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Abstract
Fog computing allows computationally-heavy 

problems with tight time constraints to be solved 
even if end devices have limited computational 
resources and latency induced by cloud comput-
ing is too high. How can energy consumed by 
fog computing be saved while obeying latency 
constraints and considering not only computa-
tions but also transmission through wireless and 
wired links? This work examines the latency and 
energy consumption sources in fog networks and 
discusses models describing these costs for vari-
ous technologies. Next, resource allocation strate-
gies are discussed considering the various degrees 
of freedom available in such a complex system, 
and their influence on energy consumption and 
latency. Finally, a vision for a future distributed, 
AI-driven resources allocation strategy is present-
ed and justified.

Introduction
Together with the rapid development of modern 
Information and Communication Technologies 
(ICT), the energy consumption of these technol-
ogies increases. Although the ICT sector’s emis-
sions are predicted to stabilize at 1.25 GtCO2e in 
2030 [1], the energy cost of communication and 
computing services is continuously subject to min-
imization by the service providers and consumers. 
This is why energy efficiency is a key paradigm for 
modern contemporary and future networks, includ-
ing the Fifth Generation (5G) and Sixth Generation 
(6G) systems. These networks and services involve 
both Communication and Computing (2C) of infor-
mation across the network, and thus, 2C services 
should be handled (optimized) jointly.

The idea of fog or edge computing is pro-
posed for 5G/6G communication systems and 
future ICT networks [2]. This technology is essen-
tially a hierarchical, balanced network organiza-
tion where communication and computing tasks 
can be performed flexibly using diverse resourc-
es available in a network. Fog is an architecture 
that distributes communication and computation 
services along the cloud-to-things continuum 
[2]. It includes information processing, storage, 
control, and networking to serve many growing 
applications. A representative instance of the 
fog network is shown in Fig. 1. Things, such as 
cars, cellphones, and other linked devices, are 
present in the things tier. Powerful data servers 
are deployed in the cloud layer. Connected com-

puting devices (PCs, servers, computing clusters, 
etc.) that can process, communicate, and store 
data are located in the fog tier. Multiple hierarchi-
cal levels may exist in the fog tier. Collaboration 
including both vertical and horizontal communica-
tion is possible between them.

The execution of a task can be assigned to a 
(near or distant) fog node, the cloud, or carried 
out locally, depending on the Quality of Service 
(QoS) metrics that need to be guaranteed for 
that task. Information flow is depicted in Fig. 1 
for 	a few examples of use cases, including vehicu-
lar communication, remote control in industrial or 
medical settings (usually Ultra-Reliable, Low-Laten-
cy Communication (URLLC)), task offloading from 
a device with low processing power and mem-
ory, content cashing (typically enhanced Mobile 
BroadBand communication (eMBB)), or telemetry 
data flow (usually massive Machine-Type Commu-
nication (mMTC)).

The objective of this work is to improve the 
energy efficiency of fog networks for mission-crit-
ical applications, that is, those constrained by the 
deadline of task execution. We:
•	 Jointly optimize resource allocation for com-

munication and compu-ting
•	 Consider various task allocation schemes
•	 Consider the adaptation of clock frequency 

and packet generation rate
•	 Discuss resource allocation with Artificial 

Intelligence (AI). 
In the following section, we provide an overview 
of the causes (devices and processes) of ener-
gy consumption in wireless and wired parts of 
a network and computing machines. Following 
that, we present options for energy consumption 
minimization with latency and Age of Informa-
tion (AoI) constraints as well as representative use 
cases and optimization results. Then we discuss 
AI-based practical methods for reducing the ener-
gy consumption of a fog network. We conclude 
our work in the final section.

Key Devices and Processes Affecting Energy 
Consumption and Latency in Fog Networks

The decision of where to process a computing 
task from the perspective of energy consumption 
and latency is affected by the performance of: the 
wireless part of the network, the wired part of the 
network, and the devices performing computa-
tions themselves.
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wIreLess Access networKs

Energy consumption depends on numerous fac-
tors, including the number of bits to be transmitted, 
required bitrate, transmission channel properties, 
for example, path loss, fading, and the utilized wire-
less transmission standard, for example, 5G or WiFi 
with its confi guration. The most common approach 
to the modeling (limited in its application range) is 
to perform measurements of a wireless transceiv-
er under various conditions, for example, payload 
and path loss, and extrapolate the values to cover 
other use cases as well. The main drawback of 
this approach is characterization limited to a single 
device. The other approach is to characterize every 
single element of a wireless transceiver in terms of 
its energy consumption, for example, Analog-Digital 
Converter (ADC) and coder. However, this results 
in a multi-parameter model which is difficult to be 
confi gured to resemble real products. While [3] can 
be used as a fi rst reference point for WiFi devices, 
[4] shows energy consumption for a 4G/5G smart-
phone, and [5] for an LTE network. It is visible in 
Table 1 that the representative energy efficiency 
of a WiFi modem equals around 39–45 nJ/b at 
each side of a wireless link (assumed path loss of 
83 dB). While the 5G transmission is about 10 times 
less effi  cient from a 5G terminal perspective, it still 
outperforms an LTE terminal. However, the energy 
effi  ciency of an LTE Base Station (BS) is signifi cant-
ly lower, resulting in 45 J/b on average [5]. As all 
these numbers were obtained in diff erent environ-
ments, under different test conditions and meth-
odologies. They cannot be used to compare the 
considered standards between each other. Howev-
er, these numbers show us how far practical systems 
are from the theoretical limit derived using the Shan-
non formula for infi nite bandwidth and path loss of 
83 dB, that is, 0.55 pJ/b.

Similarly to energy consumption, the latency 
introduced by wireless links depends on multiple 
factors. The time of fl ight between the signal source 
and its destination is proportional to the distance 
and inversely proportional to the speed of light. It is 
negligible (below a few s) for a typical wireless link 

up to a few km. Transmission time is more import-
ant. It is proportional to the payload (number of 
bits) and inversely proportional to the link through-
put. However, there are other factors increasing 
latency, like the time needed by the Automatic 
Repeat reQuest (ARQ) procedure that is depen-
dent on an internal characteristic of the utilized 
wireless standard. Next, the transmitted packet can 
be subject to a random delay caused by the uti-
lized Medium Access Control (MAC) scheme, its 
configuration, and the number of users compet-
ing for a wireless medium at the same time. Finally, 
some random phenomena in the wireless channel, 
such as fast fading, can cause an outage of the link 
increasing the transmission latency. While all these 
factors are difficult to be accurately described by 
a single model, measurement-based models are of 
high potential. Measurements of a Round Trip Time 
between LTE/5G User Equipment (UE) and the BS 
from [4] are presented in Table 1 (mean values). 
This is a value for a short packet dominated by the 
MAC and ARQ procedures. Most importantly, the 
value is signifi cantly below the limit of 4 ms speci-
fi ed for eMBB in 5G and above the limit of 0.5 ms 
for URLLC [4]. For WiFi networks, the dominating 
factor will be the MAC procedure requiring all trans-

The time of flight between 
the signal source and its 

destination is proportional to 
the distance and inversely pro-
portional to the speed of light. 
It is negligible (below a few s) 
for a typical wireless link up to 

a few km.

FIGURE 1. 2C fog network and its optimization platform.
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TABLE 1. Energy and latency consumption.

Wireless Link Bandwidth [MHz] TX eff. [pJ/b] RX eff. [pJ/b] Latency [ms] 

Shannon limit ∞ 0.55 0 — 

WiFi link [3] 20 4.5e4 3.9e4 1–1000 

LTE UE DL [4] 20 — ~1.7e6 RTT: 2.6 

5G UE DL [4] 100 — ~4e5 RTT: 2.2 

LTE BS DL [5] 10 4.5e7 — — 

Wired Link Capacity [Gb/s] Active power [W] Eff. [pJ/b] Latency [ms] 

1G EPON gate-way [11] 1 3.3 300 0.5e–5–0.5 

10/10G GPON gateway [11] 10 5.5 200 as above 

Juniper T1600 core router [7] 640 6572 1030 0.01–27 

(Super) computer Perf. [TFlop/s] Cores Power [kW] Eff. [pJ/b] 

Henri (#1 Green500) [8] 2038 5920 31 136–422 

Frontier (#1 Top500) [8] 1102e3 8730112 21100 170–527 

ASUS laptop Expertbook B9400CEA [9] 0.148 4 0.03347 2000–6199 

Cumulus (#106 Green500) [8] 2271.38 50176 530 2069–6410
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mitting devices to compete for spectral resources. 
As shown in [6] the induced delay is quasi-expo-
nentially distributed for a single packet with a mean 
delay ranging from a few to a few hundred ms.

Wired Part of the Network
Wired connections have always played a key 
role in the development of the Internet. They are 
essential in the modern Internet from its access 
(e.g., Passive Optical Networks (PONs)) to its 
core (e.g., Elastic Optical Networks (EONs)). 
Taking the perspective of 2C networks (Fig. 1), 
wired connections of end devices to the edge/
fog nodes (e.g., a laptop connected to a router 
using an Ethernet cable) are relatively rarely used 
nowadays due to their limited flexibility, even 
though their energy efficiency is higher than the 
efficiency of wireless links. Wired links are main-
ly used for interconnecting edge/fog nodes, as 
well as for connecting the edge/fog tier with the 
cloud. Gigabit Ethernet realized on copper cables 
is usually sufficient for interconnecting edge/fog 
nodes. However, Wavelength Division Multiplex-
ing (WDM) links realized on optical cables are 
more suitable for these interconnections due to 
their higher bandwidth.

Performing computations in the cloud is more 
effective than performing them in the edge/fog due 
to the parameters of computing devices (high com-
putational power, effective cooling, etc.). However, 
transporting computation tasks to the cloud as well 
as the computation outcomes back to the end-us-
er can be time-consuming due to the physical dis-
tance between the fog and the cloud [6]. The few 
IP routers that the computation task needs to travel 
through may also influence experienced jitter. On 
the other hand, little additional energy is needed 
for the transportation of the tasks to the cloud due 
to the low dependence of power consumption of 
core IP routers and optical devices on load [7]. This 
is indicated in Table 1, where energy efficiency is 
based on the extra power needed for sending pack-
ets with respect to idle power. Induced latency is 
mainly determined by the propagation time of the 
optical signal reaching the highest values for sub-
marine cables. Dense WDM and EONs are used 
in the core of the Internet to realize the connection 
between the cloud and the edge/fog nodes.

Computing
The purpose of green computing is to increase 
energy efficiency over the course of a computing 
device’s lifetime. Standard methods for achieving 
this energy efficiency are data-center design, soft-
ware and deployment optimization, power man-
agement, optimized cloud computing, and edge/

fog computing. Algorithmic efficiency, optimized 
computing resource allocation, machine virtual-
ization, Dynamic Voltage and Frequency Scaling 
(DVFS), sleeping modes, and the use of terminal 
servers are in place to optimize the software and 
deployment of the computing machines. These 
measures are taken to reduce the energy con-
sumption resulting from the computers themselves 
and their air-conditioning and ventilation systems.

The performance-per-watt efficiency of the 
top 500 most energy-efficient supercomputers 
(Green500) [8] is continuously increasing with the 
top 2 supercomputers recently reaching values 
over 60 GFLOPS/W. However, as shown in [9], 
PCs are a plausible, energy-efficient option for the 
execution of non-complex tasks. Measurements 
of performance rates of tasks’ execution and 
power efficiency (in GFLOPs/Watt) of five PCs 
are presented in [9]. In Table 1, key performance 
metrics of selected supercomputers and a PC are 
compared. Energy efficiency is provided in pJ/s 
for consistency reasons, assuming 71–220 Flop/B 
as a range of aggregate arithmetic intensities [10]. 
The Henri supercomputer (no. 1 on the Green500 
list) has the best energy efficiency in Joules per 
bit, while the Frontier supercomputer (ranked no. 
1 on the list of best performance supercomput-
ers Top500) has worse energy efficiency but also 
lower power consumption and more than 500 
times higher processing speed in Flop/s. Interest-
ingly, an exemplary PC (Asus Expertbook, Core 
i7-1165G7 2.8 GHz [9]) has better energy effi-
ciency than supercomputer Cumulus ranked 106 
on Green500 (Table 1). Naturally, the processing 
speed is not as high for this PC as for supercom-
puters, but this example shows that when less 
computationally demanding tasks are to be exe-
cuted, some less powerful but more energy-effi-
cient machines are a viable option. Additionally, 
they are supposed to be localized closer to the 
end devices at the edge of a network.

Optimization of Energy Consumption in  
2C Fog Networks

Both communication and computing introduce 
latency and energy costs in the network, as dis-
cussed above. On the one hand, an individual 
device from the things tier (e.g., a smartphone) is 
usually battery-powered and has limited resources 
compared to fog nodes and cloud nodes. There-
fore, it can aim at the optimization of its energy 
consumption/utility, disregarding the costs in the 
higher tiers of the network treating it as a service 
provider. On the other hand, from the point of 
view of a network operator, optimizing the total 

TABLE 2. Summary of optimization scenarios. 

Scenario Energy costs Constraints Variables 

A. Optimization within fog and 
cloud tiers

Spent by fog and cloud 
nodes

Latency Main: offloading decision (which 
node computes) Aux: CPU frequency, 
transmission rate 

B. Optimization between wireless 
network, fog, and cloud tiers

Spent by end devices and fog 
and cloud nodes

Latency Main: offloading decisions (which nodes 
to transmit, which node computes) Aux: 
CPU frequency, transmission rate

C. Optimization of requests 
generation rate considering the 
AoI for 2C

Spent by end devices and 
fog nodes

AoI Main: operating frequency, transmission 
rate

Performing computations in 
the cloud is more effective than 
performing them in the edge/

fog due to the parameters 
of computing devices (high 

computational power, effective 
cooling, etc.). 
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energy costs in the network (while maintaining 
the required QoS, for example, latency) could 
be the goal. In the first case, the decision boils 
down to whether the costs related to transmitting 
the task outweigh those caused by processing 
it locally by the device. In the second case, the 
fog network can distribute resources (networking 
and computing) choose which nodes should pro-
cess the tasks off loaded by the users, and how it 
should be done, for example, using what CPU fre-
quency. This optimization can be done after the 
tasks are sent by the users to their access points. 
This scenario (A) is examined in below. The opti-
mization could also be carried out considering 
Radio Access Network (RAN). Then, the trans-
mission from end devices to the fog is optimized 
jointly with the processing of tasks within fog and 
cloud nodes. This scenario (B) is shown in the fol-
lowing section.

Finally, the optimization can take into account 
that many fog applications are for periodic 
requests. In this case, it is both the timeliness and 
accuracy that specify if the QoS required by a 
given application is met. For this purpose, the AoI 
metric is currently used to optimize communica-
tions [12], though it can be easily extended to 
take 2C into account. AoI is defi ned as the time 
elapsed since the latest request (whose compu-
tation result reached the destination) has been 
generated. The request generation rate in the 
source influences the rate required in links, the 
number of computations to be carried in the fog, 
and the possible queuing of requests as such infl u-
encing the AoI. At the same time, energy utiliza-
tion is impacted. Variable packet generation rate 
at source in order to minimize energy consump-
tion while maintaining required AoI is considered 
later. Observe that while optimization of com-
munications in the wired part of the network is 
performed in scenario A and scenario B extends 
it with RAN optimization, another degree of free-
dom is inserted in scenario C by considering the 
request source utilizing its periodic behavior. All 
considered optimization scenarios are compared 
in Table 2. All of them can be applied to various 
time-critical applications thanks to utilization of 
tight latency or AoI constraints.

These optimization problems can be sophis-
ticated. Apart from the main decision variables 
which are binary (whether or not to process/off -
load a task) or integer (where to send/process it), 
there are other parameters such as clock frequen-
cy and transmit power (i.e., continuous variables) 
which make it nontrivial to fi nd the optimum. In 
the following sections, illustrative results of simula-
tions are shown and discussed.

scenArIo A: oPtImIzAtIon wIthIn the fog And cLoud tIers
Let us assume the following scenario: there are 
10 interconnected fog nodes with a connection 
to the cloud through the Internet. End devices 
wirelessly send computational requests to these 
nodes. The requests are characterized by size, 
arithmetic intensity (required number of opera-
tions relative to the size), and maximum tolerated 
delay. For such a network, the optimization prob-
lem can be defi ned as the minimization of energy 
consumption spent on computing and transmit-
ting these requests while satisfying their delay 
constraints as in [6]. It is achieved by distributing 

requests to nodes for computations and adjusting 
the CPU frequency of nodes through DVFS.

Figure 2 plots the cumulative distribution 
function of energy costs related to offloading 
requests considering 3 task allocation strategies. 
The results are achieved through computer sim-
ulations according to the model and optimiza-
tion shown in [6]. The blue and magenta lines 
represent an approach in which arriving requests 
are computed in the same node to which they 
were transmitted by the end device, there is no 
inter-fog or fog-to-cloud transmission of requests. 
There is inter-fog and fog-to-cloud transmission for 
the red line (full optimization). Blue and red lines 
show results in which fog nodes are computing at 
optimal frequencies, while in the magenta solu-
tion computations are performed at the maximal 
available CPU frequency.

One can see that the red line (full optimization) 
is further left than the blue one (it achieves lower 
energy costs) and also further up (it is able to suc-
cessfully process more requests). Computing at 
maximal frequencies (magenta line) induces sig-
nificantly higher energy costs, while successfully 
processing a similar number of requests as the fully 
optimized solution (red). By comparing the median 
request energy, it is visible that around 30 percent 
of energy can be saved if instead of computing 
requests in the closest fog node with the highest 
CPU frequency (the magenta line), optimal alloca-
tion to computing nodes along with CPU frequen-
cy adjustment is carried out (the red line).

scenArIo b: oPtImIzAtIon between wIreLess networK, fog, And 
cLoud tIers

In the previous section, the optimization began 
upon the appearance of requests in the fog 
nodes. Let us consider the same network and 
requests, but add a decision point “to which fog 
node should this end device wirelessly send this 
request.” It also adds a new level of complexity to 
the existing optimization problem of choosing the 
optimal wireless transmission rate.

Figure 3 shows the results of optimization 
for this scenario. Here, the results are generated 
through simulation according to the model and 
optimization shown in [13]. Medians of energy 
costs spent on off loaded requests are plotted after 
a size parameter sweep. The red line shows the 
best results achieved by choosing the optimal 
computing node, optimal transmission path, and 
rate, as well as the optimal CPU frequency. The 

FIGURE 2. Distribution of energy costs spent on off loaded requests.
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blue line shows a scenario where all requests are 
processed in the fog nodes closest to the corre-
sponding end devices. The magenta line shows 
the same scenario as the blue one, except fog 
nodes work at the maximal available CPU fre-
quency. The black line corresponds to an optimi-
zation where each request is computed in the fog 
node collocated with the wireless access point to 
which the request has been originally transmitted.

Figure 3 shows that the optimal distribution 
of requests to nodes achieves the lowest energy 
consumption. The differences between plotted 
values increase as the sizes of requests increase. 
Baseline solutions shown in blue, black, and 
magenta “abruptly end” before reaching the right 
end of the plot. It corresponds to the fact that 
less than 50 percent of all requests were success-
fully processed within the tolerated delay. The 
difference between results obtained by different 
solutions varies with the size of the request. At 2 
MB the optimal (red) solution saves 49.5 percent 
energy when compared with the solution shown 
in magenta, 23.5 percent when compared with 
blue, and 4.6 percent when compared with black. 
At 6 MB these savings change to 44.6 percent, 
31.8 percent, and 12.2 percent respectively.

scenArIo c: oPtImIzAtIon of reQuests generAtIon
rAte con-sIderIng the AoI for 2c

Let us consider an end device that generates a 
certain number of requests per unit of time. Each 
request must be transmitted to a proper fog node 

and processed therein to obtain useful information. 
If the resources at any stage (wireless network, wired 
network, computing nodes) are not available, the 
request is queued in a First-In-First-Out (FIFO) buff er. 
The request is sent to the base station over a single 
time slot with the transmission power minimizing 
energy consumption. Moreover, the CPU frequency 
in the fog node is optimized in order to minimize 
energy consumption. The mean consumed power, 
as well as the mean AoI versus request generation 
rate are plotted in Fig. 4. It can be observed that 
initially (up to 0.9 packets/ms) an increase in the 
requests generation rate results in a decrease in AoI. 
However, AoI starts to increase next as a result of 
computational or communications resources being 
exhausted, requiring requests to be queued. On 
the other hand, it is visible that an increase in the 
request generation rate results in a rise in power 
consumption. However, when the 2C resources 
become fully utilized, the mean required power 
reaches a defined plateau. It is reasonable as real 
world devices reach the maximum power consump-
tion when fully utilized. Depending on the required 
AoI for a given application, an optimal request gen-
eration rate can be confi gured, such that the mean 
power consumption is minimized. This shows that 
source optimization should be considered together 
with wireless transmission, wired transmission, and 
fog nodes in order to maximize 2C effi  ciency while 
obeying the latency constraints.

AI for 2c energy mAnAgement
The previous section has shown that increasing 
the number of degrees of freedom in optimiza-
tion enables energy effi  ciency to increase without 
deterioration of the Quality of Service. However, 
global optimization considering numerous factors 
(e.g., fog nodes CPUs’ frequency or the wireless 
access point to be used) can be problematic. First, 
it requires a global view of the considered sys-
tem including all power consumption models and 
potential delays introduced by the considered allo-
cation. Second, the optimization should be done 
without delays infl uencing internal networks of var-
ious service providers, for example, wireless radio 
access networks or cloud computing centers.

Artifi cial Intelligence (AI) and Machine Learn-
ing (ML) techniques can be employed. These can 
be used to learn the power consumption models 
or latency models while observing real-time net-
work parameters and the induced energy con-
sumption using, for example, some reinforced 
learning approach. While the latency can vary 
randomly as a result of, for example, random fad-
ing in the wireless channel, its distribution can be 
learned based on the available network parame-
ters. Another perspective is to directly employ AI 
to select task allocation. This can use, for exam-
ple, Deep Reinforcement Learning, as proposed 
in [14]. Previously tested allocation strategy will 
be assessed and after some operation time, it 
should converge to an optimal or close to the 
optimal solution. Additionally, utilization of such  
a scheme allows the allocation to adapt, for exam-
ple, to changing conditions, traffi  c on each link, or 
changes of fog nodes.

Finally, ML can be used to design tasks alloca-
tion policies working independently, for example, 
in each fog node. In this case, it can be benefi cial 
to utilize some clustering schemes. The incoming 

FIGURE 3. Median of energy costs spent on off loaded requests as a function 
of request size.
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computation requests can be clustered according 
to their properties, for example, number of calcu-
lations required, number of bits to be transmitted, 
or latency constraint, using the k-means algorithm 
[15]. Each cluster can be assigned a different strat-
egy, for example, local computation or offloading 
to the cloud. The strategies for each node and 
cluster can be obtained using, for example, rein-
forced learning. It is also worth noting that the 
costs of training networks can be non-negligible. 
Ideally, costs spent on training and optimization 
should be included when examining the efficiency 
of ML-based and non-ML-based solutions. It is an 
interesting topic for future work.

Conclusions
Energy efficiency of fog computing becomes a 
major problem, especially for many time-critical 
applications. We have shown that it is possible 
to reduce energy consumption through proper 
coordination of communicating and computing 
resource allocation. The energy consumption can 
be further improved by proper source manage-
ment depending on the current 2C network sta-
tus. While centralized optimization is difficult to 
implement, we believe that distributed, AI-driven 
2C management algorithms can achieve energy 
efficiency close to the global maximum.
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