(collected externally, outside of a laboratory) is not possible.
Furthermore, observations in controlled environments do not
identify issues that arise while moving naturally in the real
world. An unobtrusive, wearable system capable of logging data
from motion and muscle activity for extended periods in the field
has the potential to significantly impact research and clinical
practice in sensory-motor control. Patient activity monitored
pervasively would enable improved disease diagnoses, tracking
of rehabilitation progress, and the provision of remote therapy
[6].

Motion analysis in laboratory settings is typically executed
with optical (visual) tracking, which is reliant on cameras and
reflective markers attached to the tracked object. Optical sys-
tems (e.g., Vicon) have the benefit of high accuracy, but are also
costly, nonportable, vulnerable to camera occlusions (due to
incorrect camera positioning or other moving objects in the col-
lection space), and rely on equipment mounted away from the
subject. A small body of work has attempted to overcome these
limitations with wearable vision based systems (e.g., [7]); how-
ever, miniature, embedded systems such as inertial measurement
units (IMUs) have become a popular option in complementing
optical system information, or in situations where optical meth-
ods are infeasible [8], [9]. Wearable IMUs surmount issues of
portability, occlusion, and price, but at the cost of accuracy.

Today, measurement of muscle activity is performed al-
most exclusively with surface wet-electrode electromyography
(EMG), which measures electrical activity in muscle, typically
to assess the initiation or intensity of muscle movement. Surface
EMG normally requires single-use electrodes, electrical conduc-
tive gel, and preparation such as shaving and abrasion of the skin.
These requirements, coupled with the need for a sustained elec-
trical connection for signal quality, can limit prolonged EMG
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monitoring. Signal degradation over time and problems associ-
ated with skin impedance remain issues to be overcome [10].
Dry EMG electrodes remove the need for conductive gel; how-
ever, similar challenges exist due to skin impedance, signal
variance due to perspiration, and skin preparation [11]. Recent
work has introduced textile-based EMG sensors to surmount is-
sues at the skin-electrode interface [12]. While such approaches
hold significant future potential, complementary approaches to
the electrical measurement of muscle activity remain an under-
explored field.

Mechanomyography (MMG) offers an alternative method to
monitor muscle activity. MMG involves measurement of low-
frequency (2–200 Hz) vibrations emitted by skeletal muscle
during contraction. Its signal reflects the mechanical activ-
ity generated by lateral oscillation of muscle fibers [13]. Al-
though MMG is less mature and suffers from a lack of estab-
lished sensors, capture, and processing practice, it nevertheless
offers potential benefits versus EMG such as ease of application,
higher signal-to-noise ratio, multiple uses for a single sensor,
immunity to changes in skin impedance, and elimination of the
need of shaving and conductive gel [14]–[16]. The lack of es-
tablished systems for MMG capture, however, has significantly
limited its scope.

While research on wearable and embedded systems has in-
creased significantly in recent years [17]–[19], only a small body
of research has attempted to fuse muscle activity and motion
data capture outside laboratory/clinical environments to exploit
complementary aspects of each dataset. These efforts, however,
have focused principally on EMG, which narrows their col-
lection time and range, leading to potentially unreliable signal
quality over a prolonged time [20]–[22]. While these develop-
ments offer a wealth of future promise, utility at present has
been restricted to laboratory demonstrations in controlled en-
vironments. Simultaneous data collection, heterogeneous data
fusion, and physiological feature identification are unresolved.

The goal of our research is to develop a multimodal mecha-
tronic sensing system enabling seamless collection of physio-
logical data in any real-world environment. Monitoring in an
external environment allows for natural activity, which may be
hidden in laboratory settings where activity is controlled. In this
investigation, we present the development and integration of
new hardware, algorithms, and software leading to a complete
zero-preparation, unobtrusive, wearable, motion/muscle activ-
ity monitoring system. The system is capable of robust capture,
synchronization, and analysis of acoustic muscle activity and
physical movement. To our knowledge, it is the first to com-
bine MMG with inertial measurement in a wearable system
allowing long-term continuous data capture.

II. MECHATRONIC SENSOR DESIGN AND VALIDATION

Our research team has designed and, through iterative proto-
types, optimized a new sensor for MMG monitoring. The sensor
is packaged with a custom-made IMU we have developed for
simultaneous data capture. The IMU/MMG sensing package
has been validated in a series of experiments establishing its
capacity for accurate muscle and motion data collection.

Fig. 1. Hardware used in this study. (a) Rendering of the devel-
oped MMG sensor. The device is comprised of a clip/cap (blue) for attach-
ment to clothing and to compress all the parts together, a sleeve (green)
to keep the membrane (gray) taut, and the acoustic chamber/housing
(red). The electronic board (yellow), which holds the microphone, can
also be seen. (b) MMG sensor paired with the Aktiv IMU [27].

A. Sensor Design

1) Mechanomyography: The MMG sensor introduced in
this paper consists of a diaphragm covering a sealed cham-
ber dimensioned to capture low-frequency vibrations, adapted
from that first presented by Posatskiy and Chau [23]. In our de-
sign, a sensor detects pressure change from the base of a sealed
chamber. The chamber is covered using a piece of Mylar (alu-
minum coated with no known allergic risks), and a microphone
(Knowles SPU1410LR5H-QB) positioned at the opposite end of
the chamber records the pressure change when the membrane is
disturbed. When the device is placed on the skin above a super-
ficial muscle, the lateral contractions produce a low-frequency
vibration, nominally around 25 Hz with the majority of signal
power below 50 Hz, which propagates through the membrane
and creates a pressure difference within the chamber [13], [24]–
[26]. Following the technical specifications of Posatskiy and
Chau, a chamber height and diameter of 5 and 7 mm, respec-
tively, were used, which they report produces maximum gain,
reduces the frequency-response fluctuation, and reduces high-
frequency distortions. Its conical shape increases signal gain by
6.79 dB/Hz [23].

Fig. 1(a) shows a schematic of the sensor that measures 21 mm
× 9 mm (�xH). The Mylar membrane is wrapped around the
base of the device and is held in place using a sleeve and friction
compression of all the parts fitting together. The clip in Fig. 1(a)
(seen in blue) has a number of features to enhance the usability
of the device, including a double-level groove, which allows
attachment to fabric, and small holes in the top to allow for
sewing to clothing. Although thicker than a typical EMG elec-
trode [∼20 mm × 1.5 mm (�xH)], the MMG sensor described
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TABLE I
TYPICAL POWER CONSUMPTION OF EACH MAJOR COMPONENT USED IN

THE AKTIV IMU AND MMG SENSOR

Component Model number Power consumption

Gyroscope L3G4200D 6.1 mA
Accelerometer ADXL345 140 μA
Magnetometer HMC5883L 100 μA
Barometer BMP085 5 μA
Microcontroller dsPIC33FJ128GP802 63 mA
Bluetooth RN41 65 mA
USB battery charger MAX1811 0.9 mA
USB/UART data chip FT232RQ 70 μA
MMG microphone SPU1410LR5H-QB 120 μA

here has a sufficiently low profile, can be used multiple times,
and does not hinder movement or range of motion.

2) Inertial Measurement Unit: Our custom made IMU,
dubbed the Aktiv [45 mm × 30 mm × 9 mm (L × W × H)], can
be seen in Fig. 1(b) next to the MMG sensor. It has a 2000 ◦/ s
triaxis gyroscope (STMicroelectronics L3G4200D), a ±16 g
triaxis accelerometer (Analog Devices ADXL345), a ±8 G tri-
axis magnetometer (Honeywell HMC5883L), and a −500 to
+9000 m (sea level) barometer (Bosch BMP085). The barome-
ter is also capable of monitoring temperature (0.1 ◦C resolution)
that can be used to assist in reducing drift when calculating
inertial position. All components were sampled using a 16-bit
peripheral interface controller (PIC) microcontroller (Microchip
dsPIC33FJ128GP802). Furthermore, the Aktiv contains a blue-
tooth module (Microchip RN41), universal serial bus (USB)
battery charger (Maxim Integrated MAX1811), a micro secure
digital (SD) card port, and a USB/universal asynchronous re-
ceiver/transmitter (UART) data transmission chip (FTDI Chip
FT232RQ). The microcontroller’s analog-to-digital converter
(ADC) allows sampling from up to four MMG sensors in this ap-
plication; however, other analog sensors could be used instead.
Both inertial and ADC data can be transmitted via bluetooth
or USB to a laptop, phone, or tablet, or stored on a removable
micro SD card for offline data processing. Data packets are ac-
companied with a header byte and two checksum bytes at the
start and end of the packet, respectively. Header bytes indicate
the data type being transmitted (ADC or inertial information),
whereas the checksum bytes are used to determine successful
transmission and storage. Real-time date and time is possible
due to a 32.768 kHz crystal oscillator (ECS Inc., ECX-31B)
and can be time stamped to the data before processing. Typical
power consumption of each major component can be seen in
Table I.

Gyroscope, accelerometer, and magnetometer data are sam-
pled at 50 Hz, barometer at 1 Hz, and ADC data at 1 kHz. The
IMU and all connected devices to the ADC are powered by a
1000 mAh lithium-ion battery [50 mm × 33 mm × 6 mm (L ×
W × H)], which provides around 10 h of battery life on a single
charge.

B. MMG Sensor (Hardware) Validation

1) Validation of Frequency Sensitivity: To determine the
ability of low-frequency collection using the MMG sensor, an

Fig. 2. MMG frequency validation experiment setup. (a) Cross section
of apparatus used. (b) Frequency sweep of MMG sensitivity.

apparatus was constructed to be used with a custom made
vibration rig, which oscillates at a fixed frequency. An MMG
sensor was sandwiched between a wooden base and a sheet of
Plexiglas with the chamber pointing upward. A plastic point was
attached to the vibrating rig that tapped the Plexiglas on each
oscillation; Fig. 2(a) shows a cross section of the apparatus.
The Plexiglas interface was used in order to protect the MMG
membrane. The amplitude was set to a peak of 1 V and the
frequencies were increased logarithmically from 100.2 to 102.4

Hz with increments of 0.2.
A force gauge (Endevco Corp. model 2103-100) was posi-

tioned on top of the mass of the rig and was used to validate
the MMG sensor. Data were sampled from both the force gauge
and MMG for 10 s at each frequency of oscillation at 1 kHz and
were each passed through a fast Fourier transform. Accuracy
was calculated as the difference between the MMG and force
gauge dominant frequencies. To analyze the true response of the
sensor, the MMG data were neither filtered nor smoothed.

Results produced from the vibration rig were highly accurate
with a low frequency 1.74% (standard deviation (STD) 1.17)
when MMG was compared against the outputted force gauge
frequencies. The frequency sweep can be seen in Fig. 2(b),
which shows a detectable magnitude in the MMG range of
interest between 1 and 100 Hz, and a peak magnitude between 10
and 50 Hz, which as mentioned previously contains the majority
of MMG signal power.

2) Validation of Isometric Muscle Contraction Data:
Physiological comparisons between EMG and MMG for iso-
metric contractions have been well studied in the literature [28]–
[30]. To validate our MMG sensor’s ability to monitor muscular
activity, we performed a validation study where we compared
EMG and MMG activity of the extensor carpi radialis longus
during isometric extension of the wrist. Both EMG and MMG
signals were amplified using an ISO-DAM8A isolated biolog-
ical amplifier (MMG gain 10×, EMG gain 1000×) and were
bandpass filtered between 10 Hz and 1 kHz (analog single pole
resistor–capacitor). Both were sampled at 1 kHz using a CED
Power1401 data acquisition (DAQ) board.
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Fig. 3. (a) Isometric contraction experiment setup. (b) Isometric con-
tractions from the extensor carpi radialis longus muscle with EMG (red
dot-dashed) and MMG (blue dashed) response.

Contractions were determined during extension of the wrist
while monitoring the extensor carpi radialis longus on the sub-
ject’s left arm with both EMG and MMG [see Fig. 3(a)]. A
subject performed an isometric contraction of 100% maximum
voluntary contraction by extending their wrist and holding the
contraction for approximately 5 s. This was repeated five times
with a 5 s break in-between. Contraction responses seen in
Fig. 3(b) show five repetitions of a sustained isometric contrac-
tion from both EMG (red dot-dashed) and MMG (blue dashed).

Both EMG and MMG signals were smoothed using a five-
point moving average algorithm and rectified. If m̃ is the EMG
or MMG output, the time window of muscle activation between
onset time [a] and offset time [b] can be found with (1). Onset
and offset of the muscle contractions for EMG and MMG signals
were detected by noting when the average power of a 500 ms
nonoverlapping muscle activation signal segment exceeded and
then fell below an empirically determined threshold (2). A suit-
able threshold of 0.135 V was found experimentally as a point
greater than both EMG and MMG resting voltages and around
50% lower than their largest contraction magnitude

Ea,b > T, where Ea,b = {Ea,Ea+1, . . . , Eb} (1)

Ej =
1
N

j
∑

k=j−N +1

m2
k . (2)

The parameters T and N in (1) and (2) are the detection
threshold and the duration of the energy window, respectively.
Thus, when the average power over a window (N ) of the signal
rises and maintains a value above a designated threshold (T ),
the time indices of the vector m̃ at Ea and Eb will give the onset
and offset time of muscle activation. Comparison of isometric
muscle monitoring technologies showed that MMG signal onset
preceded EMG with a difference of 41 ± 181 ms; MMG offset
occurred after EMG at 204 ± 223 ms.

Fig. 4. Image of the calf brace containing IMU, MMG, Vicon, and
EMG technologies. The MMG acoustic sensor was positioned atop the
gastrocnemius, whereas the EMG electrodes were situated either side
the MMG underneath the brace (* not visible).

C. Validation of Dynamic Motion and Muscle Contraction
Data

1) Experimental Setup: To validate the sensor’s ability to
collect motion and muscle data concurrently, a ten camera Vicon
system and a Myon EMG system were used at the same time as
one of our Aktiv IMUs and MMG sensors in a local gait analysis
laboratory. Fig. 4 shows all devices attached to a calf sleeve. A
triple-quiver marker was placed on top of the IMU, which was
tracked by the Vicon cameras, whereas the EMG and MMG
sensors were placed on the lateral head of the gastrocnemius.
The Vicon system sampled both the optical data and controlled
the sampling of the EMG data (transmitted over a propriety
wireless protocol). The Aktiv IMU concurrently collected the
inertial and MMG information and transmitted the data to a lap-
top computer via bluetooth. The laptop computer was connected
to the external trigger of the Vicon system via a National Instru-
ments DAQ (USB-6210) and used MATLAB to synchronously
start and stop data collection from all technologies simultane-
ously. Vicon was sampled at 100 Hz, IMU at 50 Hz, and EMG
and MMG at 1 kHz. In order to compare Vicon and IMU data,
Vicon was down sampled to 50 Hz to match the IMU.

Muscle activity from the gastrocnemius muscle and motion of
the lower leg were recorded as the subject walked and climbed
stairs in the laboratory. Two subjects, both male, performed three
tasks: walking, ascending stairs, and descending stairs, for five
trials of each. Out of the five trials for each task, the four with
fewest Vicon marker drops were taken and analyzed.

2) Data Analysis: Vicon results were output as positional
data and a single X (internal/external rotation), Y (abduc-
tion/adduction), and Z (flexion/extension) coordinate was deter-
mined by finding the center position of the triple-quiver marker
set. Positional data were differentiated twice to obtain velocity
and acceleration. All data were resized to include only motion
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within the center of the laboratory and then smoothed using a
three-point moving average algorithm. The magnitude (Euclid-
ian norm) of the accelerations from the Aktiv was calculated
using (3), where n is the number of samples and d is the dimen-
sion (three, representing each respective accelerometer plane)
of each sample

|a| =
n

∑

i=1

⎛

⎝

d
∑

j=1

(xij )2

⎞

⎠

1
2

. (3)

Stationary periods were determined whenever the magnitude
dropped below 66% of the maximum. These points were used
as ground truths to correct results and remove drift from the raw
data. Using a gradient descent attitude and heading reference
system developed by Madgwick et al. the inertial raw data were
converted to quaternions that allowed the results to be aligned
to the earth’s coordinate frame, which determined the global
accelerations [31]–[33]. Gravity was removed during the calcu-
lations to avoid a biased coordinate frame, while information
from the accelerometer, gyroscope, and magnetometer were all
used in this algorithm. Velocity and position were obtained by
integrating. The IMU was turned on 30 min prior to testing to
stabilize temperature fluctuations to reduce drift in the velocity
and position calculations. The temperature was monitored by the
barometer (sampling at 1 Hz). The accelerations, velocities, and
positions of the Vicon and IMU data were compared using root
mean square error (RMSE) differences to determine accuracy.
The RMSE was determined by (4), where N is the total number
of data samples, VD is the Vicon accelerations/velocity/position,
and ID is the same for the IMU. This value was converted into
a percentage error for ease of analysis. All data were processed
in MATLAB

RMSE =

√

√

√

√

1
N

N
∑

n=1

|VD − ID|2. (4)

In order to reduce artifacts in MMG data, the accelerometer
data were normalized between one and zero and resampled to
1 kHz to match the MMG sampling rate. The MMG data were
filtered using a digital first-order bandpass Butterworth filter be-
tween 10 and 100 Hz, and then divided by the magnitude of the
acceleration (5), where n is the current data point, NMA is
the normalized magnitude of the accelerometer, and MMGS
is the smoothed MMG signal. At time intervals with large
magnitude accelerations (such as impact), the MMG data were
significantly reduced. However, when accelerations were small,
the MMG activity changed marginally. In total, 20 strides from
both subjects across these tests were used and analyzed using the
same energy thresholding technique (2) discussed previously to
determine onset and offset differences between MMG and EMG

MMGSn =
MMGn

NMAn
. (5)

3) Validation Results: Analysis of the results produced
from simultaneous Vicon and IMU validation showed a high ac-
curacy across each plane and activity. Table II shows the results
of three activities [level walking (LW), stair ascend (SA), and

TABLE II
RMSE RESULTS FOR VALIDATION OF MOTION DATA

% AX AY AZ VX VY VZ PX PY PZ

LW 83.1 90.8 91.3 94.0 91.9 93.9 67.8 81.8 89.5
SA 95.0 95.8 94.7 89.3 88.9 90.8 65.7 82.9 90.6
SD 87.4 91.5 93.9 90.4 91.2 82.6 76.9 87.7 88.2

An accuracy of 100% indicates identical results between Vicon and IMU results. Results
above 90% have been made bold. LW = level walking; SA = stairs ascend; SD = stairs
descend. A, V, P = accelerations, velocities, and positions for X, Y, and Z planes.

Fig. 5. Analysis of motion and muscle response during one gait cy-
cle. Top—gait cycle; the stance phase consists of initial contact (IC),
loading response (LR), mid stance (MSt), terminal stance (TSt), and
preswing (PSw), whereas the swing phase consists of initial swing (ISw),
midswing (MSw), and terminal swing (TSw). Middle—motion; gyroscopic
data. Bottom—muscle response; EMG (red dot-dashed) and MMG (blue
dashed). The blue shaded background represents the stance phase dur-
ing gait.

stair descend (SD)] for all three of their planes (X, Y, and Z),
and all three dynamic types (acceleration, velocity, and posi-
tion). Integration errors caused less accuracy in position com-
pared to velocity and acceleration. Results were better in the
planes exposed to more motion.

Analysis of muscular activity showed that MMG contraction
duration (383± 188 ms) exceeded that of EMG (201± 106 ms),
and in most cases MMG began before EMG contraction re-
sponse by 107 ± 212 ms. Peak EMG and MMG signals were in
the stance stage of gait, which was expected due to the major-
ity of muscular activity from the gastrocnemius being produced
during plantar flexion of the ankle (see Fig. 5) [34].

III. PHYSICAL ACTIVITY CASE STUDIES

We have implemented the system in two physical activity
case studies to illustrate its utility for biophysical analysis. Each
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draws from its validation experiments and data fusion architec-
ture. The first illustrates the identification and classification of
key activities in real-world gait using both sensing muscle and
motion modalities. The second outlines the implementation of
the system for pervasive monitoring in subjects with irregular
gait [a cerebral palsy (CP) subject and a unilateral amputee] in
natural environments for extended periods during their activi-
ties of daily living. All studies were approved by the Imperial
College Research Ethics Committee and written consent was
obtained from all subjects involved.

A. Case Study I: Activity Classification Through Parallel
Muscle and Motion Tracking

Six able-bodied subjects were recruited, one female and five
male, aged between 25 and 31 (STD 2.34) and a height of 165–
185 cm (STD 7.34), to perform a number of differing activities
(standing, lying, walking, running, ascending/descending stairs,
ascending/descending within an elevator) for a period of time
during an experiment to validate the accuracy of a novel activity
classification algorithm. Briefly, this algorithm splits data into
windowed segments that were classified into a broad cluster
group (stationary standing, lying, and elevator; dynamic walking
and running; or dynamic-altitude stairs) and then refined into
specific activities. A detailed formulation of this protocol is
presented in the appendix.

The subjects, all with typical gait, were selected on their
differing height, as opposed to sex, weight, or ability. Height
influences stride length and cadence, which were a key element
in classifying walking from running in this algorithm. Each sub-
ject performed two trials in which they took a pseudorandom
walk lasting 10 min involving multiple activities from the list
above, while given a different set of activities to perform. Sub-
jects were not asked to perform their tasks in a particular order,
length of time per activity, nor instructed in how to perform the
task; they were only asked to perform their given tasks at least
once during their trials. The IMU is situated on the lateral side
of their right leg and the MMG sensor on the lateral head of
the gastrocnemius (similar to Fig. 4). A push button was used,
which the subject pressed before changing to a different activity,
in order to validate the data collected against a ground truth.

In order to determine the robustness of the algorithm, each
subject was asked to perform differing activities where some do
not perform any tasks from the dynamic, stationary, or dynamic-
altitude-based groups. Some subjects were asked to avoid tasks
such as ascending/descending stairs, in order to remove any
classification from the dynamic-altitude-based group, whereas
others were asked to only perform stationary tasks, to remove
both dynamic and dynamic-altitude tasks. An investigator
accompanied each subject on their trials to record what activity
they performed, and at what time, so that these data could be
compared against the activity determined by the algorithm.
Accuracy was determined by validating each window activity
against its recorded actual activity. The subjects pressed a button
each time they changed activities that were collected alongside
inertial and MMG data. The button presses created known
points of activity change, which were used to further assist in

TABLE III
RESULTS OF ACTIVITY CLASSIFICATION WITHOUT AND WITH MMG

Subject Activities Missing Group % w/o MMG % w/ MMG

1 S, LW, SD, EA None 99.2 99.2
2 S, LW, SA, ED None 96.3 96.3
3 S, LW, SA, SD None 97.5 97.5
4 S, LW, EA, ED Dynamic altitude 98.3 98.3
5 S, LW, R Dynamic altitude 89.2 99.3
6 S, L Dynamic, Dynamic altitude 100.0 100.0
Avg. 96.8 98.4

S = standing; L = lying; LW = level walking; R = running; SD = stairs descend;
SA = stairs ascend; ED = elevator descend; EA = elevator ascend.

validation. In order to validate the improvement through MMG
inclusion in the algorithm, the data were processed twice. Once
with both motion and muscle information and another with the
muscle data component removed. The accuracy of the algorithm
with MMG was compared against that without MMG, in order to
determine its importance in the classification of activities. Data
processed with MMG and without MMG was passed through a
paired t-test to determine significance. The algorithm was tested
on pervasive data in which activities were manually recorded.

The overall algorithm accuracy, by taking the mean of accu-
racy across all subjects and trials, was found to be 97% with-
out MMG, and 98% with MMG (see Table III).

B. Case Study II: Pervasive Monitoring of Motion and
Muscle Activity in Patients With Atypical Gait

Three subjects, asymptomatic (control), hemiplegic CP, and
unilateral transtibial (below the knee) amputee, were monitored
during their normal daily routine. Muscle signal amplitudes
from an MMG sensor on the gastrocnemius muscle were ana-
lyzed and any change reported while movement patterns were
monitored for change using an Aktiv IMU.

The IMU was mounted on the lateral side of the right leg,
and the MMG sensor situated on the lateral head of the gas-
trocnemius. The right leg was the amputees nonamputated leg,
whereas the right leg of the CP subject was his affected side,
therefore each subject (including asymptomatic) wore the brace
on their right leg. A similar brace, as seen in Fig. 4, was used in
this study including the IMU and MMG technologies.

On a typical day, each subject put the sensor on when they
woke up and collected approximately 5 h of data. The brace
required no special training other than some brief instructions
on where the MMG sensor had to be placed over the gastrocne-
mius. As everything was sewn in place, the correct positioning
of the MMG sensor meant that the IMU was also positioned
correctly. Data were saved to the device’s SD card and all pro-
cessing was performed offline. The same sampling rates and
processing methods were used as presented in Section III-A.

The “walking” activity data were used and analyzed in deter-
mining activity change over time; the other activities were not
further analyzed within this study, however, could be used in
future applications. Following from the classification of walk-
ing data, individual strides were identified using a threshold-
ing method that looked for peaks in the gyroscope Z plane
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Fig. 6. Figure displaying the process taken for individual stride seg-
mentation from gyroscopic data of the lower leg. The black horizontal line
shows the threshold in which gyroscope data from the Z plane (which
represents gait swing) had to exceed. The gray vertical line represents
a center peak, which exceeds this threshold. Data between IC and IC
represent one stride. These data were taken from the asymptomatic gait
subject.

TABLE IV
AVERAGE DURATION (PERCENT OF TRIAL) OF EACH OF THE CLASSIFIED

ACTIVITIES

Subject Standing/Sitting Walking Noise/Other

Asymptomatic 75% 16% 9%
Amputee 46% 45% 9%
CP 54% 44% 2%

Only walking, standing/sitting, and noise/other activities had a percent-
age above 1%. Activities below 1% are not shown here.

(>250◦/s), which represented the flexion/extension of gait (see
Fig. 6). Recognizing the repeatable gyroscopic pattern for each
stride, the preswing (PSw) phase of gait was identified as the
first minimum prior to the center point, whereas working further
backward to the next minimum was recognized as the initial con-
tact (IC) phase of gait. Working forward from the center point,
the first minimum was the IC of the next stride. The data between
IC and IC represent one stride.

To determine change in motion over time, the gyroscopic
magnitude (3) from each stride was determined and the am-
plitude (RMS) of that signal was calculated. Furthermore, the
cadence of each stride was determined by taking the stride du-
ration and calculating the step duration and then estimating the
steps per minute. Muscle activity was denoised of vibration ar-
tifact (5) and the RMS of the MMG signal was calculated from
the flat foot stage of each stride (between IC and PSw in Fig. 6).

In order to determine changes in muscle activity or motion
over time, linear regression analysis was performed on the MMG
RMS, cadence, and gyroscope magnitude against time. For
each, the Pearson’s correlation coefficient (r) was calculated,
along with significance value (P), and percentage change over
time, from the start to finish of the total time sampled.

Table IV shows the average duration (percent of trial based on
the time of trial duration per subject) of the activities performed
by each subject group during their collection trial, whereas Fig. 7
displays the motion and muscular response change over time.
The asymptomatic subject saw a nonsignificant decline in MMG
RMS (−7%) with a significant increase in both cadence (10%)
and gyroscope RMS (19%). The subject reported no discomfort,

Fig. 7. Results for progressive changes in the gastrocnemius between
typical and atypical gait. Each plot has linear regression line plotted as
well as their corresponding Pearson’s correlation coefficient (r) and P
values.

fatigue, or tiredness at the end of the trial; however, they were
unaware of any voluntary changes in their gait over the trial
either. The amputee subject’s motion and muscle parameters
all significantly decreased during the collection period: MMG
RMS by −31%, cadence by −9%, and gyroscope RMS by
−15%. The subject reported tiredness in their calf muscles fol-
lowing the trials, as they normally feel on active days. The CP
subject saw significant increases in MMG RMS (122%) and gy-
roscope RMS (8%); however, a nonsignificant change was seen
in cadence (3%). The subject reported a feeling of muscle loos-
ening and a decline in joint stiffness over the course of the day.
Average cadence speeds were found to be 108 ± 5 steps/min,
102 ± 4 steps/min, and 107 ± 2 steps/min for asymptomatic,
amputee, and CP subjects, respectively. Likewise, average gyro-
scope RMS results were found to be 166 ± 20◦/s, 133 ± 13◦/s,
and 113 ± 4◦/s, in asymptomatic, amputee, and CP subjects,
respectively.

IV. DISCUSSION

Previous studies have developed MMG sensors using ac-
celerometers, microphones, piezoelectric transducers, laser dis-
tance sensors (LDS), and hydrophones [35]–[40]. In this paper,
we used microphones due to their accurate results and higher
rejection of motion noise compared to other methods, specif-
ically accelerometers [41]. Other methods, such as LDS and
hydrophones, are impractical for this paper, due to size/cost and
lack of pervasiveness.

IMUs are widely used in aeronautic applications [42], [43],
but have more recently been applied to human motion analysis
[44]–[46], and are available in a range of forms, such as complete
commercial packages (Xsens, x-IMU, MotionNode), breakout
boards and prototype circuits, and all-in-one integrated circuit
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chips. Despite the wide availability in the market, limitations
such as lack of functionality, which allows simultaneous MMG
collection, or practicality (size, weight, battery life), required the
development of a custom made IMU. The Aktiv was designed
specifically to be light, low cost, low power, and wireless. Its
built-in auxiliary port, which allows fast sampling from up to
four analog sensors, is what makes this device novel as this
feature is scarcely found in current commercial IMUs and is
a requirement for simultaneous inertial/MMG collection. Fur-
thermore, IMUs that do feature an on-board auxiliary port for
concurrent sensor acquisition have insufficient sampling rates
(<512 Hz), whereas the Aktiv can sample up to 1 kHz, which is
much better suited for EMG and MMG collection. Parts, man-
ufacturing, and assembly of the Aktiv IMU and MMG sensors
come to a cost of $250 and $15 USD per sensor, respectively.
This compares very favorably with EMG, where wireless sys-
tems can cost in excess of $3000 [47], and optical systems, which
exceed this by an order of magnitude. The technology presented
here was designed with fast utilization in mind to reduce time
taken in donning and doffing, calibration, or marker/electrode
placement needed in other technologies; it is entirely unobtru-
sive, immune to any occlusion inhibiting optical data collection,
robust to sweat or other interference, and leaves the subject free
to execute any other activity while wearing/using the system.

Our study validating the Aktiv IMU against Vicon, the gold
standard of human motion monitoring, reported a close com-
parison in accuracy for determining acceleration, velocity, and
position. The calculation of absolute position from an IMU can
result in drift, due to the integration stages of conversion, and
therefore IMUs are infrequently used for determining position.

Frequency sensitivity and isometric muscle contraction vali-
dation showed a suitable response across the MMG frequencies
of interest and suggest our designed sensor can be suitably used
in MMG applications or applications where EMG is infeasi-
ble. However, an earlier and later MMG onset and offset was
seen when comparing isometric contractions to EMG in our
“Validation of Isometric Muscle Contraction Data” study (see
Section II-B2). This is likely due to skin artifacts produced by
small movements of the sensor during contraction. Likewise, dy-
namic contractions and the resulting MMG data are susceptible
to motion artifacts, along with oscillation noise caused during IC
(heel strike) and initial swing (ISw) (toe off) when monitoring
lower limb muscles during gait. Our research has shown how
noise, such as impact vibration and motion, can be filtered from
the MMG data using the IMU accelerometer data as a guide to
where impacts occurred. This method works to reduce motion
artifacts, which occur outside of the contraction period of the
muscle of interest. Fig. 8 shows this filtering process, including
gyroscopic data, accelerometer data with calculated magnitude,
unprocessed (raw) MMG data, filtered MMG data, and filtered
and processed MMG (top to bottom, respectively). It can be seen
that in the unprocessed and filtered MMG plots, it is difficult
to determine contraction periods due to the vibration artifacts
(IC is highlighted with a red background). The processed MMG
data have been filtered and smoothed, and motion and shock
artifacts have been removed. gastrocnemius muscle activation
occurs at 10% of the gait cycle [end of loading response (LR)],

Fig. 8. Stages of MMG signal denoising. Blue shaded backgrounds
represent time periods of flat foot stance during gait, whereas red-shaded
backgrounds represent heel strike during gait.

with a peak at 40% [mid terminal stance (TSt)], and an offset at
50% (end of TSt) [34]; therefore, due to the expected contrac-
tion periods of the gastrocnemius occurring during the stance
stage of gait, this method works well in filtering disturbances.
A comparison between the top plot (gyroscope data) and the
bottom plot (processed MMG) in Fig. 8 shows that the stance
stages of gait, highlighted with a blue background, coincide
with muscular contraction periods. This method is believed to
also work with other muscles, provided their contraction period
is not during a high motion moment, such as heel strike or toe
off. This limits the method to a handful of muscles, but not
necessarily just the gastrocnemius.

Discrepancies between EMG and MMG contraction times,
seen in Fig. 5, are believed to be due to motion artifacts produced
at the onset and offset of contraction. Although the denoise
process reduces disturbances produced during high acceleration
point of gait, large onset/offset peaks in MMG data will be
minimized, but not completely removed. This is an issue with
all MMG measurement. While parallel inertial measurement
offers some mitigation, MMG remains more vulnerable to noise
and motion/shock artifacts when compared against EMG. There
are (potentially complimentary) pros and cons to each measure,
which will depend significantly on the collection environment.

Results seen in our first case study (see Section III-A)
showed a high accuracy in classification between nine com-
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Fig. 9. Two-part a priori activity classification flow chart.

monly performed activities. This model was based on previous
work, which used multiple IMUs and single accelerometers to
determine multiple activities [48], [49]; however, the method
presented here was unique in which the model (A) was uncon-
trolled and unsupervised with no precollection data labeling for
activities required and (B) concurrently used muscular activity.
The results between subject five’s trials were significantly dif-
ferent (P < 0.05) in comparison of classification with and with-
out MMG data components (see Table III). All other subject
comparisons were not significantly different. This was expected
due to subject 5 being the only participant who performed a
running task, of which the MMG data assisted in classifying
(see Fig. 9). During the start of a running task, it took a num-
ber of strides before an accurate cadence could be calculated in
order to classify the running activity. Without MMG, the algo-
rithm recognized multiple windows at the beginning and end of
a running task, when the subject was speeding up and slowing
down, as walking. The inclusion of MMG data allowed for an
additional thresholding method, which would recognize muscle
activity high enough to be determined as running, before a run-
ning cadence value could be estimated. Although the average
accuracy of subject 5’s trials was high (89%) without MMG
data, it was significantly lower than the calculation with MMG

(99%). MMG inclusion would produce a larger global margin of
improvement in applications where running is more abundant.

Results seen in our second case study (see Section III-B)
showed that each subject spent the majority of their collection
time standing/sitting; however, both the amputee and CP sub-
jects were active (walking) more than the asymptomatic subject
(see Table IV). Due to the IMU being placed on the lower leg,
there is no discernible way to classify between standing and sit-
ting; however, both activities are stationary and the current clas-
sification methods are sufficient for this task. Cadences among
all three groups were unexpectedly similar, with each within
the normal cadence speed, matching previously reported aver-
age cadence speeds of 90–130 steps/min [50], [51]. Although
cadence was similar between groups, the gyroscope RMS re-
sults showed higher magnitudes in the asymptomatic group as
opposed to amputee and CP results. The decrease in gyroscope
RMS from asymptomatic to amputee to CP results is believed
to be due to the amputee’s compensation of its prosthesis, and
the CP hemiplegic spasticity, both of which limit their gait,
respectively.

MMG results across CP and amputee subjects showed a sig-
nificant change over time as well as a moderate linear correla-
tion, whereas the asymptomatic subject showed a nonsignificant
change. The much higher percentage of change seen in the
CP MMG results suggests their observation of muscle loosen-
ing over the course of a day occurs much faster and was much
more prominent than the amputee’s muscle tiring due to over-
compensation. A poor linear correlation in the asymptomatic
subject’s MMG data suggests no change in muscular activity.

V. CONCLUSION

The goal of this investigation was to develop and demon-
strate the utility of a new concept for human biophysical anal-
ysis. While extensive research has been performed in motion
and muscle recording, nearly all existing systems have limited
scope outside controlled environments due to challenges asso-
ciated with EMG (electrical) collection of muscle activity, the
lack of hardware with the capacity to fuse motion and muscle
activity data simultaneously, and the lack of heterogeneous fea-
ture extraction algorithms identifying biophysical parameters
from data with multiple sources.

We introduce the first system we are aware of addressing all
these issues. We have developed, validated, and demonstrated
use of a novel MMG and motion analysis sensor for perva-
sive sensing. This paper has concluded that our custom MMG
and IMU sensors are capable of measuring motion and muscle
activity during simple motions to a high accuracy when com-
pared against the current gold standard. We have demonstrated
that an algorithm can classify human activity into nine activi-
ties using an unsupervised algorithm. Finally, the monitoring of
progressive changes over time in subjects with atypical gait has
also been achieved, showing significant change (P < 0.01) in
muscular activity.

Future research involves identification of key physiological
markers to correlate movement with neurological function or
dysfunction in rehabilitation, investigation into optimal filtering
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methods for MMG, design of new robotic interfaces for assis-
tive technology and artificial limbs, and home monitoring for
conditions such as stroke and Parkinson’s disease. Commercial
applications being pursued based on this research include in-
terfaces for peripheral device control and clinical monitoring
[52].

APPENDIX

We have developed an algorithm to fuse heterogeneous iner-
tial (movement) measurement and MMG muscle activity data to
classify a number of commonly performed physical activities.
We present the algorithm in the context of gait feature classifica-
tion; however, the algorithm architecture may be implemented
to extract any set of desired features based on simultaneous
collection of movement and muscle activity data over extended
periods of time.

When implemented for gait feature classification, a total
of nine activities were targeted for classification, including
walking, running, standing/sitting, lying, ascending/descending
stairs, ascending/descending in an elevator, and “other,” which
contained unprocessed activities and noise. All inertial data (ac-
celerometer, gyroscope, magnetometer, and barometer) were
smoothed using a moving average seen in (6) where ysn is the
smoothed value for the nth data point, N is the number of neigh-
boring data points on either side of ysn , and 2N + 1 is the span,
which in this case N is equal to 15 data points

ysn =
1

2N + 1

[

N +1
∑

i=1

yn+N +1−i

]

. (6)

After smoothing, data from each sensor type were windowed
in order to be processed by the algorithm. The inertial window
size was set to 200 samples (4 s of data at 50 Hz), which can
be easily resized to obtain the same window size for the other
sensors sampled at a different rate: a four-sample window for
the barometer at 1 Hz, and a 4000-sample window for the MMG
at 1 kHz. The data were resized into windows of 4 s with a 50%
overlap and four features [mean, standard deviation, power, and
covariance (7)] were determined from each of the three axes of
the accelerometer (X, Y, and Z) resulting in 12 parameters per
window, where n is the current data point, N is the total number
of data points in the window, i.e., 200, y is the dataset of one
axis, μ is the mean, σ is the standard deviation, and a and b
correspond to one of the three accelerometer axes (X, Y, or Z)

μ =
1
N

N
∑

n=1

yn

σ =

√

√

√

√

1
N − 1

N
∑

n=1

(yn − μ)2

power =
N

∑

n=1

y2
n

N

COV(a, b) =
N

∑

n=1

(an − μa)(bn − μb)
N

. (7)

A K-means clustering algorithm using a squared Euclidean
distance method was used to cluster windowed data into one
of three clusters based on the parameter matrix created from
the four features above. This algorithm processes the data in
two stages: a gross group clustering stage where each window
was split into one of three groups; stationary activities (stand-
ing, lying, and elevator), dynamic (walking, running, and noise),
and dynamic altitude (stairs), and a second activity classifica-
tion stage where windows from each cluster group were further
classified into one of nine activities. The objective function of
the K-means algorithm is seen in the following equation:

J =
N

∑

n=1

K
∑

k=1

rnk ||yn − ck ||2 (8)

where again y, n, and N are the dataset, current data point, and
total number of data points, respectively, K is the number of
clusters, i.e., three, k is the current cluster, c is the centroid of
the cluster, and rnk is the binary indicator variable (where rnk is
equal to one if a data point belongs to cluster k, otherwise zero).
In order to predict data points belonging to one of the three
cluster groups, the values of rnk and ck had to be found in order
to minimize J . Initial values of ck are randomly determined, then
the two stage process of calculating rnk and ck were repeated
until results converge. As different initial cluster centroids can
produce slightly differing results, the algorithm was replicated
five times with a new set of initial cluster centroid positions for
more accurate results.

1) Centroids of the clusters were initialized with random
values.

2) Each data point was attributed to the closest cluster using
(9).

3) The position of each cluster is re-evaluated so that it
corresponds with the mean of all data points belonging
to that cluster using (10).

4) Steps 2 and 3 are repeated until results converge

rnk =
{

1 if k = argminj ||yn − cj ||2
0 otherwise

(9)

ck =
Σn rnk yn

Σn rnk
. (10)

With each window placed within one of three clusters, it was still
unknown what group (stationary, dynamic, or dynamic altitude)
each cluster belongs to. The average gyroscopic magnitude and
barometer gradient were determined from each window of data
belonging to each of the three unknown clusters and the cluster
average was used to determine which group they belong to. The
stationary group was defined by detecting a gyroscopic magni-
tude below a threshold of 50◦/s, the dynamic group determines
if the same gyroscopic magnitude data exceeds the same thresh-
old and the barometer gradient was below a threshold of 0.1
ms, and finally the dynamic-altitude group was defined by ex-
ceeding both the gyroscopic magnitude threshold and barometer
gradient threshold (Fig. 9—Cluster Group Stage). If there are
no activities from one of the cluster groups, for example, no
stair climbing, no dynamic-altitude group was detected, and the
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other cluster groups may have multiple clusters belonging to
them. The threshold values used were determined by trial and
error prior to this study and were found to sufficiently charac-
terize activities for all subjects tested. These values were not
redetermined for each subject and therefore this algorithm still
accomplishes an unsupervised methodology.

The second stage of the algorithm processed each window
within a cluster group to classify the individual activities by us-
ing information from all sensors available and exploiting unique
attributes from each of the nine activities (Fig. 9—Activity Clas-
sification Stage). MMG data were denoised of vibration artifact
as described in Section II-C2. The elevator and stairs activi-
ties were further split into two each (ascending/descending) by
determining the direction of barometer pressure change.

ACKNOWLEDGMENT

The authors would like to thank all the subjects involved in
this study, as well as the Biodynamic Laboratory at Charing
Cross Hospital where many of the validation tests were per-
formed.

REFERENCES

[1] R. T. Lauer, B. T. Smith, and R. R. Betz, “Application of a neuro-fuzzy
network for gait event detection using electromyography in the child with
cerebral palsy,” IEEE Trans. Biomed. Eng., vol. 52, no. 9, pp. 1532–1540,
Sep. 2005.

[2] J. W. Youdas et al., “Surface electromyographic activation patterns and
elbow joint motion during a pull-up, chin-up, or perfect-pullup rotational
exercise,” J. Strength Condition. Res., vol. 24, no. 12, pp. 3404–3414,
2010.

[3] G. Shan, “Biomechanical evaluation of bike power saver,” Appl. Ergonom.,
vol. 39, no. 1, pp. 37–45, Jan. 2008.

[4] N. Abaid et al., “Gait detection in children with and without hemiplegia
using single-axis wearable gyroscopes,” PLoS ONE, vol. 8, no. 9, 2013,
Art. no. e73152.

[5] J. H. M. Bergmann et al., “Exploring the use of sensors to measure behav-
ioral interactions: An experimental evaluation of using hand trajectories,”
PLoS ONE, vol. 9, no. 2, 2014, Art. no. e88080.

[6] Y. Liang et al., “Energy-efficient motion related activity recognition on
mobile devices for pervasive healthcare,” Mobile Netw. Appl., vol. 19, no.
3, pp. 303–317, 2014.

[7] K. D. Nguyen, I. M. Chen, Z. Luo, S. H. Yeo, and H. B. L. Duh, “A
wearable sensing system for tracking and monitoring of functional arm
movement,” IEEE/ASME Trans. Mechatronics, vol. 16, no. 2, pp. 213–220,
Apr. 2011.

[8] H. Fourati, N. Manamanni, L. Afilal, and Y. Handrich, “Complementary
observer for body segments motion capturing by inertial and magnetic
sensors,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 1, pp. 149–157,
Feb. 2014.

[9] Y. Zhang, K. Chen, J. Yi, T. Liu, and Q. Pan, “Whole-body pose es-
timation in human bicycle riding using a small set of wearable sen-
sors,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 1, pp. 163–174, Feb.
2016.

[10] C. Gavriel and A. A. Faisal, “A comparison of day-long recording stability
and muscle force prediction between BSN-based mechanomyography and
electromyography,” in Proc. 2014 11th Int. Conf. Wearable Implantable
Body Sensor Netw., Jun. 2014, pp. 69–74.

[11] P. Laferriere, E. D. Lemaire, and A. D. C. Chan, “Surface electromyo-
graphic signals using dry electrodes,” IEEE Trans. Instrum. Meas., vol.
60, no. 10, pp. 3259–3268, Oct. 2011.

[12] A. Shafti, R. B. R. Manero, A. Borg, K. Althoefer, and M. Howard,
“Embroidered electromyography: A systematic design guide,” in IEEE
Trans. Neural Syst. Rehabil. Eng., vol. PP, no. 99, pp. 1–1.

[13] M. J. Stokes and P. A. Dalton, “Acoustic myography for investigating
human skeletal muscle fatigue,” J. Appl. Physiol., vol. 71, no. 4, pp. 1422–
1426, Oct. 1991.

[14] H.-B. Xie, Y.-P. Zheng, and J.-Y. Guo, “Classification of the mechanomyo-
gram signal using a wavelet packet transform and singular value decom-
position for multifunction prosthesis control,” Physiol. Meas., vol. 30, no.
5, pp. 441–457, 2009.

[15] D. T. Barry, S. R. Geiringer, and R. D. Ball, “Acoustic myography: A
noninvasive monitor of motor unit fatigue,” Muscle Nerve, vol. 8, no. 3,
pp. 189–194, 1985.

[16] M. J. Stokes, “Acoustic myography: Applications and considerations in
measuring muscle performance,” Isokinetics Exercise Sci., vol. 3, no. 1,
pp. 4–15, 1993.

[17] A. I. Adiba, N. Tanaka, and J. Miyake, “An adjustable gaze tracking
system and its application for automatic discrimination of interest objects,”
IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp. 973–979, Apr. 2016.

[18] G. Chelius et al., “A wearable sensor network for gait analysis: A 6-day
experiment of running through the desert,” IEEE/ASME Trans. Mecha-
tronics, vol. 16, no. 5, pp. 878–883, Oct. 2011.

[19] F. Jasni, N. A. Hamzaid, A. G. A. Muthalif, Z. Zakaria, H. N. Shasmin,
and S. C. Ng, “In-socket sensory system for transfemoral amputees using
piezoelectric sensors: An efficacy study,” IEEE/ASME Trans. Mechatron-
ics, vol. 21, no. 5, pp. 2466–2476, Oct. 2016.

[20] A. Murgia, V. Kerkhofs, H. Savelberg, and K. Meijer, “A portable device
for the clinical assessment of upper limb motion and muscle synergies,”
in Proc. IEEE Eng. Med. Biol., Jan. 2010, pp. 931–934.

[21] O. A. Malik, S. M. N. A. Senanayake, and D. Zaheer, “A multisensor
integration-based complementary tool for monitoring recovery progress
of anterior cruciate ligament-reconstructed subjects,” IEEE/ASME Trans.
Mechatronics, vol. 20, no. 5, pp. 2328–2339, Oct. 2015.

[22] H. Ghasemzadeh, R. Jafari, and B. Prabhakaran, “A body sensor network
with electromyogram and inertial sensors: Multimodal interpretation of
muscular activities,” IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 2, pp.
198–206, Mar. 2010.

[23] A. O. Posatskiy and T. Chau, “Design and evaluation of a novel
microphone-based mechanomyography sensor with cylindrical and coni-
cal acoustic chambers,” Med. Eng. Phys., vol. 34, no. 8, pp. 1184–1190,
Jan. 2012.

[24] C. Orizio, “Muscle sound: Bases for the introduction of a mechanmyo-
graphic signal in muscle studies,” Critical Rev. Biomed. Eng., vol. 21, no.
3, pp. 201–243, 1993.

[25] C. Orizio et al., “Spectral analysis of muscular sound during isometric
contraction of biceps brachii,” J. Appl. Physiol., vol. 68, no. 2, pp. 508–
512, 1990.

[26] G. Oster and J. S. Jaffe, “Low frequency sounds from sustained contraction
of human skeletal muscle,” Biophys. J., vol. 30, no. 1, pp. 119–127, Apr.
1980.

[27] R. Woodward, S. Shefelbine, and R. Vaidyanathan, “Pervasive motion
tracking and muscle activity monitor,” in Proc. 2014 IEEE 27th Int. Symp.
Comput.-Based Med. Syst., New York, NY, USA, 2014, pp. 421–426.

[28] K. T. Ebersole et al., “MMG and EMG responses of the superficial quadri-
ceps femoris muscles,” J. Electromyography Kinesiol., vol. 9, no. 3, pp.
219–227, Jun. 1999.

[29] A. K. Blangsted et al., “Voluntary low-force contraction elicits pro-
longed low-frequency fatigue and changes in surface electromyography
and mechanomyography,” J. Electromyography Kinesiol., vol. 15, no. 2,
pp. 138–148, 2005.

[30] C. Orizio et al., “The surface mechanomyogram as a tool to describe
the influence of fatigue on biceps brachii motor unit activation strategy.
Historical basis and novel evidence,” Eur. J. Appl. Physiol., vol. 90, no.
3–4, pp. 326–336, Oct. 2003.

[31] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation
of IMU and MARG orientation using a gradient descent algorithm,” in
Proc. IEEE Int. Conf. Rehabil. Robot., 2011, pp. 179–185.

[32] S. O. H. Madgwick et al., “Measuring motion with kinematically re-
dundant accelerometer arrays: Theory, simulation and implementation,”
Mechatronics, vol. 23, no. 5, pp. 518–529, Aug. 2013.

[33] X. Yun and E. R. Bachmann, “Design, implementation, and experimen-
tal results of a quaternion-based Kalman filter for human body motion
tracking,” IEEE Trans. Robot., vol. 22, no. 6, pp. 1216–1227, Dec. 2006.

[34] J. Perry and J. Burnfield, Gait Analysis: Normal and Pathological Func-
tion, 2nd ed. Thorofare, NJ, USA: SLACK Inc., 2010.

[35] M. A. Islam, K. Sundaraj, R. B. Ahmad, N. U. Ahamed, and M. A. Ali,
“Mechanomyography sensor development, related signal processing, and
applications: A systematic review,” IEEE Sensors J., vol. 13, no. 7, pp.
2499–2516, Jul. 2013.

[36] C. Orizio et al., “Surface mechanomyogram reflects muscle fibres twitches
summation,” J. Biomech., vol. 29, no. 4, pp. 475–481, 1996.



WOODWARD et al.: PERVASIVE MONITORING OF MOTION AND MUSCLE ACTIVATION: INERTIAL AND MECHANOMYOGRAPHY FUSION 2033

[37] Y. Yoshitake and T. Moritani, “The muscle sound properties of different
muscle fiber types during voluntary and electrically induced contractions,”
J. Electromyography Kinesiol., vol. 9, no. 3, pp. 209–217, Jun. 1999.

[38] F. Esposito, C. Orizio, and A. Veicsteinas, “Electromyogram and
mechanomyogram changes in fresh and fatigued muscle during sustained
contraction in men,” Eur. J. Appl. Physiol. Occupat. Physiol., vol. 78, no.
6, pp. 494–501, Nov. 1998.

[39] D. McAndrew, M. Gorelick, and J. Brown, “Muscles within muscles: A
mechanomyographic analysis of muscle segment contractile properties
within human gluteus maximus,” J. Musculoskeletal Res., vol. 10, no. 1,
pp. 23–35, 2006.

[40] D. Barry, “Acoustic signals from frog skeletal muscle,” Biophys. J., vol.
51, no. 5, pp. 769–773, May 1987.

[41] A. O. Posatskiy and T. Chau, “The effects of motion artifact on
mechanomyography: A comparative study of microphones and accelerom-
eters,” J. Electromyography Kinesiol., vol. 22, no. 2, pp. 320–324, 2012.

[42] A. Makni, H. Fourati, and A. Y. Kibangou, “Energy-aware adaptive at-
titude estimation under external acceleration for pedestrian navigation,”
IEEE/ASME Trans. Mechatronics, vol. 21, no. 3, pp. 1366–1375, Jun.
2016.

[43] F. Aghili and C.-Y. Su, “Robust relative navigation by integration of ICP
and adaptive Kalman filter using laser scanner and IMU,” IEEE/ASME
Trans. Mechatronics, vol. 21, no. 4, pp. 2015–2026, Aug. 2016.

[44] H. Zhou and H. Hu, “Inertial motion tracking of human arm movements in
stroke rehabilitation,” in Proc. 2005 IEEE Int. Conf. Mechatronics Autom.,
2005, vol. 3, pp. 1306–1311.

[45] H. Tan, A. M. Wilson, and J. Lowe, “Measurement of stride parameters
using a wearable GPS and inertial measurement unit,” J. Biomech., vol.
41, no. 7, pp. 1398–1406, Jan. 2008.

[46] H. Zhou et al., “Use of multiple wearable inertial sensors in upper limb
motion tracking,” Med. Eng. Phys., vol. 30, no. 1, pp. 123–133, Jan. 2008.

[47] P. Geethanjali and K. K. Ray, “A low-cost real-time research platform
for EMG pattern recognition-based prosthetic hand,” IEEE/ASME Trans.
Mechatronics, vol. 20, no. 4, pp. 1948–1955, Aug. 2015.

[48] L. Bao and S. S. Intille, “Activity recognition from user-annotated accel-
eration data,” in Pervasive Computing. New York, NY, USA: Springer,
2004, pp. 1–17.

[49] N. Ravi et al., “Activity recognition from accelerometer data,” in Proc.
Assoc. Adv. Artif. Intell., 2005, pp. 1541–1546.

[50] C. Kirtley, M. W. Whittle, and R. J. Jefferson, “Influence of walking speed
on gait parameters,” J. Biomed. Eng., vol. 7, no. 4, pp. 282–288, 1985.

[51] C. BenAbdelkader, R. Cutler, and L. Davis, “Stride and cadence as a
biometric in automatic person identification and verification,” in Proc. 5th
IEEE Int. Conf. Automat. Face Gesture Recognit., 2002, pp. 372–377.

[52] R. Vaidyanathan et al., “Biomechanical activity monitoring,” Patent
PCT/GB2014/053276, May 5, 2014.

Richard B. Woodward (M’14) received the
B.Sc. (Hons.) in cybernetics and control engi-
neering from the University of Reading, Read-
ing, Berkshire, U.K., in 2009, and the M.Sc. de-
gree in biomedical engineering and neurotech-
nology and the Ph.D. degree in biomechatronics
from Imperial College London, London, U.K., in
2011 and 2015, respectively.

He is a Postdoctoral Fellow with Northwest-
ern University, Chicago, IL, USA, and also with
Shirley Ryan AbilityLab, Chicago. His research

interests include the fusion of human motion and muscle activity using
wearable technology in order to gain greater insight into human ambu-
lation outside of controlled environments, prosthetic technology, sensor
design, and machine learning for advanced control of rehabilitation sys-
tems.

Sandra J. Shefelbine received the B.S.E. in
mechanical and aerospace engineering from
Princeton University, Princeton, NJ, USA, in
1997, the M.Phil. degree in engineering design
from Cambridge University, Cambridge, Cam-
bridgeshire, U.K., in 1998, and the Ph.D. degree
in mechanical engineering from Stanford Univer-
sity, Stanford, CA, USA, in 2002.

She is an Associate Professor with the Depart-
ment of Mechanical and Industrial Engineering,
and also with the Department of Bioengineering,

Northeastern University, Boston, MA, USA. Her work uses computational
models, in vivo experiments, and clinical observation to understand mus-
culoskeletal pathologies.

Ravi Vaidyanathan (M’08) received B.S., M.S.,
and Ph.D. degrees in mechanical engineering
from Case Western Reserve University, Cleve-
land, OH, USA, in 1993, 1996, and 2001, re-
spectively.

He is a Senior Lecturer of biomechatron-
ics with Imperial College London, London, U.K.
His current research focuses on mechanisms
of sensory-motor control with an emphasis on
biorobotics and human–robot interface.

Dr. Vaidyanathan is currently the Co-Chair of
the IEEE Robotics and Automation Society Technical Advisory Commit-
tee on Biorobotics.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


