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AbstrAct
This article considers reliable and secure spec-

trum sensing (SS) based on federated learning 
(FL) in the cognitive radio (CR) environment. 
Motivation, architectures, and algorithms of FL in 
SS are discussed. Security and privacy threats on 
these algorithms are overviewed, along with pos-
sible countermeasures to such attacks. Some illus-
trative examples are also provided, with design 
recommendations for FL-based SS in future CRs.

IntroductIon
The idea of cognitive radio (CR) was proposed 
two decades ago to enhance the operation of 
radio devices and networks by embedding oper-
ational environment awareness and artificial intel-
ligence in them. It evolved to cognitive use of 
the spectrum opportunities by dynamic access 
to temporarily unused frequency bands (so-called 
spectrum holes). In this approach, an unlicensed 
user (called a secondary user, SU, or CR user) can 
detect a spectrum hole and transmit signals in this 
frequency band provided that interference gener-
ated to primary (licensed) users’ (PUs’) communi-
cation channels is kept to the allowable level. 

CR technology’s essential element is detect-
ing the spectrum holes (i.e., spectrum resources 
not occupied by a PU). This may be achieved by 
getting the relevant information from a dedicated 
database (if available in a given location), often 
called a radio environment map, or by real-time 
measurement of the PU’s activity, called spec-
trum sensing (SS). Sensing is a process intended 
to uncover spectrum occupation and spectrum 
holes. It allows for taking advantage of spectrum 
opportunities, dynamic spectrum access, resource 
management for anticipated traffic, and so on. It 
can be based on various methods (e.g., signal ener-
gy or feature detection). Autonomous sensing by 
each distinct SU has not been considered reliable 
enough due to the adverse propagation effects of 
a wireless channel. Cooperative sensing (CS) in CR 
networks mitigates these effects. It requires sen-
sors to share their local sensing information with a 
so-called fusion center, which determines the spec-
trum occupancy in a given area (e.g., based on 
majority voting). This sharing of information causes 
CS to be prone to privacy and security attacks [1].

Spectrum sensing can be improved by employ-
ing machine learning (ML). This is because time 
and frequency resource block (RB) allocation 
for PUs in 4G, 5G, and 6G systems is based on 

channel qualities, avoids resource fragmentation, 
and follows time-frequency traffic patterns. Thus, 
time and frequency fading patterns, as well as 
RB allocation, expose dependencies that ML can 
uncover (Fig. 1). There are several ML algorithms 
(or structures) that can be used for this purpose, 
similar to image processing, such as convolu-
tional neural networks (CNNs). Based on these 
uncovered patterns, predictions can also be made 
regarding future spectrum occupation, which is 
essential for efficient operation of CRs and PU 
transmission protection [2].

ML-based SS using autonomous sensors has 
limited reliability due to distortions of a wireless 
channel. However, if frequency-selective fading 
dependencies can be uncovered (within the chan-
nel coherence time), the probability of misdetec-
tion can be reduced. Alternatively, a centralized 
ML approach would require extensive training 
datasets with high-resolution localization data, 
which may be impractical to acquire.

To overcome these obstacles, federated learn-
ing (FL) has been considered for SS ([2, 3]), which 
enables a group of sensors to execute a common 
learning task by exchanging their local model 
parameters (or a distilled representative part of a 
model) instead of raw data to accomplish aggre-
gate analytics. Hence, FL is considered to be a 
privacy-by-design technique while achieving high 
learning accuracy [4]. Nevertheless, FL applied to 
wireless systems, including SS, does not guarantee 
the levels of security required by modern com-
munication systems. FL systems are vulnerable 
to attacks that target each stage of training and 
decision making. Attackers can exploit flaws in 
FL systems in various ways, such as by corrupting 
the training data or local model updates at CR 
user equipment (UE) or intercepting the model 
updates exchanged with the central server [5]. 
Thus, although FL enhances privacy, privacy is not 
guaranteed without further protection [6].

Unlike some recent reviews on FL for CR ([1–
4, 7]), general-purpose FL algorithms security ([5, 
6, 8–12]), ML-based resource sharing and wireless 
security ([13, 14]), and research papers on spe-
cific threats and countermeasures (e.g., [15] on 
FL SS robustness to poisoning-attacks), this article 
is an overview of reliable and secure FL-based 
SS. We discuss the application of FL for SS. We 
review security and privacy attacks on these algo-
rithms. Countermeasures to such attacks are con-
sidered. We conclude our considerations.
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FederAted LeArnIng For spectruM
sensIng And predIctIon

As mentioned in the Introduction, the issue with SS 
by individual agents is limited reliability; the qual-
ity of decisions is affected by the agent’s specif-
ic radio environment, limited computational and 
memory resources, as well as limited availability 
of labeled datasets (so there is a need to down-
load them from an external database, which may 
introduce errors and delay). Federated learning is a 
concept that can resolve the problem of handling 
distributed datasets. In this case, all the training 
data is kept where it is generated (or measured), 
and only locally trained models are transferred 
to the central FL server. Such decentralized ML 
reduces the required radio resources (bandwidth, 
time, and energy) and the data processing latency 
by sending only the model parameters instead of 
the raw data stream [7]. 

FL is an iterative procedure employing edge 
devices (sensors onboard CR UEs, called FL nodes 
or FL agents) that develop their ML models based 
on their locally measured data. The local models 
are then exchanged in a centralized or decentral-
ized way to create one aggregated model, which is 
shared among the devices. In the case of the cen-
tralized approach, locally developed model param-
eters, either all of them or only the ones that defi ne 
some part of a model (e.g., distilled models’ param-
eters [3]), are transmitted to an FL server, where 
the aggregated model is created. FL nodes then 
adjust the corporate model to their local data, and 
the process of local training, exchanging models, 
and aggregating them is repeated (Fig. 2, where FL 
nodes are considered CRs). Apart from the model 
aggregation, the FL server may also be in charge of 
FL node clustering, refl ecting the location-specifi c 
availability of spectrum resources.

Apart from the advantages mentioned above, 
FL-based sensing provides a new incoming CR 
UE with a spectrum-occupancy-reflecting model 
suited for its current wireless environment and 
location without the need to collect data and train 
a model. It can also adapt to the changing radio 
environment. Whenever the radio channel quality 
changes for a CR UE, it receives a new FL model 
adapted to the channel state. 

Example results of FL-based SS performance 
are presented in Fig. 3. The probability of correct 
detection Pd and probability of false alarm Pfa
(i.e., the probability of falsely detecting spectrum 
occupation) are considered measures of sensing 
quality. The PU transmission was represented by 
5000 patterns per each signal-to-noise ratio (SNR) 
value in the form of 50  100 resource elements 
in frequency and time (thus, 5000 RBs per one 
pattern) generated by the 5G downlink signal sim-
ulator, which mirrors the traffic-related time and 
frequency dependencies in the allocated RBs as in 
Fig. 1. The received SNR has been considered in 
the 0–20 dB range. The shared corporate model 
has been built based on 8 CRs FL updates over 20 
iterations by averaging the weights of their CNN 
models (with two hidden layers). CRs participating 
in FL have diff erent channel models: Third Genera-
tion Partnership Project (3GPP) pedestrian (EPA), 
vehicular (EVA), and varying Doppler frequencies 
(in the range of 0.5–70 Hz). The corporate model 

has been used and tested by three other (tester) 
UEs that have not taken part in the FL algorithm, 
and have specific channel conditions and locally 
collected datasets. 

Moreover, the tester UEs have also tested the 
locally learned models of individual CRs by import-
ing them for sensing. The eff ects presented in Fig. 
3 have been obtained by averaging the testers’ 
results in these two sensing scenarios. The averag-
ing has been done over varying Doppler frequen-
cies of CRs (in the range of 2.5–55 Hz) and testers 
(in the range of 0.5–2.5Hz and 60 Hz–70 Hz) over 
the number of CRs, from which the models are 
randomly imported (only for basic sensing). 

Figure 3 shows that FL-based sensing performs 
better in building a universal model for data col-
lected with different channel conditions than 
models built using data specifi cally for one chan-
nel type. The discrepancy in the channel condi-
tions between CRs and testers explains this eff ect.

To summarize, the advantages of FL-based SS 
over the alternative SS schemes are the following:
1. It results in a higher quality of decisions 

(expressed in higher Pd and similar Pfa) than 
autonomous (by individual sensors) sensing, 
including classical SS by sensors in adverse 
locations and ML-base.

2. It allows for spectrum prediction as opposed 
to schemes not incorporating ML such as 
classical SS and CS.

3. It ensures the privacy of data as opposed to 
centralized ML since transmission of training 
data is not required.

4. It allows for building a universal model for all 
SUs, ready to be used by new incoming users. 
FL-based SS limitations hail from communica-

tion bottlenecks. The main challenge is decreasing 
the total number of communication rounds and 

FIGURE 1. Image representing typical detected signal energy in time and 
frequency RBs.
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FIGURE 2. Federated learning for spectrum sensing.
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transmitting small model updates. Moreover, the 
UEs participating in the training process may differ 
in terms of storage, computational ability, power 
supply, and network connectivity capabilities. 
Therefore, the FL SS approach must be resilient to 
UE failures and work with low participation. Final-
ly, the local dataset cannot be cleaned for missing 
values and irrelevant aspects.

FL-bAsed sensIng securIty AttAcks
FL-based SS involves sensing by individual CRs, 
ML on these devices, and creating a corporate 
model. Therefore, the attack surface for FL-based 
SS includes typical attacks on sensing, attacks on 
individual ML algorithms, and attacks on FL. 

AttAcks on ss In cr
Two classical SS attacks in the context of CR are 
primary user emulation (PUE) attacks and SS data 
falsification (SSDF) attacks. Both types aim to dis-
turb the spectrum observation and users’ access to 
the system [13]. When an attacker sends PU-like 
signals during the sensing time, it is referred to as a 
PUE attack and can prevent authorized CR access 
to the channels. A system’s regular operation could 
be disrupted by malicious attackers or selfish ones 
that desire to use the spectrum exclusively. PUE 
attacks can result in bandwidth wastage, denial of 
service (DoS), connection instability, and service 
degradation. Identifying malicious users is crucial 
for protection against PUE attacks.

Sending incorrect local SS reports to others, 
which causes wrong spectrum sensing decisions, 
is how an SSDF attack (referred to as a Byzantine 
attack) is launched in cooperative (also FL-based) 
SS. Attacks using SSDF are intended to reduce the 
probability of detection and disrupt the primary 
system’s operations. They may also aim to increase 
the false alarm probability to prevent access to 
spectral opportunities. Three categories of SSDF 
attackers can be identified:
1. A selfish SSDF (which aims to secure exclu-

sive access to the target spectrum by decep-
tively reporting high PU activity)

2. An interference SSDF (deceptively reporting 
low PU activity to cause a CR to interfere 
with the PU and other CR secondary users)

3. A confusing SSDF (randomly reporting true 
or false results on PU activity to prevent CRs 
from reaching consensus on the spectrum 
occupation 
A generative adversarial network (GAN) is 

an approach to generative modeling using deep 
learning methods that can create fake examples 

statistically representative of training data with-
out having access to the client’s confidential 
data (FL-nodes). Their operation is based on two 
sub-models: the generator model, which is trained 
to create new examples (which could potentially 
be considered as belonging to the original data-
set), and the discriminator model, which tries to 
categorize these examples as either real (from 
the domain) or fake (generated). The two models 
are trained together in a zero-sum game until the 
discriminator model is tricked about half the time, 
meaning the generator model generates plausible 
samples [5, 8]. Thus, GANs can be considered an 
intelligent method of PUE or SSDF.

Most contemporary defense strategies against 
attacks on SS make direct judgments based on 
the most recent data on SS and the reputation of 
the sensors [13].

AttAcks on ML
On one hand, ML can help manage the CR net-
work operation (e.g., by streamlining SS in the 
considered area); on the other, it opens the 
access network to a new kind of attack. The pos-
sible risks brought on by the use of ML in com-
munication networks may be roughly categorized 
into two groups: ML used to develop sophisticat-
ed assaults and ML as a target for attacks aimed 
at lowering the security and efficiency of ML algo-
rithms used in operating networks. The latter type 
of attack, which is the main focus of this article, 
is designed to cause ML systems to learn wrong 
models, make erroneous decisions, make false 
predictions, or reveal confidential information. 
Attacks of this kind can be exploratory if they 
target the inference phase and are causal if they 
target the learning phase (training, model devel-
opment). Depending on whether the attacker has 
complete, partial, or no knowledge of the train-
ing data, the training method, and its parameters, 
these attacks can be run in a white-box, gray-box, 
or black-box setting. The main types of attacks on 
ML algorithms are:
• Poisoning attacks
• Evasion attacks
• Inference attacks [8]
A study of techniques used to deceive or mislead 
an ML model is called adversarial machine learning 
(AML). AML can be used to attack or crash an ML 
system. It can also be used to defend against sophis-
ticated adversaries that utilize artificial intelligence 
(AI)/ML algorithms to damage a system [15].

The aim of poisoning attacks is to influence 
the learning outcomes by manipulating the data 
or the learning algorithm in the model develop-
ment phase (i.e., the training phase). The need for 
new model learning based on new data makes 
this attack attractive to attackers since it offers 
them a chance to influence the trained model 
through data injection, data manipulation, and 
logic corruption (a corruption of an algorithm or 
its learning logic).

An evasion attack is aimed at the inference 
stage based on the previously learned model. 
The attacker tries to bypass the model in the test 
phase by introducing small perturbations in the 
input values. An example of an evasion attack is 
the generation of a signal that mimics the trans-
mission of an authorized user at the authentica-
tion stage.

FIGURE 3. FL-based SS and basic SS performance.
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As a service in modern networks, ML algo-
rithms are susceptible to new attacks via applica-
tion programming interfaces (APIs). These kinds 
of attacks are called inference attacks (also called 
reverse engineering) and include:
• Model inversion attacks
• Model extraction attacks
• Membership inference attacks
An inversion attack aims to recover training data 
or their labels using the ML algorithm results. A 
model extraction (stealing) attack focuses on con-
structing a stolen (or surrogate) model replicating 
the functionality or the victim model’s perfor-
mance. The stolen model may have a different 
architecture than the victim model. It is based on 
the observation of the results of the prediction 
or the time of its implementation. A membership 
inference attack determines whether a sample 
was used to train a target model by observing the 
model’s results.

AttAcks on FL
Apart from the typical threats on ML, specific 
attacks can be observed in FL due to communica-
tion and collective operations to create an aggregat-
ed model. Moreover, attackers can take advantage 
of FL’s design benefit: local privacy that prevents the 
FL server from seeing the agents’ local data or train-
ing procedures. On the other hand, the collective 
operation of the legitimate CRs participating in FL 
may dominate the FL model creation process and 
prevent malicious nodes from negatively impact-
ing the model. Let us then give an overview of the 
attacks specific to FL-based sensing. 

Poisoning attacks targeting a subset of FL 
nodes can be launched as local models and 
re-trained with freshly collected data. By embed-
ding a well-crafted sample to data-pollute the FL 
process, an adversary may covertly affect the local 
training datasets to control the corporate mod-
el’s outcome. A particular case of this attack in 
FL-based sensing is an SSDF attack. In this case, 
the training data is falsified to reflect high, low, 
or random PU activity and impact the spectrum 
occupancy model. 

Model poisoning is related to Byzantine attacks 
where hostile agents can send arbitrary gradient 
updates to the FL server. In these situations, the 
adversarial objective is to induce a distributed 
implementation of the stochastic gradient descent 
algorithm to converge to completely ineffective 
or suboptimal models. The vulnerability of FL to 
adversaries that exploit the privacy these models 
are supposed to provide is investigated in [9]. 

By examining locally computed updates, infer-
ence attacks can extract meaningful information 
about the training dataset or the model itself. The 
types of inference attacks to which FL is vulner-
able include the ones described above for ML 
[5, 10]. However, in the case of FL, they may be 
launched against FL nodes (CRs) or the FL server. 

Usually, in FL, many communication messag-
es must be sent back and forth between the FL 
server and each FL node over the iterative learn-
ing process to reach convergence. Therefore, a 
non-secure communication route (usually wire-
less) is vulnerable to communication attacks. For 
example, a man-in-the-middle (MITM) attack can 
alter the exchanged messages. A DoS or signal-
ing storm attack would aim at the occupation of 

radio resources in the control channels by mas-
sive requests for access to the system. A PUE 
attack can also be considered a communication 
attack since it is based on transmitting a fake PU 
signal. Moreover, inference attacks are partially 
based on eavesdropping on the globally shared 
model parameters, thus requiring the decoding 
of encrypted messages. Additionally, communica-
tion constraints (e.g., limited bandwidth or radio 
resources) can undermine the FL system.

Another group of attacks involves creating fic-
titious local updates (e.g., using GANs) to obtain 
the shared global model without actually taking 
part in the FL process. The primary reasons for 
submitting false updates in free-riding (spoofing) 
attacks are to conserve local computing resourc-
es, compensate for the lack of necessary data, or 
avoid violating data privacy laws so that local data 
are unavailable for model training.

An illustration of the above-described attacks 
on FL-based spectrum sensing in the setup from 
Fig. 2 is presented in Fig. 4. 

FL-bAsed ss securIty MeAsures
To improve the resistance of FL techniques to 
adversarial attacks, an assessment of their vulner-
ability is needed first, and then the application of 
the appropriate defense measures. Several tech-
niques can prevent these attacks, and we briefly 
discuss them below. Moreover, several methods 
have been developed to counteract communica-
tion and spoofing attacks in radio access networks. 
It should be emphasized, however, that existing 
defense mechanisms resilient to attacks reviewed 
in the previous section are still imperfect; they can-
not fully protect FL-based SS methods for CR. The 
taxonomy of these attacks and countermeasures is 
provided in Fig. 5. 

Defenses against poisoning attacks (including 
SSDF) have been put forth and surveyed in many 
research papers (e.g., [11]). They can be roughly 
divided into input validation and robust learning. 
Before feeding the data into the ML model, input 
validation aims to clean the training (and retrain-
ing) data from malicious and anomalous samples. 
For instance, the reject on negative impact tech-
nique cleans data by eliminating examples that 
negatively affect learning outcomes [8]. The rel-
evant methods first create several micro-models 
trained on a disjoint fraction of input samples to 

FIGURE 4. Illustration of FL attacks in SS.
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accomplish data cleaning. The anomalous train-
ing data subsets are then omitted by combining 
the micro-models in a majority voting process. In 
contrast to input validation, robust learning uses 
robust statistics to create learning algorithms resis-
tant to contaminated training data [12].

Defense against evasion attacks includes 
adversarial training (training the model on a dataset 
augmented with adversarial examples), defensive 
distillation (training using the knowledge inferred 
from an ML model to strengthen its robustness), 
ensemble methods (combining multiple models to 
build a robust model), defensive GANs, and tech-
niques to counteract the detuning of the model. 
By projecting input samples onto the range of the 
GAN’s generator before feeding them into the ML 
model, defense GANs seek to clean them from 
adversarial perturbations. In other words, they seek 
to identify the sample that the GAN’s generator 
can produce most similar to the adversarial exam-
ple and send it as input to the ML model. 

Defenses against inference attacks related to 
the theft of the ML model and APIs of ML algo-
rithms include the following methods:

• Learning with differential privacy (DP) to pre-
vent disclosure of training data by making 
the model prediction independent of a sin-
gle input

• Homomorphic encryption, which enables the 
model to be trained on encrypted data, thus 
ensuring data privacy

• Limitation of sensitive information available 
through the API of the ML algorithm
DP in FL-based sensing aims to ensure that no 

sensing record in a given FL-node dataset can be 
meaningfully distinguished from the other records 
in a highly likely scenario. This technique’s prima-
ry method would be to add noise to the sensed 
PU’s time-frequency RB occupation or the detect-
ed energy before exchanging individual updates 
with the FL server. The statistical data quality 
loss caused by the noise introduced by each FL 
node should be negligible in comparison to the 
strengthened data privacy protection. Given the 
required quality of SS for the efficient operation of 
CRs, the DP may not be practical for FL-based SS.

The model compression technique called fed-
erated distillation is a method whereby a global-
ly shared model that has received the necessary 
training gradually imparts the essential knowledge 
to a local model. The concept of disseminating 
information alone rather than model parameters 
may be used to increase security while lowering 
communication costs and computation overhead.

Defenses against communication attacks, 
particularly in radio access networks, have been 
a research focus for many years. This is because 
of the open nature of the radio communication 
medium. A recent survey of relevant attacks and 
defenses in radio access networks is found in [14]. 
The critical defense strategies against jamming, 
spoofing, eavesdropping, altering communica-
tion messages, and DoS attacks are the follow-
ing: authorization and authentication procedures, 
data encryption, information-theory-based security 
algorithms, and anomaly detection mechanisms.

Anomaly detection methods can detect events 
that deviate from a typical pattern or activity by basic 
analysis and statistical analysis. Anomaly detection 
algorithms can spot problematic clients in FL envi-
ronments to detect poisoning attacks, free riders, 
PUE, jamming, DoS-type attacks, or incorrect model 
updates. If these anomalies can be identified, in 
some cases, they can also be eliminated. 

Figure 6 presents Pd and Pfa vs. the iteration 
number of an FL-based sensing algorithm. In our 
example simulation scenario, the PU signal is a 5G 
downlink transmission consisting of 5000 patterns 
in the form of 50  100 resource elements in fre-
quency and time (5000 RBs per pattern). The FL 
model is built based on three FL nodes: two eli-
gible ones and an attacker poisoning the training 
data by incorrect labeling (50 percent of RBs are 
labeled as occupied). Moreover, one addition-
al CR node, the tester node, tests the corporate 
model, although it does not participate in its cre-
ation. All nodes are characterized by randomly 
generated EVA channels, random Doppler fre-
quency in the 30–55 Hz range, and a mean SNR 
of 10 dB. The security algorithm implemented in 
the FL server detects the model update anom-
alies using its energy-sensing dataset to test the 
received models. Suppose the decisions on the 
spectrum occupation using a particular model do 

FIGURE 5. FL-based SS security attack (marked in red) and countermeasure (marked in blue) classification.
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not exceed a set percentage threshold of accor-
dance with the decisions using other models. In 
this case, the model is rejected; that is, it does 
not participate in creating a corporate model. In 
Fig. 6, the solid lines represent the fully protect-
ed FL SS resulting from adopting a relatively high 
decisions accordance threshold of 65 percent. 
The results represented by the dashed lines have 
been obtained for a less protective algorithm with 
a threshold of 55 percent. Note that the less pro-
tective algorithm accepted the attacker’s model in 
iterations 12, 13, 16, and 17, which increased Pfa. 
Thus, the spectrum opportunities were lost. The 
secure algorithm banned the attacker’s model. 

concLusIons
FL-based spectrum sensing is characterized by 
higher reliability than autonomous sensing. It 
allows for spectrum prediction as opposed to 
schemes not incorporating ML techniques. It also 
ensures the privacy of local data since only the 
transmission of local model parameters is required. 
Finally, it allows for building a corporate spectrum 
occupation model ready to be used by the new 
incoming users. However, FL-based SS can be a 
target of cyberattacks. The security threats origi-
nate from vulnerabilities of the applied ML and FL 
algorithms and the ubiquitous nature of the radio 
communication medium. In this article, we have 
summarized potential attacks on FL-based SS and 
indicated methods to detect, analyze, and defend 
against them. We have provided a taxonomy of 
attacks and defense methods.

Despite the capabilities of the defense meth-
ods against the attacks on FL-based SS discussed 
in this article, each has its limitations, and none 
of them can be a one-stop-shopping solution to 
combat all threats. Thus, given the potential of 
FL for spectrum sensing in cognitive radio, robust 
security mechanisms are of considerable interest 
for future CR systems. Here, we have presented 
some promising results of poisoning attack detec-
tion and defense against them in FL-based SS. 

Further research should be focused on bal-
ancing the power of FL-based SS and local data 
privacy benefits vs. wireless communication limita-
tions and diverse capabilities of FL agents (CRs). 
Security metrics such as the attack detection and 
mitigation probabilities should be studied for dif-
ferent local learning and FL algorithms to establish 
security standards for their application.
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