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Railway Wheelset Active Control and Stability
via Higher Order Neural Units

Peter Mark Benes and Ivo Bukovsky , Senior Member, IEEE

Abstract—This article investigates an unconventional ap-
proach to solving the control of lateral displacement for
railway bogie wheelsets using recurrent higher order neu-
ral units (HONUs). Although studies addressing control of
independently rotating wheelsets have shown promising
results, they are rarely applied by railway manufacturers.
Research and developments in modern bogie design are
trending toward active yaw control design as an exten-
sion to conventional wheelsets mechanics, particularly for
higher speeds. We investigate a model-reference architec-
ture for active control via setpoint tracking of lateral dis-
placement. Then, a new HONU sliding mode architecture is
derived to solve convergence for zero lateral displacements
in higher running speeds which is a more profoundly com-
plex issue in maintaining minimal hunting motion. Starting
from the property of nonlinear polynomial architecture of
HONUs with in-parameter linearity, we derive a time-variant
state-space representation via nonlinear identical decom-
position. Then, an input-to-state stability (ISS) approach is
applied to prove the local asymptotic convergence of the
applied algorithm in each state point and the bounded-
input-bounded-state stability of the entire nonlinear adap-
tive control loop. Using ISS theory, we also prove the global
asymptotic stability of the HONU sliding mode controller for
the actively controlled wheelset system. The techniques are
validated by simulations and a real roller rig system.

Index Terms—Bounded-input-bounded-state, conven-
tional (rigid) wheelset, discrete-time polynomial systems,
higher order-neural-units, independently rotating wheels
(IRW), input-to-state stability (ISS), sliding mode control.
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I. INTRODUCTION

ACTIVELY guided wheelsets for railway vehicle bogie
systems are considered one of the most advanced concepts

for future rail transportation because they ultimately minimize
the lateral forces and damage to wheel flanges and rail heads [1].
Compared to conventional passive bogie frames and wheelset
designs, better performance can be achieved in terms of stability,
curving behavior, and passenger comfort [2]. Several works in
active wheelset control for a conventional wheelset configura-
tion have shown promising results [3], [4], [5]. However, it is
an ongoing challenge to reduce hunting motion, especially with
increased running speeds. More demandingly is the further con-
trol challenge of robust performance with independently rotating
wheels (IRWs). However, the application of IRW configurations
is still quite rare in modern rail bogie manufacturing, so the
focus is more pragmatically toward active control mechanisms
as an extension to existing conventional wheelset design [6].
Apart from conventional control results utilizing state-feedback
design [7], [8] and further methods for yaw torque control [9],
this article investigates a computational intelligence approach
with higher order neural units, which is quite novel considering
main recent works till now rather focused towards measurement
problems [10], or focused to other applications like automotive
wheelset control [11]. The advantage of computational intel-
ligence approaches is the adaptability to both real-time linear
and nonlinear dynamical changes, such as mechanical wear and
track irregularities or curvatures. Further that being a data driven
method, system dynamics can be identified even with limited
measurement of all dynamical states or precise mathematical
descriptions.

Recent works, e.g., [12], [13], [14], demonstrate the useful-
ness and efficiency of computational intelligence tools applied
to model reference adaptive control (MRAC). MRAC is one of
the fundamental modern control schemes using neural networks
(among the others such as model predictive control or rein-
forcement learning, i.e., adaptive dynamic programming). The
drawback of multi-layered neural networks is that they require
rather complex training algorithms or longer training to achieve
reasonable convergence to a minimum squared error for solving
local minimum problems [15]. Other, more conventional neural
network architectures, such as radial basis function networks,
have also been shown to be successful in reinforcement learning
control schemes [16], [17]. The approximation strength of such
conventional neural networks is enforced by adding more neu-
rons or even additional layers. Nowadays, this appears useful
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with very complex and large (deep) networks, where the desired
network behavior emerges among the vast number of neurons
and high training effort.

However, we often lack high-quality training and valida-
tion data in real dynamic systems and technological processes.
Therefore, smaller and easier-to-analyze neural models and con-
trollers are often desirable, especially for real-time applications.
Therefore, we propose the use of HONUs with efficient real-time
learning algorithms, such as the gradient descent algorithm
[18], recursive least squares algorithm (RLS), and Levenberg–
Marquardt (L-M) batch algorithm [19] as such comprehensible
and efficient learning algorithms for application to active control.
As an extension of our original work on the problem [20],
[21] with model-reference based architecture (HONU-MRAC),
a newly proposed sliding mode approach is also derived using
notions from [17] and [22] and earlier concepts in [23] and [24]
to solve zero convergence of lateral displacement particularly
at higher speeds, different to the control objective of setpoint
tracking which is typical for model reference-based approaches
and can be computationally more efficient with the reduction to
a single neural unit (single HONU) for dynamic identification.

Another challenge in developing any control architecture is
proving or monitoring the stability of the control loop both as an
online adaptive solution and offline tuned solution using newly
identified dynamic data. A traditional approach is to construct
the adaptive control law via a suitable Lyapunov function can-
didate to ensure a global rule to constrain the process inputs.
In cases where the law is used as an optimizer for an existing
control loop, bounded-input bounded-state (BIBS) stability [25]
can be used with a more universal definition of input-to-state
stability (ISS) [26] to prove stability of the entire loop. ISS and
BIBS-based stability analyses are a practical means of ensuring
stability and online monitoring for online tuned and offline
applied architectures. Therefore, this is a suitable justification
for our proposed control scheme with HONUs.

The article is organized as follows. Section II introduces
the investigated bogie wheelset system. Section III investigates
the use of the HONU-MRAC based control architecture for
setpoint tracking of the lateral displacement of the wheelset.
Based on the fundamental nonlinear polynomial architecture of
HONUs and theories of ISS stability, a HONU sliding mode
architecture is then derived for solving zero lateral displacement
convergence with minimized hunting motion, which remains
particularly complex at increased speeds. After proof of stability
for the proposed control architectures in Section IV, experimen-
tal results are shown on a real scaled experimental wheelset
and bogie frame system (roller rig) in Section V to prove the
applicability of the proposed methods for various conditions in
real rail applications. In math notations, vectors and matrices
are bold, plain y represent real values, and tilde ỹ denotes neural
output.

II. INVESTIGATED WHEELSET AND BOGIE SYSTEM

The investigated wheelset and bogie frame (see Fig. 1) on
roller system can be defined via the following equations of
motion, as a modification from [27] and [28] for two solid axle

Fig. 1. (Top): actuated wheelset plan view and assembly of roller rig
system. (Bottom): measured actuator force with lateral counter force in
relation to applied driving voltage (control input).

wheelsets and steering of leading wheelset as follows:

m · ÿw1 =

[−2f22

V
− Cw

]
ẏw1 −Kw · yw1

+ 2f22 ·Ψw1 + Cw · ẏb1

+Kw · yb1 + Cw · lb · Ψ̇b1 +Kw · lb ·Ψb1

+ Fy1 +
mV 2

R0
+mgϑ− Fc1 , (1)

IwΨ̈w1 =
−2f11 · l · λ

r
yw1 − 2f11 · l2

V
Ψ̇w1 + TΨ1 (2)

and with the trailing wheelset given as follows:

m · ÿw2 =

[−2f22

V
− Cw

]
ẏw2 −Kw · yw2

+ 2f22 ·Ψw2+ + Cw · ẏb1

+Kw · yb1 − Cw · lb · Ψ̇b1 −Kw · lb ·Ψb1 + Fy2

+
mV 2

R0
+mgϑ − Fc2, (3)

IwΨ̈w2 =
−2f11lλ

r
yw2 − 2f11l

2

V
Ψ̇w2 + TΨ2 (4)

where assuming the steering mechanism frame in Fig. 1 is fixed
to the reference frame for independent translation of the actuator
torques. Furthermore, simplification of the sinus relation of track
cant at smaller angles. Then, the relations for the surrounding
bogie frame can be defined as follows:

mb · ÿb1 = Cw · ẏw1 +Kw · yw1 + Cw · ẏw2 +Kw · yw2

− 2Cw · ẏb1 − 2Kw · yb1 − 2mV 2

R0
− 2mgϑ ,

(5)

Ib · Ψ̈b1 = Cw · lb · ẏw1 +Kw · lb · yw1

− Cw · lb · ẏw2 −Kw · lb · yw2

−2Cw ·l2b ·Ψ̇b1−2Kw · l2b ·Ψb1+(Fc1−Fc2)·lb.
(6)
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Fig. 2. (Top): conventional wheelset response under applied input yaw
torque (Bottom) TΨ [Nm] (control input) followed by state feedback
control at t = 15 s on simulation of roller rig system from [8].

The parameters are set as follows: wheelset mass m, bogie
frame mass mb, longitudinal creep coefficient f11, lateral creep
coefficient f22, wheelset yaw inertia Iw, bogie yaw inertia Ib,
half distance of the rolling circle l, half wheelbase lb, wheel
conicity λ, wheelset radius r, curve radius R0, track cant ϑ,
and rotational speed V. On setting the value f11 to be negligibly
small (almost zero), these relations may also be used to describe
a simplified IRW configuration. Then, although numerous ad-
vanced works on nonlinear lateral forces due to wheel flange
and rail contact exist, e.g., [29]. For scope of our simulations a
simplified model, where the wheel flanges are limited at± 6 mm
of lateral displacement can be drawn from the empirical norm
relation [30], [31] as follows:

Fc1,2 =⎧⎨
⎩p · cf1

(
1− e−0.25·Ψw1,2

) · n=2∑
i=0

Fwi, if−6>yw1,2>6

0, if−6≤ yw1,2 ≤ 6
,

(7)

where cf1 is the frictional coefficient factor of the wheel flanges
and the yaw displacement is expressed in mm/m. Fwi then
depicts the sum of static wheel loads on each wheel and p is the
position force factor expressed as a ratio of bogie span to wheel-
base. Then, knowing the lateral span of the wheelset steering
linkages w the conversion of driving voltage into control input
(yaw torque) maybe measured via Fig. 1 as TΨ1 = FΨ1/2w,
incorporating any lateral counter force from rail contact. Another
nonlinear saturation is considered to keep the driving voltage
between± 6 V; the controlled output is the leading wheelset lat-
eral displacement yw1 = ywith respect to the absolute reference
frame (i.e., track).

Fig. 2 illustrates the dynamics of the railway bogie for conven-
tional wheelset configurations with state feedback active control
switched ON during motion, as a benchmark for comparison.
Significant hunting motion is already visible in the conventional
wheelset configuration due to conicity of the wheel profiles,
where under active control the effects are minimized to almost
0 mm in 10 s.

III. PROPOSED HONU FRAMEWORK FOR ACTIVE CONTROL

A. HONU-MRAC Control Architecture

As it may be recalled from [24] and [32], the classical notation
of HONUs has been ΣΠ form, where the example of second-
order HONU, i.e., QNU, is as follows:

ỹ =
n∑

i=0

n∑
j=i

wi,j · xi · xj (8)

where ỹ is neural output and the augmented input vector is as
follows:

x(k) = [ x0 x1 . . . xi xi+1 . . . xn ]
T

(9)

where x0 = 1 is the augmenting unit for neural bias, and that
also allows HONUs for lower order polynomial terms, wi,j are
neural weights of QNU, and T denotes vector transposition.

Since recently in [32], long vector form of HONUs was
proposed via operators colr(x) and rowr(x), e.g., it is for QNU
as follows:

ỹ = w · colr=2(x) = rowr=2(x) ·wT (10)

or for CNU as follows:

ỹ = w · colr=3(x) = rowr=3(x) ·wT (11)

where the operators colr(x) and rowr(x) transform input vector x
into a long vector of polynomial terms, i.e., into a long-column
vector for QNU as follows:

colr=2(x) = { xi · xj ; i = 0 . . . n, j = i . . . n} (12)

or into a long-row vector for CNU as follows:

rowr=3(x) = { xi · xj · xκ ; i = 0 . . . n , j

= i . . . n , κ = j . . . n}. (13)

Further in (10) and later on, w is the long-vector of all
neural weights (i.e., r-dimensional W also flattens into one-
dimensional vector w) and for the example of QNU it is as
follows:

w =
[
w0,0 w0,1 . . . wi,j . . . wn,n

]
=

[
{wi,j} i = 0 . . . n

j = i . . . n

]
(14)

and similarly flattened long vectors of neural weights are used for
higher polynomial orders. The weight-update is then generally
given as follows:

w(k) = w(k − 1) + Δw (15)

where k denotes sample index or can be replaced with epoch
index for batch learning. Then, the augmented input vector of
the recurrent HONU in the forward branch is as follows:

x(k)=[1 ỹ(k−ny+1) . . . ỹ(k) u(k−nu+1) . . . u(k)]
T

(16)
where ỹ is the forward-branch HONU output and u is the control
input.
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Fig. 3. HONU-MRAC control loop (where one HONU is as a plant
model and the second as a feedback controller).

The feedback control law may then be defined in Fig. 3 as
follows:

u(k) = d(k)− p(k) · q̃(k) (17)

where q̃(k) is an output of the feedback-branch HONU defined
in (18), d(k) can be desired value, and p(k) is an adaptable
proportional gain. The feedback-branch HONU output q̃ is
defined as follows:

q̃(k) = v(k) · colγ (x(k)) (18)

where v is the long vector of weights, ξ is a customizable input
vector involving step delays of ỹ and uwith the augmenting unit
ξ0 = 1, and γ is the customizable nonlinear polynomial order of
the feedback-branch HONU.

In following sections, we justify stability of the approach for
both standalone recurrent HONUs and for the HONU-MRAC
configuration shown in Fig. 3 as offline tuned and online adaptive
form.

Recurrent HONUs and their dynamical structures can be
decomposed into a nonlinear state-space representation that
conforms with the ISS stability definition (50), or, e.g., [26],
so the stronger BIBS stability can be defined for HONUs later
in Section IV, via the so-called discrete-time dynamic HONU
stability (DDHS) method. Let us consider a recurrent discrete
time HONU of an arbitrary order r as follows:

ỹ(k) = w(k) · colr (x(k − 1)) ;x(k − 1) =

⎡
⎣ 1
x̂(k − 1)
û(k − 1)

⎤
⎦
(19)

where the elements of vector x are defined as follows:

x̂(k − 1)=[ ỹ(k−ny) ỹ(k−ny+1) .. ỹ(k−1)]
T
, (20)

û(k−1)=
[
u(k−nu) u(k−nu+1) . . . u(k−1)

]T
.
(21)

The summation form of QNU (and similarly for higher
polynomial orders), can be restated in subpolynomial form as
follows:

ỹ(k) =
n∑

i=0

n∑
j=i

wi,j · xi · xj = w0,0

+

ny∑
i=1

xi·
⎛
⎝w0,i +

n∑
j=i

wi,j · xj
⎞
⎠

+
n∑

i=ny+1

xi ·
⎛
⎝w0,i +

n∑
j=i

wi,j · xj
⎞
⎠ (22)

where n = ny + nu when considering (19)–(21) and thus the
QNU, for example, yields

x̂ny
(k) = w0,0 +

ny∑
i=1

x̂i(k − 1) · âi +
nu∑
i=1

ûi(k − 1) · b̂i
(23)

where âi are decomposition coefficients as follows:

âi= âi (x̂(k−1), û(k−1),w)=w0,i+

n∑
j=i

wi,j ·xj(k−1)

(24)
where xj ∈ x was defined in (19), and similarly, the decompo-
sition coefficients with only input terms are as follows:

b̂i = b̂i (û(k − 1),w) = w0,i +

n∑
j=i ; i>ny

wi,j · xj(k − 1) .

(25)
With the decomposition coefficients (24) and (25) and given

the definition of state vector (20) and input vector (21), we may
express recurrent HONUs in a canonical state-space form as
follows:

x̂(k) = Â(k − 1) · x̂(k − 1) + B̂a · ûa(k − 1) ;

ỹ(k) = Ĉ · x̂(k) (26)

where

Â(k) = Â(x̂, û,w, k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · ...

0 0
. . .

. . . 0

0 0
. . . 0 1

âny
âny−1 · · · â2 â1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(27)
Â is the time-variant local matrix of dynamics (LMD) and

B̂a = B̂a(û,w, k) is (also time-variant) augmented local input
matrix, and the neural bias weight w0,0 = w0,0(k) is treated as
another input, so the augmentation is

B̂a(k) = B̂a(û,w, k) =

⎡
⎢⎢⎢⎣B̂

0
...
0
1

⎤
⎥⎥⎥⎦ ,

ûa(k − 1) =
[
û(k − 1) w0,0(k − 1)

]T
(28)
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where û was defined in (21) and further

B̂ =

⎡
⎢⎢⎢⎣

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
b̂nu

b̂nu−1 · · · b̂1

⎤
⎥⎥⎥⎦ , Ĉ=

[
0 · · · 0 1

]T
.

(29)
To clearly explain the DDHS framework for a closed loop, let

us admit purely state feedback via the second HONU (18), i.e.,
let us define the input vector into the feedback-branch unit as
follows:

x(k) = [ ξ0 = 1 ξ2 .. ξny
]

T
=

[
1

x̂(k)

]
(30)

where x̂ is defined in (20).
Similarly, the closed loop of forward-branch recurrent HONU

with feedback-branch HONU can be decomposed into state-
space representation as follows:

x̂(k) = M̂(k − 1) · x̂(k − 1) + N̂a · d̂a(k − 1) ;

ỹ(k) = Ĉ · x̂(k) (31)

where the M̂(k) is the LMD of the closed loop of HONUs and
N̂a(k) is the augmented local output matrix generally as follows:

M̂(k − 1) = M̂
(
x̂ ,
{
d(k − i)i=1...ny

}
, w,v, k

)
, (32)

N̂a(k − 1) = N̂a

({
d(k − i)i=1...ny

}
,w,v, k

)
(33)

where d is the external input (e.g., desired value) with further
details as follows. For the particular example of a closed-loop
consisting of the recurrent QNU as a forward-branch unit and
the CNU as a state feedback unit, the details of the decomposed
local matrix of dynamic M̂ are shown in the Appendix. The
controller weights vi,j,κ and feedback gain p(.) can also vary
with time. Then, the augmented local output matrix yields as
follows:

N̂a =

⎡
⎢⎢⎢⎣ I

0
...
0
1

⎤
⎥⎥⎥⎦ ,

d̂a =

⎡
⎢⎢⎢⎢⎢⎣

d(k − ny)− p(k − ny) · v0,0,0(k − ny)
...

d(k − 2) − p(k − 2) · v0,0,0(k − 2)
d(k − 1) − p(k − 1) · v0,0,0(k − 1)

w0,0

⎤
⎥⎥⎥⎥⎥⎦ (34)

of dimensionny × (ny + 1) and I is theny × ny identity matrix.
As a part of the DDHS framework, this section shows that

we can apply state-space decomposition that fully preserves
the nonlinearity of recurrent HONUs and their closed loops,
so it can be used to define BIBS stability for these dynamical
structures.

B. HONU Sliding Mode Architecture

Following the fundamentals of HONUs covered in Section II-
I-A, this section enhances our framework to solve cases where
the control objective is to achieve zero convergence, particularly
with increased velocities. To develop this approach, let us con-
sider the fundamental equations of motion for a single wheelset
which is defined as follows:

m · ÿw =
−2f22

V
ẏw + 2f22ψw + Fy +

mV 2

R0
+mgϑ− Fc1,

(35)

Iw · Ψ̈w =
−2f11lλ

r
yw +

−2f11l
2

V
ψ̇w + TΨ (36)

where the longitudinal creep coefficient is lateral creep coeffi-
cient f22, wheelset yaw inertia Iw, half distance of the rolling
circle l, wheel conicity λ, wheelset radius r, and speed V.
The control input analogically is the yaw torque of the leading
wheelset TΨ1 ; the controlled output is the leading wheelset
lateral displacement yw1 = y. Then from relations (35) and (36)
the states of the simplified wheelset are as follows:

x = [ x1 x2 x3 x4]
T = [ ẏw yw Ψ̇w Ψw]

T (37)

where the control objective is to converge all states of both
lateral and yaw displacement and velocity from (37) to zero. In
similar analogy we may consider modelling the dynamics of the
leading wheelset, taking into account the additional damping and
stiffness characteristics from the surrounding bogie frame and
trailing wheelset. Therefore, let us define the following HONU
arbitrary polynomial order r as follows

ỹ(k) = w[0] +
n∑

i=1

w[i] · xi + w̄ · colr(x̄) (38)

where w[i] denotes the ith element of w from the very first
position, e.g., w[0] = w0,0 for QNU as in (14). Furthermore,
w̄ represents the part of long vector w with corresponding
(remaining) neural weights. The input vector x̄ is then chosen to
model the output of lateral acceleration ÿw1 with previous inputs
of lateral and yaw displacement yw,Ψw and velocity ẏw, Ψ̇w as
follows:

x̄(k)=
[
x1(k) . . . xny

(k) xny+1(k) . . . xn(k)
]T

=
[
ỹ(k−ny+1) . . . ỹ(k) yw(k−nyw

+1) . . . yw(k)

ẏw(k−nyw
+1) . . . ẏw(k) Ψw(k−nΨw

+1) . . . Ψw(k)

Ψ̇w(k−nΨ̇w
+1) . . . Ψ̇w(k) u(k−nu+1) . . . u(k)

]T
.

(39)
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Then, given (38), the QNU may be re-expressed via the
following affine state-space representation:

x̄(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(k + 1)
x2(k + 1)

...
xny

(k + 1)
...

xn(k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2(k)
x3(k)

...
xny

(k)

w[0] +
n∑

i=1
w[i] · xi + w̄ · colr(x̄)
xny+2(k)

...
xn(k)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0
...
0

ū(k)

⎤
⎥⎥⎥⎦ (40)

where xi = xi(k − 1) and x̄ = x̄(k − 1).We can see, conform-
ing to affine control concept, that the state-space representation
of HONUs (40) avoids the nonlinear control input terms via
introduction of the new input term ū(k) and generalized state
variables that involves also system inputs.

Furthermore, we express the general nonlinear state-space
representation of recurrent HONUs (40) into vector form with
output variable as follows:

x̄(k) = f̄ (x̄(k − 1)) + ū(k) ; ỹ(k) = xny
(k) . (41)

Then, to construct the sliding surface let us propose the
following switching function:

σ(x̄) =

nx̄−1∑
i=1

si · x̄i(k) = s1 · x̄1(k)

+ s2 · x̄2(k) + . . .+ snx̄
· x̄nx̄

(k) ;

for si ∈ (0, 1〉 (42)

where the variables si denote arbitrarily chosen switching
weights. Then, from (42) we define the sliding mode surface
where σ(x̄) = 0. From this, the control objective is for the
trajectories in state space to converge to zero, which can be
achieved if the system states are forced to push along the sliding
surface, i.e., σ̇(x̄) = 0. To find a suitable control law, let us
consider the following positive-definite Lyapunov function:

V (σ(x̄)) =
1
2
σ(x̄)Tσ(x̄). (43)

Then, for asymptotic stability about the origin the derivative
of the Lyapunov function is defined as follows:

V̇ (σ(x̄)) = σ(x̄)T σ̇(x̄) < 0 (44)

where

σ̇(x̄) =
∂σ(x̄)

∂x̄

[
f̄(x̄(k)) + ū(k)

]
. (45)

In order to maintain the Lyapunov condition and hence the
stability of the whole control law, the newly fed system inputs
must be chosen so that σ̇ < 0 if σ > 0 and σ̇ > 0 if σ < 0.

Thus, on selecting the switching function defined in (42), its
derivative yields

σ̇(x̄) = ỹ(k − ny + 2) + ..+ ỹ(k) + yw(k − nyw
+ 1) + ..

+ yw(k) + ẏw(k − nyw
+ 1) + ..+ Ψ̇w(k − nΨ̇w

+ 1)

..Ψ̇w(k) + u(k − nu + 2) + ..w0,0

+

nx̄∑
j=1

w0,j · x̄j(k) +
nx̄∑
i=1

nx̄∑
j=i

wi,j · x̄i(k) + ū(k) < 0. (46)

On considering that the control law should follow either that
u > |σ̇(x̄)| or u > −|σ̇(x̄)| when above the sliding surface,
we may apply triangular inequality to the resultant of delayed
terms for lateral displacement and angular yaw displacement as
follows:

[yw(k − nyw
+ 1) + ..+ yw(k)] +K1

≥ [yw(k − nyw
+ 1) + ..+ yw(k)]

+
[
Ψw(k − nΨ̇w

+ 1)..Ψw(k)
]

≥ [yw(k − nyw
+ 1) + ..+ yw(k)

+Ψw(k − nΨ̇w
+ 1)..Ψw(k)

]
. (47)

Furthermore, the resultant of the lateral displacement velocity
and angular yaw velocity respects the following:

[ẏw(k − nyw
+ 1) + ..+ ẏw(k)] +K2

≥ [ẏw(k−nyw
+1)+..+ẏw(k)]

+
[
Ψ̇w(k−nΨ̇w

+1)..Ψ̇w(k)
]

≥
[
ẏw(k − nyw

+ 1) + ..+ ẏw(k)

+Ψ̇w(k − nΨ̇w
+ 1)..Ψ̇w(k)

]
(48)

where K1 ≥ sup(
∑

Ψw(k)) and K2 ≥ sup(
∑

Ψ̇w(k)). Then,
the following control law yields, wherenx̄y

− 1 is the maximum
length of previously delayed output states in (37), further the
term Uk denotes the sum of delayed input states in (39)

ū(x̄)=⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∑nx̄y−1

i=1 ỹ(k−ny+i)+yw(k−nyw
+i)+ẏw(k−nẏw

+i)
∣∣∣

+K2 +K3 + Uk ifσ(x̄) < 0; ∀i �= ny

−
(∣∣∣∑nx̄y−1

i=1 ỹ(k−ny+i)+yw(k−nyw
+i)+ẏw(k−nẏw

+i)
∣∣∣.

+K2 +K3 + Uk) ifσ(x̄) > 0; ∀i �= ny
(49)
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IV. STABILITY ANALYSIS

This section recalls the proof of BIBS stability for the HONU
control loop based on the definition of ISS for state-space
representation of nonlinear time-variant systems (Definition 1).
Although a stable learning algorithm can be justified through
square error criteria or further for the fundamental gradient
descent algorithm in [32], its application as a constant pa-
rameter control loop or on new process dynamics must still
be proven. Since the stability of the HONU sliding mode ar-
chitecture has already been justified by relations (43)–(46),
only the architecture in Section III-A is discussed in this
section.

Definition 1 [21, Chapter 2.9]: The time-variant state-space
representation of the form (52) is ISS stable provided that

‖x̄(k)‖ ≤ β(‖x̄(k0)‖) + γ(‖u(k)‖∞) (50)

where β(·) represents a κL class function which is asymptoti-
cally stable such that the function converges to a minimum for
k →∞ and for a zero equilibrium that β(·)→ 0; furthermore,
γ(·) represents a κ∞ class function which is unbounded and
strictly increasing from a zero initial state (i.e., γ = 0 and for
k > k0 that k →∞, γ →∞).

Theorem 1 (DDHS): The discrete-time polynomial loops of
HONUs via their decomposed state-space representation (31)
are BIBS stable from initial sample time k0 until k provided

S(k) = ‖x̂(k)‖ −
∥∥∥∥∥

k−1∏
κ=k0

M̂(κ)

∥∥∥∥∥ · ‖x̂(k0)‖

−
k−1∑
κ=k0

∥∥∥∥∥
k−1∏
i=κ

M̂(i) · N̂a(κ)

∥∥∥∥∥ · ‖ûa(κ)‖ ≤ 0 . (51)

Proof: First, let us recall the proof of BIBS via Definition 1 for
the general state-space representation (52) (based on papers [25]
and [26]) as of a relevant class of nonlinear time-variant systems
as follows; the general solution of a discrete time nonlinear state-
space system is defined as follows:

x(k) =
k−1∏
κ=k0

A(κ) · x(k0) +
k−1∑
κ=k0

k−1∏
i=κ

A(i) ·B(κ)·u(κ).

(52)
Then, considering Definition 1, we take the norms of both

sides and via triangular inequality it yields that

‖x(k)‖ ≤
∥∥∥∥∥

k−1∏
κ=k0

A(κ)x(k0)

∥∥∥∥∥+
∥∥∥∥∥

k−1∑
κ=k0

k−1∏
i=κ

A(i) ·B(κ)u(κ)

∥∥∥∥∥
≤
∥∥∥∥∥

k−1∏
κ=k0

A(κ)

∥∥∥∥∥ · ‖x(k0)‖+
k−1∑
κ=k0

∥∥∥∥∥
k−1∏
i=κ

A(i) ·B(κ)u(κ)

∥∥∥∥∥.
(53)

Then, considering the solution (52) as a summation of ho-
mogenous and particular solutions, and via the adoption of the
BIBS discrete-time variant systems theory of [25], by setting

ûa(κ) = 0 where 0 ≤ k0 < k, we may verify that

‖x(k)‖ ≤
∥∥∥∥∥

k−1∏
κ=k0

A(κ)

∥∥∥∥∥ · ‖x(k0)‖ ≤Mk
A ‖x(k0)‖ (54)

where MA = sup{‖A(k − 1)‖}, then since due to the nor-
malization of terms in A(k − 1) if MA < 1, as x(k)→
x(k0) for k →∞ about the point x(k0) the system (26) is
locally asymptotically stable. With respect to Definition 1, the
term ‖∏k−1

κ=k0
A(κ)‖ · ‖x(k0)‖ qualifies as a κL class function.

Moreover, via setting x(k0) = 0 we may analyze the conditions
of the particular solution yielding a class κ∞ function, where
the following inequality should be satisfied further for BIBS:

‖x(k)‖≤
∥∥∥∥∥

k−1∑
κ=k0

k−1∏
i=κ

A(i)B(κ)u(κ)

∥∥∥∥∥≤MB

k−1∑
κ=k0

Mk−κ
A ‖u(κ)‖

(55)
whereMB = sup{‖B‖} <∞. If ‖u(k − 1)‖ ≤ Lu <∞(k ≥
k0) then

‖x(k)‖ ≤MB

k−1∑
κ=k0

Mk−κ
A ‖u(κ)‖ = MB

1−MA
(56)

where the ratio MB/(1−MA) = Lx for any ‖u(k − 1)‖ ≤
Lu, x(k) ≤ Lx <∞ that completes the proof of Definition 1,
so the time variant nonlinear discrete time system (52) is BIBS
stable and; therefore, so is the representations (26) and whole
HONU-MRAC control loop in (31).

Remark (Strict DDHS): Provided the discrete-time recurrent
HONUs (or their loops) are BIBS stable according to Theorem 1
from the time k0, then the BIBS stability will be strictly main-
tained if

ΔS(k) = S(k)− S(k − 1) ≤ 0 for ∀k > k0. (57)

Then, in practice, we may keep k0 be incrementally increased
via settings k0 ← k − 2, and it can be derived that the strict
DDHS condition can be practically computed, e.g., for recurrent
HONU via (57) and (58) as follows:

ΔS(k ) = ‖x̂(k)‖ − ‖x̂(k − 1)‖ −
∥∥∥B̂a(k − 1) · ûa(k − 1)

∥∥∥
+
(∥∥∥Â(k − 1)

∥∥∥− 1
)
·
(∥∥∥Â(k − 2) · x̂(k − 2)

∥∥∥)
+
∥∥∥B̂a(k − 2) · ûa(k − 2)

∥∥∥ ≤ 0 . (58)

V. EXPERIMENTAL SETUP

In this section, the performance as well as stability of the
two proposed HONU architectures is investigated through sim-
ulation and on a real experimental railway stand (roller rig from
[3], [4], [5], Fig. 5) with the considered conditions in (see Fig. 6).
The experimental bogie is equipped with four contact position
transducers Novotechnik TR0050 on each corner of the bogie
frame, used for a direct measurement of the lateral positions
of both wheelsets toward the track center and their yaw angle
towards the bogie frame. An inductive sensor is further used
for measuring the rotational speed of the rollers. To measure
the force from the actuator yaw torque (see Fig. 1), a single axis
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TABLE I
PARAMETERS OF THE WHEELSET AND BOGIE SYSTEM (ROLLER RIG)

compression load cell Omegadyne LC304-1K with load capacity
4448 N and accuracy ±0.5% FSO is used.

The output signals of sensors and the driving voltage signals
for the actuators are sent via an I/O card Humusoft MF634
installed in a standard PC. All signal processing is executed
in a real time using MATLAB Simulink with real-time control
and signal processing toolbox. The signals from all sensors are
filtered, differentiated, and further processed to calculate the
corresponding inputs for actuator control. Table I depicts the
main parameters of the experimental bogie stand.

A. Control of Zero Lateral Displacement for Conventional
Wheelset via HONU Sliding Mode Architecture

Following derivation of the proposed HONU sliding mode ar-
chitecture in Section III-B, this section experimentally analyzes
the performance of the approach at various roller velocities for
the setup in Section V. At first, as per Fig. 4, a static QNU (i.e.,
r = 2) trained via RLS learning is applied with a learning rate
set to 0.395. The delayed samples of lateral displacement and its
derivative (velocity) are set tonyw

, nẏw
= 2, respectively. Then,

the previous samples of angular displacement and its derivative
(velocity) are set to nΨw

, nΨ̇w
= 2 and previous inputs (yaw

torque) is nu = 2.
The proposed approach is first analyzed in order to compare

with the benchmark result for a conventional wheelset setup
on a straight track section with leading wheelset control from
paper [8], see Fig. 2. In Fig. 7 here it is clearly illustrated that
after 6 s for the same parameters, all states converge to zero and
the hunting motion is almost fully eliminated with ± 44.9 N·m
limiting servo motor torque and 0.1 s period between switching
inputs, 4 s faster than in [8]. From this result, the successful

Fig. 4 HONU sliding mode architecture where one HONU is used as
a static online adaptive model for plant identification.

Fig. 5 Czech Technical University (CTU) Roller-Rig for running straight
and curved track sections with IRW and conventional wheelset configu-
rations.

Fig. 6. (Left)—Tested conditions due to misalignment on track (or
track irregularities, notice the dashed black line), (right)—Constant track
curve.

convergence of all wheelset states is seen within t = 6 s where
almost superimposed identification from the HONU is shown
in comparison with the real lateral acceleration for which it
models. This also shows the versatility of the algorithm with
rapid online identification via RLS to identify the contemporary
dynamics of the wheelset system without need of adjustment for
the controller parameters.

To justify robustness of the approach for real applications, a
track curving scenario is simulated in Fig. 8. Here, a continuous
track section with respective track curvature radii from Fig. 6
(right) ofR0 = 1000, 250, and 400 m is illustrated. Furthermore,
the section with R0 = 250 m introduces a 0.1 radian track cant
between 10 and 20 s. As can be seen, the control algorithm is able
to negotiate constant track curving with almost no observable
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Fig. 7. Convergence of states within 6 s (for 50 r/min) with HONU
sliding mode controller on roller rig simulation, via RLS training on a
static QNU.

Fig. 8. Negotiation track curving from 5 s at 100 rpm (R0 = 1000 m,
250 m with 0.1 radians track cant, 400 m) with HONU sliding mode
controller on roller rig simulation.

deviation in the minimized lateral displacement between the
track curve transitions or due to introduced track cant.

Next, Fig. 9 investigates the performance of the proposed
control algorithm with respect to gradually increasing rotational
velocities. To simulate motion of the bogie frame along rail
tracks the asynchronous roller drives are incrementally increased
to 60, 100, and 150 r/min, respectively.

In Fig. 9(a), a comparison with a derived HONU-MRAC as
a dynamic QNU model with QNU feedback controller where
nqy = 4, nqu = 5 and adaptive RLS learning is shown for 60
r/min. Although the roller rig exhibits pronounced hunting
motion between ± 4.5 mm of lateral displacement within the
first 6 s, the HONU sliding mode controller can stabilize the
hunting motion 10 s faster than the applied HONU-MRAC
configuration. When monitoring the neural weights using RLS
training, it is clear the learning is stable with the convergence
of all weights within 250 samples, with 0.002 s of applied
sensor sampling, where the HONU-MRAC requires one order
slower sampling for the same hardware. Given this result, the
rotational speed is increased to 100 and 150 r/min, respectively.
From Fig. 9(b) and (c) although the initial stages of applica-
tion show higher jittering in the hunting motion characteristic
as compared with lower revolutions of the rollers remarkably
within 5 s it is almost fully dissipated and stabilizes the roller

rig lateral displacement to fully converge to zero where in
comparison to the HONU-MRAC configuration, the effects of
hunting motion are still pronounced throughout application of
the control algorithm. Furthermore, the convergence of all neural
weights for the HONU sliding mode controller is achieved
within the same frame of samples as compared to the result
at 60 r/min, even with the faster dynamic response at higher
speeds.

B. Active Control for Setpoint of Lateral Displacement
With Conventional Wheelset Configuration via
HONU-MRAC

To further analyze the control performance and stability of
HONUs, a different control objective is investigated, which is to
track a desired setpoint of lateral displacement due to effects
such as bogie yaw or track irregularities as in Fig. 6(left).
To solve this control objective, the two-HONU closed-loop
architecture (as in Fig. 3) is chosen. We implement the clas-
sical MRAC scheme for HONUs, where the forward-branch
HONU can incrementally adapt its weights w(k) = w(k −
1) + Δw(k) to approximate the real plant. The feedback-branch
HONU can then incrementally adapt its weights v(k) = v(k −
1) + Δv(k) to minimize some control error criteria based on
the following reference error:

eref(k) = yref(k)− y(k) ∼= yref(k)− ỹ(k) (59)

where yref(k) is the output of a reference model that has the
desired user-defined dynamics, and the feedback-branch HONU
is the controller for desired dynamics. In the next example,
a further experimental analysis for comparison of the DDHS
stability conditions to the Lyapunov-function technique is pre-
sented to justify stability of the control law of a two-HONU
control loop itself. In particular, if the feedforward-branch
HONU (plant) is not adapted, i.e., w(k) = const and if the
feedback-branch HONU (controller) is incrementally adapted as
v(k) = v(k − 1) + Δv(k), then the desired equilibrium means
both zero reference error (59) and converged controller weights
Δv(k) = 0. Then, for the control loop, the Lyapunov function
with the stability condition yields for validating the stabilization
of the applied control law

V (k) = eref(k)
2 +Δv(k)Δv(k)T ;ΔV (k)

= V (k)− V (k − 1) < 0. (60)

However, as seen in Fig. 10 the strict DDHS condition is
superior in earlier detection of unstable dynamics, making it
advantageous for higher speed control.

Although used for analysis of the HONU-MRAC architecture,
in similar analogy this is also applicable to justify stability and
robustness of the adaptive HONU as part of the HONU Sliding
mode architecture. Though as long as the learning algorithm is
stable, the global asymptotic stability via sliding mode is en-
sured by (43)–(46). To further justify the robustness of HONUs
in adaptation of changed process dynamics, Fig. 11 shows
real-time stable adaptation of the whole control loop through
all setpoints.
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Fig. 9. Comparison of HONU sliding mode control and cascade PI with HONU-MRAC (QNU-QNU) with pre-training via RLS on real roller rig
with straight track for higher velocities (a) 60 r/min of rotational speed and convergence of sliding mode controller weights via RLS, (b) 100 r/min,
(c) 150 r/min.

Fig. 10. (Top): stability analysis: response with unstable incremental
learning of QNU controller on roller rig simulation at t > 280s. (Bottom):
the Lyapunov validation of control-law stability ΔV ≤ 0 (60) compared
with strict DDHS stability condition ΔS ≤ 0 (57) which more clearly
shows unstable dynamics.

Fig. 11. DDHS. (a) HONU-MRAC performance with real and also
simulated bogie on straight track (due to changed stiffness and damping
characteristics in bogie frame). (b) DDHS stability condition (for k0 = 0).

Fig. 12. Comparison of standalone adaptive HONU-MRAC control
architecture on real roller rig at 50 r/min with pretraining from dataset
in Fig. 11 and no pretraining on straight track.

VI. DISCUSSION

Naturally as shown in Section V, the basis of good control
performance is in the identification of the process dynamics in
real time. This requires the process to be stable for a minimal
sufficient set of training data to identify and initiate control of
the wheelset. In applications where the systems dynamics is
truly unknown, i.e., neither model nor training data exists in ad-
vance, a data-driven control loop with model identification must
adapt quickly to process dynamics. This may be not ideal for
layered or the two-HONU control architectures with common
hardware. Further research can be in the use of faster hardware,
e.g., FPGA or switch-OFF of the algorithm once trained to
minimize computational overload. An example of this can be
batch or minibatch learning algorithms. Fig. 12 compares this
problem at 50 r/min with a standalone fully adaptive two-HONU
(QNU-QNU) control loop. Here, without sufficient pretraining,
the control loop must rapidly identify the system dynamics in
real time to account for bogie yaw (see Fig. 6 left). Although with
pretraining and fast nonlinear architecture, the response shows
desirable convergence toward zero at 50 r/min (see Fig. 12),
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M̂ (k − 1) = Â (k − 1)− B̂(k − 1) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(k − ny) ·
[
v0,0,1 +

ny∑
j=1

ny∑
κ=j

v1,j,κ · xj · xκ
...

p(k − 2) ·
[
v0,0,1 +

ny∑
j=1

ny∑
κ=j

v1,j,κ · xj · xκ

p(k − 1) ·
[
v0,0,1 +

ny∑
j=1

ny∑
κ=j

v1,j,κ · xj · xκ

v0,0,2 +
ny∑
j=2

ny∑
κ=j

v2,j,κ · xj · xκ . . . v0,0,ny
+ vny,ny,ny

· x2
ny

]

v0,0,2 +
ny∑
j=2

ny∑
κ=j

v2,j,κ · xj · xκ . . .

...

v0,0,ny
+ vny,ny,ny

· x2
ny

]
v0,0,2 +

ny∑
j=2

ny∑
κ=j

v2,j,κ · xj · xκ . . . v0,0,ny
+ vny,ny,ny

· x2
ny

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(61)

though functional, there is much greater hunting motion at higher
speeds than with the sliding mode in Fig. 9.

Thus, the proposed HONU-sliding mode architecture is su-
perior with this type of control challenge as it only requires
training of one HONU which is computationally much faster
instead of two for process identification and then a feedback
controller which reflects the reason why at higher speeds, the
HONU-MRAC architecture is not reacting quickly enough to
converge to the tracking point, even with adequate pretraining.

VII. CONCLUSION

From this work, two HONU based architectures were investi-
gated for railway wheelset active control. Using ISS an efficient
stability analysis method DDHS/DDHS(Strict) was derived to
ensure fast detection for violation of BIBS stability, which was
superior to the Lyapunov algorithm in Fig. 10 and can also
be extended to other time-variant in-parameter-linear nonlin-
ear learning systems. For higher rotational speeds, the HONU
sliding mode controller shows its potential in outperforming the
benchmark HONU-MRAC (see Fig. 9), with its potential for
rapid correction of the wheelset lateral displacement and reduced
hunting motion. This is due to fast computation of a single
HONU problem and hard control reaction in the opposite direc-
tion of yaw whilst maintaining adhesion to the sliding surface
for zero convergence of the resulting wheelset states. From the
relations (43)–(46), global asymptotic and further BIBS stability
is also ensured for all control inputs applied to the control loop.
Based on a data-driven method, intermediate system dynamics
can be identified even with limited measurement of all dynamical
states or precise mathematical descriptions, making such an
approach advantageous to conventional control approaches.

APPENDIX

A. Local Matrix of Dynamics (LMD) for Polynomial
Decomposition for Closed Loop of HONUs—DDHS

The ny × ny LMD of a QNU-CNU can be expressed as
follows: (61) shown at the top of this page.
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