
IEEE Communications Magazine • December 2023104

ISSN: 0163-6804

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Abstract
Multi-user augmented reality (AR) seeks to

enhance the user experience in shared activities,
whether collaboration for training, entertainment,
or safety applications such as autonomous driving
and driver assistance. AR involves a number of
tasks that require both sensing and complex com-
putations. A key task is localizing an AR device
in the real world, in order to render the virtual
holograms at the correct locations on the display.
With cloud computing moving closer to the edge,
a number of architectural options are available
to aid in these complex computations, ranging
from performing all of the computation at the end
device to moving it all to the cloud, each with a
different level of dependency on the communica-
tion link. In this work, we outline several architec-
tural alternatives for localization in multi-user AR
and their applicability to a number of important
usage scenarios. The considered usage scenarios
(entertainment, autonomous vehicles, and medi-
cine) reflect a range of latency and spatial accu-
racy requirements. Within this context, we discuss
our recent work on an edge-cloud-centric solution
— SLAM-Share — and its applicability to various
use cases. In addition, we evaluate its resilience
to variations in communication delay. Overall, this
article seeks to provide an overview of network
architectures for localization-based AR to inform
the design of future AR systems.

Introduction
Augmented reality (AR) is a driver of the next
wave of “killer apps” in mobile computing. It is
revolutionizing the way we live by enhancing our
perception of the real world with virtual holo-
grams. AR has found applications in training,
education, automotive applications, and entertain-
ment (e.g., Pokemon Go, IKEA Place). In many
applications, the virtual holograms are anchored
to specific locations in the real-world environ-
ment, providing the user with a seamless experi-
ence integrating the real and virtual worlds. While
much of the current focus has been on provid-
ing a high-quality user experience for single-user
AR, multi-user AR is a natural extension of the AR
paradigm, where multiple users participate in a
joint AR session and collaborate and interact with
the same set of virtual holograms. This provides a
much richer shared experience among the users.
There may be numerous applications of multi-user
AR, including safety applications such as auton-

omous driving or driver assistance, collaborative
virtual workplaces, and remote collaborative sur-
gical training. However, multi-user AR introduces
several technical challenges, because of the need
for all the users involved in the activity to share
the experience concurrently in real time.

Creating these shared experiences requires sev-
eral different computations whose results must be
communicated between devices. Our article focus-
es on computations related to device localization, a
key component in AR. AR devices need to localize
themselves (i.e., determine their own position and
orientation in the real world) in order to render the
holograms on the display at the right location in the
user’s field of view. With slow or inaccurate local-
ization, holograms can be rendered at the wrong
place on the display, or not in time (see Fig. 1 for
an example). This article considers visual-inertial
localization that is done by taking sensor readings
from a device’s camera and inertial measurement
unit (IMU), which are then processed through
Simultaneous Localization and Mapping (SLAM)
algorithms. SLAM results from multiple devices
must be communicated and merged together to
create a shared AR experience, with low latency
and high spatial accuracy. Making the experience
high quality (fast and accurate) requires synergistic
cooperation between the computation and com-
munication components in a multi-user AR system.

With the potential of extensive Edge Cloud
(EC) deployments, intended to be much closer
to the user to support various latency-sensitive
applications, it is worthwhile to examine how
an EC can support various computational tasks
for multi-user AR and meet application require-
ments. The computing power at an EC can be
a great enabler for AR in general, and particu-
larly for multi-user AR, by dividing the compu-
tations between the end-user’s device and the
more powerful servers residing in the EC. The
EC can also be a convergence point for merg-
ing and synchronizing the results of the compu-
tations. Different divisions of labor between the
EC and AR devices are possible, from EC-centric
(where most computations are performed on the
EC) to purely on-device operation (where most
computations are performed on the end devices),
as well as somewhere in between [1–3]. Where
computations are performed impacts what is
communicated and hence the communication
latency; for example, the EC-centric architecture
performs fast computations but requires low-de-

The authors are with the University of California, Riverside, USA.Digital Object Identifier: 10.1109/MCOM.003.2300275

NEXT GENERATION INTERNET

The authors outline several archi-
tectural alternatives for local-
ization in multi-user augmented
reality and their applicability to
a number of important usage
scenarios.

Jiasi Chen, K. K. Ramakrishnan, Aditya Dhakazl, and Xukan Ran

Networked Architectures for Localization-
Based Multi-User Augmented Reality

IEEE Communications Magazine • December 2023 105This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

lay, high-throughput network connectivity to the
EC to enable a responsive multi-user AR system
that meets the quality-of-experience that users
expect. Diff erent system architectures provide dif-
ferent capabilities depending on the network and
device capabilities, and the choice of architecture
must be carefully considered.

The goal of this article is to outline possible
networked system architectures and their trade-
off s in the context of diff erent multi-user AR use
cases. Specifi cally:
• We provide background on the role of local-

ization with cameras and IMUs in single and
multi-user AR applications. Two key compu-
tation components of localization are track-
ing and mapping. We illustrate the impact of
the latency and accuracy of these tasks on
the AR display.

• We discuss the networked system architec-
tures that can support the computations
required for localization. We describe three
architectures ranging from fully edge-cloud-as-
sisted to pure on-device operation.

• We discuss three use cases for AR — enter-
tainment, autonomous vehicles, and medical
training — including their latency and spa-
tial accuracy requirements, and the ability of
the networked architectures to meet these
requirements.

bAckground on Ar locAlIZAtIon

Ar plAtform ArchItEcturE
AR platforms consist of multiple layers, as shown
in Fig. 2. At the bottom, we have various sen-
sors, such as a gyroscope, accelerometer, visible
light camera, depth camera, microphone, and
eye tracker. In the middle, we have the AR plat-
form, which typically includes a game engine
(e.g., Unity, Unreal) that handles the physics of
holograms and rendering, similar to computer
games. There is also AR-specific functionality,
such as device localization, scene understanding,
hand tracking, gesture detection, and voice com-
mands. These functions are implemented through
a combination of general libraries (e.g., OpenXR,
MRTK) and device-specifi c libraries (e.g., Oculus
Integration Package).

The focus of this work is on the localization of
AR devices. Localization is the ability of a device
to determine its own location and orientation in
the real world. The accuracy and speed of the
localization can greatly affect user experience.
For instance, suppose that a pedestrian is in the
intersection at location (x, y, z) in Fig. 1. A blue
car arrives at the intersection, detects the pedestri-
an at location (x, y, z), and sends the coordinates
to the purple and red cars, who are about to turn
and hit the pedestrian due to poor visibility from
the trees. When the red car arrives at the intersec-
tion, it is slow to localize and determine where
(x, y, z) is with respect to itself and render the
hologram on its AR windshield. This may cause
the red car’s driver to miss seeing the pedestrian
hologram and cause a collision. Inaccurate local-
ization by the purple car causes the pedestrian
hologram to appear with a 1 meter off set on the
heads-up display, also potentially leading to a col-
lision. Thus, fast and accurate localization is cru-
cial for eff ective AR.

sInglE-usEr locAlIZAtIon
SLAM is a foundational algorithm used for local-
ization in AR and typically involves two parallel
steps, tracking and mapping. Tracking lets a client
determine its pose (i.e., position coordinates and
orientation) in the real world. Mapping creates
a 3D representation of the world (i.e., a map)
in which a client estimates its pose. The 3D rep-
resentation has a coordinate system (called the
world frame) with the origin at an arbitrary point
in the real world. Tracking is relatively lightweight
and should run in real-time; otherwise, localiza-
tion and hence hologram rendering will be slow
(as in the red car example above). Mapping runs
concurrently with tracking, albeit at a slower time
scale due to its computational complexity [4].
Tracking and mapping are related because track-
ing depends on updated maps for high accura-
cy (as in the purple car example above). If the
environment changes rapidly or the user moves
to a new area, fast mapping is more important.
If the environment is relatively static (e.g., most
objects in the real world do not move) or the user
has low mobility and does not explore new areas,

FIGURE 1. Example illustrating importance of accurate and fast localization.

Red car: Slow
tracking → pedestrian
highlight missing

Blue car's view

Purple car: Inaccurate
tracking → pedestrian
highlight misplaced

AR highlight

Blue car: Detects
pedestrian and adds
highlight

(x,y,z)

 Heads-up display Heads-up display Heads-up display Heads-up display

 Heads-up display Heads-up display

Heads-up display

FIGURE 2. Multi-user AR workflow.

Application

Sensors

Edge-cloud

AR platform

Application

Sensors

Client A Client B

AR platform
Device localization

Tracking Mapping

AR platformAR platform
Device localization

Tracking Mapping

IEEE Communications Magazine • December 2023106 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

slower mapping is acceptable because the map
does not need many updates. Next, we describe
each of these steps in more detail.

The tracking module first decodes images
(potentially extracted from video) obtained from
the client’s camera and extracts their image fea-
tures. For example, ORB-SLAM3 [5] uses ORB
(Oriented FAST and Rotated BRIEF); FAST (Fea-
tures from Accelerated Segment Test) finds cor-
ner features in an image (by checking if a pixel’s
intensity differs greatly from it neighbors), while
Rotated BRIEF are the descriptors for those found
features. Around 1000 ORB features are extract-
ed per image frame, which are then compared
with the ORB features extracted from previous
images of the environment in the SLAM map. By
fi nding the common ORB features between newly
processed images and the map, the location of
the device can be estimated inside the map. The
map is produced by devices who previously visit-
ed the physical area.

Mapping is triggered if the image read in by
the tracking module is from a previously unseen
location or contains informational cues (e.g., new
features) for localization and tracking and there-
fore are not present in the local map, constructing
a sparse point cloud. In that case, SLAM marks
the frame as a “Keyframe.” It next computes the
poses of the Keyframe’s features, known as “Map-
points,” and inserts them into the map. Period-
ically, an optimization procedure, called bundle
adjustment, runs to correct the pose error of each
Mappoint. The information from tracking and map-
ping are stored in graph-based data structures and
have temporal dependencies between frames [5].

multI-usEr locAlIZAtIon
When multiple AR devices wish to place holo-
grams in the real world, they fi rst individually per-
form tracking and mapping as described above,
resulting in individual maps (with individual world
frames). They must then synchronize in order to
create a consistent global map of the real world.
This global map provides a common reference
for the devices to describe the placement of the
virtual objects,with similar data structures as the
single-user case (except possibly larger due to
contributions from multiple devices). Once the
devices have a common global map and know
the poses of the holograms, the holograms can
be drawn on each device’s display whenever they
are in the client’s fi eld-of-view.

Next, we walk through the specific steps
involved in merging the local maps of client A
(which places a hologram), and client B (which
receives and renders that hologram), when these
computations are performed in the EC.
1. Client A uploads real-world visual data and

hologram data (pose, geometry, textures) to
a shared repository in the EC.

2. The EC server processes A’s visual data using
SLAM mapping to compute A’s map.

3. Client B uploads its visual data about the real
world to the EC server.

4. The EC server processes B’s visual data into a
map and with A’s map to construct a global
map. It returns B’s pose in the global map.

5. Client B renders a hologram at the correct
position and orientation on its display.

If there are more than 2 clients, the process is sim-
ilar. A new client C would upload its data (step
3) and query the cloud for its pose in the global
map (step 4). After receiving the query response,
all clients continuously run tracking and mapping
individually (regular SLAM), and synchronize with
the EC server as needed, if there are updates to
the global map.

The key differences between multi-user and
single-user localization are the need for the above
process to bring together inputs from multiple
users, merge them appropriately into the global
map, and provide the relevant updates for individ-
ual users to localize within that global map. Single
user localization only employs its local map and
does not require global map computation and
coordination. Computing the global map (in step
4) can be computationally intensive due to the
processing and combining of visual inputs from
multiple users, which is challenging to perform
locally on the end-points. Timely updates to the
individual user devices is critical (in steps 1, 3, and
4) to ensure that the AR rendering is smooth and
responsive. This requires a high bandwidth, low
latency network.

nEtworkEd ArchItEcturEs for multI-usEr Ar
In this section, we discuss network architectures
to support SLAM for AR. We will outline three
architectures starting from being most edge-cloud
dependent to least: edge-cloud centric, edge-
cloud assisted, and peer-to-peer. Each architec-
ture makes diff erent placement choices of where
the merging of information from multiple users
is performed, and what minimal updates have to
be conveyed back to the users. These choices
infl uence both the compute and communication
requirements on the infrastructure.

EdgE-cloud cEntrIc
A first architectural option to partition the work
between the end-user devices and the edge cloud
(EC) is to utilize the EC to have SLAM quickly and
accurately perform tracking and mapping for mul-
tiple users. The EC-centric architecture helps sup-
ports the timely merging of multiple users’ inputs
and updates to the global map, as depicted in
Fig. 3. The tracking and mapping components
update themselves and communicate the “state”
of the system (i.e., the shared merged map) to
the clients. The system, which we call SLAM-Share
[1], offloads tracking to the EC server, using the
powerful compute capabilities that are likely avail-

FIGURE 3. Edge-cloud centric architecture.

The key diff erences between
multi-user and single-user

localization are the need for
the localization process to
bring together inputs from
multiple users, merge them
appropriately into the global
map, and provide the rele-
vant updates for individual
users to localize within that

global map.

IEEE Communications Magazine • December 2023 107This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

able at the EC, such as GPUs and servers with
multi-core CPUs and substantial memory. Spe-
cifically, a GPU can speed up two of the more
significant complex processing tasks in SLAM’s
tracking: feature extraction and 3D point match-
ing. For feature extraction, the key capability
SLAM-Share introduces is the parallelization of
FAST corner detection [5]. This is in contrast to a
default approach of searching for the FAST fea-
tures sequentially in each frame. SLAM tracking
also requires the matching of newly obtained fea-
tures with existing 3D points in the map. Unlike
the default use of SLAM to sequentially match
the features with points, SLAM-Share uses par-
allel threads in the GPU to match thousands of
features and points concurrently, thus lowering
the tracking time and making real-time tracking
possible on the EC possible.

The EC-centric architecture relies on the net-
work to transfer images (as a video stream) to
the EC and determine a client device’s pose. It
is important to have accurate tracking results as
discussed in earlier. Therefore, when there are
transient higher network delays, SLAM-Share
complements camera-based localization by utiliz-
ing the IMU to produce a pose at the client until
the arrival of the pose from the EC. This is used
only for short periods, and our evaluation shows
that it causes less than 1 cm absolute trajectory
error increment even when the round-trip net-
work delay increases by 1 second.

SLAM-Share also improves the task of mapping
by placing the global map in a shared memory
buff er on the EC [6], which is accessible by a cli-
ent mapping process corresponding to each user.
The shared memory approach mitigates delays,
serialization, de-serialization, data movement and
other CPU overheads (because of zero-copy data
transfers) and is very effi cient for multi-user map
merging. Each user’s update is atomically applied
to data structures in shared memory. Subsequent-
ly, a synchronized map merge of all the users’
updates is performed. An example of these data
structures and their processing is in [1]’s asso-
ciated open-source code (https://github.com/
network-lab2/slam-share) Each mapping process
accesses the data directly in the shared memory
buff er, and no inter-process communication time
or conversion of the data structure is involved.
Clients localize themselves based on this shared
global map and update it instantaneously with
minimal overhead using the data communicated
by the clients.

EdgE-cloud AssIstEd
A second architectural option is EC-assisted [2,
7–9]. Edge-SLAM [2] and AdaptSLAM [9] are
designed for single-user SLAM and perform
tracking entirely on the user device, while some
mapping is performed on the server. Such an
architecture can be extended to a multi-user
scenario [7, 8], which requires fast mapping and
merging, as follows. Individual client devices per-
form tracking in this architecture, and each client
then sends a map update to the server where the
mapping is performed for each client individual-
ly. The maps of all the clients are then merged
and the whole merged map is packetized and
sent to each client device. Such an approach still
requires substantial network bandwidth to transfer

the complex, data-intensive SLAM maps between
the server and the clients each time the maps are
merged and updated, in contrast to the image/
video upload in the EC-centric architecture. In
Fig. 4, we compare the accuracy of an EC-centric
architecture (SLAM-Share [1]) with an EC-assisted
SLAM architecture (inspired by Edge-SLAM [2]).
We examine the variation of the overall accuracy
over time when the round-trip delay in the net-
work is increased to 300 ms. For the EC-assisted
architecture, this results in a significant increase
in the Average Tracking Error (ATE), a common
measure of localization error, in the interval 20-60
seconds in Fig. 4. This is due to delays incurred
when the client waits for the large map update
(comprising multiple megabytes) coming from the
EC. Since the EC-centric architecture only requires
the pose information (just a few bytes) from the
server, its ATE does not change much because
of the larger network delay. Thus the EC-centric
architecture provides more accurate maps over
the entire timeline.

p2p
A fi nal architectural option is to have clients per-
form their own tracking and mapping, and then
share their results with each other, without the
help of the EC [3]. The P2P option is only needed
in a multi-user scenario. The map merge computa-
tion must be performed by the clients themselves.
There are two design variants here. First, all cli-
ents can share information with each other and
perform their own copies of the merge opera-
tion, along with tracking and mapping locally,
as shown in Fig. 5. Alternatively, the clients can
select one “primary” device that essentially acts as
an EC (as in the EC-centric architecture), receiv-
ing information from other devices, performing
the map merge, and distributing back the results.
This primary device could be fixed for the dura-
tion of the AR session, or the primary role could
rotate between devices. The key challenge in the
multi-user scenario is the communication band-
width and low latency needed to send maps back
and forth between devices.

usE cAsEs
In this section, we discuss several potential AR
use cases, their application-level requirements,
and suitable network architectures to support
these requirements. We selected these use cases
because they represent distinct applications hav-

FIGURE 4. Short-term ATE: Eff ect of increased network delay — EC-assisted
vs. EC-centric architectures.

The EC-centric architecture
relies on the network to

transfer images (as a video
stream) to the EC and

determine a client device’s
pose. It is important to have

accurate tracking results
as discussed in the Back-

ground section.

IEEE Communications Magazine • December 2023108 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

ing increasingly stringent requirements. Table 1
summarizes these use cases in terms of latency,
spatial accuracy of the holograms, architecture,
and expected user mobility. Latency refers to the
end-to-end latency from when a triggering event
occurs (e.g., a pedestrian walks into the road, or
the user arrives at a location with a virtual crea-
ture) to when the hologram needs to appear on
the user’s own display, or that of another user.
Spatial accuracy refers to the difference between
where a hologram appears and where it is sup-
posed to be. Safety critical applications such as
autonomous vehicles and medicine (e.g., surgical
training) have stringent latency requirements, with
the latter likely to have equally critical require-
ments on spatial accuracy. Conversely, some
relaxed entertainment applications do not have
critical latency or accuracy requirements. We next
describe three representative examples: entertain-
ment, autonomous vehicles, and surgical training.

Collaboration and Entertainment
Different types of collaboration and entertainment
AR applications exist. A virtual whiteboard that
can facilitate collaborative work among users who
are physically separated from each other [10].
Multiple users simultaneously collaborate on a
virtual whiteboard, sharing its contents with users
in different physical locations. Community art [10]
allows users to create and view digital art with-
in the same physical space and can also support
public displays, allowing guests or passersby to
view the artwork. The well-known Pokemon Go
application enables multiple co-located users to
view virtual creatures together in the same real-
world environment. Finally, paintball [10] is a
game where users aim and shoot virtual paint at
virtual/real targets or other players.

Requirements: The latency and spatial accu-
racy requirements for the slower-paced games
(virtual whiteboard, community art, Pokemon Go)
can be fairly relaxed. Users can likely tolerate mul-
tiple seconds of latency until the holograms (a
whiteboard, art pieces, or virtual creatures) appear
or are updated. Some small deviation (centime-
ters to meters) in spatial positioning is also tol-
erable, as the functionality of the holograms is
unlikely to be significantly affected by their posi-
tioning (e.g., a few centimeters of difference in
the location of a large piece of virtual art would
likely not affect user enjoyment). Note that the
spatial accuracy discussed here is average real-

time accuracy. If users experience a temporary
reduction in accuracy (e.g., from loss of tracking),
but regain improved accuracy shortly thereafter, it
should be acceptable for such applications.

In contrast, fast-paced games like paintball
would have tighter accuracy and latency require-
ments. Accurate calculations are necessary to
determine whether holograms (e.g., paint) collide
with the physical object (e.g., arm of a person).
Therefore, spatial accuracy on the order of centi-
meters is required. Additionally, delayed feedback
to players can cause users to wait for the results
of each shot and negatively impact the overall
game experience. Following similar analysis of the
motion of holograms with real-world physics [11],
the latency requirement on the AR system is sev-
eral hundreds of milliseconds.

Supporting Network Architecture: For slow-
er-paced games, where latency and accuracy
requirements are looser, a P2P architecture may be
suitable. Locally operating tracking and mapping
can provide sufficient accuracy and latency to sat-
isfy such applications’ needs. P2P may also be par-
ticularly suitable if such games are played in areas
without significant network or EC infrastructure. For
example, community art could occur in a large park
with poor cellular connectivity, lacking reliable access
to the EC. However, for fast-paced games such as
paintball with their stringent latency and accuracy
requirements, the EC-centric architecture is vital to
satisfy application requirements, since SLAM-based
tracking and mapping can be slow on mobile devic-
es [2]. A supporting argument for EC-centric SLAM is
its ability to ensure consistency of the gameplay for
all heterogeneous clients, since all computations are
performed on the EC instead of being dependent on
the hardware capabilities of individual clients.

Autonomous Vehicles
AR can be very valuable in vehicular scenarios to
improve decision-making, whether for autonomous
driving or to provide human driver assistance with
advance warning. Obstacles (e.g., pedestrians) that
appear in front of a vehicle may result in the vehicle
taking evasive action, including sudden and severe
braking or swerving to avoid the obstacle. Drivers of
vehicles that follow behind can be helped by having
a view of the obstacle on their own heads-up dis-
play early, based on the information provided by the
vehicle in front, as shown in Fig. 1. Self-driving vehic-
ular systems and driver assistance systems need con-
siderable resources to process the high bandwidth
data generated by on-board cameras, light detection
and ranging devices (LIDARs), radars, and/or other
3D sensors needed to help the on-board inference
engine with localization, object detection, and track-
ing. These can be enhanced by communicating the
inference results to selected nearby vehicles (espe-
cially those behind the lead vehicle).

Requirements: There is a critical need to per-
form several of these tasks, such as localization,
object detection and tracking, and rendering the
AR image on the heads-up display quickly (e.g.,
less than 1 second, driving at highway speeds)
[12, 13]. Providing timely, early warning to nearby
drivers can help avoid accidents with the potential
to save lives. Some spatial accuracy is required
(e.g., several meters, within a lane), but cm-level
precision isn’t needed. Fluctuations in accuracy
are unacceptable for autonomous driving, com-

FIGURE 5. P2P architecture.

Self-driving vehicular
systems and driver

assistance systems need
considerable resources to

process the high bandwidth
data generated by on-board
cameras, light detection and

ranging devices (LIDARs),
radars, and/or other sensors
needed to help the on-board
inference engine with local-
ization, object detection, and

tracking.

IEEE Communications Magazine • December 2023 109This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

pared to the games discussed earlier. A consis-
tent and reliable level of accuracy is required
for vehicular safety. Finally, the high mobility of
autonomous vehicles increases communication
challenges, especially with the need to meet tight
latency requirements.

Supporting Network Architecture: EC-assist-
ed SLAM can provide benefits for autonomous
vehicles. The vehicles’ high mobility means that
they are constantly traveling to new areas, mak-
ing fast map merging and alignment critical. For
example, a vehicle that arrives at an intersection
should quickly locate itself within the global map
in order to learn about pedestrians in the area, as
well as contribute information to the global map
about places it has traveled from [12]. Merging
these maps in a central location at the EC saves
communication bandwidth compared to sending
maps back and forth between vehicles. Given the
desire for edge support, a question is whether
EC-centric or EC-assisted architectures are appro-
priate. Since the vehicles generally have sufficient
processing capabilities to run tracking and pro-
duce low-latency results on their own, an EC-as-
sisted architecture may be suitable. However, in
some cases, such as when the edge infrastructure
is unavailable (e.g., if the vehicle is operating in a
remote area), tracking can continue to run locally,
and merging can fall back to local operation, that
is, the P2P architecture. In other cases when com-
munication latency is low and ultra-reliable, then
an EC-centric architecture with tracking on the EC
may more easily satisfy application requirements.

Surgical Training
AR is increasingly being used in medical scenarios,
as it offers an intuitive and user-friendly approach
that enables medical professionals to focus on solv-
ing medical problems. For instance, telementoring
can integrate mentor annotations into the trainee’s
field of view using an AR display [14]. Artemis [15]
is a AR-VR collaboration system that enables expert
surgeons to work together with novice surgeons
virtually, thereby enhancing the quality of patient
care. The system allows experts to provide guid-
ance by drawing annotations on a 3D reconstruct-
ed body of the patient, which can be calibrated
to the novice surgeon’s field of view. The novice
surgeon can then follow the annotations to contin-
ue the surgical procedure. These systems typically
operate in a training hospital.

Requirements: Surgical training requires high
levels of spatial accuracy and very low latency, so
as to not impair the performance of medical train-
ees, especially when multiple users are cooperating.
Spatial alignment with mm-level accuracy between
an expert’s annotations and a trainee’s actions is
crucial for successful completion of the operation.
Low latency is also crucial in order for the novice to
see the expert’s annotations in real-time. Mobility is
low, since surgeons are likely stationary in an oper-
ating room, which avoids some of the more difficult
protocol-level challenges to ensure low latency (e.g.,
during handovers in a cellular network).

Supporting Network Architecture: In hospi-
tal settings, since the AR experiences take place
repeatedly in the same rooms, the rooms can be
outfitted with additional sensors (e.g., 3D cameras)
and combined with on-device sensors to improve
accuracy. Thus, the AR experience can be sup-

ported by EC-centric or EC-assisted architectures.
In particular, an EC-centric architecture may be
preferred due to its ability to provide the highest
accuracy and lowest latency, compared to alterna-
tive architectures. Furthermore, the EC provides a
persistent repository for the global maps of these
rooms. This means that the global maps can later
be accessed by subsequent devices operating in
the same room, reducing initialization latencies.

Conclusions
A multi-user AR experience must provide users
with a consistent view of the same holograms,
for which devices must communicate and share
computation results, requiring network support.
This article outlined several edge-cloud-supported
network architectures to assist AR devices and
discussed their applicability across several rep-
resentative use cases. For applications with less
stringent requirements on latency and spatial
accuracy, on-device computations and peer-to-
peer communications may be suitable. For appli-
cations with stringent requirements, the heavy
computing is preferably moved to the edge cloud
to take advantage of its increased capabilities
and a central point to share information. Meeting
application requirements in this setting requires
low latency and reliable communication links, as
well as some on-device computation to provide
approximate computation results in the event of
communication delays and failures.

Acknowledgments
This work was supported by NSF grants 1817216
and 1942700.

References
[1] A. Dhakal et al., “SLAM-Share: Visual Simultaneous Local-

ization and Mapping for Real-Time Multi-User Augmented
Reality,” Proc. ACM CoNEXT, 2022.

[2] A. J B. Ali, Z. S. Hashemifar, and K. Dantu, “Edge-SLAM:
Edge-Assisted Visual Simultaneous Localization and Map-
ping,” Proc. ACM MobiSys, 2020.

[3] K. Apicharttrisorn et al., “Breaking Edge Shackles: Infrastruc-
ture-Free Collaborative Mobile Augmented Reality,” ACM
SenSys, 2022.

[4] G. Klein and D/ Murray, “Parallel Tracking and Mapping for
Small AR Workspaces,” Proc. IEEE ISMAR, 2007.

[5] C. Campos et al., “Orb-slam3: An Accurate Open-Source
Library for Visual, Visual–Inertial, and Multimap Slam,” IEEE
Trans. Robotics, 2021.

[6] B. Schäling, The Boost C++ Libraries, 2011.
[7] P. Schmuck et al., “Covins: Visual-Inertial Slam for Central-

ized Collaboration,” Proc. IEEE ISMAR, 2021.
[8] J. Xu et al., “Swarmmap: Scaling Up Real-Time Collaborative

Visual Slam at the Edge,” Proc. USENIX NSDI, 2022.
[9] Y. Chen, H. Inaltekin, and M. Gorlatova, “Adaptslam:

Edge-Assisted Adaptive Slam With Resource Constraints via
Uncertainty Minimization,” Proc. IEEE INFOCOM, 2023.

[10] K. Ruth, T. Kohno, and F. Roesner, “Secure Multiuser Con-

TABLE 1. Characterization of multi-user AR use cases.

Use Case Latency Spatial
accuracy Architecture Mobility

Pokemon Go,
community art seconds meters P2P High (world-scale)

Whiteboard sub-second cm P2P Low (room-scale)

Paintball sub-second cm EC-centric Moderate
(building-scale)

Autonomous vehicles sub-second meters EC-assisted High (world-scale)

Surgical training 10 ms mm EC-centric Low (room-scale)

IEEE Communications Magazine • December 2023110 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

tent Sharing for Augmented Reality Applications,” Proc. USE-
NIX Security, 2019.

[11] Z. Chen et al., “An Empirical Study of Latency in an Emerging
Class of Edge Computing Applications for Wearable Cognitive
Assistance,” Proc. ACM/IEEE Symp. Edge Computing, 2017.

[12] H. Qiu et al., “AVR: Augmented Vehicular Reality,” Proc.
ACM MobiSys, 2018.

[13] R. Ravindran, A. Azgin, and K. K. Ramakrishnan, “Edge
Transport (ETRA): Edge Transport Protocol Architecture for
Next Generation Mobile IoT Systemds,” Proc. 2019 IEEE
Globecom Workshops, 2019, pp. 1–6.

[14] D. Andersen et al., “Avoiding Focus Shifts in Surgical Tele-
mentoring Using an Augmented Reality Transparent Dis-
play,” Studies in Health Technology and Informatics, vol.
220, 2016, pp. 9–14.

[15] D. Gasques et al., “Artemis: A Collaborative Mixed-Reality Sys-
tem for Immersive Surgical Telementoring,” ACM CHI, 2021.

Biographies
Jiasi Chen is an Associate Professor at the University of Michi-
gan, and was previously at the University of California, Riverside.

She received her Ph.D. from Princeton University and her B.S.
from Columbia University. Her research interests include multi-
media systems and mobile computing.

K. K. Ramakrishnan [LF] is a Distinguished Professor at the Uni-
versity of California, Riverside. Earlier, he was at Digital Equip-
ment Corporation, and then AT&T Labs-Research. He is an ACM
Fellow and AT&T Fellow. He has an M.E. from IISc, India, and
MS, Ph.D. from the University of Maryland, College Park.

Aditya Dhakal received a Ph.D. in computer science from the
University of California, Riverside and M.S. degree in computer
science from the University of Connecticut. He is interested in
GPUs, Systems for Machine Learning, interconnects for acceler-
ators and augmented reality.

Xukan Ran received a Ph.D. in computer science from the Uni-
versity of California, Riverside and a B.S. degree from Xidian
University. His research interests include edge computing and
augmented reality on mobile devices.

