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Abstract
Multi-user augmented reality (AR) seeks to 

enhance the user experience in shared activities, 
whether collaboration for training, entertainment, 
or safety applications such as autonomous driving 
and driver assistance. AR involves a number of 
tasks that require both sensing and complex com-
putations. A key task is localizing an AR device 
in the real world, in order to render the virtual 
holograms at the correct locations on the display. 
With cloud computing moving closer to the edge, 
a number of architectural options are available 
to aid in these complex computations, ranging 
from performing all of the computation at the end 
device to moving it all to the cloud, each with a 
different level of dependency on the communica-
tion link. In this work, we outline several architec-
tural alternatives for localization in multi-user AR 
and their applicability to a number of important 
usage scenarios. The considered usage scenarios 
(entertainment, autonomous vehicles, and medi-
cine) reflect a range of latency and spatial accu-
racy requirements. Within this context, we discuss 
our recent work on an edge-cloud-centric solution 
— SLAM-Share — and its applicability to various 
use cases. In addition, we evaluate its resilience 
to variations in communication delay. Overall, this 
article seeks to provide an overview of network 
architectures for localization-based AR to inform 
the design of future AR systems.

Introduction
Augmented reality (AR) is a driver of the next 
wave of “killer apps” in mobile computing. It is 
revolutionizing the way we live by enhancing our 
perception of the real world with virtual holo-
grams. AR has found applications in training, 
education, automotive applications, and entertain-
ment (e.g., Pokemon Go, IKEA Place). In many 
applications, the virtual holograms are anchored 
to specific locations in the real-world environ-
ment, providing the user with a seamless experi-
ence integrating the real and virtual worlds. While 
much of the current focus has been on provid-
ing a high-quality user experience for single-user 
AR, multi-user AR is a natural extension of the AR 
paradigm, where multiple users participate in a 
joint AR session and collaborate and interact with 
the same set of virtual holograms. This provides a 
much richer shared experience among the users. 
There may be numerous applications of multi-user 
AR, including safety applications such as auton-

omous driving or driver assistance, collaborative 
virtual workplaces, and remote collaborative sur-
gical training. However, multi-user AR introduces 
several technical challenges, because of the need 
for all the users involved in the activity to share 
the experience concurrently in real time.

Creating these shared experiences requires sev-
eral different computations whose results must be 
communicated between devices. Our article focus-
es on computations related to device localization, a 
key component in AR. AR devices need to localize 
themselves (i.e., determine their own position and 
orientation in the real world) in order to render the 
holograms on the display at the right location in the 
user’s field of view. With slow or inaccurate local-
ization, holograms can be rendered at the wrong 
place on the display, or not in time (see Fig. 1 for 
an example). This article considers visual-inertial 
localization that is done by taking sensor readings 
from a device’s camera and inertial measurement 
unit (IMU), which are then processed through 
Simultaneous Localization and Mapping (SLAM) 
algorithms. SLAM results from multiple devices 
must be communicated and merged together to 
create a shared AR experience, with low latency 
and high spatial accuracy. Making the experience 
high quality (fast and accurate) requires synergistic 
cooperation between the computation and com-
munication components in a multi-user AR system.

With the potential of extensive Edge Cloud 
(EC) deployments, intended to be much closer 
to the user to support various latency-sensitive 
applications, it is worthwhile to examine how 
an EC can support various computational tasks 
for multi-user AR and meet application require-
ments. The computing power at an EC can be 
a great enabler for AR in general, and particu-
larly for multi-user AR, by dividing the compu-
tations between the end-user’s device and the 
more powerful servers residing in the EC. The 
EC can also be a convergence point for merg-
ing and synchronizing the results of the compu-
tations. Different divisions of labor between the 
EC and AR devices are possible, from EC-centric 
(where most computations are performed on the 
EC) to purely on-device operation (where most 
computations are performed on the end devices), 
as well as somewhere in between [1–3]. Where 
computations are performed impacts what is 
communicated and hence the communication 
latency; for example, the EC-centric architecture 
performs fast computations but requires low-de-
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lay, high-throughput network connectivity to the 
EC to enable a responsive multi-user AR system 
that meets the quality-of-experience that users 
expect. Diff erent system architectures provide dif-
ferent capabilities depending on the network and 
device capabilities, and the choice of architecture 
must be carefully considered.

The goal of this article is to outline possible 
networked system architectures and their trade-
off s in the context of diff erent multi-user AR use 
cases. Specifi cally:
• We provide background on the role of local-

ization with cameras and IMUs in single and 
multi-user AR applications. Two key compu-
tation components of localization are track-
ing and mapping. We illustrate the impact of 
the latency and accuracy of these tasks on 
the AR display.

• We discuss the networked system architec-
tures that can support the computations 
required for localization. We describe three 
architectures ranging from fully edge-cloud-as-
sisted to pure on-device operation.

• We discuss three use cases for AR — enter-
tainment, autonomous vehicles, and medical 
training — including their latency and spa-
tial accuracy requirements, and the ability of 
the networked architectures to meet these 
requirements.

bAckground on Ar locAlIZAtIon

Ar plAtform ArchItEcturE
AR platforms consist of multiple layers, as shown 
in Fig. 2. At the bottom, we have various sen-
sors, such as a gyroscope, accelerometer, visible 
light camera, depth camera, microphone, and 
eye tracker. In the middle, we have the AR plat-
form, which typically includes a game engine 
(e.g., Unity, Unreal) that handles the physics of 
holograms and rendering, similar to computer 
games. There is also AR-specific functionality, 
such as device localization, scene understanding, 
hand tracking, gesture detection, and voice com-
mands. These functions are implemented through 
a combination of general libraries (e.g., OpenXR, 
MRTK) and device-specifi c libraries (e.g., Oculus 
Integration Package).

The focus of this work is on the localization of 
AR devices. Localization is the ability of a device 
to determine its own location and orientation in 
the real world. The accuracy and speed of the 
localization can greatly affect user experience. 
For instance, suppose that a pedestrian is in the 
intersection at location (x, y, z) in Fig. 1. A blue 
car arrives at the intersection, detects the pedestri-
an at location (x, y, z), and sends the coordinates 
to the purple and red cars, who are about to turn 
and hit the pedestrian due to poor visibility from 
the trees. When the red car arrives at the intersec-
tion, it is slow to localize and determine where 
(x, y, z) is with respect to itself and render the 
hologram on its AR windshield. This may cause 
the red car’s driver to miss seeing the pedestrian 
hologram and cause a collision. Inaccurate local-
ization by the purple car causes the pedestrian 
hologram to appear with a 1 meter off set on the 
heads-up display, also potentially leading to a col-
lision. Thus, fast and accurate localization is cru-
cial for eff ective AR.

sInglE-usEr locAlIZAtIon
SLAM is a foundational algorithm used for local-
ization in AR and typically involves two parallel 
steps, tracking and mapping. Tracking lets a client 
determine its pose (i.e., position coordinates and 
orientation) in the real world. Mapping creates 
a 3D representation of the world (i.e., a map) 
in which a client estimates its pose. The 3D rep-
resentation has a coordinate system (called the 
world frame) with the origin at an arbitrary point 
in the real world. Tracking is relatively lightweight 
and should run in real-time; otherwise, localiza-
tion and hence hologram rendering will be slow 
(as in the red car example above). Mapping runs 
concurrently with tracking, albeit at a slower time 
scale due to its computational complexity [4]. 
Tracking and mapping are related because track-
ing depends on updated maps for high accura-
cy (as in the purple car example above). If the 
environment changes rapidly or the user moves 
to a new area, fast mapping is more important. 
If the environment is relatively static (e.g., most 
objects in the real world do not move) or the user 
has low mobility and does not explore new areas, 

FIGURE 1. Example illustrating importance of accurate and fast localization.
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FIGURE 2. Multi-user AR workflow.
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slower mapping is acceptable because the map 
does not need many updates. Next, we describe 
each of these steps in more detail.

The tracking module first decodes images 
(potentially extracted from video) obtained from 
the client’s camera and extracts their image fea-
tures. For example, ORB-SLAM3 [5] uses ORB 
(Oriented FAST and Rotated BRIEF); FAST (Fea-
tures from Accelerated Segment Test) finds cor-
ner features in an image (by checking if a pixel’s 
intensity differs greatly from it neighbors), while 
Rotated BRIEF are the descriptors for those found 
features. Around 1000 ORB features are extract-
ed per image frame, which are then compared 
with the ORB features extracted from previous 
images of the environment in the SLAM map. By 
fi nding the common ORB features between newly 
processed images and the map, the location of 
the device can be estimated inside the map. The 
map is produced by devices who previously visit-
ed the physical area.

Mapping is triggered if the image read in by 
the tracking module is from a previously unseen 
location or contains informational cues (e.g., new 
features) for localization and tracking and there-
fore are not present in the local map, constructing 
a sparse point cloud. In that case, SLAM marks 
the frame as a “Keyframe.” It next computes the 
poses of the Keyframe’s features, known as “Map-
points,” and inserts them into the map. Period-
ically, an optimization procedure, called bundle 
adjustment, runs to correct the pose error of each 
Mappoint. The information from tracking and map-
ping are stored in graph-based data structures and 
have temporal dependencies between frames [5]. 

multI-usEr locAlIZAtIon
When multiple AR devices wish to place holo-
grams in the real world, they fi rst individually per-
form tracking and mapping as described above, 
resulting in individual maps (with individual world 
frames). They must then synchronize in order to 
create a consistent global map of the real world. 
This global map provides a common reference 
for the devices to describe the placement of the 
virtual objects,with similar data structures as the 
single-user case (except possibly larger due to 
contributions from multiple devices). Once the 
devices have a common global map and know 
the poses of the holograms, the holograms can 
be drawn on each device’s display whenever they 
are in the client’s fi eld-of-view. 

Next, we walk through the specific steps 
involved in merging the local maps of client A 
(which places a hologram), and client B (which 
receives and renders that hologram), when these 
computations are performed in the EC. 
1. Client A uploads real-world visual data and 

hologram data (pose, geometry, textures) to 
a shared repository in the EC. 

2. The EC server processes A’s visual data using 
SLAM mapping to compute A’s map. 

3. Client B uploads its visual data about the real 
world to the EC server. 

4. The EC server processes B’s visual data into a 
map and with A’s map to construct a global 
map. It returns B’s pose in the global map. 

5. Client B renders a hologram at the correct 
position and orientation on its display.

If there are more than 2 clients, the process is sim-
ilar. A new client C would upload its data (step 
3) and query the cloud for its pose in the global 
map (step 4). After receiving the query response, 
all clients continuously run tracking and mapping 
individually (regular SLAM), and synchronize with 
the EC server as needed, if there are updates to 
the global map. 

The key differences between multi-user and 
single-user localization are the need for the above 
process to bring together inputs from multiple 
users, merge them appropriately into the global 
map, and provide the relevant updates for individ-
ual users to localize within that global map. Single 
user localization only employs its local map and 
does not require global map computation and 
coordination. Computing the global map (in step 
4) can be computationally intensive due to the 
processing and combining of visual inputs from 
multiple users, which is challenging to perform 
locally on the end-points. Timely updates to the 
individual user devices is critical (in steps 1, 3, and 
4) to ensure that the AR rendering is smooth and 
responsive. This requires a high bandwidth, low 
latency network.

nEtworkEd ArchItEcturEs for multI-usEr Ar
In this section, we discuss network architectures 
to support SLAM for AR. We will outline three 
architectures starting from being most edge-cloud 
dependent to least: edge-cloud centric, edge-
cloud assisted, and peer-to-peer. Each architec-
ture makes diff erent placement choices of where 
the merging of information from multiple users 
is performed, and what minimal updates have to 
be conveyed back to the users. These choices 
infl uence both the compute and communication 
requirements on the infrastructure. 

EdgE-cloud cEntrIc
A first architectural option to partition the work 
between the end-user devices and the edge cloud 
(EC) is to utilize the EC to have SLAM quickly and 
accurately perform tracking and mapping for mul-
tiple users. The EC-centric architecture helps sup-
ports the timely merging of multiple users’ inputs 
and updates to the global map, as depicted in 
Fig. 3. The tracking and mapping components 
update themselves and communicate the “state” 
of the system (i.e., the shared merged map) to 
the clients. The system, which we call SLAM-Share 
[1], offloads tracking to the EC server, using the 
powerful compute capabilities that are likely avail-

FIGURE 3. Edge-cloud centric architecture.
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able at the EC, such as GPUs and servers with 
multi-core CPUs and substantial memory. Spe-
cifically, a GPU can speed up two of the more 
significant complex processing tasks in SLAM’s 
tracking: feature extraction and 3D point match-
ing. For feature extraction, the key capability 
SLAM-Share introduces is the parallelization of 
FAST corner detection [5]. This is in contrast to a 
default approach of searching for the FAST fea-
tures sequentially in each frame. SLAM tracking 
also requires the matching of newly obtained fea-
tures with existing 3D points in the map. Unlike 
the default use of SLAM to sequentially match 
the features with points, SLAM-Share uses par-
allel threads in the GPU to match thousands of 
features and points concurrently, thus lowering 
the tracking time and making real-time tracking 
possible on the EC possible. 

The EC-centric architecture relies on the net-
work to transfer images (as a video stream) to 
the EC and determine a client device’s pose. It 
is important to have accurate tracking results as 
discussed in earlier. Therefore, when there are 
transient higher network delays, SLAM-Share 
complements camera-based localization by utiliz-
ing the IMU to produce a pose at the client until 
the arrival of the pose from the EC. This is used 
only for short periods, and our evaluation shows 
that it causes less than 1 cm absolute trajectory 
error increment even when the round-trip net-
work delay increases by 1 second. 

SLAM-Share also improves the task of mapping 
by placing the global map in a shared memory 
buff er on the EC [6], which is accessible by a cli-
ent mapping process corresponding to each user. 
The shared memory approach mitigates delays, 
serialization, de-serialization, data movement and 
other CPU overheads (because of zero-copy data 
transfers) and is very effi  cient for multi-user map 
merging. Each user’s update is atomically applied 
to data structures in shared memory. Subsequent-
ly, a synchronized map merge of all the users’ 
updates is performed. An example of these data 
structures and their processing is in [1]’s asso-
ciated open-source code (https://github.com/
network-lab2/slam-share) Each mapping process 
accesses the data directly in the shared memory 
buff er, and no inter-process communication time 
or conversion of the data structure is involved. 
Clients localize themselves based on this shared 
global map and update it instantaneously with 
minimal overhead using the data communicated 
by the clients.

EdgE-cloud AssIstEd
A second architectural option is EC-assisted [2, 
7–9]. Edge-SLAM [2] and AdaptSLAM [9] are 
designed for single-user SLAM and perform 
tracking entirely on the user device, while some 
mapping is performed on the server. Such an 
architecture can be extended to a multi-user 
scenario [7, 8], which requires fast mapping and 
merging, as follows. Individual client devices per-
form tracking in this architecture, and each client 
then sends a map update to the server where the 
mapping is performed for each client individual-
ly. The maps of all the clients are then merged 
and the whole merged map is packetized and 
sent to each client device. Such an approach still 
requires substantial network bandwidth to transfer 

the complex, data-intensive SLAM maps between 
the server and the clients each time the maps are 
merged and updated, in contrast to the image/
video upload in the EC-centric architecture. In 
Fig. 4, we compare the accuracy of an EC-centric 
architecture (SLAM-Share [1]) with an EC-assisted 
SLAM architecture (inspired by Edge-SLAM [2]). 
We examine the variation of the overall accuracy 
over time when the round-trip delay in the net-
work is increased to 300 ms. For the EC-assisted 
architecture, this results in a significant increase 
in the Average Tracking Error (ATE), a common 
measure of localization error, in the interval 20-60 
seconds in Fig. 4. This is due to delays incurred 
when the client waits for the large map update 
(comprising multiple megabytes) coming from the 
EC. Since the EC-centric architecture only requires 
the pose information (just a few bytes) from the 
server, its ATE does not change much because 
of the larger network delay. Thus the EC-centric 
architecture provides more accurate maps over 
the entire timeline.

p2p 
A fi nal architectural option is to have clients per-
form their own tracking and mapping, and then 
share their results with each other, without the 
help of the EC [3]. The P2P option is only needed 
in a multi-user scenario. The map merge computa-
tion must be performed by the clients themselves. 
There are two design variants here. First, all cli-
ents can share information with each other and 
perform their own copies of the merge opera-
tion, along with tracking and mapping locally, 
as shown in Fig. 5. Alternatively, the clients can 
select one “primary” device that essentially acts as 
an EC (as in the EC-centric architecture), receiv-
ing information from other devices, performing 
the map merge, and distributing back the results. 
This primary device could be fixed for the dura-
tion of the AR session, or the primary role could 
rotate between devices. The key challenge in the 
multi-user scenario is the communication band-
width and low latency needed to send maps back 
and forth between devices.

usE cAsEs
In this section, we discuss several potential AR 
use cases, their application-level requirements, 
and suitable network architectures to support 
these requirements. We selected these use cases 
because they represent distinct applications hav-

FIGURE 4. Short-term ATE: Eff ect of increased network delay — EC-assisted 
vs. EC-centric architectures.
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ing increasingly stringent requirements. Table 1 
summarizes these use cases in terms of latency, 
spatial accuracy of the holograms, architecture, 
and expected user mobility. Latency refers to the 
end-to-end latency from when a triggering event 
occurs (e.g., a pedestrian walks into the road, or 
the user arrives at a location with a virtual crea-
ture) to when the hologram needs to appear on 
the user’s own display, or that of another user. 
Spatial accuracy refers to the difference between 
where a hologram appears and where it is sup-
posed to be. Safety critical applications such as 
autonomous vehicles and medicine (e.g., surgical 
training) have stringent latency requirements, with 
the latter likely to have equally critical require-
ments on spatial accuracy. Conversely, some 
relaxed entertainment applications do not have 
critical latency or accuracy requirements. We next 
describe three representative examples: entertain-
ment, autonomous vehicles, and surgical training. 

Collaboration and Entertainment
Different types of collaboration and entertainment 
AR applications exist. A virtual whiteboard that 
can facilitate collaborative work among users who 
are physically separated from each other [10]. 
Multiple users simultaneously collaborate on a 
virtual whiteboard, sharing its contents with users 
in different physical locations. Community art [10] 
allows users to create and view digital art with-
in the same physical space and can also support 
public displays, allowing guests or passersby to 
view the artwork. The well-known Pokemon Go 
application enables multiple co-located users to 
view virtual creatures together in the same real-
world environment. Finally, paintball [10] is a 
game where users aim and shoot virtual paint at 
virtual/real targets or other players.

Requirements: The latency and spatial accu-
racy requirements for the slower-paced games 
(virtual whiteboard, community art, Pokemon Go) 
can be fairly relaxed. Users can likely tolerate mul-
tiple seconds of latency until the holograms (a 
whiteboard, art pieces, or virtual creatures) appear 
or are updated. Some small deviation (centime-
ters to meters) in spatial positioning is also tol-
erable, as the functionality of the holograms is 
unlikely to be significantly affected by their posi-
tioning (e.g., a few centimeters of difference in 
the location of a large piece of virtual art would 
likely not affect user enjoyment). Note that the 
spatial accuracy discussed here is average real-

time accuracy. If users experience a temporary 
reduction in accuracy (e.g., from loss of tracking), 
but regain improved accuracy shortly thereafter, it 
should be acceptable for such applications. 

In contrast, fast-paced games like paintball 
would have tighter accuracy and latency require-
ments. Accurate calculations are necessary to 
determine whether holograms (e.g., paint) collide 
with the physical object (e.g., arm of a person). 
Therefore, spatial accuracy on the order of centi-
meters is required. Additionally, delayed feedback 
to players can cause users to wait for the results 
of each shot and negatively impact the overall 
game experience. Following similar analysis of the 
motion of holograms with real-world physics [11], 
the latency requirement on the AR system is sev-
eral hundreds of milliseconds. 

Supporting Network Architecture: For slow-
er-paced games, where latency and accuracy 
requirements are looser, a P2P architecture may be 
suitable. Locally operating tracking and mapping 
can provide sufficient accuracy and latency to sat-
isfy such applications’ needs. P2P may also be par-
ticularly suitable if such games are played in areas 
without significant network or EC infrastructure. For 
example, community art could occur in a large park 
with poor cellular connectivity, lacking reliable access 
to the EC. However, for fast-paced games such as 
paintball with their stringent latency and accuracy 
requirements, the EC-centric architecture is vital to 
satisfy application requirements, since SLAM-based 
tracking and mapping can be slow on mobile devic-
es [2]. A supporting argument for EC-centric SLAM is 
its ability to ensure consistency of the gameplay for 
all heterogeneous clients, since all computations are 
performed on the EC instead of being dependent on 
the hardware capabilities of individual clients.

Autonomous Vehicles
AR can be very valuable in vehicular scenarios to 
improve decision-making, whether for autonomous 
driving or to provide human driver assistance with 
advance warning. Obstacles (e.g., pedestrians) that 
appear in front of a vehicle may result in the vehicle 
taking evasive action, including sudden and severe 
braking or swerving to avoid the obstacle. Drivers of 
vehicles that follow behind can be helped by having 
a view of the obstacle on their own heads-up dis-
play early, based on the information provided by the 
vehicle in front, as shown in Fig. 1. Self-driving vehic-
ular systems and driver assistance systems need con-
siderable resources to process the high bandwidth 
data generated by on-board cameras, light detection 
and ranging devices (LIDARs), radars, and/or other 
3D sensors needed to help the on-board inference 
engine with localization, object detection, and track-
ing. These can be enhanced by communicating the 
inference results to selected nearby vehicles (espe-
cially those behind the lead vehicle). 

Requirements: There is a critical need to per-
form several of these tasks, such as localization, 
object detection and tracking, and rendering the 
AR image on the heads-up display quickly (e.g., 
less than 1 second, driving at highway speeds) 
[12, 13]. Providing timely, early warning to nearby 
drivers can help avoid accidents with the potential 
to save lives. Some spatial accuracy is required 
(e.g., several meters, within a lane), but cm-level 
precision isn’t needed. Fluctuations in accuracy 
are unacceptable for autonomous driving, com-

FIGURE 5. P2P architecture. 
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pared to the games discussed earlier. A consis-
tent and reliable level of accuracy is required 
for vehicular safety. Finally, the high mobility of 
autonomous vehicles increases communication 
challenges, especially with the need to meet tight 
latency requirements.

Supporting Network Architecture: EC-assist-
ed SLAM can provide benefits for autonomous 
vehicles. The vehicles’ high mobility means that 
they are constantly traveling to new areas, mak-
ing fast map merging and alignment critical. For 
example, a vehicle that arrives at an intersection 
should quickly locate itself within the global map 
in order to learn about pedestrians in the area, as 
well as contribute information to the global map 
about places it has traveled from [12]. Merging 
these maps in a central location at the EC saves 
communication bandwidth compared to sending 
maps back and forth between vehicles. Given the 
desire for edge support, a question is whether 
EC-centric or EC-assisted architectures are appro-
priate. Since the vehicles generally have sufficient 
processing capabilities to run tracking and pro-
duce low-latency results on their own, an EC-as-
sisted architecture may be suitable. However, in 
some cases, such as when the edge infrastructure 
is unavailable (e.g., if the vehicle is operating in a 
remote area), tracking can continue to run locally, 
and merging can fall back to local operation, that 
is, the P2P architecture. In other cases when com-
munication latency is low and ultra-reliable, then 
an EC-centric architecture with tracking on the EC 
may more easily satisfy application requirements.

Surgical Training
AR is increasingly being used in medical scenarios, 
as it offers an intuitive and user-friendly approach 
that enables medical professionals to focus on solv-
ing medical problems. For instance, telementoring 
can integrate mentor annotations into the trainee’s 
field of view using an AR display [14]. Artemis [15] 
is a AR-VR collaboration system that enables expert 
surgeons to work together with novice surgeons 
virtually, thereby enhancing the quality of patient 
care. The system allows experts to provide guid-
ance by drawing annotations on a 3D reconstruct-
ed body of the patient, which can be calibrated 
to the novice surgeon’s field of view. The novice 
surgeon can then follow the annotations to contin-
ue the surgical procedure. These systems typically 
operate in a training hospital.

Requirements: Surgical training requires high 
levels of spatial accuracy and very low latency, so 
as to not impair the performance of medical train-
ees, especially when multiple users are cooperating. 
Spatial alignment with mm-level accuracy between 
an expert’s annotations and a trainee’s actions is 
crucial for successful completion of the operation. 
Low latency is also crucial in order for the novice to 
see the expert’s annotations in real-time. Mobility is 
low, since surgeons are likely stationary in an oper-
ating room, which avoids some of the more difficult 
protocol-level challenges to ensure low latency (e.g., 
during handovers in a cellular network).

Supporting Network Architecture: In hospi-
tal settings, since the AR experiences take place 
repeatedly in the same rooms, the rooms can be 
outfitted with additional sensors (e.g., 3D cameras) 
and combined with on-device sensors to improve 
accuracy. Thus, the AR experience can be sup-

ported by EC-centric or EC-assisted architectures. 
In particular, an EC-centric architecture may be 
preferred due to its ability to provide the highest 
accuracy and lowest latency, compared to alterna-
tive architectures. Furthermore, the EC provides a 
persistent repository for the global maps of these 
rooms. This means that the global maps can later 
be accessed by subsequent devices operating in 
the same room, reducing initialization latencies.

Conclusions
A multi-user AR experience must provide users 
with a consistent view of the same holograms, 
for which devices must communicate and share 
computation results, requiring network support. 
This article outlined several edge-cloud-supported 
network architectures to assist AR devices and 
discussed their applicability across several rep-
resentative use cases. For applications with less 
stringent requirements on latency and spatial 
accuracy, on-device computations and peer-to-
peer communications may be suitable. For appli-
cations with stringent requirements, the heavy 
computing is preferably moved to the edge cloud 
to take advantage of its increased capabilities 
and a central point to share information. Meeting 
application requirements in this setting requires 
low latency and reliable communication links, as 
well as some on-device computation to provide 
approximate computation results in the event of 
communication delays and failures.
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