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Abstract
Emotion is defined (from Britannica) as a com-

plex combination of experiences of conscious-
ness, bodily sensation and behavior, reflecting 
personal significance of externally and/or inter-
nally triggered changes. As an indispensable part 
of human communication, emotions could be 
represented within the digital world as a means 
that could control human interaction with digital 
artifacts. When this is combined with gamification, 
a more engaging communication for the player 
could be established. In this article, we explore 
how multisensed emotions of players could be 
used as adaptation controllers within the emo-
tion-adapting serious neurogames (SNGs). We 
first briefly describe the emotion sensing and rec-
ognition landscape, examining the emotion-source 
sensing and emotion inferring approaches. We 
then discuss the SNGs design framework and the 
way human-to-SNG communication is set. Addi-
tionally, we describe the way the adaptation of 
the SNG characteristics can be driven by the 
inferred emotions, towards the achievement of 
the desired SNG goals. In addition, we demon-
strate the feasibility and design characteristics of 
multisensed emotion-adapting SNGs, by present-
ing a related application case, namely EmoSense, 
and evaluate its acceptance as a technological 
solution in the field of neurofeedback. Finally, we 
discuss challenges and opportunities in the field.

Introduction
Emotions are felt as time-dynamic experiences 
that reflect personally relevant changes in our 
inner and/or outer environment. These changes, 
perceived as either threats or opportunities to our 
comfort-zone that trigger affective experiences, 
help us to effectively cope with such fluctuations 
[1]. Daily emotional life and social communica-
tion are influenced by emotional triggers and their 
flux-patterns across time can provide unique infor-
mation for the status of our psychological well-be-
ing and used to understand, and even explain, 
differences across individuals with mental health 
or psychopathology [2].

 Humans perceive emotions of others, fostering 
empathy, communication and emotion sharing. 

However, although this seems quite a natural, even 
spontaneous, human reaction, the similar task of 
recognizing emotions is a complex, power-intensive 
and computationally demanding task for machines 
[3]. Nevertheless, the creation of empathic com-
puting has become a central challenge during the 
last decade, attracting a great deal of attention 
from research, clinical and industry sectors. Appli-
cations in this sector have exponentially grown in 
parallel with the technological advances in capac-
ity, performance, and intelligence of smart devices 
(e.g., smartphones, smartwatches, IoTs), along with 
the evolution of new AI-based emotion classifica-
tion/prediction algorithms, emotion-related Web 
services, and new ways of relaying emotions during 
interactions on social networks, such as mixed/
virtual reality/metaverse [4].

Emotion-related data can be acquired from var-
ious sources of affective information, such as body 
reactions (e.g., facial expressions, gestures), chang-
es in physiological signals (e.g., brainwaves, corti-
cal hemodynamic activity, heart rate, respiration 
rate, temperature, electrodermal activity (EDA)), 
and means of communication and interaction (e.g., 
text/emoticons, images, video and sound). The 
acquisition of such data requires appropriate sen-
sors that can focus on one (monomodal sensing) 
or a fusion of many (multimodal sensing) sources, 
providing rich, yet coded, information about the 
physiological responses and overt behavior, includ-
ing facial expression or voice characteristics to 
emotional stimuli. To decode such emotion infor-
mation, computational systems, available either as 
part of smart devices, and/or at the edge/cloud, 
communicating with the sensing systems and using 
emotional intelligence, are needed to provide emo-
tion recognition outputs [5].

Well-known triggers of feelings, expressions, 
and physiological responses, which their transitory 
synchronization establishes the current emotion-
al state, are games. In fact, game characteristics 
(e.g., story and characters, game mechanics and 
gameplay) can be designed, in order to maxi-
mize emotion elicitation during game play and 
allow different options for evaluating of the play-
er’s emotional and mental state [6]. In this vein, 
Serious NeuroGames (SNGs) have been recently 
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developed, where this nascent form of gaming 
involves brain-computer interfaces (BCI), such as 
electroencephalogram (EEG) technology, instead 
of traditional controllers. Despite the limited 
number of SNGs with limited number of game 
actions currently available in the market, SNGs 
have been developed for a variety of purposes, 
such as to improve learning and concentration 
skills, help people with Alzheimer’s or Parkinson’s 
Disease, Attention Deficit Hyperactivity Disorder 
(ADHD), Post-Traumatic Stress Disorder (PTSD), 
treat problems of chronic pain and depression, 
and facilitate stroke rehabilitation [7]. Examples 
of SNGs include the recent MindMedia BrainAss-
sistant, Zukor Sports 1 Game Suite, along with 
some older ones, e.g., Syncself 2, AmbuRun, Neu-
roRacer, NeuroMage. 

In this article, we aim to give the readers 
an overview of using multisensed emotions as 
adaptation controllers in human-to-SNGs com-
munication, spanning from the state-of-the-art to 
emerging approaches in this field. We propose a 
novel approach in the way human-to-SNG commu-
nication is set and we describe the way adaptation 
of the SNG characteristics can be driven by the 
inferred emotions, towards achieving the desired 
characterizing SNG goals. The main contributions 
of this article include: a) placement of SNGs in the 
communication path of the human-machine inter-
action, b) introduction of emotion-adapting design 
framework of SNGs, c) integration of multisensed 
biosignals sensing and analysis that trigger emo-
tion-adapting feedback, and d) exploration of emo-
tion-based adaptation schemes of SNGs. To further 
exemplify the feasibility and design characteristics 
of such multisensed emotion-adapted SNGs, we 
present a related application case, namely Emo-
Sense that highlights the uptake propensity of 
SNGs in the wider community. 

In the remainder of this article, we first brief-
ly describe the emotion sensing and recognition 
landscape, examining the emotion-source sens-
ing and emotion inferring approaches. Then, we 
discuss the SNGs design framework and the way 
human-to-SNG communication is set. Next, we 
describe the way adaptation of the SNG charac-
teristics can be driven by the inferred emotions, 
towards achieving the desired characterizing SNG 
goals. Then, we present EmoSense and evaluate 
its acceptance as a technological solution in the 
field of neurofeedback. Finally, we discuss the 
challenges and opportunities in this area, followed 
by the main conclusions. 

Emotion Sensing and Recognition Landscape

Emotion Sensing 
The human body is the locus of affective informa-
tion; hence, emotion-related data can span from 
behavioral responses (e.g., facial expressions, 
social interaction) to physiological reactions (e.g., 
body signals alterations) [3]. Considering the phys-
ical sensors embedded within mobile devices for 
sensing the external environment, their use as a 
data collection platform for unobtrusive sensing 
of emotion is natural. For example, smartphone 
keystroke dynamics provide digital biomarkers for 
detecting depressive tendencies [8]. In addition, 
wearable devices, either commercial or custom-
ized (e.g., smartwatches, wristbands, smart rings, 

headset sensors) can acquire physiological signals, 
such as EEG, electrocardiogram (ECG), electro-
myogram (EMG), galvanic skin response (GSR), 
heart rate, respiration rate, and blood pressure has 
been shown to carry emotion-related information. 
It should be noted that the origin of such physio-
logical signals primarily emanates from the periph-
eral nervous system; hence, these signals express 
emotion spontaneity, as they cannot be intentional-
ly altered in contrast to facial expressions. 

Lately, technological advances have allowed the 
sensing of some of these signals by smartwatches, 
employing, for example, photoplethysmography 
(PPG) to capture the respiration and heart rate, and 
detecting electrical pulses from the user’s finger-
tip to the wrist to create a closed electrical circuit 
recording a single ECG strip (Apple watch). Figure 
1 depicts examples of such data sensing approach-
es; more details can be found in [3]. 

Emotion Recognition 
In order to infer an emotion from the analysis of 
the collected data, baseline emotion modeling, 
drawn from the field of psychology, needs to be 
first considered, such as discrete and dimensional 
models. In the discrete model proposed by Ekman 
[9], six universal emotions, i.e., fear, anger, joy, sad-
ness, disgust, and surprise, transcending language, 
regional, cultural, and ethnic differences, are mainly 
considered. In dimensional models, multiple emo-
tion dimensions are used for describing the emo-
tions. In particular, Russel’s most prominent 2D 
Circumplex model [10] includes the dimensions of 
valence (pleasantness, i.e., negative/positive) and 
arousal (activation level, i.e., low/high). 

 However, the fuzzy boundaries between dis-
crete emotions and the complexity of the emotion 
dimensions impose obstacles for emotion labeling 
and recognition processes, requiring the adoption 
of advanced signal processing approaches to suc-
cessfully overcome these. This need is more evident 
for the analysis of continuous emotion-related phys-
iological signals (directly related with the SNGs), 
where their nonstationary nature, combined with 
measurement noise, hinder the underlying infor-
mation driven by the emotions. In this vein, shifting 
from simple linear filtering to signal decomposition 
approaches (e.g., wavelet multiresolution analysis, 
empirical mode decomposition, swarm decom-
position) separates the oscillatory modes of the 
signal at different frequency bands and facilitates 

FIGURE 1. Examples of emotion-related data sources acquired from the human body using different sensors.
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expression or voice characteristics to emotional stimuli. To 
decode such emotion information, computational systems, 
available either as part of smart devices, and/or at the 
edge/cloud, communicating with the sensing systems and using 
emotional intelligence, are needed to provide emotion 
recognition outputs [5]. 

Well-known triggers of feelings, expressions, and 
physiological responses, which their transitory synchronization 
establishes the current emotional state, are games. In fact, game 
characteristics (e.g., story and characters, game mechanics and 
gameplay) can be designed, in order to maximize emotion 
elicitation during game play and allow different options for 
evaluating of the player’s emotional and mental state [6]. In this 
vein, Serious NeuroGames (SNGs) have been recently 
developed, where this nascent form of gaming involves brain-
computer interfaces (BCI), such as electroencephalogram 
(EEG) technology, instead of traditional controllers. Despite the 
limited number of SNGs with limited number of game actions 
currently available in the market, SNGs have been developed 
for a variety of purposes, such as to improve learning and 
concentration skills, help people with Alzheimer's or 
Parkinson’s Disease, Attention Deficit Hyperactivity Disorder 
(ADHD), Post-Traumatic Stress Disorder (PTSD), treat 
problems of chronic pain and depression, and facilitate stroke 
rehabilitation [7]. Examples of SNGs include the recent 
MindMedia BrainAsssistant, Zukor Sports 1 Game Suite, along 
with some older ones, e.g., Syncself 2, AmbuRun, NeuroRacer, 
NeuroMage.    

 In this article, we aim to give the readers an overview of 
using multisensed emotions as adaptation controllers in human-
to-SNGs communication, spanning from the state-of-the-art to 
emerging approaches in this field. We propose a novel approach 
in the way human-to-SNG communication is set and we 
describe the way adaptation of the SNG characteristics can be 
driven by the inferred emotions, towards achieving the desired 
characterizing SNG goals. The main contributions of this article 
include: a) placement of SNGs in the communication path of 
the human-machine interaction, b) introduction of emotion-
adapting design framework of SNGs, c) integration of 
multisensed biosignals sensing and analysis that trigger 
emotion-adapting feedback, and d) exploration of emotion-
based adaptation schemes of SNGs. To further exemplify the 
feasibility and design characteristics of such multisensed 
emotion-adapted SNGs, we present a related application case, 
namely EmoSense that highlights the uptake propensity of 
SNGs in the wider community.  

In the remainder of this article, we first briefly describe the 
emotion sensing and recognition landscape, examining the 
emotion-source sensing and emotion inferring approaches. 
Then, we discuss the SNGs design framework and the way 
human-to-SNG communication is set. Next, we describe the 
way adaptation of the SNG characteristics can be driven by the 
inferred emotions, towards achieving the desired characterizing 
SNG goals. Then, we present EmoSense and evaluate its 
acceptance as a technological solution in the field of 
neurofeedback. Finally, we discuss the challenges and 
opportunities in this area, followed by the main conclusions.  

II. EMOTION SENSING AND RECOGNITION LANDSCAPE 

A. Emotion Sensing  
The human body is the locus of affective information; hence, 

emotion-related data can span from behavioral responses (e.g., 
facial expressions, social interaction) to physiological reactions 

(e.g., body signals alterations) [3]. Considering the physical 
sensors embedded within mobile devices for sensing the 
external environment, their use as a data collection platform for 
unobtrusive sensing of emotion is natural. For example, 
smartphone keystroke dynamics provide digital biomarkers for 
detecting depressive tendencies [8]. In addition, wearable 
devices, either commercial or customized (e.g., smartwatches, 
wristbands, smart rings, headset sensors) can acquire 
physiological signals, such as EEG, electrocardiogram (ECG), 
electromyogram (EMG), galvanic skin response (GSR), heart 
rate, respiration rate, and blood pressure has been shown to 
carry emotion-related information. It should be noted that the 
origin of such physiological signals primarily emanates from 
the peripheral nervous system; hence, these signals express 
emotion spontaneity, as they cannot be intentionally altered in 
contrast to facial expressions.  

Lately, technological advances have allowed the sensing of 
some of these signals by smartwatches, employing, for 
example, photoplethysmography (PPG) to capture the 
respiration and heart rate, and detecting electrical pulses from 
the user's fingertip to the wrist to create a closed electrical 
circuit recording a single ECG strip (Apple watch). Figure 1 
depicts examples of such data sensing approaches; more details 
can be found in [3].  

A. Emotion Recognition  
In order to infer an emotion from the analysis of the collected 

data, baseline emotion modeling, drawn from the field of 
psychology, needs to be first considered, such as discrete and 
dimensional models. In the discrete model proposed by Ekman 
[9], six universal emotions, i.e., fear, anger, joy, sadness, 
disgust, and surprise, transcending language, regional, cultural, 
and ethnic differences, are mainly considered. In dimensional 
models, multiple emotion dimensions are used for describing 
the emotions. In particular, Russel’s most prominent 2D 
Circumplex model [10] includes the dimensions of valence 
(pleasantness, i.e., negative/positive) and arousal (activation 
level, i.e., low/high).  

However, the fuzzy boundaries between discrete emotions 
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the feature extraction that best distinguish between 
different emotional states by removing any noise 
effect. In fact, these extracted features capture the 
information embedded in the sensed signals related 
to the emotional states to identify, where non-rel-
evant information, such as noise, is rejected. All 
these features consist the feature vector.

Different machine and deep learning approach-
es have been proposed for emotion recognition 
by either using training and test sets from the 
extracted features (e.g., support vector machines, 
random forest, logistic regression, Bayesian net-
works) or by data-driven features learning (e.g., 
convolutional neural networks (CNNs), encoders, 
transformers, recurrent neural networks (RNNs)), 
respectively. To further facilitate emotion recog-
nition, multisensed emotion-related data could 
offer better representation of the multi-dimension-
ality of emotional responses [3]. Hence, a mul-
timodal fusion can be adopted and applied to 
the feature-, model-, and decision-level [11]. In 
other words, features from single-modality data 
are algorithmically used to form the combined 
feature vector for the classification (feature-lev-
el); or knowledge from learning a shared feature 
across multimodal data is combined to reveal 
interactions between the different data modalities 
(model-level); or decisions of multiple classifiers 
applied to multimodal data are combined into a 
common decision output (decision-level), mainly 
when it is difficult to combine the multimodal data 
in the same feature vector.

Serious Neurogames
SNGs are a part of the digital world and, apart 
from their entertaining role, they intend to achieve 
a so-called characterizing goal that is closely 
linked to the application area, yet, without com-
promising the player experience. For example, a 
breathing-based SNG can provide both entertain-
ment and breathing control to achieve the char-
acterizing goal of reduced anxiety. SNGs could 
be used in various ways, such as for health, brain 
training, learning, and change of behavior, atti-
tude and enhancing knowledge. What is of major 
importance, though, is the balance between the 
serious and game aspects of the SNGs, along with 
efficient physiological recording, that could result 
in high-quality SNGs, as discussed next. 

SNGs Design Framework
Amongst the various SNG design frameworks, 

a game consumption framework that includes 
three basic components, i.e., mechanics, dynam-
ics and aesthetics, the so-called MDA framework 
[12], is adopted here. The latter is followed since 
it involves aesthetics, i.e., the component directly 
related to emotions. More specifically, in the MDA, 
mechanics describes the game components at the 
level of representation and algorithms (e.g., how 
the games are constructed); dynamics describes 
the experience of the game, i.e., how the player 
interacts with the game mechanics during play-
ing; and aesthetics describes the desired emotional 
responses of the participants when they interact 
with the game, and which is what makes the game 
fun. The MDA framework for SNGs development 
can steer the focus of the design for developing 
rules and mechanics that model cognitive and 
emotional processes. In this way, the game expe-
rience comes first, before the understanding of the 
underlying aims for gameplay, such as improving 
mental health or learning outcomes. 

 Within the MDA perspective, aspects that pro-
mote the quality in the serious and game parts 
of the SNGs, along with their balance, should 
be considered, resulting in an extended MDA 
(eMDA) framework; these include [13]: 

Quality Aspects in the Serious Part of the 
Game:
•	 Existence and focus of a characterizing goal 

by supporting the player to achieve it (e.g., 
enhance learning, training); 

•	 Development of error-free appropriate meth-
ods for achieving this characterizing goal, 
providing appropriate feedback and positive 
reinforcement to the player;

•	 Evaluation of the achievement of the char-
acterizing goal via measurable effects and 
benefits.
Quality Aspects in Game Part:

•	 Establishment of a positive experience and 
engagement during playing, by sustain-
ing the game flow, ensuring varied game-
play, balance between skills and challenge, 
employing dynamic adaptation of game dif-
ficulty and complexity; fostering emotional 
connection and instinct arousal; 

•	 Appropriate graphics and sound, ensuring 
clear interface and audio background/effects 
that promote the game tasks as part of the 
purpose of the game, area and target group.
Quality Aspects in Balance Between Serious 

and Game Parts:
•	 Integration of the serious part within the 

gameplay by embedding the characterizing 
goal into the gameplay in a way that it cannot 
be avoided; adopting a co-creation approach 
including all related stakeholders (e.g., game 
designers, domain experts, users),

•	 Selection of the most appropriate interaction 
technology, suitable for the target group, by 
including intuitive game mechanics and natural 
mapping between technology and gameplay. 

Human-to-SNGs Communication 
By definition, SNGs require a BCI-based commu-
nication with the user. Figure 2 illustrates a typical 
human-to-SNG communication setting. The brain 
information is gathered at the BCI domain, by a 
headset that acquires the brain signals (e.g., EEG) 
by electrodes and transmits these signals (either 

FIGURE 2. A typical human-to-SNG communication setting, consisting of three interconnected (closed-loop) domains, 
i.e., BCI (Bluetooth-based), signal processing/learning and SNG.
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and the complexity of the emotion dimensions impose obstacles 
for emotion labeling and recognition processes, requiring the 
adoption of advanced signal processing approaches to 
successfully overcome these. This need is more evident for the 
analysis of continuous emotion-related physiological signals 
(directly related with the SNGs), where their nonstationary 
nature, combined with measurement noise, hinder the 
underlying information driven by the emotions.  In this vein, 
shifting from simple linear filtering to signal decomposition 
approaches (e.g., wavelet multiresolution analysis, empirical 
mode decomposition, swarm decomposition) separates the 
oscillatory modes of the signal at different frequency bands and 
facilitates the feature extraction that best distinguish between 
different emotional states by removing any noise effect. In fact, 
these extracted features capture the information embedded in 
the sensed signals related to the emotional states to identify, 
where non-relevant information, such as noise, is rejected. All 
these features consist the feature vector. 

Different machine and deep learning approaches have been 
proposed for emotion recognition by either using training and 
test sets from the extracted features (e.g., support vector 
machines, random forest, logistic regression, Bayesian 
networks) or by data-driven features learning (e.g., 
convolutional neural networks (CNNs), encoders, transformers, 
recurrent neural networks (RNNs)), respectively. To further 
facilitate emotion recognition, multisensed emotion-related 
data could offer better representation of the multi-
dimensionality of emotional responses [3]. Hence, a 
multimodal fusion can be adopted and applied to the feature-, 
model-, and decision-level [11]. In other words, features from 
single-modality data are algorithmically used to form the 
combined feature vector for the classification (feature-level); or 
knowledge from learning a shared feature across multimodal 
data is combined to reveal interactions between the different 
data modalities (model-level); or decisions of multiple 
classifiers applied to multimodal data are combined into a 
common decision output (decision-level), mainly when it is 
difficult to combine the multimodal data in the same feature 
vector. 

III. SERIOUS NEUROGAMES (SNGS) 
SNGs are a part of the digital world and, apart from their 

entertaining role, they intend to achieve a so-called characterizing 
goal that is closely linked to the application area, yet, without 
compromising the player experience. For example, a breathing-
based SNG can provide both entertainment and breathing control 
to achieve the characterizing goal of reduced anxiety. SNGs could 
be used in various ways, such as for health, brain training, learning, 
and change of behavior, attitude and enhancing knowledge. What 
is of major importance, though, is the balance between the serious 
and game aspects of the SNGs, along with efficient physiological 
recording, that could result in high-quality SNGs, as discussed 
next.  

A. SNGs Design Framework 
Amongst the various SNG design frameworks, a game 

consumption framework that includes three basic components, 
i.e., mechanics, dynamics and aesthetics, the so-called MDA 
framework [12], is adopted here. The latter is followed since it 
involves aesthetics, i.e., the component directly related to 

emotions. More specifically, in the MDA, mechanics describes 
the game components at the level of representation and 
algorithms (e.g., how the games are constructed); dynamics 
describes the experience of the game, i.e., how the player 
interacts with the game mechanics during playing; and 
aesthetics describes the desired emotional responses of the 
participants when they interact with the game, and which is 
what makes the game fun. The MDA framework for SNGs 
development can steer the focus of the design for developing 
rules and mechanics that model cognitive and emotional 
processes. In this way, the game experience comes first, before 
the understanding of the underlying aims for gameplay, such as 
improving mental health or learning outcomes.  

Within the MDA perspective, aspects that promote the quality 
in the serious and game parts of the SNGs, along with their 
balance, should be considered, resulting in an extended MDA 
(eMDA) framework; these include [13]:  

1) Quality aspects in the serious part of the game: 
• existence and focus of a characterizing goal by 

supporting the player to achieve it (e.g., enhance 
learning, training);  

• development of error-free appropriate methods for 
achieving this characterizing goal, providing appropriate 
feedback and positive reinforcement to the player; 

• evaluation of the achievement of the characterizing goal 
via measurable effects and benefits. 

2) Quality aspects in game part: 
• establishment of a positive experience and engagement 

during playing, by sustaining the game flow, ensuring 
varied gameplay, balance between skills and challenge, 
employing dynamic adaptation of game difficulty and 
complexity; fostering emotional connection and instinct 
arousal;  

• appropriate graphics and sound, ensuring clear interface 
and audio background/effects that promote the game 
tasks as part of the purpose of the game, area and target 
group. 

3) Quality aspects in balance between serious and game 
parts: 

• integration of the serious part within the gameplay by 
embedding the characterizing goal into the gameplay in 
a way that it cannot be avoided; adopting a co-creation 
approach including all related stakeholders (e.g., game 
designers, domain experts, users), 

 
 

Fig. 2. A typical human-to-SNG communication setting, 
consisting of three interconnected (closed-loop) domains, i.e., 
BCI (Bluetooth-based), signal processing/learning and SNG. 
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via wireless (Fig. 2) or wired transmission) to the 
receiver side. Although connected systems are 
highly accurate, wireless systems are preferred, as 
wired BCI systems impose limitations on the users’ 
movement and everyday living practices, whereas 
wireless transmission technology (e.g., Bluetooth, 
radio frequency) eliminates mostly such limita-
tions. Wireless transmission has become an ubiq-
uitous technology, allowing wireless BCI to be 
easily integrated into both acquisition, transmis-
sion and analysis of neurophysiological signals for 
portable and lightweight devices, that are easily 
and comfortably worn. 

 The acquired data are then received by the 
signal processing and learning domain (Fig. 2). 
There, a data preprocessing step (e.g., data nor-
malization, filtering, signal decomposition) is first 
applied, as the signals obtained by the BCI elec-
trodes are generally contaminated by noise and/
or artifacts. These are usually a result of move-
ments, poor electrode contact and quality, and 
displacement, power line interference, and even 
physiological interference from muscular, cardiac, 
ocular and respiratory activity. The preprocessed 
signals then follow a path of feature extraction, 
where they are represented by a feature vector 
that expresses measures of the underlying physi-
ological activity of interest. Using machine learn-
ing, these features are translated into explainable 
classes and/or patterns. An alternative path is to 
apply explainable artificial intelligence (xAI) direct-
ly to the preprocessed data (Fig. 2) and arrive 
again at the explainable classes/patterns. The xAI 
system can be helpful in understanding of the rea-
soning behind a particular prediction or decision 
by a machine learning model. The estimated class-
es/patterns, feed, at the SNG domain, the normal-
ization processes that maps these classes/patterns 
onto the eMAD framework, that translates the 
output into input controls of the SNG compo-
nents. In this way, a sequence of changes within 
the SNG environment is evoked and materialized 
at the SNG interface as feedback (e.g., visual, 
auditory, text) to the user. Considering the latest 
developments in real-time embedded systems and 
advanced signal processing methods, practical 
implementation of (near) real-time sophisticat-
ed signal processing in, even, mobile devices is 
feasible, allowing for a smooth two-way human-
to-SNG communication (Fig. 2) in fixed and/or 
mobile SNG interfaces.

Multisensed Emotion-Based Adaptation in SNGs
Usually, the multisensed brain signals from the 
BCI system are processed (Fig. 2) for their time 
and/or frequency information from each sensor 
and/or the shared information between them. 
Here, we focus on the feature translation at the 
emotion domain, using the signals as control 
parameters for the adaptation process within the 
SNGs. Figure 3 illustrates the proposed adapta-
tion scheme. In particular, the emotion recogni-
tion module (Fig. 2) provides the output of the 
dimensional and/or discrete emotion estimation. 
The latter is expressed in levels (low/high valence 
and arousal) and probabilities of the discrete emo-
tion recognition, respectively. These are then nor-
malized to the eMDA framework by correlating 
them with the SNG serious/game parts, in terms 
of their contribution to the characterizing goal, 

the progress, achievements (serious part), and 
positive experience, difficulty, emotional connec-
tion and engagement (game part). The assigned 
correlations are then used as control inputs to the 
SNG adaptation part; there, the dimensions of 
mechanics, dynamics, and aesthetics are altered 
accordingly, leading to changes at the SNG envi-
ronment (external domain) level. The effect of the 
latter to the human-to-SNG communication is a 
measure of achievement of the SNG characteriz-
ing goal that is compared to the actually desired 
one. The minimization of the distance between 
the achieved and desired SNG characterizing goal 
feeds the control loop for optimizing the human-
to-SNG communication. 

The effect of the emotions on the eMDA dimen-
sions can be implemented as a one-to-one corre-
spondence (e.g., changing the SNG background 
color according to the valence levels; decreasing/
increasing the speed of the SNG objects based on 
low/high arousal levels); more complex relation-
ships, however, can also be foreseen. 

In fact, as the game mechanics is the driving 
force for the achievement of the desired emotional 
objectives or aesthetics of the SNG, through the 
invocation of the game, emotions could affect 
the transition from the core mechanics (i.e., the 
main SNG actions) to implied mechanics (i.e., SNG 
actions implied by the game genre) and additional 
mechanics (i.e., extra SNG actions that could dif-
ferentiate games of the same genre). For example, 
shifting from fear to joy could unlock extra capabil-
ities within the SNG, include more options and add 
more degrees of freedom to game objects.

Similarly, emotions could control the triggering 
of simple SNG dynamics (i.e., those that direct-
ly emerge from mechanics) towards complex 
dynamics (i.e., combined simple dynamics) and 
causal dynamics (i.e., dynamics with causal rela-
tionship). For instance, transition from negative to 
positive valence could evoke dynamics that allow 
opportunities to build or earn game items, change 
levels, modulate characters’ behavior according 
to their previous status.

Emotions are intuitively connected with the 
SNG aesthetics and could be determinants of 
the shift from a simple aesthetic experience (e.g., 
sense-pleasure game) to more enhanced (e.g., 
make-believe game) and even immersive one (e.g., 
uncharted-territory game, self-discovery game). 
This will allow player’s emotions to control the tran-
sition of the player to a different mental state of 

FIGURE 3. The proposed adaptation scheme of the SNG, driven by the features translation (Fig. 2) into the emotions’ 
domain.
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• selection of the most appropriate interaction technology, 

suitable for the target group, by including intuitive game 
mechanics and natural mapping between technology and 
gameplay.  

B. Human-to-SNGs Communication  
  By definition, SNGs require a BCI-based communication 

with the user. Figure 2 illustrates a typical human-to-SNG 
communication setting. The brain information is gathered at the 
BCI domain, by a headset that acquires the brain signals (e.g., 
EEG) by electrodes and transmits these signals (either via 
wireless (Fig. 2) or wired transmission) to the receiver side. 
Although connected systems are highly accurate, wireless 
systems are preferred, as wired BCI systems impose limitations 
on the users’ movement and everyday living practices, whereas 
wireless transmission technology (e.g., Bluetooth, radio 
frequency) eliminates mostly such limitations. Wireless 
transmission has become an ubiquitous technology, allowing 
wireless BCI to be easily integrated into both acquisition, 
transmission and analysis of neurophysiological signals for 
portable and lightweight devices, that are easily and 
comfortably worn.  

The acquired data are then received by the signal processing 
and learning domain (Fig. 2). There, a data preprocessing step 
(e.g., data normalization, filtering, signal decomposition) is first 
applied, as the signals obtained by the BCI electrodes are 
generally contaminated by noise and/or artifacts. These are 
usually a result of movements, poor electrode contact and 
quality, and displacement, power line interference, and even 
physiological interference from muscular, cardiac, ocular and 
respiratory activity. The preprocessed signals then follow a path 
of feature extraction, where they are represented by a feature 
vector that expresses measures of the underlying physiological 
activity of interest. Using machine learning, these features are 
translated into explainable classes and/or patterns. An 
alternative path is to apply explainable artificial intelligence 
(xAI) directly to the preprocessed data (Fig. 2) and arrive again 
at the explainable classes/patterns. The xAI system can be 
helpful in understanding of the reasoning behind a particular 
prediction or decision by a machine learning model. The 
estimated classes/patterns, feed, at the SNG domain, the 
normalization processes that maps these classes/patterns onto 
the eMAD framework, that translates the output into input 
controls of the SNG components. In this way, a sequence of 
changes within the SNG environment is evoked and 
materialized at the SNG interface as feedback (e.g., visual, 
auditory, text) to the user. Considering the latest developments 
in real-time embedded systems and advanced signal processing 
methods, practical implementation of (near) real-time 
sophisticated signal processing in, even, mobile devices is 
feasible, allowing for a smooth two-way human-to-SNG 
communication (Fig. 2) in fixed and/or mobile SNG interfaces. 

IV. MULTISENSED EMOTION-BASED ADAPTATION IN SNGS 
Usually, the multisensed brain signals from the BCI system are 

processed (Fig. 2) for their time and/or frequency information from 
each sensor and/or the shared information between them. Here, we 
focus on the feature translation at the emotion domain, using the 
signals as control parameters for the adaptation process within the 
SNGs. Figure 3 illustrates the proposed adaptation scheme. In 

particular, the emotion recognition module (Fig. 2) provides the 
output of the dimensional and/or discrete emotion estimation. The 
latter is expressed in levels (low/high valence and arousal) and 
probabilities of the discrete emotion recognition, respectively. 
These are then normalized to the eMDA framework by correlating 
them with the SNG serious/game parts, in terms of their 
contribution to the characterizing goal, the progress, achievements 
(serious part), and positive experience, difficulty, emotional 
connection and engagement (game part). The assigned correlations 
are then used as control inputs to the SNG adaptation part; there, 
the dimensions of mechanics, dynamics, and aesthetics are altered 
accordingly, leading to changes at the SNG environment (external 
domain) level. The effect of the latter to the human-to-SNG 
communication is a measure of achievement of the SNG 
characterizing goal that is compared to the actually desired one. 
The minimization of the distance between the achieved and desired 
SNG characterizing goal feeds the control loop for optimizing the 
human-to-SNG communication.  

The effect of the emotions on the eMDA dimensions can be 
implemented as a one-to-one correspondence (e.g., changing the 
SNG background color according to the valence levels; 
decreasing/increasing the speed of the SNG objects based on 
low/high arousal levels); more complex relationships, however, 
can also be foreseen.  

In fact, as the game mechanics is the driving force for the 
achievement of the desired emotional objectives or aesthetics of 
the SNG, through the invocation of the game, emotions could 
affect the transition from the core mechanics (i.e., the main SNG 
actions) to implied mechanics (i.e., SNG actions implied by the 
game genre) and additional mechanics (i.e., extra SNG actions that 
could differentiate games of the same genre). For example, shifting 
from fear to joy could unlock extra capabilities within the SNG, 
include more options and add more degrees of freedom to game 
objects. 

Similarly, emotions could control the triggering of simple SNG 
dynamics (i.e., those that directly emerge from mechanics) towards 
complex dynamics (i.e., combined simple dynamics) and causal 
dynamics (i.e., dynamics with causal relationship). For instance, 
transition from negative to positive valence could evoke dynamics 
that allow opportunities to build or earn game items, change levels, 
modulate characters’ behavior according to their previous status. 

Emotions are intuitively connected with the SNG aesthetics 
and could be determinants of the shift from a simple aesthetic 
experience (e.g., sense-pleasure game) to more enhanced (e.g., 
make-believe game) and even immersive one (e.g., uncharted-
territory game, self-discovery game). This will allow player’s 
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flow, where, during playing, s/he is immersed in 
the SNG with focus, involvement and enjoyment. 
This is further supported by the way emotions 
underpin function of the human brain, as affective 
behavior is the outcome of a multilevel integra-
tion of both physical and psychological processes 
[6]. Keeping the player in a state of flow, scaffolds 
the convergence towards the achievement of the 
desired characterizing SNG goal. 

In the implementation of the emotion-based 
SNG adaptation, the differences in the affect 
dynamics across the users should be considered. 
The latter refer to their emotional granularity (i.e., 
ability to differentiate between various positive or 
negative discrete emotions), emotional inertia (i.e., 
how much positive or negative affect carries over 
across successive moments), and emotional insta-
bility (i.e., the average change in emotional intensi-
ty between two successive measurement occasions 
for positive or negative affect) [2]. This fosters the 
role of personalized design in the emotion-based 
SNG adaptation. For example, players with low 
emotional granularity cannot provide high variety 
within the discrete emotions; hence, in such a case, 
the valence/arousal domain should be preferred 
for feature translation guiding the SNG adaptation 
(Fig. 3). In addition, the time window (e.g., 5-10s) 
needed for the estimation of the emotions from 
the acquired multisensed data should be harmo-
nized with the time duration needed for the SNG 
adaptation to take place in a smooth way, comply-
ing with the eMDA framework. 

Application Case and Acceptance Evaluation
When designing a human-to-SNG communication 
setting under a co-creation approach, its accep-
tance from stakeholders (e.g., SNG game develop-
ers, researchers, field experts, and users), should be 
considered. Here we present an emotion-adapting 
SNG system, namely EmoSense, and evaluate its 
acceptance from different involved stakeholder 

groups. This process entails the user affordance 
and subsequent interaction within the SNG that, 
via cognitive and emotional processes, could lead 
to affordance actualization. In this way, SNG is 
shaped by the users’ affordance and perceptions 
to a large extent, and at the same time, shape the 
SNG environment in a dynamic way [14].

EmoSense Architecture 
The main parts of the EmoSense architecture are 
illustrated in Fig. 4. In particular, a customized 
five-modality/eight-channel headset is used as the 
signal acquisition and wireless transmission sys-
tem, manufactured by PLUX Biosignals (Fig. 4a). 
It consists of three EEG channels, two functional 
Near InfraRed Spectroscopy (fNIRS) channels, one 
Electro-Dermal Activity (EDA) channel, one Blood 
Volume Pulse (BVP) channel, and one tempera-
ture (T) channel. All data are acquired with a sam-
pling frequency of 500Hz and sent via Bluetooth 
to the hosting unit, which, in the current design, 
is a 5G smartphone (minimum computational 
requirements: Memory 256GB 8GB RAM, CPU 
Octa-core, GPU 8-12 GB, Bluetooth  4.1). In the 
latter, signal preprocessing and decomposition (i.e., 
multivariate swarm decomposition), combined with 
pre-trained deep learning (i.e., CNN) are used to 
infer the emotion estimation, considering the con-
tribution of the different sources via a model- and 
decision-level fusion (Fig. 4b). The estimated emo-
tions drive two SNG games (Flame, GlassGlobe), 
designed in Unity 3D within the neurofeedback 
and eMDA framework, sharing the same desired 
characterizing goals, i.e., increase of player’s focus 
(centering of attention on a stimulus), concentra-
tion (focus on one thing for a continuous period), 
and relaxation (low tension emotional state with an 
absence of arousal) (Fig. 4c). 

The mechanics in the Flame SNG, i.e., igniting 
and sustaining the flame of an oil lamp, its dynam-
ics (e.g., sustain the flame despite different wind 

FIGURE 4. The architecture of the EmoSense application case: a) the multimodal signal acquisition system; b) the biosignals processing and emotion recogni-
tion module, incorporating swarm decomposition and CNN models fusion resulting in the emotion estimation; and c) the interface of the two SNGs (Flame 
and GlassGlobe), with the screenshots showing their emotion-based structural adaptation.
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emotions to control the transition of the player to a different 
mental state of flow, where, during playing, s/he is immersed in 
the SNG with focus, involvement and enjoyment. This is further 
supported by the way emotions underpin function of the human 
brain, as affective behavior is the outcome of a multilevel 
integration of both physical and psychological processes [6]. 
Keeping the player in a state of flow, scaffolds the convergence 
towards the achievement of the desired characterizing SNG 
goal.  

 In the implementation of the emotion-based SNG 
adaptation, the differences in the affect dynamics across the 
users should be considered. The latter refer to their emotional 
granularity (i.e., ability to differentiate between various positive 
or negative discrete emotions), emotional inertia (i.e., how 
much positive or negative affect carries over across successive 
moments), and emotional instability (i.e., the average change in 
emotional intensity between two successive measurement 
occasions for positive or negative affect) [2]. This fosters the 
role of personalized design in the emotion-based SNG 
adaptation. For example, players with low emotional 
granularity cannot provide high variety within the discrete 
emotions; hence, in such a case, the valence/arousal domain 
should be preferred for feature translation guiding the SNG 
adaptation (Fig. 3). In addition, the time window (e.g., 5-10s) 
needed for the estimation of the emotions from the acquired 
multisensed data should be harmonized with the time duration 
needed for the SNG adaptation to take place in a smooth way, 

complying with the eMDA framework.   

V. APPLICATION CASE AND ACCEPTANCE EVALUATION 
When designing a human-to-SNG communication setting under 

a co-creation approach, its acceptance from stakeholders (e.g., 
SNG game developers, researchers, field experts, and users), 
should be considered. Here we present an emotion-adapting SNG 
system, namely EmoSense, and evaluate its acceptance from 
different involved stakeholder groups. This process entails the user 

affordance and subsequent interaction within the SNG that, via 
cognitive and emotional processes, could lead to affordance 
actualization. In this way, SNG is shaped by the users’ affordance 
and perceptions to a large extent, and at the same time, shape the 
SNG environment in a dynamic way [14]. 

A. EmoSense Architecture  
The main parts of the EmoSense architecture are illustrated in 

Fig. 4. In particular, a customized five-modality/eight-channel 
headset is used as the signal acquisition and wireless 
transmission system, manufactured by PLUX Biosignals (Fig.  
4(a)). It consists of three EEG channels, two functional Near 
InfraRed Spectroscopy (fNIRS) channels, one Electro-Dermal 
Activity (EDA) channel, one Blood Volume Pulse (BVP) 
channel, and one temperature (T) channel. All data are acquired 
with a sampling frequency of 500Hz and sent via Bluetooth to 
the hosting unit, which, in the current design, is a 5G 
smartphone (minimum computational requirements: Memory 

 
 

Fig. 4. The architecture of the EmoSense application case. (a) The multimodal signal acquisition system, (b) the biosignals 
processing and emotion recognition module, incorporating swarm decomposition and CNN models fusion resulting in the emotion 
estimation, and (c) the interface of the two SNGs (Flame and GlassGlobe), with the screenshots showing their emotion-based 
structural adaptation. 
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intensity levels) and aesthetics (e.g., alteration in 
background scene/color of the objects, added 
background audio), are all controlled by the play-
er’s emotions (Fig. 4c). Similarly, in the GlassGlobe 
SNG, emotions control the construction of a tem-
ple within a glass globe (mechanics) with gradually 
increasing the scale, number and type of construc-
tion items (dynamics) and creating various versions 
of the background setting, temple color and addi-
tion of sound effects (aesthetics) (Fig. 4c). 

EmoSense Technology Acceptance Empirical Study
As with any technology, especially in the BCI 
setting, uptake and continued use by the user is 
most important. In order to evaluate the technol-
ogy acceptance of the EmoSense by the relevant 
stakeholders, an empirical study was conducted. 
In the latter, an online survey was designed and 
developed by a multidisciplinary team, engaging 
mental health experts, doctors, health profession-
als, researchers, game designers/developers, and 
end-users. The empirical study aimed at capturing 
the beliefs of the stakeholders upon the proposed 
EmoSense as a novel conceptual solution (no 
actual use of it was involved).

Survey structure: The survey included par-
ticipant demographic information and feedback 
on the acceptance of EmoSense, by providing 
detailed information for its structure, functionality 
and potential use. The well-established Technolo-
gy Acceptance Model (TAM) [15] was adopted, 
and the survey feedback was constructed as five-
point Likert scale questions based upon the TAM 
constructs of Perceived Ease of Use (PEoU), Per-
ceived Usefulness (PU), Usage Attitude (UA), and 
Intention to Use (IU).

Data collection and sample characteristics: 
The survey took place between 1/8-15/11/2022, 
using email-based recruitment; 300 invitations tar-
geting the stakeholder groups were sent distrib-
uted, describing the survey and inviting online 
participation. Non-probability sampling design 
was followed, using convenience sampling, i.e., 
each respondent was selected for inclusion in the 
sample based on the ease of access. A total of N 
= 106 participants provided online consent and 
fully completed the online survey. Their demo-
graphics include:
•	 Gender: 43/63 (Male/Female),
•	 Age range: 44 (18–24yrs); 33 (25–34yrs); 15 

(35–44yrs); 14 (>44yrs);
•	 Education level: 23 (Diploma), 24 (Bache-

lor’s), 25 (Master’s), 34 (Ph.D.);
•	 Occupation: 31 (Researchers/Professors), 13 

(Software/Game Developers), 10 (Health-
care Professionals/Doctors), 52 (End-Users)

The EmoSense data are available for research rea-
sons only, upon reasonable request to the corre-
sponding author.

Data analysis: The Partial Least Square-Struc-
tural Equation Modeling (PLS-SEM) with 
bootstrapping was adopted to evaluate the stan-
dardized path coefficients between the TAM 
constructs, their significance (p < 0.05), internal 
consistency (Cronbach’s a > 0.7), and convergent 
validity (composite reliability (CR) > 0.70; average 
variance extracted (AVE) > 0.50), using SmartPLS 
4.0 and Stata 17.0. 

EmoSense technology acceptance evalua-
tion results: Figure 5 depicts the estimated path 

coefficients between the TAM constructs, along 
with their significance (p values). From Fig. 5 it is 
evident that the IU mainly depends on the UA, 
which, in turn, is affected by the PU and PEoU. 
Moreover, PU is affected by the PEoU; yet, it 
seems to have less effect on IU. Additionally, 
Table 1 tabulates the consistency and validity anal-
ysis results, from where it is clear that all selected 
constructs are reliable (all Cronbach’s a and CR 
values >0.70; all AVE values >0.50). Grouping 
analysis based on gender, age, education and 
occupation, did not reveal any significant effect 
on the path coefficients. These results denote that 
the EmoSense was well perceived by the stake-
holders in terms of its PEoU, PU, UA towards the 
IU, validating the TAM framework.

Challenges and Opportunities
Emotions are dynamic and complex in nature, usu-
ally not experienced in the pure form of a single 
emotion; hence, the coexistence of multiple basic 
emotions at one time poses difficulties in emo-
tion recognition. The acquisition and advanced 
analysis of multimodal signals, combined with 
knowledge from neuroscience, could provide 
more insights about the emotion expression in 
the brain, assisting further with their accurate rec-
ognition. Subjectivity in experiencing and express-
ing emotions reveal the need for personalization 
and adaptation in the emotion inference system. 
Augmenting the acquired biosignals with the 
personal affect dynamics, the emotion inference 
models could enhance their performance, provid-
ing interpretation of the emotional changes for a 
specific user. Moreover, the disruption in human-
to-AI communication from AI-based chatbots 
(e.g., ChatGPT, GPT-4, and Bard), has opened 
up additional dimensions of involving such AI 

FIGURE 5. The adopted TAM framework [14] for the acceptance of the Emo-
Sense, with the interconnected constructs and their standardized path 
coefficients and p values (in parentheses), estimated using PLS-SEM 
Bootstrap analysis of 200 realizations [15]; ***: p < 0.001.
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256GB 8GB RAM, CPU Octa-core, GPU 8-12 GB, Bluetooth 
≥4.1). In the latter, signal preprocessing and decomposition 
(i.e., multivariate swarm decomposition), combined with pre-
trained deep learning (i.e., CNN) are used to infer the emotion 
estimation, considering the contribution of the different sources 
via a model- and decision-level fusion (Fig. 4(b)). The 
estimated emotions drive two SNG games (Flame, 
GlassGlobe), designed in Unity 3D within the neurofeedback 
and eMDA framework, sharing the same desired characterizing 
goals, i.e., increase of player’s focus (centering of attention on 
a stimulus), concentration (focus on one thing for a continuous 
period), and relaxation (low tension emotional state with an 
absence of arousal) (Fig. 4(c)).  

The mechanics in the Flame SNG, i.e., igniting and sustaining 
the flame of an oil lamp, its dynamics (e.g., sustain the flame  
despite different wind intensity levels) and aesthetics (e.g., 
alteration in background scene/color of the objects, added 
background audio), are all controlled by the player’s emotions 
(Fig. 4(c)). Similarly, in the GlassGlobe SNG, emotions control 
the construction of a temple within a glass globe (mechanics) 
with gradually increasing the scale, number and type of 
construction items (dynamics) and creating various versions of 
the background setting, temple color and addition of sound 
effects (aesthetics) (Fig. 4(c)).  

B. EmoSense Technology Acceptance Empirical Study 
As with any technology, especially in the BCI setting, uptake 

and continued use by the user is most important. In order to 
evaluate the technology acceptance of the EmoSense by the 
relevant stakeholders, an empirical study was conducted. In the 
latter, an online survey was designed and developed by a 
multidisciplinary team, engaging mental health experts, 
doctors, health professionals, researchers, game 
designers/developers, and end-users. The empirical study 
aimed at capturing the beliefs of the stakeholders upon the 
proposed EmoSense as a novel conceptual solution (no actual 
use of it was involved). 

Survey structure: The survey included participant 
demographic information and feedback on the acceptance of 
EmoSense, by providing detailed information for its structure, 
functionality and potential use. The well-established 
Technology Acceptance Model (TAM) [15] was adopted, and 

the survey feedback was constructed as five-point Likert scale 
questions based upon the TAM constructs of Perceived Ease of 
Use (PEoU), Perceived Usefulness (PU), Usage Attitude (UA), 
and Intention to Use (IU). 

Data collection and sample characteristics: The survey 
took place between 1/8-15/11/2022, using email-based 
recruitment; 300 invitations targeting the stakeholder groups 
were sent distributed, describing the survey and inviting online 
participation. Non-probability sampling design was followed, 
using convenience sampling, i.e., each respondent was selected 
for inclusion in the sample based on the ease of access. A total 
of 𝑁𝑁 = 106 participants provided online consent and fully 
completed the online survey. Their demographics include: a) 
Gender: 43/63 (Male/Female),  b) Age range: 44 (18-24yrs); 33 
(25-34yrs); 15 (35-44yrs); 14 (>44yrs);  c) Education level: 23 
(Diploma), 24 (Bachelor’s), 25 (Master’s), 34 (PhD); and d) 
Occupation: 31 (Researchers/Professors), 13 (Software/Game  
Developers), 10 (Healthcare Professionals/ Doctors), 52 (end-
users). The EmoSense data are available for research reasons 
only, upon reasonable request to the corresponding author. 

Data analysis: The Partial Least Square-Structural Equation 
Modeling (PLS-SEM) with bootstrapping was adopted to 
evaluate the standardized path coefficients between the TAM 
constructs, their significance (𝑝𝑝 < 0.05), internal consistency 
(Cronbach’s 𝑎𝑎>0.7), and convergent validity (composite 
reliability (CR)>0.70; average variance extracted (AVE)>0.50), 
using SmartPLS 4.0 and Stata 17.0.  

EmoSense technology acceptance evaluation results: 
Figure 5 depicts the estimated path coefficients between the 
TAM constructs, along with their significance (𝑝𝑝 values). From 
Fig. 5 it is evident that the IU mainly depends on the UA, which, 
in turn, is affected by the PU and PEoU. Moreover, PU is 
affected by the PEoU; yet, it seems to have less effect on IU. 
Additionally, Table I tabulates the consistency and validity 
analysis results, from where it is clear that all selected 
constructs are reliable (all Cronbach’s 𝑎𝑎 and CR values >0.70; 
all AVE values >0.50). Grouping analysis based on gender, age, 
education and occupation, did not reveal any significant effect 
on the path coefficients. These results denote that the EmoSense 
was well perceived by the stakeholders in terms of its PEoU, 
PU, UA towards the IU, validating the TAM framework.  

VI. CHALLENGES AND OPPORTUNITIES 
Emotions are dynamic and complex in nature, usually not 

experienced in the pure form of a single emotion; hence, the 
coexistence of multiple basic emotions at one time poses 
difficulties in emotion recognition. The acquisition and advanced 

 
 

Fig. 5. The adopted TAM framework [14] for the acceptance 
of the EmoSense, with the interconnected constructs and their 
standardized path coefficients and 𝑝𝑝 values (in parentheses), 
estimated using PLS-SEM Bootstrap analysis of 200 
realizations [15]; ***: 𝑝𝑝 < 0.001. 

TABLE I 
PLS-SEM ANALYSIS RESULTS FOR THE TAM CONSTRUCTS 

(FIG. 5) OF THE EMOSENSE ACCEPTANCE STUDY 
TAM Constructs Internal 

consistency 
Discriminant validity 

Cronbach’s 
𝒂𝒂 

Average 
Variance 
Extracted 

(AVE) 

Composite 
Reliability 

(CR) 

Perceived Usefulness (PU) 0.923 0.867 0.951 
Perceived Ease of Use (PEoU) 0.887 0.898 0.946 

Usage Attitude (UA) 0.945 0.901 0.964 
Intention to Use (IU) 0.911 0.918 0.957 

 

TABLE 1. PLS-SEM -analysis results for the TAM constructs (Fig. 5) of the EmoSense acceptance study.

TAM Constructs

Internal 
Consistency Discriminant Validity

Cronbach’s a Average Variance 
Extracted (AVE)

Composite 
Reliability (CR)

Perceived Usefulness (PU) 0.923 0.867 0.951

Perceived Ease of Use 
(PEoU) 0.887 0.898 0.946

Usage Attitude (UA) 0.945 0.901 0.964

Intention to Use (IU) 0.911 0.918 0.957
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engines in the design framework of the SNGs, 
under a collaborative argumentation between 
the designer and AI engines. Thus, internal SNG 
design thoughts could be shared with such AI 
chatbots, especially within the context of anthro-
pomorphism and explainability. Considering the 
trustworthy hybrid decision-support, mixed and 
sliding decision-making could take place, assisting 
context interpretation, dealing with uncertainty, 
transparent anticipation, reliability, interdependen-
cies, and promoting augmented decision-making 
during the SNG design.

In the human-to-SNG communication, person-
al data of the user are involved, as the human 
brain’s neuronal activity is accessed, recorded, 
interfered or modified. This poses data privacy 
challenges and invokes considerations for the 
protection of cognitive freedom, mental privacy, 
mental integrity and psychological continuity. This 
can be dealt with by adopting data protection 
regulations (e.g., EU GDPR), following privacy- 
and security-by-design development, combined 
with ethics, transparency and explainability in the 
emotion inference mechanisms (e.g., xAI), and 
knowledge transfer from large-scale accredited 
biobanks, establish a trustworthy framework for 
SNG development, acceptance and use. 

Recently, there has been a notable shift 
towards immersive experiences in human-to-ma-
chine communication, with huge investments in 
the emerging markets (e.g., Metaverse, NeuroG-
ames). Following this trend, new growth possibil-
ities of the SNGs market are anticipated, due to 
rising user awareness and increased adoption of 
advanced gaming (neuro)technologies provid-
ing real-time brain monitoring [14]. This is further 
enhanced by the beneficial potential of SNGs in 
many areas, such as health and learning, merging 
the emotion domain activity with games. Integra-
tion of digital applications in everyday life, along 
with evolving digital consumption applications 
in a wider context where gaming could be seen 
as the new digital paradigm, sustains the current 
evolutionary stage of SNGs towards new forms 
of multi-playing and communicating under shared 
emotional states. 

Conclusion
In this article, we provide an overview of the way 
emotions can be used within the human-to-SNGs 
communication, exploring the aspects of emotion 
sensing and inference, emotion-adapting SNGs 
design framework and adaptation mechanisms. 
We present an application case of SNG, name-
ly EmoSense, in the field of neurofeedback to 
demonstrate its practicality and usefulness in skills 
improvement, presenting the experimental results 
from an acceptance evaluation study. We also 
discuss the challenges and opportunities of SNGs, 
fostering the parallel advancements in emotions 
sensing, privacy regulations, personalization and 
new emerging application scenarios of SNGs.
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