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Abstract
In the last years, several machine learning-based 

techniques have been proposed to monitor human 
movements from Wi-Fi channel readings. However, 
the development of domain-adaptive algorithms 
that robustly work across different environments 
is still an open problem, whose solution requires 
large datasets characterized by strong domain 
diversity, in terms of environments, persons and 
Wi-Fi hardware. To date, the few public datasets 
available are mostly obsolete — as obtained via 
Wi-Fi devices operating on 20 or 40 MHz bands 
— and contain little or no domain diversity, thus 
dramatically limiting the advancements in the 
design of sensing algorithms. The present contri-
bution aims to fill this gap by providing a dataset 
of IEEE 802.11ac channel measurements over an 
80 MHz bandwidth channel featuring notable 
domain diversity, through measurement campaigns 
that involved thirteen subjects across different 
environments, days, and with different hardware. 
Novel experimental data is provided by blocking 
the direct path between the transmitter and the 
monitor, and collecting measurements in a semi-an-
echoic chamber (no multi-path fading). Overall, the 
dataset — available on IEEE DataPort [1] — contains 
more than thirteen hours of channel state informa-
tion readings (23.6 GB), allowing researchers to 
test activity/identity recognition and people count-
ing algorithms.

Introduction
In recent years, spurred by the pervasiveness of 
Wi-Fi devices, wireless human sensing strategies 
that rely on movement-induced modifications to 
the propagation of radio signals have been wide-
ly investigated [2]. Being a passive — and thus 
non-intrusive — approach, Wi-Fi-based human 
sensing (WHS) has attracted considerable atten-
tion for different applications such as, for example, 
device-free monitoring [3] and activity recognition 
(AR) [4]. Moreover, by leveraging existing com-
munication infrastructures, WHS grants an easy 
and low-cost deployment.

In this work, we present a large dataset for 
WHS, which aims at providing researchers with a 
means to develop new algorithms and assess their 
performance on common data, thus allowing for 
fair comparisons. The availability of large-scale 
and comprehensive datasets is especially nec-
essary when considering data-driven algorithms 

exploiting machine/deep learning techniques. 
These methods are adopted by the vast majority 
of experimental WHS research, as model-based 
solutions are of difficult implementation in a wire-
less context, given the complexity of radio sig-
nal propagation. However, public WHS datasets 
are still very few and often outdated: many of the 
measurement campaigns that were made avail-
able in recent years were performed on 20 or 40 
MHz frequency bands, and do not contain suffi-
cient domain diversity.

To bridge this gap, the dataset we made pub-
licly available on IEEE DataPort [1] has been col-
lected through IEEE 802.11ac devices operating 
on 80 MHz bands. Moreover, in contrast with 
currently available datasets, it contains data fea-
turing notable domain diversity across measure-
ment days, environments, people and hardware. 
This will allow researchers to assess the perfor-
mance of their algorithms in completely differ-
ent situations than those considered at training 
time, and, in turn, to develop strategies to address 
the domain adaptation problem in WHS. In fact, 
although some preliminary WHS approaches 
were successful, we advocate that some fun-
damental challenges are still open and, among 
these, one of the most relevant is the design 
of robust algorithms, that is, able to generalize 
and adapt to new domains. The dataset contains 
data for developing AR, person identification (PI) 
and people counting (PC) applications, provid-
ing Wi-Fi channel measurements for up to seven 
activities, ten people, and seven environments. 
Data collected in a semi-anechoic chamber, emu-
lating an open-area-test site, are also included in 
the dataset. Moreover, we provide for the first 
time data collected when the direct path between 
transmitter and monitor is completely obstructed. 
Part of the data has been used to validate SHARP, 
our recent algorithm for environment- and per-
son-independent Wi-Fi-based AR [4].

Background and Existing Datasets
In September 2020, the IEEE 802.11bf working 
group was established to empower Wi-Fi devices 
with sensing capabilities [2]. The goal is to allow 
Wi-Fi routers to perform the dual role of communi-
cation access points (AP) and monitoring devices, 
leveraging ongoing Wi-Fi traffic as well as ad-hoc 
packets to deliver sensing services. Note that the 
new IEEE 802.11bf standard is not expected to 
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define specific use cases or algorithms for sens-
ing that, in turn, remain open to implementation 
and require further investigation by the research 
community [5]. Wi-Fi-based sensing exploits the 
fact that the presence and the movement of 
objects in the propagation environment affect the 
Wi-Fi signal (multi-path) propagation, and these 
modifications can be estimated via dedicated sig-
nal processing on the Wi-Fi channel frequency 
response (CFR) — also referred to as channel state 
information (CSI). Wi-Fi systems adopt orthogonal 
frequency division multiplexing (OFDM) by trans-
mitting over partially overlapping and orthogonal 
sub-channels, and the CFR is continuously esti-
mated for all of them. Thus, for each pair of trans-
mitting and receiving antennas, the CFR consists 
of a vector of complex numbers specifying the 
attenuation and phase shift experienced by the 
signal over each OFDM sub-channel. Interested 
readers can find a complete description of the 
Wi-Fi channel in [4].

Comparison Against Other Public Datasets
Although all commercial Wi-Fi chipsets estimate 
the CFR, manufacturers do not make this data 
easily accessible for any other use different from 
communication. To overcome this, over the years, 
researchers have designed and implemented 
three tools to extract the (estimated) CFR. Two of 
them, namely Linux CSI [6] and Atheros CSI [7], 
target network interface cards (NICs) implement-
ing IEEE 802.11n (operating over 20 or 40 MHz 
frequency bands). The third one, Nexmon CSI 
[8], allows extracting the CFR from specific Wi-Fi 
chipsets implementing IEEE 802.11ac. Leveraging 
such tools, several experimental campaigns have 
been realized in recent years, and have been used 
by researchers to develop different WHS algo-
rithms. However, releasing the collected data has 
not been a common practice so far and, in turn, 
public datasets for WHS are still very few.

In [9, 10], two datasets populated with IEEE 
802.11n CFR data captured over thirty OFDM 
sub-channels have been released. Six people car-
rying out six activities across a single environment, 
and ten volunteers, sixteen activities, and three 
environments are respectively considered in [9, 
10]. The work in [11] provides a dataset collect-
ed over 114 OFDM sub-channels as a single per-
son performs six activities in three environments. 
In [12], CFR data was collected using Raspber-
ry-Pi with Nexmon, for 242 OFDM sub-channels 
(on 80 MHz bands), while a subject performed 
activities in four rooms. Asus RT-AC86U routers 
empowered with Nexmon CSI are used in [13], 
where a single subject performs activities across 
three environments. In [14], a dataset featuring a 
single subject moving in three environments has 
been collected using a Raspberry-Pi and an Asus 
RT-AC86U router. As for data enabling people 
counting applications, the dataset presented in 
[15] provides measurements of up to seven peo-
ple. However, it only contains measurement via 
devices working with the IEEE 802.11n standard 
over a 20 MHz channel.  Finally, to the best of our 
knowledge, the only publicly available dataset for 
human identification through Wi-Fi was released 
as part of the gait recognition study in [3]. CFR 
data was collected from eleven volunteers in two 
environments over a 20 MHz channel.

In this article, we present a comprehensive 
dataset providing experimental IEEE 802.11ac 
CFR data collected across several different envi-
ronments (space diversity), persons, and transmis-
sion hardware (hardware diversity). Our dataset is 
the first that includes data collected in the same 
environment on different days (time diversity). 
This is of high value, as it enables the assessment 
of the impact that small environmental changes 
— which are likely to happen in real-world scenar-
ios — have on sensing applications (as detailed 
below). The dataset has been collected over an 
80 MHz frequency band to allow designing algo-
rithms that can be integrated into modern Wi-Fi 
devices, as those currently deployed in homes 
and buildings. Moreover, since the sensing res-
olution increases with the bandwidth [9], our 
dataset allows developing more advanced sens-
ing algorithms with respect to previous datasets 
available in the literature. We also remark that, 
by selecting the CFR values of sub-sets of the 
collected 256 OFDM sub-channels at 80 MHz, 
as specified in the IEEE 802.11ac standard, one 
can still design sensing algorithms working on the 
40 MHz and 20 MHz sub-bands used by older 
Wi-Fi systems. To our knowledge, this is the first 
dataset providing data for PC and PI from an 80 
MHz bandwidth communication link, and the 
first to provide a high domain diversity for AR. 
For the first time, we also provide data for mea-
surement campaigns performed when the direct 
path between the transmitter and the monitor is 
completely obstructed, and AR measurements in 
a semi-anechoic chamber where the multi-path 
fading is strongly reduced, to enable the evalua-
tion of the impact of obstacles in the sensing envi-
ronment and interference on the performance of 
WHS algorithms. A detailed comparison among 
our dataset and existing AR, PI, and PC datasets is 
provided in Table 1.

Experimental Setup
In the following, we summarize the methodology 
used to collect data. The complete workflow is in 
[1] for replicability.

Wi-Fi Network Setup and CFR Data Collection
We considered a Wi-Fi network consisting of a 
single communication link between two routers, 
one acting as the AP and the other as a station 
connected to it. This choice does not imply any 
loss of generality, as wireless sensing can be per-
formed by the monitor node considering a sin-
gle channel at a time. In the presence of multiple 
radio links, the monitor station may scan the avail-
able links according to some time-division strate-
gy. We used Wi-Fi routers as they allow for better 
control of the experimental setup with respect 
to implementing the Tx and the Rx with other 
Wi-Fi-enabled devices (e.g., computers or smart-
phones). The network was set up using OpenWrt 
to operate on the IEEE 802.11ac channel number 
42, with a central frequency of 5,210 MHz and 
80 MHz of bandwidth.

Wi-Fi traffic was generated through the 
iPerf3 tool setting the packet transmitting rate 
to 173 packets per second, obtaining a new 
channel estimate every Tc  6 × 10–3 s, which 
represents a good channel sampling interval for 
sensing. We used modulation and coding scheme 
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(MCS) 4 without frame aggregation. A single 
antenna was purposely enabled on the Tx and 
the Rx to enforce the communication over a sin-
gle spatial stream. This conforms to the measure-
ment procedure adopted in all CSI datasets for 
WHS and leads to better CFR estimates at the 
monitor, as there is no cross-interference among 
transmitting and receiving antennas, which would 
be present in a multi-antenna configuration. It 
follows that the resulting dataset can be used to 
train learning algorithms for sensing without hav-
ing to apply any interference cancellation. 

The monitor (M) continuously estimated the 
CFR of the Tx-M link by capturing the packets 
transmitted over-the-air by the Tx. In all the envi-
ronments but the semi-anechoic chamber, other 
Wi-Fi networks coexisted with our setup, causing 
radio interference beyond our control. As IEEE 
802.11ac networks leverage the carrier sense 
multiple access with collision avoidance (CSMA/
CA), once interference occurs, no sensing packets 
are collected. The lack or delay in the acquisition 
of CFR samples mirrors a real-world scenario and 
allows evaluating the impact of the phenomenon.

Hardware Specifications
Three different setups for the Tx-Rx  routers 
were considered. Two Netgear X4S AC2600 
IEEE 802.11ac routers were used as Tx-Rx  in 
the first setup, whereas two Asus RT-AC86U IEEE 
802.11ac routers were deployed for the sec-
ond. The third setup consisted of a Netgear X4S 
AC2600 and a TP-Link AD7200 IEEE 802.11ac/ad 
router. An Asus RT-AC86U router equipped with 
Nant = 4 antennas was used as monitor device in 
all the setups. The dataset was collected using the 
Nexmon-CSI extraction tool [8].

Measurement Setup
The dataset has been collected by deploying the 
experimental Wi-Fi network (Tx-Rx  pair and 
monitor) in seven different environments, that is, 
a bedroom, a living room, a kitchen, a university 
laboratory, a university office, a semi-anechoic 
chamber, and a meeting room, by also changing 
the respective positions of Tx, Rx and monitor 
devices. We considered two types of direct-path 
obstructions to enable the evaluation of sensing 
applications in non-line-of-sight scenarios: a wood 
bookcase and a concrete block wall.

As an example of the data collection campaign, 
Fig. 1 shows the experimental setup deployed in 
the semi-anechoic chamber and consisting of three 
Asus routers. The walls of the semi-anechoic cham-
ber are fully covered by 40–50 cm long pyramidal 
radio-absorbing panels which guarantee an absorb-
ing factor of 110 dB at the considered frequencies 
(1–10 GHz). Movable radio-absorbing panels par-
tially cover the floor while keeping enough uncov-
ered space for users’ movement. The semi-anechoic 
chamber did not contain any objects and no reflec-
tors were used during the experiments.

Data Description
Our dataset contains more than thirteen hours of 
CFR collections, resulting in 23.6 GB of data.

In the following, the sequence of CFR vectors 
associated with an acquisition (one .mat file in 
the dataset) is referred to as CFR trace. Each CFR 
trace is saved as a (N * Nant) × M dimensional 
complex matrix, where each row is a CFR vec-
tor and M is the number of monitored OFDM 
sub-channels. Each trace contains data collect-
ed during 40–300 seconds, resulting in around  

TABLE 1. Public datasets for Wi-Fi-based AR, PC and PI.

dataset no. days per 
environment no. environments

no. 
involved 
people

no. 
concurrent 
people

no. 
activities

no. 
different Tx 
hardware

obstructed 
direct path standard bandwidth

AR [9] 1 1 6 1 6 1  802.11n 20MHz

AR [10] 1 3 10 1 16 1  802.11n 20MHz

AR [11] 1 3 1 1 7 1  802.11n 40MHz

AR [12] 1 4 1 1 11 1  802.11ac 80MHz

AR [13] 1 3 1 1 4 1  802.11ac 80MHz

AR [14] 1 3 1 1 5–8 2  802.11ac 40–80MHz

PC [15] 1 3 7 1–7 1 1  802.11n 20MHz

PI [3] 1 2 11 1 1 1  802.11n 20MHz

AR-PC-
PI [1] 1–5 7 (including a semi-

anechoic chamber) 13 1–10 1–7 3  802.11ac 80MHz

FIGURE 1. Semi-anechoic chamber. The Tx, Rx and monitor Asus routers used for data transmission and CFR 
collection are indicated in the picture.  

TXRX
NEXMON



IEEE Communications Magazine • September 2023 149This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

N = 6,600–50,000 CFR vectors per monitor 
antenna per trace. As our dataset is collect-
ed considering transmissions on an 80 MHz 
band, 256 sub-channels can, in principle, be 
monitored. However, Nexmon only returns the 
CFR for the M = 242 data sub-channels while 
no information is provided for the control 
sub-channels. As part of our previous work, we 
made available a Python script to further pro-
cess the data [4].

Dataset Domain Diversity
The campaigns have been performed on different 
days through several months (April-December, 
2020 and January-September, 2022), ensur-
ing considerable time diversity. Thirteen volun-
teers were involved: ten males, in the following, 
referred to as P1, P4, P6-P13 and three females, 
indicated with P2, P3, and P5. Four volunteers 
performing activities within six different environ-
ments were considered for AR and two different 
Wi-Fi network configurations were deployed to 

include hardware diversity in the data. For what 
concerns the PI and PC applications, we provide 
diversity in terms of people involved (ten), and 
Wi-Fi hardware (four different setups). For all 
three applications, domain diversity in terms of 
LOS/NLOS conditions for the transmitter-monitor 
link is included.

Dataset Organization
The dataset is structured into 26 sub-folders, as sum-
marized in Table 2. Each sub-folder is identified by 
a prefix, a number and a letter. The prefix indicates 
the target application: AR, PI or PC. The number 
indicates a specific combination of monitored envi-
ronment, hardware type and positions, measure-
ment day and involved person/people, as described 
next. The letter identifies the different measurement 
campaigns performed for the same setting.

The first eighteen sub-folders contain CFR data 
intended for AR applications. The data was col-
lected when a single person (P1-P4) is present in 
the monitored space. The name of each file con-

TABLE 2. Measurement conditions. For each set, we specify the number of campaigns performed, the monitored environment and its dimensions (width 
× length × height), the presence of an obstacle (obst.) blocking the direct path between the transmitter and the monitor, the position of the devices 
(Mj-Txj-Rxj) and the monitored area (identified by a color as in Fig. 2), the Tx-Rx routers brand, the person/people (Pi) involved, and the envi-
ronmental furniture. 

set campaigns environment w × l × h [m] obst. devices 
pos. Tx Rx person, Pi furniture

AR-1 a-b-c-d-e bedroom 5 × 6 × 4 — M1-Tx-Rx Netgear Netgear P1

bookcase, 2 beds, desk, 
chairs

AR-2 a bedroom 5 × 6 × 4 — M1-Tx-Rx Netgear Netgear P2

AR-3 a-b bedroom 5 × 6 × 4  M2-Tx-Rx Netgear Netgear P1

AR-4 a bedroom 5 × 6 × 4  M2-Tx-Rx Netgear Netgear P2

AR-5 a-b living room 5 × 6 × 4 — M3-Tx1-
Rx1 Netgear Netgear P1 armchair, TV cabinet, 

table, chairs, 2 sofas

AR-6 a kitchen 3.5 × 3 × 3.2 — M3-Tx1-
Rx1 Netgear Netgear P1 hob, 2 cabinets

AR-7 a laboratory 7.5 × 3.5 
× 2.9 — M3-Tx1-

Rx1 Netgear Netgear P3 4 desks, 6 workstations, 
6 displays

AR-8 a-b office 4 × 6 × 3 — M3-Tx1-
Rx1 Asus Asus  P4 desk, workstation, 

display

AR-9 a-b-c semi-anechoic 9 × 7 × 3.4 — M3-Tx1-
Rx1 Asus Asus P4 no furniture

PI-1 a meeting room 7 × 7.5 × 3.5 — M3-Tx1-
Rx1 Netgear Netgear P3, P5-P13

7 desks, chairs

PI-2 a meeting room 7 × 7.5 × 3.5 
M3-Tx2-
Rx2 Netgear TP-Link P3, P5-P13

PI-3 a meeting room 7 × 7.5 × 3.5 — M4-Tx1-
Rx1 Netgear Netgear P3, P5-P13

PI-4 a meeting room 7 × 7.5 × 3.5 
M4-Tx2-
Rx2 Netgear TP-Link P3, P5-P13

PC-1 a meeting room 7 × 7.5 × 3.5 — M3-Tx1-
Rx1 Netgear Netgear P3, P5-P13

7 desks, chairs

PC-2 a meeting room 7 × 7.5 × 3.5 
M3-Tx2-
Rx2 Netgear TP-Link P3, P5-P13

PC-3 a meeting room 7 × 7.5 × 3.5 — M4-Tx1-
Rx1 Netgear Netgear P3, P5-P13

PC-4 a meeting room 7 × 7.5 × 3.5 
M4-Tx2-
Rx2 Netgear TP-Link P3, P5-P13
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tains a letter indicating the activity: W for walking, 
R for running, J for jumping, L for sitting still, S for 
standing still, C for sitting down/standing up, and G 
for arm exercises. The CFR when no people were 
present in the environment is also included for 
each of the scenarios (label E). When the activity 
was performed multiple times, a sequential number 
is present after the activity-related letter.

The last eight sub-folders contain data for PI 
and PC, and were collected from ten volunteers 
P3, P5–P13. The PI sub-folders contain one CFR 
trace for each volunteer collected as they moved 
freely in the environment. The person identifier is 
included in the name of the file by a suffix starting 
with p. PC sub-folders consist of different traces, 
each associated with a different number of peo-
ple (from 1 to 10) moving in the environment, as 
indicated in the name of each file after letter n.

The suffixes “p00” and “n00” indicate the trac-
es associated with the empty environment, that is, 
without people. The PC sub-folders do not con-
tain data for the single person case, as this situa-
tion is exactly the one considered for PI and, in 
turn, data in the PI sub-folder associated with the 
same measurement conditions (Tx-Rx-M hard-
ware and positions) can be used.

For each set, Table 2 provides information 
about the monitored environment and the per-
son/people involved (Pi), together with the 
position and hardware (brand) of the transmit-
ter (Txj), receiver (Rxj) and monitor (Mj). The 
positions of the devices are shown in Fig. 2a for 
the bedroom and in Fig. 2b for the other environ-
ments. The colors in Table 2 and Fig. 2 indicate 
the areas where the activities were performed. 
The volunteer moved freely within the colored 
areas for the walking and running experiments. 
The sitting still and sitting down/standing up 
activities were performed where the chairs are 
positioned. The other in-place activities, that is, 
jumping, standing still, and doing arm exercises, 
were performed in the location indicated by the 
dark-colored circles.

For the bedroom we considered two con-
figurations to allow evaluating the impact of an 

obstruction in the environment on the sensing 
performance. In the former, the monitor was in 
position M1  and, in turn, there existed a direct 
path between the transmitter and the monitor 
(sets AR-1, AR-2). As for the latter, the monitor 
was in position M2 so that the direct path (Tx-
M2) was occluded by the bookcase in the middle 
of the room (gray rectangle in Fig. 2a), and the 
person was required to move in both the green 
and the red areas (sets AR-3, AR-4). Two scenar-
ios were also considered for the meeting room. 
The data was concurrently collected from two 
Wi-Fi networks, entailing Tx1-Rx1 and Tx2-Rx2 
respectively, through two monitor devices (M3 
and M4). This configuration generated four simul-
taneous acquisitions for each PI (PC) experiment: 
the files with the same suffix in different sub-fold-
ers refer to simultaneous collections. The Tx2-M3 
and Tx2-M4 paths were obstructed by the 20-cm 
thick concrete block wall of the meeting room 
(sets PI-2, PI-4, PC-2, PC-4). As the data with 
and without the obstruction were concurrently 
collected, the impact of the obstruction can be 
deeply evaluated.

Note that the dataset is intended for the devel-
opment of AR, PI, and PC applications based on 
the analysis of the CFR, as shown in, for example, 
[4, 11, 12]. The precise location of the subject 
within the environment was not recorded making 
the dataset not suitable for localization and track-
ing purposes.

Examples of Use
The dataset enables the effective design of sev-
eral smart building applications. The AR sets can 
be used to design applications for assisted living 
and smart entertainment. The PI sets can be used 
to design solutions for intrusion detection and 
keyless access to access-restricted areas. Finally, 
the PC sets enable controlling the number of per-
sons that can concurrently share the same envi-
ronment to guarantee safe inter-person distance. 
The dataset allows implementing algorithms that 
generalize over different domains such as the per-
son, the environment, and the day of measure-
ment. This feature is of paramount importance 
for the integration of sensing functionalities within 
commercial Wi-Fi devices, to provide plug-and-
play sensing solutions. Note that the character-
istics of the Wi-Fi channel strictly depend on the 
environment, and the channel variability is per-
son-specific [5]. Moreover, small changes in the 
displacement of furniture make the CFR vary over 
time. In Fig. 3 we report two examples of CFR 
collected in the empty bedroom on two differ-
ent days and the Pearson correlation coefficient 
[8] computed for each pair of traces acquired in 
the empty bedroom on different days and aver-
aged over the monitoring antennas. The Pearson 
coefficient takes values in the range [–1, 1] where 
zero means that the traces are uncorrelated, while 
an absolute value of 1 means that the traces are 
linearly dependent. Both the qualitative plots and 
the quantitative evaluation show that the CFR 
traces are almost uncorrelated, confirming the 
need for domain robustness. The processed data 
and Python code to reproduce this analysis are 
publicly available at https://codeocean.com/cap-
sule/4811042/tree.

The unprecedented domain diversity offered 

FIGURE 2. Device and user’s positions in the monitored environment for: a) bedroom with a wood bookcase in the 
middle; b) living room, kitchen, laboratory, office, semi-anechoic chamber, and meeting room. Txj, Rxj 
and Mj, with j  {1, 2, 3, 4}, denote the transmitter, the receiver and the monitor positions, respectively. The 
activities were performed within the colored areas as indicated in Table 2. The chairs have been used for the 
still and sitting down/standing up activities. The other in-place activities were performed in the position of the 
dark-colored circles.
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by our dataset enables the analysis of the statistics 
of the Wi-Fi CFR under many different domains; 
and the design and evaluation of the effective-
ness of machine and deep learning algorithms 
for wireless sensing activity recognition, person 
identifi cation and people counting that leverage 
domain-independent features, like, for example, 
SHARP [4], or domain-adaptive techniques, like, 
for example, one-shot or few-shot learning [12]. 
Specifically, we identified seven different use 
cases as detailed below.

Whs robustnEss ovEr tImE
CFR measurements collected on many different 
days in the same environment and involving the 
same subject are included in the dataset, e.g, 
AR-1a-e, AR-5a-b. The analysis of this data 
allows understanding how small environmen-
tal changes impact the Wi-Fi channel statistics, 
enabling the design of algorithms that are robust 
to such changes.

Whs robustnEss ovEr EnvIronmEnts And pEoplE
Channel recordings have been collected by having 
the same subject performing activities in diff erent 
environments, for example, AR-1a-e, AR-5a-b, 
and AR-6a, and having diff erent subjects perform-
ing activities in the same (AR-1a and AR-2a) or 
diff erent environments (AR-7a and AR-8a). This 
notable diversity is very useful to test AR algo-
rithms that are to be integrated into commercial 
devices, to off er plug-and-play sensing functional-
ities and environment/person adaptability.

Whs robustnEss ovEr WI-FI dEvIcEs
Our dataset allows evaluating the performance of 
algorithms trained on CFR collected when data 
traffic is generated by Netgear routers on CFR 
collected when Asus routers are transmitting and 
vice versa. This allows studying methodologies to 
enforce transmission hardware robustness. Prelim-
inary results on our SHARP algorithm [4] indicate 
that these domain changes (hardware) deserve 
attention and further research.

Whs domAIn AdAptAtIon
The high domain diversity in the dataset allows 
designing domain adaptive algorithms. This is usual-
ly accomplished through learning-based approach-
es and entails setting initial model parameters 
based on a specifi c environment and refi ning them 
in case domain changes occur. The refi nement is 
performed by retraining some parameters based 
on a few examples of data from the new domain, 
as proposed in, for example, [13].

ImpAct oF multI-pAth And IntErFErEncE
The measurements collected in the semi-anecho-
ic chamber allow gauging how the same person 
modifies the multi-path from a controlled and 
almost multi-path-free semi-anechoic chamber 
(AR-9a-c) to a much more multi-path aff ected 
office environment (AR-8a-b). Moreover, the 
dataset has been mostly collected in environments 
where other Wi-Fi devices were operating beyond 
our control, thus causing radio interference. The 
impact of such interference can be evaluated by 
comparing the traces collected in the semi-an-
echoic chamber (no interference) with those col-
lected in the other environments.

ImpAct oF obstructIons

Our dataset allows evaluating the robustness of 
WHS techniques when the path between the 
transmitter and the monitor is obstructed. This can 
be done for AR (AR-3a-b, AR-4a), PI (PI-2a, 
PI-4a) and PC (PC-2a, PC-4a) applications.

ImpAct oF tx And m routEr locAtIons
The dataset includes traces simultaneously col-
lected by two diff erent devices (M3 and M4) that 
concurrently monitor two transmission links (sets 
PI, PC). This allows evaluating how the position 
of the Tx-M link aff ects the performance of WHS 
algorithms.

ImpAct oF tImE, FrEQuEncy, And spAtIAl dIvErsIty
New research avenues include analyzing the 
impact of the sampling time on the sensing accu-
racy by sub-sampling the CFR traces and using 
them as input for sensing algorithms. A second 
aspect regards analyzing whether sensing can 
benefit from selecting a sub-set of the collected 
OFDM sub-channels that may be more relevant 
for specific tasks (e.g., [5]). Lastly, the impact 
of the number of monitoring antennas can be 
assessed (e.g., [4]).

The provided examples are only some of the 
possible ways to use the dataset. We trust that the 
variety of available settings will spur new repro-
ducible research.

conclusIons
In this article, we have presented a new com-
prehensive dataset that allows developing robust 
and domain-adaptive learning-based models for 
human sensing, making it possible to train and 
test the algorithms over different conditions in 
terms of deployed Wi-Fi devices, person/people 
involved, and/or environment. This allows tackling 
a common pitfall of existing techniques, being 
that they do not generalize well as the online 
working conditions change with respect to those 
considered in their training phase. Our dataset 
provides a common ground for performance 

FIGURE 3. Example of CFR amplitude collected in the empty bedroom on two diff erent days (AR1a_E, 
AR1b_E) and Pearson coeff icient computed between each pair of traces collected in the empty bedroom on 
diff erent days (AR sets). 
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assessment, allowing for reproducible research. 
Future work will include pairing Wi-Fi CFR records 
obtained through equally spaced antenna arrays 
and multiple devices with webcam data that pro-
vides the ground truth for the subjects’ location, 
thus providing support for developing localization 
and tracking applications.
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