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Abstract—The classification of deformable protein shapes, based solely on their macromolecular surfaces, is a challenging problem in

protein–protein interaction prediction and protein design. Shape classification is made difficult by the fact that proteins are dynamic,

flexible entities with high geometrical complexity. In this paper, we introduce a novel description for such deformable shapes.

This description is based on the bifractional Fokker–Planck and Dirac–K€ahler equations. These equations analyse and probe protein

shapes in terms of a scalar, vectorial and non-commuting quaternionic field, allowing for a more comprehensive description of the

protein shapes. An underlying non-Markovian L�evy random walk establishes geometrical relationships between distant regions while

recalling previous analyses. Classification is performed with a multiobjective deep hierarchical pyramidal neural network, thus

performing a multilevel analysis of the description. Our approach is applied to the SHREC’19 dataset for deformable protein shapes

classification and to the SHREC’16 dataset for deformable partial shapes classification, demonstrating the effectiveness and

generality of our approach.

Index Terms—Classification, fractional, Fokker–Planck, Dirac–K€ahler, deep learning, wavelets, deformable shape, L�evy distribution,

macromolecular surface, multiobjective optimisation, partial shape, protein, non-Markovian process, pyramidal neural network

Ç

1 INTRODUCTION

PROTEINS perform many functions at the cellular level,
including metabolic reaction catalysis, DNA replication,

stimulus response, molecular transportation, and organism
structure [1]. Proteins consist of linear chains of amino acid
residues called polypeptides. The sequence of amino acids
in a protein, determined by genetics, distinguishes one pro-
tein from another. The amino acid sequence allows a protein
to form in a specific 3-D structure that determines its activ-
ity, known as a native conformation. Proteins may shift into
different conformations to perform their functions, making
some structures available for a reaction and hiding others.
The transitions between shape states are called conforma-
tional changes. The structure is generally stabilized by non-
local interactions, most commonly the formation of a
hydrophobic core, but also through salt bridges, hydrogen
bonds, disulfide bonds, and even posttranslational modifi-
cations [1].

As proteins are articulated or otherwise deformable,
research is actively under way to develop invariant descrip-
tions for such deformable shapes; various isometrically

invariant descriptions have been proposed [2]. An isometric
transformation, also known as a non-elastic deformation, is
a transformation that preserves geodesic distances between
points [2]. These transformations play a key role in shape
analysis since several deformations are either isometric as
with articulated objects, or quasi-isometric, as in the case of
proteins [3]. Here, the geodesic distance refers to the length
of the shortest path in between two points, with the path
entirely within the manifold defined by the shape. Most
procedures for isometrically invariant shape description
rely either on geodesic distance or on physics-based model-
ling [2]. When using physics-based modelling, the shape
under consideration is assimilated to a manifold over which
some physical field (such as heat) propagates according to
its associated physical process [4]. Analysing the field distri-
bution at various time intervals allows for the definition of
multiresolution features which, after dimensional reduc-
tion, constitute an invariant and, hopefully, informative and
discriminative descriptor (also known as signature) [5]. In
this paper, a new approach, based on the bifractional Fok-
ker–Planck and bifractional Dirac–K€ahler equations, is pro-
posed. The standard heat equation may be formulated in
terms of a Markovian–Gaussian random walk [6], which
means that the exploration, analysis and understanding of a
shape are constrained by the very nature of this walk. In
turn, this implies that only small steps are permitted (the
Gaussian exponentially suppresses large steps) and the
walk is memoryless [6]. Consequently, the exploration is
intrinsically local (due to the small steps) and non-contex-
tual (small steps and memoryless). Our objective is to per-
form a contextual analysis of a shape so as to overcome the
limitations mentioned above. Our method allows distant

� Eric Paquet is with National Research Council, Ottawa, ON K1A 0R6,
Canada. E-mail: eric.paquet@nrc-cnrc.gc.ca.

� Herna L. Viktor and Junzheng Wu are with the University of Ottawa,
Ottawa, ON K1N 6N5, Canada. E-mail: {hviktor, jwu220}@uottawa.ca.

� Kamel Madi is with the Umanis, Research and Innovation, 92300 Leval-
lois-Perret, France. E-mail: kmadi@umanis.com.

Manuscript received 1 Apr. 2021; revised 13 Nov. 2021; accepted 18 Jan. 2022.
Date of publication 27 Jan. 2022; date of current version 5 Dec. 2022.
(Corresponding author: Junzheng Wu.)
Recommended for acceptance by O. Winther.
Digital Object Identifier no. 10.1109/TPAMI.2022.3146796

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 1, JANUARY 2023 391

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-6515-2556
https://orcid.org/0000-0001-6515-2556
https://orcid.org/0000-0001-6515-2556
https://orcid.org/0000-0001-6515-2556
https://orcid.org/0000-0001-6515-2556
https://orcid.org/0000-0003-1914-5077
https://orcid.org/0000-0003-1914-5077
https://orcid.org/0000-0003-1914-5077
https://orcid.org/0000-0003-1914-5077
https://orcid.org/0000-0003-1914-5077
https://orcid.org/0000-0001-7017-2869
https://orcid.org/0000-0001-7017-2869
https://orcid.org/0000-0001-7017-2869
https://orcid.org/0000-0001-7017-2869
https://orcid.org/0000-0001-7017-2869
https://orcid.org/0000-0002-1267-3523
https://orcid.org/0000-0002-1267-3523
https://orcid.org/0000-0002-1267-3523
https://orcid.org/0000-0002-1267-3523
https://orcid.org/0000-0002-1267-3523
mailto:eric.paquet@nrc-cnrc.gc.ca
mailto:hviktor@uottawa.ca
mailto:jwu220@uottawa.ca
mailto:kmadi@umanis.com


points to be put into relation by large steps while the explo-
ration proceeds according to a non-Markovian process (i.e.
with memory). The aim is to establish an interrelation
between more distant simplices (vertices, edges, triangles),
as well as a geometrical context [7]. Indeed, the context is
lost when steps are too small, or if intermediary steps are
not remembered. Such an objective may be achieved by
replacing the Gaussian transition probability with a L�evy
distribution [6] and by substituting the temporal derivative
with the fractional one. The result of these substitutions is
the bifractional Fokker–Planck equation. The bifractional
Fokker–Planck equation, like its non-fractional counterpart,
is restricted to real scalar fields such as heat. If more com-
plex fields are employed, complementary features may be
extracted which either are inaccessible or at least inade-
quately probed by heat. For instance, heat may be substi-
tuted by probability whose propagation is described by the
Schr€odinger equation, from which a shape description may
be inferred: the celebrated wave kernel signature (WKS) [8].
We propose complementing the Fokker–Planck equation
using the Dirac-K€ahler equation [9], [10], which is solved in
terms of quaternions [11], a generalisation of complex num-
bers. Quaternion fields anticommute and interfere, as
opposed to heat fields which do not. Therefore, their realms
are distinct and complementary. In the present work, the
differential operators associated with the Fokker–Planck (de
Rham) and the Dirac–K€ahler equations are expressed in
terms of discrete differential calculus [12]. As for standard
discrete operators, such as the Laplace–Beltrami operator
[13], they constitute an approximation of the continuous
operator but, in contrast to the latter, they are topologically
exact which means that topological features, such as holes,
and geometrical identities, such as Gauß’s theorem [12]
remain entirely valid. Discrete differential operators are
defined solely in terms of discrete geometry. They involve,
for instance, the incidence matrices associated with the vari-
ous simplices: vertices, edges, and triangles. On the other
hand, the Laplace–Beltrami operator is approximated with
finite element methods, which inherently involves interpo-
lations [13]. Such approximations may alter or even destroy
topological features. Since topology is of paramount impor-
tance for shape description, we employ discrete differential
calculus to define the discrete de Rham and Dirac–K€ahler
operators. Classification is performed with a new multireso-
lution and multiobjective deep neural network. Its architec-
ture is inspired by the pyramid neural network [14], which
is an extension of the Siamese neural network [15], but dif-
fers in many fundamental ways. For instance, the coupling
between the two branches is only partial. Moreover, each
branch is characterised by a block architecture which per-
forms a multiresolution analysis of the input. A loss or cost
function is associated with each resolution level. As a result,
the learning process involves multiobjective or Pareto sto-
chastic optimisation [16] which ensures that classification is
properly performed at each resolution level. In addition, a
learnable attention mechanism selects the best combination
of features for classification from the shape description.

Our most important contributions are:

� a topologically exact formulation of discrete differen-
tial operators in terms of discrete differential calculus

� the replacement of the Laplace–Beltrami operator on
an undirected graph by the de Rham operator on a
directed graph

� a L�evy random walk and a non-Markovian fractional
time derivative for shape contextual analysis with
memory

� the bifractional Fokker–Planck equation, both for
vertices and edges, for shape description

� the introduction of the Dirac–K€ahler and a quater-
nion fields for shape description, and

� amultiobjective deep neural network for classification.
We deployed our system for macromolecular shape clas-

sification as described in the SHREC’19 Protein Shape
Retrieval Context, some of which are illustrated in Fig. 1,
and compared our results to the state of the art [17]. The
SHREC’19 dataset consists of 5,298 proteins extracted from
211 entries from the Protein Data Bank [18]. They are classi-
fied according to the Structural Classification of Proteins-
extended (SCOPe) [19] in order to evaluate our system’s
performance in terms of conformation retrieval. The task is
made difficult by the fact that protein deformability is due
both to their multiple degrees of freedom, and also to inter-
action with the surrounding environment: two proteins
with a same conformation may not have the same shape.

The paper is organised as follows. Section 2 reviews
background material and introduces differential forms, dis-
crete differential calculus and the de Rham operator. The
fractional Fokker–Planck equation is derived in Section 3,
from the L�evy random walk. Non-Markovian processes
(with memory) and fractional time derivatives are intro-
duced in Section 4. This is followed, in Section 5, by the
bifractional Fokker–Planck equation and its solution in
terms of the heat kernel. The bifractional Dirac–K€ahler
equation, the Dirac-K€ahler kernel, and the bifractional
Planck–Dirac signature are described in Section 6. Bifrac-
tional Planck-Dirac wavelets are introduced in Section 7.
The numerical evaluation of the bifractional Planck-Dirac
wavelet signatures is addressed in Section 8. Section 9
describes a new multiresolution and multiobjective pyra-
mid deep neural network for proteins classification. Our
experimental results are reported in Sections 10 and 11, and

Fig. 1. Macromolecular surfaces sampled from the SHREC’19 dataset.
Both the surface and the underlying mesh (graph) are shown.Cipj refers
to protein j belonging to class i.
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Section 12 concludes the paper by identifying promising
directions for future work.

2 BACKGROUND

2.1 Computer Vision

Non-Euclidean, geometrical structures, such as manifolds
and graphs, are pervasive in numerous fields such as social
media [20] and computer vision [21], [22], [23], [24]. Usually,
3D shapes are represented by triangular meshes or graphs
which comprise vertices, edges, and faces (mostly triangles).
This section briefly reviews various approaches for describ-
ing and classifying 3D shapes. The numerous feature-based
approaches [25], [26], [27], [28], [29] include spectral meth-
ods which employ the eigenvalues and eigenvectors associ-
ated with a graph operator [30] such as the Laplace–
Beltrami operator [31]. The heat kernel signature (HKS) [32]
and the wave kernel signatures (WKS) [33] are among the
best known spectral 3D shape descriptors. They provide an
intrinsic (no external reference frame), isometrically invari-
ant description which is robust against perturbations. The
HKS characterises heat diffusion: it is governed by the heat
equation, while WKS describes probability propagation, as
determined by the Schr€odinger equation. Other HKS var-
iants have been proposed such as scale-invariant HKS (SI-
HKS) [34] and volumetric HKS [35] [36]. An optimal heat
kernel was proposed in [37], aimed at minimising the ratio
between the diffusion distances associated with correspond-
ing and non-corresponding points respectively. A generali-
sation of HKS and WKS was proposed by [38]. An optimal
heat kernel was obtained by minimizing a distance function
which simultaneously minimised and maximised the dis-
tances between the features associated with corresponding
and non-corresponding points between two objects. This
method was further improved by [39] by employing a
dense, deep neural network for optimisation. Nonlinear
mapping was used in order to address non-isometric defor-
mations. In [40], spectral descriptors, namely HKS and
WKS, were matched with the help of a Siamese neural net-
work. The network applied a data fusion process to both
signatures while maximising and minimising their inter-
class and intra-class distances, respectively. In [41], descrip-
tors were learned, with Bayesian techniques, from the prob-
ability density function associated with the normalised
eigenvectors of the Laplace–Beltrami operator while ensur-
ing dimensionality reduction. Finally, convolutional neural
networks were generalised to Riemannian manifolds.
Indeed, the absence of translation invariance inherent to
Riemannian geometry was addressed by either employing
the spectral theorem and graph Fourier transform, or by
defining a local tangent space in which the convolution
could be performed with the standard approach [36], [42],
[43], [44], [45]. Graphs provide a powerful and flexible
modelling tool for representing shape properties, as well as
for capturing the interrelations between substructures. The
specific representation is determined by the motivating
application. Indeed, vertices may be associated to points, to
geometrical regions, or to any substructure resulting from a
segmentation or decomposition process while the edges
describe topological relationships between the vertices such
as proximity and adjacency. Various graph comparison

techniques have been proposed, either focusing on the spe-
cific nature of the graphs, or addressing specific applica-
tion-related issues [46]. For example, 3D shapes may be
converted to skeletons via a thinning procedure [47]. It is
also possible to use a mapping function directly on a mani-
fold, in order to generate a Reeb graph [48]. A shape may
also be divided into substructures using segmentation tech-
niques; interrelations between elements resulting from seg-
mentation or the decomposition can then be represented by
a graph [49]. Other graph based methods, such as [50], [51],
[52], [53], are based on an approximation of the Graph Edit
Distance, through new approaches for decomposing a 3D
shape mesh into a set of substructures called triangles-stars.
The resulting triangles-stars are then subsequently matched
using an assignment algorithm such as the Hungarian algo-
rithm in [50], [51], [53] and the stable marriage algorithm in
[52]. Graph embedding techniques unify and combine com-
plementary properties associated with statistical and struc-
tural methods [54], [55]. Graph embedding techniques map
graphs onto a vector space, thus representing graphs with a
set of vectors. Graph embedding techniques can be divided
into two different classes [56]. The first class maps the graph
vertices (or substructures) onto a set of points in a vector
space, associating a vector representation to each vertex,
where similar vertices (or substructures) are mapped to
nearby points in the vector space [57]. The second class
maps whole graphs onto points in a vector space, where
similar graphs correspond, in the vector space, to neigh-
bouring points. Among the most salient works are: [58] for
isometric embedding; [59], [60] for spectral embedding;
[61], [62], [50], [51] for prototype-based embedding. Several
strategies for selecting the graph prototypes have been pro-
posed, such as [63], [51]. Indeed, the authors of [51] propose
a new graph embedding-based approach for addressing the
problem of classifying deformable 3D protein shapes. Pro-
teins functions are strongly constrained by their shape [64]
making shape classification an important task. For instance,
the importance of shape complementarity for macromolecu-
lar docking is well known [65] due to the importance of
macromolecular docking in drug and antibody design. The
proposed approach defines a metric space using graph
embedding techniques, where each object is represented by
a set of selected prototypes. The authors propose new
approaches for prototype selection based on a multi-criteria
algorithm, and feature reduction. Classification is per-
formed with a naı̈ve Bayes classifier. For this, we will
require discrete differential calculus and the de Rham
operators.

2.2 Discrete Differential Calculus

In order to be applicable to meshes and tessellations, the de
Rham operator [12], [13], which is a generalisation of the
Laplacian, must be discretised: the reason being that three-
dimensional shapes are represented by a finite number of
vertices, edges and triangles and, as a result, discrete opera-
tors must follow the same representation. Most common
approaches for discretisation rely either on finite difference
or finite element methods [13]. In this section, we introduce
a discrete formulation of the de Rham operator, based on
discrete differential calculus [12]. Our objective is to define
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the de Rham operator from only the discrete vertices, edges
and triangles forming a macromolecular surface. Our
method differs from other approaches, such as finite differ-
ent and finite element methods, by the fact that no interpola-
tion is required: the operators are defined solely by the
discrete simplices (vertices, edges, triangles, etc.) without
any interpolation. The main advantage of this approach is
that topological properties are preserved, which it is not the
case for methods based on interpolation [12]. Indeed, with
discrete differential calculus, it is possible to formulate the
de Rham operator in such a way that the topological proper-
ties (for instance, the number of holes) and related theorems
are enforced at all times. Among these properties are
Stokes’s theorem, Gauß’s theorem, as well as topological
invariants such as the Euler characteristic:

x ¼
Xp
i¼1
�1ð Þibi ¼ 2� 2g; (1)

where bp, the Betti number, corresponds to the number of
connected p-simplices [12]. For instance, b1 is the number of
connected vertices, b2 is the number of connected triangles,
and so forth. In order to introduce discrete differential cal-
culus, some notions of differential geometry are required.
For an exhaustive review, the reader is referred to [12]. In
differential geometry, the Laplacian or the de Rham opera-
tor is given by

Df ¼ dd� þ d�dð Þf; (2)

where d is the exterior derivative, d� is the codifferential,
and f is a k-form (a totally antisymmetric function). For-
mally, the exterior derivative and the k-form are defined as

df ¼
@fm1...mk

@xm
dxm ^ dxm1 ^ . . . dxmk ; (3)

where fm1...mk
is a k-form (a 0-form being a scalar function)

and ^ is the exterior product. The indices associated with
the k-form are always antisymmetric while the exterior
product corresponds to an antisymmetrisation of the indices
associated with the differential elements:

fm1...mk
� f m1...mk½ �

dxm ^ dxm1 ^ . . . dxmk¼^ dx m½ dxm1 . . . dxmk�; (4)

where ½� is the antisymmetrisation operator e.g. xm1 ; xm2½ � ¼
1
2 xm1xm2 � xm2xm1ð Þ.

The codifferential, for its part, is defined as

d� � d ¼ �1knþnþ1 � d ; (5)

where � is the dual operator, given by

�vm1...mn�k ¼
1

k!
vn1...nk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGj j

p
"n1...nkm1...mn�k ; (6)

where "n1...nkm1...mn�k is the Levi-Civita symbol, which is
totally antisymmetric with "1;2;...n¼^ 1, and G ¼ gmn

� �
is the

Riemannian metric tensor [12]. In a nutshell, the dual opera-
tor transforms a differential form into a tensor and vice
versa. In the case of a 0-form (scalar function), the de Rham
operator reduces to

D ¼ d�d; (7)

The correspondence in between differential calculus and
discrete differential calculus lies in the incidence matrix
[12]. The latter is defined as

NT
p

� �
ij
¼

0 , sp�1
j =2 @sp

i

1 , O sp�1
j

� �
¼ O sp

i

� �
�1 , O sp�1

j

� �
¼ �O sp

i

� �

8>>><
>>>:

; (8)

where s
p
i is a p-simplex with label and orientation O. The

incidence matrix implicitly implies that the underlying
meshes, tessellation or graphs are directed, implying
directed graphs whose simplices have well-defined direc-
tions. This is to be put in contrast with most current
approaches, based on the Laplacian, in which the graphs
are undirected. The directions may be determined by the
underlying geometry, labelling, or physical properties. For
instance, the triangles’ orientations are determined by the
directions of the normal vectors: a positive orientation cor-
responds to an outwards-pointing normal vector. Digraphs
thus allow a richer, more informative description of the sur-
face, making it possible to distinguish between cavities and
protuberances, features that play critical roles in protein
interaction [66]. Such concavity or convexity can be ascer-
tained directly from the triangles’ normal vectors.

Discrete differential operators may be expressed in terms
of the incidence matrix. Indeed, it may be demonstrated
[12] that the transpose of the incidence matrix corresponds
to the discrete differential operator:

dp ¼ Np; (9)

Consequently, the discrete codifferential [12] is given by

d�p � d) Np

� �� ¼ �NT
p � ¼ Gp�1N

T
pG
�1
p ; (10)

whereGp is the metric associated with the p-simplex. In this
paper, the metric associated with the edges is defined as

G1½ �ij ¼ exp �
xi � xj

� �T
xi � xj

� �
a

 !
; (11)

where xi corresponds to the Cartesian coordinates of a ver-
tex labelled with index i and where a is a scaling parameter
representative of typical edge length. On the other hand,
the metric associated with the vertices is defined as

G0½ �ii ¼
1

8

X
~2N ið Þ

A ~ð Þ; G0½ �ij ¼ 0 8i6¼j; (12)

where A ~ð Þ is the area of a given triangle while NðiÞ corre-
sponds to the set of triangles belonging to the 1-ring neigh-
bourhood of vertex i. From the previous results, it follows
that the discrete de Rham operator is given by

D � dd� þ d�d) Lp ¼ NpN
�
p þN�pþ1Npþ1: (13)
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For the vertices (0-simplices),

L0 ¼ N0N
�
0 þN�1N1 ¼ G0N

T
0G
�1
1 N0: (14)

while, for the edges (1-simplices), the de Rham operator
reduces to

L1 ¼ N1N
�
1 þN�2N2

¼ N1G0N
T
1G
�1
1 þG1N

T
2G
�1
2 N2: (15)

The latter is also known as the vectorial Laplacian. In the
next section, the (continuous) fractional Fokker–Planck
equation and the fractional de Rham operator are intro-
duced by means of the L�evy random walk, which will sub-
sequently allow us to establish relationships between more
distant regions on the macromolecular surface These rela-
tionships are important as they strongly constrain protein
functionality and shape.

3 L�EVY RANDOM WALK AND FRACTIONAL

FOKKER–PLANCK EQUATION

The next steps of our analysis require the concepts of
’random walk’ and ’random process’. According to the Kol-
mogorov–Chapman formula [6], if the transition probability
between two adjacent (connected by an edge) vertices i and j
is known, the transition probability between two remote ver-
ticesmay be obtained from a path integral over the former:

P x; t x0; t0jð Þ

¼
YN�1
j¼0

Z
P xjþ1; tjþ1 xj; tj

		� �
dxjþ1: (16)

Most methods employ the Gaussian transition probability
which exponentially suppresses large transitions, so the
random walk explores only a relatively small neighbour-
hood around each point. In the present work, the neigh-
bourhood is extended by considering heavy-tailed
transition probability distributions for which large transi-
tions are more likely. We have chosen the L�evy or stable dis-
tribution [6] as it has proven itself effective in modelling the
large transitions required for describing spatial relations
between distant regions on the molecular surface [67].
Indeed, the suppression of large steps by the Gaussian dis-
tribution is exponential while that by the L�evy distribution
is polynomial. Large steps are required to relate distant or
disconnected regions; the L�evy distribution being a general-
isation of the Gaussian distribution, it encompasses the lat-
ter [6]. This distribution does not have a closed (analytic)
form, but its characteristic function — its Fourier transform
— does. Employing the L�evy distribution for the transition
probability, the Kolmogorov–Chapman formula becomes:

PL x; t x0; t0jð Þ ¼ 1

2p
lim

N !1
~t! 0

Z x;tð Þ

x0;t0ð Þ

YN�1
j¼0

dxj

Z 1
�1

dk exp ik xjþ1 � xj

� �� �
exp �~t ga kj jað Þ: (17)

The integral in Eq. (17) corresponds to the characteristic
function. As in Eq. (16), the path integral is taken over all
possible paths. The parameter a 2 0; 2½ �corresponds to the

exponent of the heavy-tailed power law: the smaller the
exponent, the more likely large transitions are while, for a
value of two, the distribution reduces to the Gaussian or
normal distribution.

The stable distribution is a solution of Eq. (18), the inho-
mogeneous fractional Fokker–Planck equation [6]:

@

@t
�R

a

x


 �
PL x; t x0; t0jð Þ ¼ d x� x0ð Þ d t� t0ð Þ; (18)

where d t� t0ð Þis the Dirac delta function, PL x; t x0; t0jð Þis the
transition probability, and R

a

x is the fractional Riesz deriva-
tive [6] which is defined as

Ra
x � PLðx; tjx0; t0Þ¼^

b

p
Gðaþ 1Þ sin

�pa
2

�
�
Z 1
�1

PL x0; t x0; t0jð Þ
x0 � xj j1þa

dx0: (19)

The fractional derivative may be defined in a more intuitive
way via the Fourier transform. Indeed, it is well-known from
Fourier analysis [68] that the fractional gradient operator may
be obtained by raising the Fourier frequencies by the fractional
exponent and then taking the inverse Fourier transform:

ra	 ¼ � 1

2p

Z
dnk exp ikxð Þ kk ka	 (20)

As a result, the (continuous) fractional Laplacian becomes:

Da=2 	 ¼ � 1

2p

Z
dnk exp ikxð Þ kk ka	 (21)

These operators have, to some extent, a relationship with
fractal geometry. Indeed, it may be demonstrated [6] that
the fractal dimension associated with the fractal de Rham
operator is given by

dF ¼ a : 1 < a 
 2: (22)

Fractal operators are particularly well suited to characterise
multiscale self-similarity [69], [70] which is commonplace in
highly complex shapes [69], [70]. Outside this range, how-
ever, the operator is not fractal. Some macromolecular sur-
faces present highly complex substructures that may be
fractal but, in general, the shape is not [71].

In the next section, the concept of fractional derivate is
extended to time in order to obtain non-Markovian processes,
i.e. random walks with memory, as opposed to the memory-
less, non-fractional time derivatives. Our working hypothesis
is that a random walk with memory should allow for a more
thorough and informative exploration of a shape, by exploit-
ing the important information remembered during explora-
tion, hence accounting for the substructure interrelations that
are of paramount importance for protein description, but
which are readily lost duringmemoryless randomwalks.

4 FRACTIONAL TIME DERIVATIVE AND

NON-MARKOVIAN PROCESS: THE BIFRACTIONAL

FOKKER–PLANCK EQUATION

Non-fractional time derivatives are memoryless; therefore,
the evolution process associated with a trajectory is purely
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Markovian [6]. In the present work, it is assumed that a ran-
dom walk is more informative if the information associated
with trajectories is not discarded. Such non-Markovian
behaviour may be obtained by introducing a fractional time
derivative into the inhomogeneous fractional Fokker–
Planck equation to derive the bifractional Fokker–Planck
equation:

Db
t u x; tð Þð Þ � u x; t0ð Þ t�b

G 1� bð Þ � Da=2 u x; tð Þ

¼ d x� x0ð Þ d t� t0ð Þ; (23)

where Db
t is the fractional time derivative. The latter is

defined from the Riemann–Liouville fractional integral [6]:

Db
t f tð Þð Þ¼^ 1

G �bð Þ

Z t

�1

f tð Þ
t� tð Þ1þb

dt: (24)

The second term in the left member of Eq. (23) is required
for consistency. The temporal fractional derivative is charac-
terised by its fractional exponent b which is also known as
the Hurst exponent:

H ¼ b� 1=2: (25)

Without a temporal fractional derivative, the temporal evo-
lution is a Markovian process and, therefore, memoryless.
On the other hand, employing a fractional temporal deriva-
tive makes the evolution process non-Markovian, with a
memory. As a result, the temporal variance is not infinite
and may be estimated by

u tð Þ � u 0ð Þð Þ2
D E
’ 4k t2b�1

b G bð Þ2 2F 1 1; 1� b; 1þ b : 1ð Þ; (26)

where 2F 1 is the hypergeometric function [72], a function of
only the fractional exponent b.

From the variance, one may distinguish two regimes: the
persistent regime b < 1=2ð Þ and the anti-persistent
regime b > 1=2ð Þ. Under the persistent regime, the evolu-
tion remains strongly correlated over time while, for the
anti-persistent, it does not. When b ¼ 1=2 , the variance is
infinite and the process becomes Markovian i.e. memory-
less. The temporal variance is associated with the temporal
fractional derivative. As stated in Eq. (26), it depends solely
on the time and the fractional exponent b. The variance
becomes infinite when the fractional exponent is equal to
0.5 irrespectively if the surface is tessellated or not. The vari-
ous regimes associated with the fractional operators are out-
lined in Table 1.

In the next section, the bifractional heat kernel and the
bifractional Fokker–Planck signature (descriptor) are intro-
duced to describe the shapes of deformable proteins.

5 DISCRETE BIFRACTIONAL FOKKER-PLANCK

EQUATION AND KERNEL

The solution of the homogeneous heat equation is called the
heat kernel [68]. Accordingly, the solution of the homoge-
neous bifractional Fokker–Plank equation is called the
bifractional heat kernel because it requires two fractional

parameters, the temporal fractional exponent and the L�evy
fractional exponent, for its definition. The principal interest
of the heat kernel lies in the fact that it contains all of the
necessary information about heat propagation [68] to define
the shape description. This may be explained by the fact
that any solution of the inhomogeneous heat equation may
be expressed in terms of the heat kernel [68]. The heat kernel
is, by definition, the solution of the homogeneous Fokker–
Planck equation:

@KD tð Þ
@t

¼ DKD tð Þ )

KD tð Þ ¼ exp �Dtð Þ: (27)

As a result of both Eq. (27) and the spectral theorem [68], the
heat kernel may be expressed in terms of the eigendecom-
position of the de Rham operator:

KD tð Þ ¼
X1
k¼0

fD;k xð Þ f�1D;k x0ð Þ exp �t �D;k

� �
; (28)

where �D;k

� 1
k¼0 and fD;k xð Þ

� 1
k¼0are the eigenvalues and

eigenvectors associated with the non-fractional de Rham
operator:

DfD; k xð Þ ¼ �D;kfD;k xð Þ: (29)

Similarly, the bifractional heat kernel is the solution of the
homogeneous bifractional Fokker-Planck equation:

Db
t KD;a;b tð Þ � t�bKD;a;b tð Þ

G 1� bð Þ ¼ Da=2 KD;a;b tð Þ )

KD;a;b tð Þ ¼ Eb � tb Da=2
� �

; (30)

where

Eb xð Þ¼^
X1
k¼0

xk

G bkþ 1ð Þ; (31)

is the Mittag–Leffler function (a generalisation of the expo-
nential function). The bifractional heat kernel reduces to

KD;a;b tð Þ ¼
XN
k¼1

fD;k f
�1
D;k Eb � tb �

a=2
D;k

� �
; (32)

TABLE 1
Various Regimes Associated With the Fractional Operators

Regime a(de Rham) b(temporal)

L�evy random walk 0 < a 
 2
Fractal random walk 1 < a 
 2
Superdiffusion a < 2
Diffusion (Gaussian) a ¼ 2
Subdiffusion a > 2
Persistent process (non-
Markovian)

b < 1=2

Markovian process
(memoryless)

b ¼ 1=2

Anti-persistent process (non-
Markovian)

b > 1=2

Sombrero wavelets
(admissibility conditions)

1=2 < a 
 2 1=2 
 b 
 1
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once the spectral decomposition is applied to the de Rham
operator.

The discrete, inhomogeneous, fractional Fokker–Planck
equation is obtained by replacing the continuous de Rham
operator by its discrete counterpart:

Db
t u� u0

t�b

G 1� bð Þ � Lp

� �a=2
u ¼ I d t� t0ð Þ; (33)

where Iis the identity matrix. As for its continuous de Rham
operator, the discrete fractional de Rham operator has a
spectral decomposition:

Lp

� �a=2 ¼ FLp L
a=2
Lp

F�1Lp

FLp fLp;1 . . . fLp;n

						h i
; L

a=2
Lp
¼ diag �

a=2
Lp;1

; . . . ; �
a=2
Lp;n

� �
; (34)

where FLp is the matrix of eigenvectors (in which the eigen-
vectors each constitute a column) while LLp is the corre-
sponding eigenvalues matrix, in which the eigenvalues are
along the diagonal. As a result, the bifractional heat kernel
becomes:

KD;a;b tð Þ ¼ FLp Eb �tbLa=2
Lp

� �
F�1Lp

; (35)

where the Mittag–Leffler function is applied to the diagonal
elements only. In the next section, the bifractional Dirac–
K€ahler equation and the bifractional Planck–Dirac signature
are introduced for deformable macromolecular shape
description.

6 BIFRACTIONAL DIRAC–K€AHLER EQUATION AND

BIFRACTIONAL PLANCK–DIRAC SIGNATURE

We propose employing, in addition to the Fokker–Planck
equation, the Dirac–K€ahler equation for shape analysis. The
notoriously complex and intricate shapes of proteins can be
better targeted by combining multiple and complementary
strategies. The Dirac–K€ahler operator [73] is defined as

D � d� d: (36)

In essence, this operator is the square root of the de Rham
operator:

D2 ¼ d� dð Þ2 ¼ ddþ dd ¼ D: (37)

The Dirac–K€ahler equation [10] is defined as

@C

@t
¼ d� dþ 1ð ÞC ¼ Dþ 1ð Þ C: (38)

This equation is completely distinct from the Fokker–Planck
equation. Indeed, its solution is expressed in terms of qua-
ternions [9], [10], [74], unlike the real solution of the Fokker–
Planck equation. Quaternions are a generalisation of com-
plex numbers, characterised by the following properties:

q ¼ aþ biþ cjþ dk,

i2 ¼ j2 ¼ k2

ij ¼ k ji ¼ �k
jk ¼ i kj ¼ �i
ki ¼ j ik ¼ �j

8>>><
>>>:

;

a; b; c; d 2 R; i; j; k 2 Q:

(39)

In contrast to real numbers, quaternions do not commute
under any arithmetic operation, and may interfere and
interact. Therefore, instead of characterising a shape by ana-
lysing the non-interacting heat flow, the Dirac–K€ahler equa-
tion propagates a field of non-commuting and interacting
quaternions [10] . Quaternions are computationally expen-
sive, but that cost may be circumvented by expressing them
in terms of forms [9], [10]. For instance, the Dirac–K€ahler
field on a shape may be expressed as a sum of differential
forms (totally antisymmetric functions) over the simplices:

C ¼ c xð Þ þ cm xð Þdxm þ 1

2!
cmn xð Þdxm ^ dxn: (40)

As for the discrete Fokker–Planck equation, the discrete
Dirac–K€ahler equation [75], [76] may be obtained by replac-
ing the exterior derivative and the codifferential by their
discrete counterparts as defined by Eqs. (9) and (10):

@Cp

@t
¼ Dp þ Ip
� �

Fp )

@Cp

@t
¼

1 � N1ð Þ�

N1

1 � N2ð Þ�

N2 1

. .
.

1 � Np

� ��
Np 1

2
6666666664

3
7777777775
Cp

(41)

where

Cp ¼ cs1
; . . . ;csp

h iT
: (42)

For macromolecular surfaces, the Dirac–K€ahler equation
reduces to

p ¼ 2)
@C2

@t
¼ D2 þ I2ð Þ C2 )

@C2

@t
¼

1 �G0N
T
1G
�1
1 0

N1 1 �G1N
T
2G
�1
2

0 N2 1

2
64

3
75C2; (43)

where the Dirac–K€ahler field consists of the forms associ-
ated with the vertices, the edges and the faces:

C2 ¼ cV ;cE;cF½ �T ; C2 2 R Vj jþ Ej jþ Fj jð Þ (44)

As a result, the Dirac–K€ahler operator is isomorphic to

D2 ffi
0 V �E 0

E � V 0 E � F

0 F � E 0

2
64

3
75;

D2 2 R Vj jþ Ej jþ Fj jð Þ� Vj jþ Ej jþ Fj jð Þ
(45)

The fractional Dirac–K€ahler equation is obtained in the
same way as the Fokker–Planck equation:

Db
tCp ¼ Dp

� �a þ Ip
� �

Cp: (46)

As for its Fokker–Planck counterpart, the fractional Dirac–
K€ahler operator is obtained by taking the fractional power
of its spectral decomposition:
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Dp

� �a ¼ QDL
a
DQ

�1
D : (47)

It follows immediately that the discrete bifractional Dirac–
K€ahler kernel has the form:

KDp;a;b tð Þ ¼ FDp Eb �tbLa=2
Dp

� �
F�1Dp

: (48)

We propose a new isometrically invariant shape descriptor
or signature, called the bifractional Planck–Dirac signature
(BPDS), which generalises the heat kernel signature [3]. It is
defined as

KL;D ¼^
[pmax

p¼pmin

[2
a> 1=2

[1
b¼1=2

[tmax

t¼tmin

H diag KLp;a;b tð Þ
� �� �35

[ [p0max

p0¼p0min

[2
a> 1=2

[1
b¼1=2

[tmax

t¼tmin

H diag KDp0 ;a;b tð Þ
� �� �2

4
3
5

(49)

where diag indicates the diagonal element of the kernels, while
H is their probability distribution function (PDF). The BPDS is
essentially a concatenation of the PDFs of the diagonal element
of the bifractional heat kernels and the Dirac–K€ahler kernel for
a discrete set of times and fractional exponents. It is important
to note that the descriptors are entirely based on geometric
information, meaning that no physicochemical properties are
employed whatsoever. We plan to explore the benefits of con-
currently employing geometric information andphysicochem-
ical properties in future research. As reported in [68], the
information present in the heat kernel is entirely contained
within its diagonal. As a result, the computational complexity
is reducedwithout information loss.

Wavelets have been successfully applied in multiresolu-
tion invariant description of deformable shapes [77], [78],
[79], [80], [81]. In the next section, bifractional wavelets are
introduced in order to generalise Eq. (49) for multiresolu-
tion analysis. Indeed, multiresolution analysis is often nec-
essary to describe highly complex shapes [82] such as
protein surfaces.

7 BIFRACTIONAL PLANCK–DIRAC WAVELETS

Wavelets have compact supports, meaning that they are
localised in both the spatial and the spectral domain; there-
fore, they are especially suitable for multiresolution shape
analysis [77], [78], [79], [80], [81]. The continuous sombrero
(Mexican hat) wavelet is defined as the temporal derivative
of the kernel (either heat or Dirac–K€ahler) [68]. As a result,
the bifractional Fokker–Planck wavelets and the bifractional
Dirac–K€ahler wavelets are given by

�Op;t x; yð Þ � � @

@t
KOp tð Þ

¼
Xn�1
k¼0

�̂Op;t kð Þ fOp;k xð ÞfOp;k yð Þ (50)

where �Op;t x; yð Þ is the wavelet in the spatial domain, while
�̂Op;t kð Þ is its counterpart in the Fourier or spectral domain
[68]. The operator Opstands either for the fractional de
Rham operator, or the fractional Dirac–K€ahler operator. It
follows from Eq. (50) that

�̂Op;t kð Þ ¼ �
@Eb � tb �a

Op;k

� �
@t

)

�̂Op;t kð Þ ¼ t�1þb�a
Op;k

Eb;b �tb�a
Op;k

� �
; (51)

where Ea;b xð Þ is the generalised Mittag–Leffler function [6]:

Ea;b xð Þ ¼
X1
k¼0

xk

G bkþ að Þ;
^

(52)

Consequently, our approach may be extended to wavelets
through a simple substitution:

Eb � tb �
a=2
Op;k

� �
7!

t�1þb�a
Op;k

Eb;b �tb�a
Op;k

� �
: (53)

When this substitution is performed in Eq. (49), one obtains
the Planck–Dirac wavelet signatures (BPDWS) which entail
a bifractional multiresolution shape description. This signa-
ture, described by both Eqs. (49) and (53), is employed in
our framework for macromolecular shape description.

Wavelets must satisfy an admissibility condition [68].
Indeed, their Fourier spectrum must be bounded and conse-
quently localised [68]:

X1
k¼0

�̂Op;t kð Þ
			 			2

k
< 1)

X1
k¼0

k2a�1 t2b�2 E2
b;b �katb
� �

< 1: (54)

The admissibility condition constrains, in turn, the values
for which the temporal and spatial fractional exponents are
valid. These values have been estimated numerically from
Eq. (54) and are reported in the last row of Table 1.

The kernels are evaluated for a discrete subset of times as
well as for a discrete subset of temporal and spatial (L�evy)
fractional exponents. As for standard heat kernel-based
approaches [68], the time scales control the extent to which
the neighbourhood of a given vertex is explored: that is,
heat is propagated. The L�evy fractional exponents a deter-
mine the extent to which large transitions are allowed dur-
ing exploration. In the present paper, a is restricted to the
interval 1=2 ; 1½ � in which the admissibility condition for the
wavelet is satisfied. In turn, the temporal fractional expo-
nents b determine whether the random walk associated
with the bifractional heat kernel is memoryless (Markovian)
or not (non-Markovian). Once more, b is restricted to the
interval 1=2 ; 1½ � in which the admissibility condition for the
wavelet is satisfied. As for p, that determines which opera-
tor is employed. In this paper, we consider the de Rham
operators associated with the vertices p ¼ 0ð Þ and edges
p ¼ 1ð Þ as well as the Dirac–K€ahler operator associated with
the triangles p ¼ 2ð Þ.

In the next section, we describe Fractio: the subsystem in
charge of evaluating the bifractional Planck–Dirac wavelets
signatures.

398 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 1, JANUARY 2023



8 BIFRACTIONAL PLANCK–DIRAC WAVELETS

SIGNATURE EVALUATION

Our system consists of two components: Fractio, which
evaluates the Planck–Dirac wavelet signatures, and Gauß,
the protein-classification deep neural network; both pro-
grammes are written in the MathematicaTM language. The
OFF files corresponding to the macromolecular surfaces are
stored in a Bitcoin-like blockchain [83]. Each object is
encrypted with an AES256 symmetric key [84]. The block-
chain provides many advantages over a conventional file
system or database: it is decentralised, secure, and tamper-
proof by design, with Byzantine fault tolerance [83] in addi-
tion to providing a unique address or transaction ID for
each protein, thus eliminating ambiguities and mismatches
associated with version control and naming [83]. Fractio
processes the proteins in parallel on forty Dual Intel Xeon
Gold 6140, 2.3 GHz, 18-core, 140 W Skylake processors. The
OFF files are first retrieved from the blockchain and, for
each one of them, the vertex and edge incidence matrices
are evaluated with Eq. (8) while the corresponding metrics
are calculated with Eqs. (12) and (11) respectively. The trian-
gle metric is simply a diagonal matrix in which each ele-
ment corresponds to the area of a particular triangle. The
vertex and edge de Rham operators, and the Dirac–K€ahler
operators, are evaluated according to Eqs. (14), (15), and
(43) respectively. Since the matrices associated with these
operators are sparse by construction, sparse arrays are
employed for their storage which alleviates both computa-
tional complexity and memory usage. Since the number of
vertices may vary from one macromolecular surface to the
other, and in order to standardise the dimensions of the
operators, the de Rham and Dirac–K€ahler operators are
resampled with the optimal sampling of maximal order and
minimal support method (MOMS) [85]. Their spectral
decompositions (the eigenvectors and eigenvalues) are then
evaluated with the Arnoldi iterative method [86] up to the
sixtieth order. Finally, the fractional Planck–Dirac wavelet
signatures are evaluated according to Eq. (49) with a ¼
3=5 ; 1; 3=2; 2f g, b ¼ 1=2 ; 3=4; 1f g with p ¼ 0; 1f gfor the de

Rham operators and p ¼ 2 for the Dirac–K€ahler operator.
The deep neural network employed for protein classifica-
tion is described in the next section.

9 MULTIOBJECTIVE DEEP NEURAL NETWORK

The input for Gauß, our multiobjective deep neural net-
work, is the bifractional Planck–Dirac wavelet signature
defined earlier. This descriptor may be assimilated to a
sequence or pseudo-time series:

KL;D ffi
[2

a> 1=2

[1
b¼1=2

[tmax

t¼tmin

H diag KL0;a;b tð Þ
� �� �" #T������

8<
:
[2

a> 1=2

[1
b¼1=2

[tmax

t¼tmin

H diag KL1;a;b tð Þ
� �� �" #T������

[2
a> 1=2

[1
b¼1=2

[tmax

t¼tmin

H diag KD2;a;b tð Þ
� �� �" #T9=

;; (55)

where k stands for concatenation. The sequence is vectorial:
each element has the form:

H diag KOp;a;b tminð Þ
� �� ��� . . . H diag KOp;a;b tmaxð Þ

� �� ���� �T
(56)

The smallest time increment [68] supported by the graph is

minh
E

Ek k ¼ 2
ffiffiffiffiffiffiffiffiffiffi
2tmin

p
(57)

where minhis a robust estimate of the minimum, obtained
by discarding the h� 1 smallest values, while represents an
edge. The time intervals for which the BPDWS are evalu-
ated correspond to harmonics of this time increment:

t ¼
[n�1
‘¼0

2‘tmin; (58)

where n ¼ 6 in our application.
Our deep neural network architecture is inspired by pyr-

amid Siamese networks [87]. The architecture of Gauß is
outlined in Fig. 2 and fully described in Fig. 3. As for any
Siamese network [15], our network consists of two branches.
The input, for both branches, is the bifractional Planck–
Dirac wavelet signature associated with the protein under
consideration, while the output is the corresponding SCOPe
class. Each branch of Gauß consists of four blocks. In accor-
dance with Siamese network practices, the second block (as

Fig. 2. Outline of the architecture of Gauß.
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well as the fourth block) of the upper and lower branch
share the same parameters.

The periodical coupling in between the two branches
reduces the number of parameters, and consequently, the
risk of overfitting. Additionally, these couplings act as con-
straints which aim at facilitating the learning process by
applying additional restriction on the loss function [88].

For their part, the first and the third block of the upper
and lower branch do not share parameters, ensuring that
each branch may learn from different perspectives. The
lower branch has, just after the input layer, a sequence-
reversal layer to eliminate learning biases associated with
the sequence ordering.

The corresponding blocks of the upper and lower branch
are linked by connections which are described below. The
various blocks ensure a multiresolution analysis of the
inputs while the connections associate an independent clas-
sifier to each resolution level. As a result, our network is
multiobjective and the training must be performed with sto-
chastic Pareto optimisation.

Each coupled block contains a convolutional sub-block,
and two threading sub-blocks. Each convolutional sub-
block comprises a batch normalization layer, a activation
function, a convolutional layer of size five with ten filters, a
batch normalization layer, and a convolutional layer of size
five with ten filters. These values were settled upon though
extensive experimentation. The first convolutional networks
of each branch share common parameters; the second con-
volutional networks of the upper branch also share common
weights with the second convolutional network of the lower
branch. Essentially, the role of the convolutional layer is to
perform a multiresolution analysis as the convolution may
be assimilated to a band-pass filter. As opposed to a dense
layer, convolutional layers strongly reduce the number of
parameters that must be learned, thus reducing the risk of
overfitting. The batch normalisation layers stabilise and
accelerate the network by learning the input data mean and
variance which makes it possible to re-centre and re-scale
the data.

Each threading block consists of two links. The first link
consists of a batch normalisation layer, activation function,
a convolutional layer of size five with ten filters, a batch nor-
malisation layer, a convolutional layer of size five with ten
filters, and a batch normalisation layer followed by a convo-
lutional layer of size ten with ten filters. The second link
consists of an additive threading layer which acts on both
the output from the first link and also on the input of the
threading block. This is followed by the activation function,

and a maximum pooling layer of size three which is defined
as

max Hk diag KL;a;b;2 tð Þ
� �� �

;Hk diag KL;a;b;2 tð Þ
� �� �

;
�

Hk diag KD;a;b;2 tð Þ
� �� ��

: (59)

where Hk is the kth element of the discrete probability
distribution function. As stated earlier, the first and the
third blocks do not share parameters. The first block con-
sists of a convolutional network of size five with ten fil-
ters, a batch normalization layer, a activation function,
and a maximum pooling layer of size three for summari-
sation as defined by Eq. (59). As for the third block, it
has the same structure as the second and fourth blocks
except for the fact that it does not share parameters
between the upper and lower branches.

The second block of the upper branch is connected to the
second block of the lower branch; the third and fourth block
follow the same rule. The connection consists of a multipli-
cative tanh o1 � o2ð Þ threading layer, a bidirectional long
short-term memory (LSTM) recurrent network [89] in order
to introduce a long and short term memory mechanism, a
dropout layer (probability=0.1) for regularisation, and a
dense layer (number of neurons = number of classes), fol-
lowed by a activation function.

The fourth and last connection consists of an attention
network, followed by a transpose layer, a dense layer,
another transpose layer, a bidirectional long short-term
memory recurrent layer, a dropout layer for regularisation,
and a dense layer. The outputs from the four connections
are combined by a subnetwork consisting of an additive
tanh o1 þ o2 þ o3 þ o4ð Þ threading layer and a dense layer
(number of neurons = number of classes) with a activation
function. The attention layer allows the network to learn
which elements of the input are the most relevant when
determining the class, and which weights should be attrib-
uted to them [90]. Therefore, the fourth connection serves as
a multiresolution classifier with attention. Each classifier
has a confidence threshold: if the class occurrence probabil-
ity is greater than the threshold, the outcome is considered
conclusive, or inconclusive otherwise.

Finally, each connection is completed by a dense layer, a
softmax layer, and a cross-entropy loss layer. As a result,
each connection acts as a classifier, so that a classifier is
associated with each resolution level. The first three connec-
tions correspond to three different resolution levels, while
the fourth connection encompasses all resolution levels.
Each classifier has its own objective function, so multiobjec-
tive (Pareto) stochastic optimisation must be performed

Fig. 3. Detailed architecture of Gauß.

Fig. 4. Trained Gauß network.
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while learning [91]. This ensures that each level of detail is
properly learned. A small quadratic regularisation term is
added to the multiobjective cost function for regularisation.

Once the network is trained, only the layers between the
input and the final output are retained, i.e. only the multire-
solution classifier remains, as illustrated in Fig. 4. The net-
work is trained with stochastic gradient descent with the
adaptive moment estimation (Adam) algorithm [92]: this is
an extension of RMSProp which is summarised in Algo-
rithm 1. This algorithm, which is outlined in Eq. (60), evalu-
ates and accumulates, for each iteration, the expectations of
both the gradient and its second moment. The accumulated
expectations are rescaled as time flows. Finally, a correction
is applied to the learnable parameters. In this work, the size
of the mini batches has been fixed to 64. All sizes were set
through inspection.

r  1

m
ru

X
i
L f x ið Þ; u

� �
; y ið Þ

� �
; x ið Þ; y ið Þ � D

t tþ 1

s ; r1sþ 1� r1ð Þr
r r2rþ 1� r2ð Þr r

ŝ s

1� rt1

r̂ r

1� rt2

Du ¼ �"ŝ?
ffiffî
r
p
þ d

� �
u u þ Du: (60)

Algorithm 1: Summarisation of the Adaptive moment esti-
mation (Adam) algorithm: s is the accumulated gradient, r
is the accumulated moment, r1and r2are the exponential
decay rates, ; is the element wise division while and dare
stability parameters. The values employed for these param-
eters are reported in Table 2.

The calculations were performed by a Nvidia Tesla V100
(32 GB) GPU. The weights and the bias were initially esti-
mated with Xavier’s method [93], in which the parameters
are chosen such as to preserve variance when propagated
through subsequent layers. The whole approach may be
summarised as follows:

1) For each protein, reduce the mesh size to 1000
polygons

2) For each protein, evaluate the BPDWS signature with
Eq. (49) and (53), that is with Fractio

3) Generate the 10-folds datasets
4) For each fold

a) Train, with Adam, the multiobjective Gauß net-
work with the training BPDWS signatures evalu-
ated with Fractio

b) Prune the trained network from all its outputs
except the last one

c) Evaluate the precision, recall, accuracy, Van
Rijsbergen’s effectiveness measure and preci-
sion-recall curve with the corresponding training
set

5) Evaluate the average of the metrics for all ten folds
Experimental results are presented in the next section.

10 EXPERIMENTAL RESULTS

The SHREC’19 Protein Shape Retrieval Contest [17] dataset
was employed in our experiments. It consists of 5,298 pro-
teins extracted from 211 entries in the Protein Data Bank
[18], each of which has been classified according to the
Structural Classification of Proteins—extended (SCOPe)
[19] based on their conformation (the shape of their macro-
molecular surface).The Structural Classification of Proteins
– Extended (SCOPe) classifies protein domains according to
their structural and evolutionary properties [94]. The classi-
fication is performed according to class and fold for the
structural properties, and according to superfamily, family,
protein and species for their evolutionary counterparts. The
SHREC’19 data was obtained by selecting proteins from the
SCOPe database according to the following criterions: 1)
macromolecular surfaces (3-D structure) were resolved by
nuclear magnetic resonance spectroscopy, 2) the conformers
(deformable shapes) must have the same number of atoms,
3) each entry must have at least four ortholog proteins, and
4) the resulting dataset was randomly subsampled in order
to obtain 5298 domains. The macromolecular surfaces (sol-
vent excluded surface) were calculated with EDTSurf [95].
The dataset consists of 17 classes. Classification is made
challenging by the fact that the macromolecular surfaces
associated with proteins are so geometrically complex, as
illustrated in Fig. 1. Furthermore, they are subject to defor-
mations as a result of the interaction with both their external
environment and their multiple degrees of freedom, all of
which contributes to altering their conformation. The data-
set consists of 17 classes, the largest of which has 1160 pro-
teins; there is an average of 311 proteins per class [17].
Therefore, the dataset is highly unbalanced. Our Fractio-
Gauß algorithm was compared against thirteen algorithms
and variants which are described, in detail, in the SHREC’19
Protein Shape Retrieval Contest [17]. These include three
variants of the convolutional neural network–linear dynam-
ical system framework (ConvLDSNet), the 3D Zernike
moments framework (3DZM), three variants of the 3D Zer-
nike descriptors framework (3DZD), three variants of the
histogram of area projection transform framework (HAPT),
the vector of locally aggregated descriptors framework
(VLAD), the globally aligned spatial distribution framework
(GASD), and the hybrid GASD–VLAD framework, all of
which are described in [17].

Essentially, ConvLDSNet combines convolutional neural
networks with linear dynamical systems: the numbering
referring to the training dataset; 3DZM employs 3D Zernike
moments: a prior alignment of protein pairs with fast Four-
ier transform is required; 3DZD relies on 3D Zernike
descriptors: the numbering referring to the classification
metric; HAPT determines the probability for a point to be
the centre of a spherical symmetry: the numbering referring
to the parametrisation of the algorithm; Ft-PSSC is based on

TABLE 2
Parameters for the Adam Algorithm

r1 r2 " d

0.9 0.999 0.000001 0

PAQUET ETAL.: DEFORMABLE PROTEIN SHAPE CLASSIFICATION BASED ON DEEP LEARNING, AND THE FRACTIONAL... 401



a fast point feature histogram (FPFH) combined with either
the globally aligned spatial distribution (GASD), the vector
of locally aggregated descriptors (VLAD), or both.

Our framework was evaluated using 10-fold cross-vali-
dation: the original dataset was randomly partitioned into
ten equal-sized subsamples. Of the ten subsamples, a single
subsample was retained as the validation data for testing
the model, and the remaining nine subsamples were
employed as training data. The cross-validation process
was repeated ten times, with each of the ten subsamples
used exactly once as the validation data. The ten results
were averaged to produce a single estimate. Evaluating the
Planck–Dirac wavelet signatures was completed in 71
minutes while the total training and testing time for all ten
folds was 28 minutes.

The performance was evaluated and compared with five
metrics: Van Rijsbergen’s effectiveness measure (also
known as E-measure: E), the mean average precision �M,
and the first (T 1) and second (T 2) tier [96]. The E-measure is
defined as

E ¼ 1� 2
1
P þ 1

R

; (61)

where P is the precision and R is the recall, which are
defined as

P ¼ TP
TPþFP

R ¼ TP
TPþFN

(
; (62)

where TP refers to true positive classification count, FP
refers to false positive classification count and FN refers to
false negative classification count. Meanwhile, �M is the
area under the precision-recall curve and characterises the
classifier performance on average. In addition, it is also
important to characterise the behaviour of the neural net-
work for a short list of the best results. This is essential, for
instance, if the classifier acts as a search engine in which
case only the first best results (short list) are relevant. The
characterisation of the performance for the first best results
may be achieved with T 1 and T 2 ; the former considers the
average precision for the first Cj j � 1 results while the latter
extends the average to the first 2 Cj j � 1ð Þ matches, respec-
tively, with Cj j being the number of instances per class.

Our results are reported in Table 3 and in Fig. 7 respec-
tively. Table 3 provides the Van Rijsbergen effectiveness
measure, as defined by Eq. (61), for all the frameworks: a
value of zero corresponds to perfect classification, while a
value of one corresponds to a classification indistinguish-
able from random. From the table, it may be concluded that
our method outperforms the others. Indeed, Van
Rijsbergen’s effectiveness measure is 0.09 in our case while
the next smallest is 0.51 for 3DZD 2. The same may be said
about �M, and T 1 and T 2. For �M, a value of 0.928 was
obtained with the proposed approach while the best �M for
SHREC’19 was 0.720 (3DZD 3). Values of 0.947 and 0.945
were obtained with the proposed approach for T 1 and T 2,
respectively, while the best corresponding SHREC’19 values
were 0.665 and 0.802 respectively; both with 3DZD3. The
confusion matrix [97], which appears in Fig. 5, further dem-
onstrates the efficiency of the proposed method. The results
are illustrated, in Fig. 6, by showing two proteins belonging
to the same class. Fig. 7 shows the precision–recall curves
both for SHREC’19 frameworks as well as for our Fractio–
Gauß framework. Our approach has a higher precision than
any SHREC’19 method irrespective of the recall rate. This
demonstrates again the performance of our framework.

11 APPLICATION TO DEFORMABLE

PARTIAL SHAPES

Although our main objective was protein classification, it is
important to note that our approach is applicable to multi-
ple domains. For this reason, we illustrate how to apply our

TABLE 3
E-Measure, Mean Average Precision, and First and Second Tier

for the SHREC’19 Dataset

Framework E �M T 1 T 2

Fractio-Gauß 0.090 0.928 0.947 0.945
3DZD 1 0.580 0.638 0.579 0.729
3DZD 2 0.510 0.712 0.658 0.789
3DZD 3 0.520 0.720 0.665 0.802
3DZDM 0.650 0.649 0.583 0.706
ConvLDSNet 1 0.730 0.329 0.303 0.458
ConvLDSNet 2 0.740 0.324 0.296 0.457
ConvLDSNet 3 0.730 0.328 0.301 0.458
Ft-PSSC + GASD 0.720 0.417 0.372 0.506
Ft-PSSC + GASD + VLAD 0.740 0.315 0.315 0.481
Ft-PSSC + VLAD 0.750 0.206 0.226 0.380
HAPT 1 0.540 0.659 0.616 0.734
HAPT 2 0.530 0.666 0.624 0.738
HAPT 3 0.550 0.658 0.613 0.732

Fig. 5. Confusion matrix for the proposed approach for the SHREC’19
dataset.

Fig. 6. Illustration of two proteins belonging to the same class (133_C13
and 324_C13).
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approach to classification of deformable partial shapes. In
order to make the problem challenging, the reader should
notice that no prior knowledge on the full shape is assumed,
meaning that training and testing is entirely performed with
partial shapes. The dataset employed is the SHREC’16 par-
tial matching of deformable shapes [98] which was initially
created for partial matching. This dataset consists of 599
deformable partial shapes divided into 8 classes: dog and
wolf (the two being relatively similar), cat, David and
Michael (again, the two being very similar), horse, centaur
(a hybrid creature combining Michael and a horse), and Vic-
toria. In order to generate partial shapes, full shapes of each
class are either cut with a plane at six different orientations
or eroded from a seed hole. In addition, for each class, irreg-
ular holes are created keeping either 40%, 70% and 90% of
the original area. This is illustrated in Fig. 8.

In regard to the proteins, the same descriptors and neural
network were employed with the same hyperparameters.
The only distinction was the patience (period after which
training is interrupted if the loss function does not change

significantly), which has been increased by a twofold factor
in order to reflect the difficulty involved in learning deform-
able partial shapes. The same training procedure and met-
rics employed for the proteins were employed for the
evaluation: precision-recall curve, E-measure, MAP, and
first and second tier. The precision-recall curve is reported
in Fig. 9 and the remaining metrics appear in Table 4. The
confusion matrix, which appears in Fig. 10, further demon-
strates the efficiency of the proposed method.

These results, which are comparable in terms of per-
formances to those obtained for proteins, demonstrate
the generality of the proposed method. The fact that the
differential operators (de Rham, K€ahler–Dirac) preserve
topological properties, such as holes (see Section 2.2),
make them more suitable for the learning of deformable
partial shapes. Meanwhile, the multiobjective cost

Fig. 7. Precision–recall curve for Fractio–Gauß as well as for the ones
proposed in SHREC’19.

Fig. 8. A sample of deformable partial shapes from the SHREC’16 data-
set: the cat in two postures (deformable shape), and a pose of the cen-
taur and the dog.

Fig. 9. Precision-recall curve for Fractio–Gauß for the SHREC’16
dataset.

TABLE 4
E-Measure, Mean Average Precision, and
First and Second Tier of the Proposed
Approach for the SHREC’16 Dataset

E 0.163
�M 0.890
T 1 0.985
T 2 0.989

Fig. 10. Confusion matrix for the proposed approach for the SHREC’16
dataset.
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function allows for more efficient learning of the various
resolution levels (latent representations) associated with
the pyramid neural network because each level has its
own cost function.

12 CONCLUSION AND FUTURE WORK

We have introduced a new framework for deformable mac-
romolecular surface classification based on the bifractional
Fokker–Planck and Dirac–K€ahler equations, as well as a
new multiobjective pyramid neural network. Macromolecu-
lar surfaces were analysed in terms of a non-Markovian
L�evy random walk which makes it possible to establish geo-
metrical relationships between distant simplices while
remembering previous analyses. A multi-perspective analy-
sis was performed with the Fokker–Planck equation which
propagates a non-interacting scalar, and with the Dirac–
K€ahler equations which propagate a non-commuting, inter-
fering quaternion field. A new deep multiobjective pyramid
neural network was employed for multiresolution shape
analysis. Multiobjective learning was performed with Par-
eto stochastic optimisation, ensuring that each resolution
level was properly learned. Multiobjective learning is uti-
lised since the learning process could potentially be biased
toward a particular level if a unique objective function is
employed [99]. In addition, we found that multiobjective
optimisation typically reduces the number of epochs
required to train the network by half. Our method was
applied successfully to the SHREC’19 dataset, and is appli-
cable to any kind of shape.

In addition to the Fokker–Planck and the Dirac–K€ahler
equations, one may alternatively consider the Schr€odinger
equation. The shape descriptor associated with
Schr€odinger’s equation is the celebrated wave kernel signa-
ture (WKS) [8]. The Schr€odinger equation, like the Fokker-
Planck equation, has a fractional counterpart [100], [101]
which is given by

i�h
@c

@t
¼ �ha �hrð Þac (63)

where ra is the fractional gradient operator, which is
defined by Eq. (20), and ha is a constant. The non-fractional
Schr€odinger equation corresponds to a ¼ 2. Both the frac-
tional and the non-fractional Schr€odinger equations satisfy
the continuity equation [100], [101]:

@r

@t
þr 	 ja ¼ Ia (64)

where r is a probability density function:

r ¼ c�c (65)
and ja is the probability current:

ja ¼� iha�h
a�1

c� �Dð Þa=2 �1rc� c �Dð Þa=2 �1rc�
h i

(66)

For the non-fractional Schr€odinger equation, the right mem-
ber of Eq. (66) is zero meaning that the probability is con-
served locally [100], [101]. This is a sine qua non condition
for the wave kernel signature to be defined [8]. Yet, this

member is different from zero for the fractional Schr€odinger
equation:

Ia ¼ �iha�ha�1

rc� �Dð Þa=2 �1rc�rc �Dð Þa=2 �1rc�
h i

(67)

This means that the probability is not conserved locally as
occurs in the non-fractional case. Nevertheless, it is con-
served globally [100], [101]. Therefore, the approach devel-
oped for the WKS is not directly applicable to the fractional
Schr€odinger equation. Nonetheless, the form of the continu-
ity equation would suggest that the fractional Schr€odinger
equation would be a suitable candidate for a description
which could benefit from the intricate interplay between
local and global features. The application of the fractional
Schr€odinger equation to invariant deformable shape
description shall therefore be the foundation of our future
work.
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