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An Enhanced Fusion Algorithm With Empirical
Thermoelectric Models for Sensorless
Temperature Estimation of Li-ion
Battery Cells

Mahroo Sajid, Ala A. Hussein

Abstracti—An enhanced dual extended Kalman filter
method is presented in this article for estimating and track-
ing the state-of-temperature of lithium-ion battery cells. A
simple but effective dynamic and measurement empirical fit
models are proposed and utilized to estimate the state-of-
temperature concurrently with the state-of-charge. The pro-
posed dual estimator improves the estimation accuracy of
the temperature state by accounting for the variations in the
state-of-charge. To test the performance of the proposed
estimation method, two independent lithium-ion battery cell
datasets were used to derive the empirical models and
run the estimation algorithm. The obtained results show a
promising performance of the estimation method in terms
of the high estimation accuracy even in the case when
the measurement contains high-magnitude noise or when
the estimation algorithm is inaccurately initialized. The pro-
posed models and the estimation algorithm are derived and
experimentally tested in this article.

Index Terms—Battery cell, dual estimation, extended

Kalman filter, lithium-ion, state-of-charge, state-of-
temperature.
NOMENCLATURE
BMS Battery management system.
DEKF Dual extended Kalman filter.
EKF Extended Kalman filter.
EVs Electric vehicles.
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Li-ion  Lithium-ion.

MAE  Mean absolute error.

MLE  Maximum likelihood estimation.
OCV  Open-circuit voltage.

RMSE Root mean square error.

Soc State-of-charge.

SOH State-of-health.

SOoT State-of-temperature.

[. INTRODUCTION

N BATTERY products, in general, and in EVs specifically,
I implementing a reliable temperature monitoring mechanism
is priceless as it plays a crucial role in preventing fire accidents,
or in the best case scenario, premature end of service life [1], [2],
[3]. Due to the produced heat by the Ohmic IR losses in a Li-ion
battery cell, an increase in temperature occurs inside the battery
and perhaps even thermal runaway. Thus, these batteries must be
fully protected against overheat to avoid unwanted consequences
such as fire hazard or premature end of life [4], [5], [6].

In this context, thermal sensors have been widely utilized in
measuring the surface temperature of batteries due to their low
cost. These sensors, however, must be calibrated frequently to
be reasonably reliable, which is costly and possesses various
challenges specifically in remote applications or when a massive
number of sensors are employed to monitor the temperature of
each cell in a battery pack. Moreover, temperature sensors are
widely prone to failure due to internal self-heating, abuse or age-
ing, which cause irreversible change to the internal parameters
and characteristics of the sensor that reduces its performance [7].
These potential sensor faults pause critical consequences when
the sensors are deployed in sensitive applications such as those
involving Li-ion batteries.

Hence, many sensorless temperature estimation methods have
been proposed recently to estimate the temperature of Li-ion
batteries. Many methods found in literature estimate the temper-
ature from the impedance measurement where the impedance
is computed by injecting an ac to the cell and recording the
cell’s voltage response. For example, in [8], the zero-crossing
frequency, i.e., the frequency at which the internal impedance of
the battery is purely resistive, was employed in a lookup table
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that stores the corresponding temperature for each frequency.
Due to its open-loop nature, the method in [8] will have a
reduced accuracy if the zero-crossing frequency is inaccurate
or not stored in the lookup table. A lookup table was used
in [9] and [11] while a fit model was used in [10] to extract
the temperature from the impedance measurement. A similar
approach was adopted in [12] and [13]. The methods in [14]
utilize a Kalman filter to estimate the temperature from the
zero-crossing frequency measurement, and hence it adds more
credibility to the temperature estimation mechanism. Kalman
filters, however, assume the availability of noise statistics, which
is not necessarily true in practice. According to these studies, the
internal temperature of a battery cell is correlated with its internal
impedance. Due to the need of using advanced hardware for
impedance measurement, these methods are costly, in general,
making them unsuitable for many applications.

To reduce the hardware requirements and the overall cost of
the temperature estimation system, the surface (external) tem-
perature is estimated instead of the internal temperature in small
battery cells with negligible heat transfer delays. In [15], a recur-
rent neural network method is proposed for surface temperature
estimation of Li-ion batteries of EVs. A feedforward network is
proposed in [16] to estimate the surface temperature of lithium-
and nickel-based batteries. A more advanced neural network
is proposed in [17] where both the surface temperature and the
SOC are estimated concurrently using a hybrid electrochemical-
thermal model that accounts for the battery electrical and thermal
dynamics. A deep-learning neural network method is proposed
in [18] for surface temperature estimation of Li-ion batteries
for electric vehicles. Other similar methods were proposed in
[19] and [20]. As other data-driven methods, the referenced
methods demand massive data to compute the weight functions
of the neural network throughout training. Moreover, due to
their open-loop nature, these models will fail, or in the best
case scenario will have a declined performance, if the operating
conditions are different than the training settings.

A method which employs an EKF algorithm that estimates the
surface temperature accurately even when the initial temperature
used is inaccurate or when the measurement contains high-
magnitude noise is proposed in [21]. Although this method is
relatively new and has shown promising results, the dependence
of the temperature on the SOC was not investigated. In addition,
EKEF algorithms in general fail to provide accurate results if the
noise covariance is unknown or in cases of biased measurement
noise.

This article is an extension to the previously published work in
[21]. An enhanced DEKF algorithm is proposed in this article to
estimate the SOT and SOC, concurrently, by employing simple
but effective thermo-electric fit models that correlate the voltage
of the battery cell with its SOT and SOC. Although the SOC is
estimated in this article, it is not the goal of this work. Instead,
the motivation of this work is to develop an accurate estimation
mechanism for the SOT that accounts for the dependency of the
measurement model on the SOC by employing a DEKF estima-
tion algorithm. In addition, the presented method accounts for
the uncertainties in the measurement noise as it employs an MLE
algorithm, [22], along with the traditional EKF. The enhancing
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MLE algorithm is used to identify the uncertainty statistics in
a dynamic system. In the proposed method, the likelihood of
the measurements is maximized with respect to the covariance
matrices of the process and measurement noise sequences [23].
Once steady-state condition is reached, the measurements resid-
ual is formulated into a multivariate normal distribution vector
with an associated covariance expressed in terms of the noise
covariances [24], [25], [26], [27]. The approach identifies the
covariance of the process and measurement noise, therefore
allowing for compensating for any inaccuracy in the system
model.

The proposed SOT estimation method has several merits
compared with existing methods; namely, it demands low im-
plementation cost as traditional sensor methods do, and it has
a high performance as observer- and data-driven- methods do.
The merits of the proposed method are as follows.

1) It has a low implementation cost as it avoids the tedious
and costly impedance measurement utilized in [8], [9],
[107, [11], [12], [13], and [14]. In addition, the proposed
method demands no data resources contrary to neural
network methods [15], [16], [17], [18], [19], [20].

2) It has a high accuracy due to its closed-loop nature,
which is a powerful feature when operating under highly
dynamic conditions that cannot be handled in the training
phase of neural networks, [15] and [20]. Also, it is more
accurate than traditional EKF methods, [21], since the
proposed method does not assume fixed level/knowledge
of the measurement and process noise statistics.

The outline of this article is as follows. Section Il illustrates the
thermal and heat transfer dynamics in batteries. Section III pro-
vides an introduction to the dataset used for models’ derivation
and experimental verification. Section IV presents the dynamic
and measurement model employed in the proposed estimation
algorithm. The estimation algorithm and its enhanced version
are derived in Sections V and VI, respectively. Experimental
verification and discussion are provided in Section VII. Finally,
conclusions are drawn in Section VIII.

[I. THERMAL DYNAMICS AND HEAT TRANSFER MODELING

The thermal dynamics of a battery involve sophisticated elec-
trochemical processes. These dynamics are impacted by several
environmental and operational factors such as the ambient tem-
perature, which directly impacts the surface temperature of the
battery. The magnitude of the current going in/out the battery
is another factor that contributes to the surface temperature as
the internal losses in the battery, i.e., Ohmic IR losses, are
proportional to the internal heat generation inside the battery.
The heat generated inside the battery is also dependent on the
battery age or SOH; as the battery ages, its internal resistance
rises resulting in more temperature rise.

The thermal and heat transfer dynamics in a battery cell can
be described using the equivalent-circuit models in Fig. 1 [32],
where in Fig. 1(a), the OCV is the open-circuit voltage of the
cell, Ry is the internal resistance. In Fig. 1(b), Pjoss 1S the power
losses inside the cell, 7, is the ambient temperature, 7; and 7 are
the internal and surface temperatures, C; and Cy are the internal
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Fig. 1. (a) Electrical equivalent-circuit model. (b) Thermal equivalent-
circuit model.

and surface heat capacity, Ris and Ry, are the internal-to-surface
and surface-to-ambient thermal resistances of the cell [32].

Equation (1) represents the internal power loss, Pjogs, in the
battery cell. The thermal dynamics based on the thermal model
in Fig. 1(b) are expressed as in (2) and (3).

Pioss = Ry I? (D
dT; T, — T,
P 3, Poss - 2
Ci ! Ris @
dT. T, —T. T, — T,
CS 75 — 3 S _ S a 3
dt Ris Rsa ( )

Referring to Fig. 1(b), the power losses and the ambient tem-
perature are modeled as external inputs to the model that directly
impacts the battery temperature. If the battery had been in rest
mode for a long time (~several hours), both its internal and
surface temperatures will be equal to the ambient temperature.
When the battery is under charge or discharge, the power losses
will cause the temperature to rise due to the internally generated
heat, where this heat will transfer from the core to the surface of
the battery at a rate that depends on the thermal resistances and
capacitances of the battery. For a battery with a small physical
size, the internal-to-surface thermal resistance will be small and
the difference between the internal and surface temperature can
be neglected.

One remark here is that the internal temperature is more
correlated with the internal heat generation than the sur-
face temperature. Hence, for fault detection and diagnostics,
the internal temperature would be more accurate than the surface
temperature. During normal operation and assuming a healthy
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Fig. 2. Voltage and current of the Oxford dataset.

battery cell, the surface temperature should provide sufficient
information to the BMS to manage the charge going in/out the
cell. In the rest of this article, the “temperature” will always refer
to the surface temperature of a brand-new healthy battery cell.

[ll. BATTERY CELL DATASETS

In this section, two public Li-ion battery cell datasets are
presented. These datasets are used later to derive the proposed
dynamic models and for experimental verification of the pro-
posed method.

A. Oxford Dataset

The first dataset used in this article is the “Oxford Battery
Degradation Dataset 1” which contains battery ageing data
measured at 40 °C ambient temperature from eight small Li-ion
battery pouch cells [28]. The charge cycle follows a constant-
current, constant-voltage charge profile which is followed by a
discharge profile based on the urban Artemis driving cycle. In
this article, the voltage, current, and temperature data of the first
discharge cycle are considered for modeling purposes. Figs. 2
and 3 show the data of this cycle. The temperature is replotted
in Fig. 4 after applying a low-pass filter to the data to reduce the
fluctuating noise.

B. NASA Dataset

The second dataset used is obtained from NASA’s Prognos-
tics Data Repository [29]. Three different operational profiles,
namely, charge, discharge, and impedance, were run on a set of
four Li-ion battery cells (5, 6, 7, and 18) at room temperature,
i.e., 24 °C. In this article, the discharge data (voltage, current,
and temperature) for cell 5 are used for a SOH range from 100%
(new condition) to 70%, which corresponds to a capacity fade
from 2 to 1.4 Ah (30% capacity fade).

In this dataset, a constant 2 A discharge current is used until
the voltage drops to 2.7 V. Repeated charge and discharge cycles
were used to accelerate the ageing process of the cell until the
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Fig. 5. Voltage and current of the NASA dataset (cycle 200).

30% capacity fade is achieved. Fig. 5 shows the voltage and
current profile for cycle 200, which is a discharge cycle. Fig. 6
shows the variation in SOC and temperature for the same cycle.
The voltage, current, and temperature profiles are smooth as
compared with the first dataset where a lot of fluctuations could
be observed, which is due to the constant current used in this
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dataset and perhaps the lower noise level compared with the
first dataset.

[V. DYNAMIC AND MEASUREMENT MODELS

The dynamic and measurement models utilized by the pro-
posed estimation algorithm are detailed in this section.

A. Models for SOT Estimation

The SOT can be mathematically derived using the electro-
thermal model in Fig. 1(b). This model, however, is quite sophis-
ticated and demands frequent offline tuning to ensure accurate
temperature estimation. Instead, we are proposing two dynamic
models and another two measurement models based on curve
fitting approach to be used for SOT estimation. Equation (4)
shows the first discretized system model derived for the Oxford
dataset in the general form while (5) represents the equation of
the closest fit:

Tiv1 = fi (Tk, L) + wi
Tis1 = T +8.65 % 107*(I)* + wy.

“
&)

In (4) and (5), T} is the cell’s surface temperature, [} is
the current, wy, is the process noise, and k is a time index.
The function f; was found experimentally by curve fitting. The
model is obtained using the temperature and current from the
first discharge cycle.

The discretized measurement model is given in the following
equation:

Vie = fo (T, SOCy, Ii) + vg, (6)

where V}, is the voltage, T}, is the temperature, vy, is the mea-
surement noise, f» is a function determined by curve fitting, and
k is the time index.

Several higher-order measurement models were tested to ob-
tain an accurate measurement function, f,. However, a linear
model was found to have the best R square (goodness of fit
measure) of 0.998. The discrete-time measurement model for the
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system was found through regression resulting in the following
model:

Vi = 0.08424 T}, + 0.6869 SOC, + 0.0203 I}, + vy. @)

Polynomial models for the system and measurement equa-
tions, similar to those given in (4)—(7), were derived for the
NASA dataset and are given in the following equations:

Thr1 = 0.9981T}, 4 0.3736(11)* — 1.407 + wy, (8)
Vi = — 2.181 T}, + 0.0243(T})* — 8.97 SOC,

+7.7712 (SOC,)* + 0.9404 T;, SOC,
+0.1155 I, + 51.1947 + vy 9)

The polynomial models described earlier give sufficiently
good results in the case of the Oxford dataset, which is highly
dynamic. However, for the NASA dataset, polynomial models
do not result in optimal temperature estimates. Therefore, the
system model was derived again with a polynomial model
for the system dynamics and a Gaussian model for the mea-
surement equation. The Gaussian model involves exponential
terms which suits the shape of the voltage curve (as shown in
Fig. 5).

Tip1 = 0.7993T}, + 0.00312 (T})* + 0.05315(1;)*

~ 0.0003826 Ty (I,)* — 3.031 + wy, (10)
V (k) = 3.923 (Tt
+0.5148 eCTEEEI) L (k) (11)

It shall be noted that the coefficient of the derived models
can be adjusted online or offline to account for the cell-to-cell
variations if they are run on different battery cells.

B. Models for SOC Estimation

In an experimental setting, the true SOC' is not avail-
able, and hence it must be estimated alongside the SOT.
Not only is it a quantity of interest, but also it is used in
the proposed polynomial model in modeling the SOT. The
SOC dynamic and measurement models are visually presented
in Fig. 1(a) and mathematically expressed in (12) and (13),
respectively.

SOC 11 =

At
SOCy +77€72'k + wy, (12)

Ye+1 = OCV (SOCk+1) + Ro i + Vi1 (13)

where SOC), is the state-of-charge at time step k, At is the
sampling time, 7 is the dis/charge efficiency (assumed 100% for
a brand new Li-ion battery cell), C, is the nominal capacity of
the battery in Ampere-second, OC'V is the open-circuit voltage
(also known as electromotive force), Ry is the internal resistance
of the cell that accounts for the internal voltage drop and heat
generation, iy, is the current at time step k, wy, is the added
process noise, Y+ is the model’s voltage at k + 1, and vy

is the measurement noise. The current iy, is considered negative
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Fig. 7. Polynomial measurement model versus true voltage for the
Oxford dataset.
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Fig. 8. Polynomial and exponential measurement models versus true
voltage for the NASA dataset.

TABLE |
RMSE FOR PROPOSED MODELS
Oxford dataset NASA dataset
Polynomial model 0.0017 V 0.0204 V
Gaussian model N/A 0.0013 V

during discharging and positive during charging. One remark
here is that both wy, and vy, are assumed independent and
identically distributed white noise sequences of zero mean and
@ and R covariances, respectively.

C. Evaluation of Proposed Models

The presented models, i.e., polynomial and Gaussian (expo-
nential) models, are plotted against the true voltage measurement
for the two datasets. According to Figs. 7 and 8, the two models
have almost the same level of accuracy. The exponential model,
however, has a slightly higher accuracy in the constant-current
discharge test, i.e., NASA dataset, as it is more capable to capture
the exponential decay in the voltage as the battery approaches
0% SOC. The RMSE of these models is given in Table I.



626

V. ESTIMATION ALGORITHM

Since the battery is a nonlinear system, a nonlinear ob-
server must be used to estimate its temperature state. Among
many alternatives, EKF is an excellent selection as EKFs are
well-established with proven capability in estimating nonlinear
systems states [27]. First, the nonlinear system equation needs
to be linearized. Assuming the SOC is known, the Jacobians of
the dynamic and measurement equations are given as follows:

_Oh
Be=or (14)
_0f

These Jacobians are evaluated about the most recent estimate
of the temperature to find the filter gain Ky, the innovation
covariance Si41 and the state prediction covariance Py .
Hence, the following updated state estimate is obtained:

Tetifkt1 = Trirjie + K1 Vg (16)
where vy is the measurement residual given as follows:
Vkt1 = Viert — Vi k- (17)

The predicted state Tk+1| k1 18 the function f; evaluated at
the previous estimate T k|t and measurement prediction Vk+1 Ik
is the function f, evaluated at the state prediction T,H”k.

To estimate the SOT and SOC concurrently, a dual filter
scheme that aims to sequentially estimate these states is pro-
posed. The dual estimation approach is especially useful as it
reduced the dimensionality of the joint SOC-SOT estimation
problem, where the two states would form one higher dimension
state vector. Therefore, the computational requirement of the
algorithm is reduced. The dual algorithm starts by initializing
the SOC and SOT states and their respective initial covariances
with Z; < x, I:’T +~ P,, and ’f’l +— Ty, 13? — Pg .,
respectively, where Zj, is the a priori estimate of the SOC' at
time k given measurements up to time k — 1, whereas &y, is the
a posteriori estimate of the SOC given measurements up to time
k. Likewise, this notation applies to T}, and P.

The state filter is then propagated through time using the EKF
equations as follows:

Ty = T + (NAL/Cy) i, (18)
Pa:7k+1 = 1,:\)av,k: + Q w,k (19)
e — Oh (zy, i) (e (@k) — 21 (T1) )
kE — - 5. - — —

ox & =Tp Tk — L1
(20)

— ”r — o _1
Ki = Pou ()" [HE Por(HD + Roy| @D

where (18) is the dynamic model in Section IV-B, and is the
measurement model in the same section, i.e., h (zk, i) =
OCV(xk) + i, Ro.
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Similarly, the SOT estimator is propagated through time
using the following equations:

Tir1 = fi (-flw ik,Tk) (22)
T
P = dfi (a?/ngk, ) A 23)
Ti=T}
Priii = FPraFl + Qi (24)
f2 (3?"1@7 ik7Tk)
H= v 7 25)
oT
Tw=T}
0 D N[ 176 B o\T -

K) = Py, (HY) [Hk Po(H)" + Re,k] (26)

where f) and f, are the SOT process and measurement models
proposed in Section IV-A.
Finally, the state filter is updated as follows:

&=z + K§ (Vi — b (ZTh, ix, Ti)) 27)
Por= (I— KiH}) P, (28)
T =Ty + Kf (Vi — h (&, ix, Tk)) (29)
Pry= (I— KiH{)Pry (30)

where all the quantities have already been defined.

VI. ENHANCEMENT OF ESTIMATION ALGORITHM

The estimation algorithm in Section V assumes the availabil-
ity of the process and measurements noise statistics represented
by noise covariance magnitudes of the two filters. This is gener-
ally inaccurate as the noise statistics may not be perfectly known
or can change because of sensors’ aging, battery environment,
and other factors that may introduce uncertainties. Thus, an
adaptation method for the noise covariance magnitudes of the
process and measurement processes is proposed. An MLE algo-
rithm, [22], has been implemented in conjunction with the EKF
algorithm to improve the accuracy of the temperature estimation
by recursively estimating the process noise covariance matrix ¢
and measurement noise covariance matrix R.

The measurement innovation covariance S can be written in
an alternative form as follows:

k

>

j=k-N+1

Ch

Uk+1v;c+1 (31)

where vy is the measurement residual defined in (17). CY
is statistically estimated over a moving window of size N. The
updated estimate of () is given as follows:

Qr = Ki, CL K. (32)

Similarly, the measurement error covariance Ry, is recursively
updated as follows:

Ry = Cy, — Hy, Py 1 Hj. (33)
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Fig. 9. Demonstration of the proposed dual EKF-with-MLE SOC/SOT
estimator.

The final updated values of Q; and Rj, are obtained by the
forgetting factor formula:

Qr = bi1Qx + (1 —b1) Qry
Ry =by R+ (1 —by) Ry

(34)
(35)

where by, b, € (0, 1) influence the memory span of the forget-
ting factor with higher values mean that more recent information
plays a bigger role in the estimation. A demonstration of the
proposed estimator is shown in Fig. 9.

To demonstrate the stability of the proposed filtering ap-
proach, the observability of the system is examined. In [30] and
[31], the observability of multiple dynamic systems was investi-
gated under different conditions. The observability is studied by
inspecting the rank of the following constructed observability
Gramian [30]:

| (36)
Ny (1)

where Ny (t) = H(t),and Ny (t) = F(t)Ni(t) + LNy (t),
ke[0 n—1].

The observability of the proposed algorithm was analyzed for
the two proposed modeling approaches. H (t) is computed by
obtaining the partial derivative of (7) or (11) with respect to the
temperature state, and F'(¢) is computed by taking the partial
derivative of (5) or (10) with respect to the temperature state. In
both cases, the dynamic system of size n = 1 is shown to be
observable, for the observability Gramian has full rank.

VII. EXPERIMENTAL VERIFICATION

The datasets in [28] and [29] were used to test the proposed
estimation technique experimentally. The actual SOC values
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Fig. 10. Comparison of temperature estimation between EKF-only and
EKF- with-MLE (Oxford dataset).
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Fig. 11. Dual EKF-only SOC and SOT estimation results (Oxford

dataset).

computed using coulomb-counting were used in order to es-
timate the temperature values in both datasets.

Temperature estimation results for the Oxford dataset ob-
tained using the EKF and the MLE-aided EKF is shown in Fig. 10
when assuming the knowledge of the SOC. In these results, the
polynomial model was used. With EKF alone, the MAE and
RMSE values are 0.1394 °C and 0.1919 °C, respectively. When
adapting the MLE algorithm, the MAE and RMSE error values
are reduced to 0.1133 °C and 0.1475 °C, respectively.

Figs. 11 and 12 show the results of the dual SOC-SOT filter
using the EKF and the MLE-aided EKF, respectively. In these
results, rather than using the true SOC values, the SOC is first es-
timated, and the temperature is subsequently estimated based on
the SOC estimate. The addition of the MLE algorithm resulted
inreducing the temperature estimation error. The recorded MAE
and RMSE values without the MLE algorithm are 0.5767 °C and
0.6008 °C, respectively, while these values go down to 0.2477
°C and 0.3158 °C when the MLE algorithm is implemented.
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Fig. 13.  Temperature estimation results using EKF-with-MLE and poly-

nomial models (NASA dataset cycle 1).

The temperature estimation results for the NASA dataset
using the polynomial models and the MLE-aided EKF algo-
rithm are displayed in Figs. 13 and 14 for cycles 1 and 200,
respectively. The RMSE value for cycle 1 is 0.6090 °C, while
for cycle 200 it is 0.3880 °C. In Figs. 13 and 14, the true
SOC values were used. As expected, when the dual estimation
algorithm was implemented, the errors went up, in comparison
with the case when the true SOC was used. This is due to the
error in the SOC estimates. The estimation results for the dual
MLE-aided EKF algorithm are shown in Figs. 15 and 16. The
RMSE for the temperature estimates for cycles 1 and 200 are
1.3964 °C and 1.015 °C, respectively. The results in Fig. 15 were
duplicated using the SOC-independent Gaussian measurement
model (Figs. 17 and 18).

The obtained results for the NASA dataset utilizing the Gaus-
sian model show an improvement in the temperature estimation
accuracy with RMSE values of 0.3908 °C and 0.3722 °C for
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Fig. 14. Temperature estimation results using EKF-with-MLE and poly-
nomial models (NASA dataset cycle 200).
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Fig. 17. Temperature estimation results using EKF-with-MLE and

Gaussian measurement model (NASA dataset cycle 1).
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Fig. 18. Temperature estimation results using EKF-with-MLE and
Gaussian measurement model (NASA dataset cycle 200).

cycles 1 and 200, respectively, compared with 1.3964 °C and
1.015 °C (cycles 1 and 200) when the polynomial fit model is
used.

For further verification, an additional test was conducted using
a3.6'V, 1.1 Ah Li-ion battery cell. The cell was charged using a
1-A current to 3.6-V, then using a constant voltage of 3.6-V until
the current dropped to 50-mA. The temperature estimation result
using the proposed estimation algorithm and the polynomial
model is shown in Fig. 19. In this figure, although the initial
temperature was intentionally set at 20 °C, the algorithm was
able to achieve convergence in less than 100 s with an RMSE
of 0.3306 °C and MAE of 0.2546 °C. As can be noted in
Fig. 19, the error suddenly increases at minute 55 (at the start
of the constant-voltage mode) and peaks at minute 58 before
it starts decreasing as the constant-voltage charging approaches
its end when the battery approaches 100% SOC. This can be
explained as when the charger switches from constant-current
to constant-voltage mode, the measurement model tries to adapt
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Fig. 19. Temperature estimation results using EKF-with-MLE and poly-

nomial measurement model using a 3.6-V, 1.1 Ah Li-ion battery cell.

TABLE Il
ESTIMATED TEMPERATURE RMSE FOR OXFORD DATASET (POLYNOMIAL
MODEL)
Estimation Algorithm RMSE
Traditional EKF 0.1919
Proposed EKF with MLE | 0.1475
TABLE IlI
ESTIMATED TEMPERATURE RMSE FOR NASA DATASET (PROPOSED
ALGORITHM)
Model Cycle | RMSE
Polynomial model | 1 1.3964
200 1.015
Gaussian model 1 0.3908
200 0.3722

to the new internal resistance value of the battery cell when
the current starts dropping from 1000 to 50 mA throughout
the constant-voltage charging mode. Another remark is that
at the end of the constant-voltage mode, the internal voltage
drop decreases due to the decreasing current when the battery
approaches equilibrium and the temperature and the voltage
settle, which explains why the error is less at the end of the
constant-voltage mode. The error throughout the entire charging
test did not exceed 0.8 °C. A summary of the obtained RMSE
values of the estimated temperature using the conducted exper-
iments is provided in Tables II and III.

According to the obtained results, the selection of the proper
model for a specific dataset is crucial in improving the temper-
ature estimation accuracy. In dynamic environments where the
current going in/out the battery is highly dynamic, it was found
that adding the SOT dependence on the SOC slightly improves
the temperature estimation accuracy. This was achieved using
the SOC-dependent polynomial measurement model and veri-
fied experimentally using the first dataset, i.e., Oxford dataset.
On the other hand, when the current flowing in or out of the
battery is almost constant, the SOC-independent Gaussian mea-
surement model will provide much more accurate temperature
estimation results as verified experimentally using the second
dataset, i.e., NASA dataset. In this dataset, the reduction in
RMSE was 72% for cycle 1 and 63% for cycle 200 when the
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Gaussian model is used in comparison with the polynomial
model.

To ensure accurate and reliable temperature estimation results,
various models that accommodate different operating conditions
must be implemented in the BMS. Moreover, besides adding
an enhancing MLE algorithm along with the traditional EKF
algorithm to improve the robustness of the estimation algorithm,
an auto-tuning algorithm can be implemented to tune the model
coefficients and allow the model to adapt to all possible operating
conditions [33].

Lastly, although in many industrial applications and battery
products a temperature sensor is thought to be sufficient to mon-
itor the temperature of the battery, many Li-ion battery accidents
related to thermal runaway are reported consistently. These add
more concerns on the safety of the batteries. With advanced
monitoring algorithms and a little additional cost, the safety and
longevity of these batteries can be enhanced significantly, which
with no doubt worth the added cost.

VIIl. CONCLUSION

A sensorless surface temperature estimation method is pro-
posed for Li-ion battery cells based on EKF approach. The
estimation algorithm employs a DEKF to estimate the SOC and
the SOT. Two measurement models were derived and imple-
mented, namely, the polynomial and the Gaussian models. The
proposed algorithm incorporates the dependence of tempera-
ture on the SOC. This was found to improve the temperature
estimation accuracy in highly dynamic environments such as
in EVs where the battery’s current changes widely. Moreover,
the proposed sensor fusion algorithm was augmented with an
MLE-based noise covariance magnitudes identification routine
to realize higher estimation accuracy by accounting for the
possibly varying uncertainties in the implemented models as
well as measurement sources available to the algorithm. In all
conducted experiments, the proposed algorithm was able to
converge, in a relatively short time, with a high accuracy.
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