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Abstract—Optimal performance is desired for decision-making in any field with binary classifiers and diagnostic tests, however common

performancemeasures lack depth in information. The area under the receiver operating characteristic curve (AUC) and the area under

the precision recall curve are too general because they evaluate all decision thresholds including unrealistic ones. Conversely, accuracy,

sensitivity, specificity, positive predictive value and the F1 score are too specific—they aremeasured at a single threshold that is optimal

for some instances, but not others, which is not equitable. In between both approaches, we propose deepROC analysis to measure

performance in multiple groups of predicted risk (like calibration), or groups of true positive rate or false positive rate. In each group, we

measure the group AUC (properly), normalized groupAUC, and averages of: sensitivity, specificity, positive and negative predictive value,

and likelihood ratio positive and negative. Themeasurements can be compared between groups, to whole measures, to point measures

and betweenmodels.We also provide a new interpretation of AUC in whole or part, as balanced average accuracy, relevant to individuals

instead of pairs. We evaluatemodels in three case studies using our method and Python toolkit and confirm its utility.

Index Terms—Performance and reliability, performance analysis and design aids, diagnostic testing, artificial intelligence, ROC, AUC,

C statistic, explainable AI, equity, audit
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1 INTRODUCTION

COMMON measures of performance for binary classifiers
and binary diagnostic tests are either too general or too

specific–they lack depth in information to ensure optimal
model selection, equity (in audit) and robustness.

The area under the curve [1] (AUC) in a receiver operat-
ing characteristic (ROC) plot [2] is too general because it
measures all decision thresholds including unrealistic ones
[3], [4], [5], [6], [7], [8], [9] (Fig. 1). Whereas measures at a
single threshold or ROC point, such as accuracy, sensitivity,
specificity, or positive predictive value [10], are too spe-
cific—they are optimal for some instances or patients, but
not others, reflecting a specific choice of threshold and mis-
classification costs [8], [11], [12], [13], [14].

Measures at a single point (point measures) hide infor-
mation about how the classifier would perform if the
threshold were tuned to different subgroups, different set-
tings where they are used, or personalized to an individu-
al’s needs.

Point measures for imbalanced data [15] are also too
specific: the F1 score [10], [16], balanced accuracy [10], the
geo-mean [10], [17], and Matthews’ Correlation Coeffi-
cient [18]. While area measures for imbalanced data are
also too general: the area under the precision recall curve
(AUPRC) a.k.a. average precision (AP) [19] and the area
under the PR Gain curve [20]. Area measures lack infor-
mation about the distribution of performance over the
curve [3].

In between area measures that are too general, and point
measures that are too specific, there is a gap in information.
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ROC plots visually provide information to fill part of the
gap, but we propose a better quantitative alternative.

ROC analysis (ROC plots and standard measures) are the
standard tool in model selection and evaluation for two-
class classification problems [21] with ongoing work [22],
[23] and extensions [24].

ROC analysis is one of multiple tools we use to under-
stand and explain models and their test results, as a goal of
explainable artificial intelligence (xAI) [25], [26]. In the con-
text of ”black-box” methods [27] xAI is important, as well as
understanding causality and causability [25], [28].

Whereas ROC plots provide visual information in gaps
between measures, we propose deep ROC analysis for quanti-
tative measures of a model in multiple parts (partial areas)
that span the ROC curve (and plot). We provide an over-
view of the method in the next section.

Deep ROC analysis supports algorithmic audit to
examine how classifiers treat groups of individuals at dif-
ferent levels of predicted risk or probability, e.g., for
equity [29] if that is the goal. It also supports robustness
since it identifies where a model may fall short in one or
more parts or groups, per failure mode effects analysis
(FMEA) [29]. We do not cover groups by demographics or
other conditions in this paper, although our approach can
be extended to that using discrete measures such as the
partial C statistic [9].

The contributions of our paper are as follows:

1) We show how to use three pre-test measures effec-
tively in tandem for analysis and audit along with
post-test measures.

2) We provide a new interpretation of AUC in part or
whole, for individuals, instead of pairs.

3) Our method sometimes identifies a partial area mea-
sure as a focus for re-optimization or re-calibration
of models.

The first contribution is neither obvious nor simple
because:

� There is a cacophony (or glut) of performance meas-
ures, some of which have flaws.

� Only an avid reader would find and know the three
pre-test measures are averages of familiar concepts:
sensitivity, specificity and AUC.

� Of the three pre-test measures we use:
– one was misrepresented [6]
– another [30] lacked two free boundaries until a

recent alternative [9], and
– the third [9] was normalized implicitly and dif-

ferently from another explicit measure.
� Several alternativemeasures (based on the U statistic)

do not handle ties in score properly, and ROC plot-
ting functions do not provide all of the implicit points
(one for every instance) as necessary to properly com-
pute averages in a part or group. Our python toolkit
handles that, and interpolation for any boundaries.

In the sections that follow we review related work, back-
ground, our method, two case studies, limitations, conclu-
sions and future work.

2 OVERVIEW OF DEEP ROC ANALYSIS

We propose a method called deep ROC analysis that meas-
ures how well a model discriminates between two classes in
multiple groups that span an ROC curve. We can compare
measures in one group to another, or to the whole, using 4
pre-test measures and 4 post-test measures.

The pre-test measures in each group are: group AUC
(AUCi) and group normalizedAUC (AUCni) (Fig. 2), average
sensitivity (Fig. 3a) and average specificity (Fig. 3b). AUC
and AUCni provide clarity to model comparison when aver-
age sensitivity is better but average specificity is worse, or
vice-versa—it summarizes both.

The post-test measures are: average positive predictive
value, average negative predictive value, average likelihood
ratio positive and the average likelihood ratio negative.

One might argue that ROC plots provide in-depth infor-
mation like deep ROC analysis, but eyeballing measures in
groups, and normalizing them, is prone to error. Also, users
are prone to mistake partial AUC (the vertical or sensitivity
component only) for AUCi.

Fig. 1. AUC includes all thresholds, including unrealistic or undesirable
ones (’X’). Measures at a single threshold (circle), like sensitivity, are
optimal for some patients but not others. Deep ROC avoids both prob-
lems with measures for a range of thresholds in each of several groups.

Fig. 2. For part of an ROC curve, the area that represents the model’s
performance, is the average of the vertical and horizontal areas (Ay and
Ax which both include the green area). This is known as the concordant
partial AUC, which we denote AUCi, and it is less than 1. It can be nor-
malized to [0,1] as AUCni.
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In deep ROC analysis, each group is defined as a range of
TPR, FPR or percentiles of the threshold1 (Table 1). Any
number of groups may be used, limited only by the number
of instances in the data.

Support for group-wise analysis can be found in a recent
systematic review by Wynants et al. [31] that examines over
100 COVID-19 prediction models and recommends that
none of the models be used in practice, in part because of
lack of reporting on calibration.

Calibration quantile-quantile (QQ) plots for binary out-
comes [32] examine a model or test in groups like deep
ROC analysis. However, QQ plots depict net error in the
fraction of events—i.e., a combination of false positives and
false negatives. Deep ROC analysis reports these separately
(for each group) as average sensitivity and average specific-
ity (Fig. 3).

Deep ROC analysis uses the generalization of AUC to a
partial ROC curve: the normalized concordant partial AUC
AUCni [9]—where the adjective ”concordant” signifies that
it equals the normalized partial C (concordance) statistic [9].
No other measures are generalizations of AUC and C with
all of the same interpretations [9].

3 OLD AND NEW INTERPRETATIONS OF AUC

We show and prove a new interpretation of AUC, for a ROC
curve in part or whole: AUC, normalized, is a weighted
average that balances average sensitivity and average speci-
ficity; and we call this balanced average accuracy (Section 9):

AUCni ¼ Dx

Dxþ Dy
� seþ Dy

Dxþ Dy
� sp (1)

There is a need for this interpretation because the most
common interpretation of AUC is lacking and abstract [4],
[5]. Ask someone: what does an AUC of 0.8 or 80% mean?
Or what does a 2% improvement in AUC mean? The two
most common answers you will receive are as follows.

First, one might receive a geometric and comparative
explanation. AUC is the area under the ROC curve which is
depicted in an ROC plot. An AUC of 0.5 indicates a classifier
(or test) is no better than chance, whereas an AUC of 1.0
means the classifier is perfect at discrimination. This
explains AUC as a relative measure but it not tell us what
an AUC of 0.8 means in absolute and precise terms: how
many errors will the classifier or test commit and for whom?

The second more precise answer is that the AUC can be
interpreted as a C statistic: the proportion of patients (or
instances) with the outcome event that have a higher pre-
dicted score (as they should) than patients without the out-
come, for all possible pairs of a positive and negative.

Therefore, an AUC of 80% means that the classifier cor-
rectly ranks patients 80% of the time in pairs; and a 2%
improvement means that in ranking pairs, the classifier is
correct 2% more often. Some thinking in decision-making is
pairwise: e.g., how does the current patient or instance com-
pare to another I have seen before? However, this cannot
answer important questions in performance measurement.
What is the probability of error for a single patient? What is
the probability of error for the average patient in a subgroup

Fig. 3. Two measures used in our method represent average sensitivity and average specificity, but are more commonly known by esoteric labels.
Analysis is made complete by balanced average accuracy, as a third measure.

TABLE 1
Consider a Binary Classifier or Diagnostic

Test for Data With 30% Prevalence

FPR: [0,1] [0,.33] [.33,.67] [.67,1]

Predicted risk: All High Med Low
Group index i: 0 1 2 3

AUC 82%
AUCni 82% 85% 81% 76%
Avg sensitivity sei 82% 67% 84% 94%
Avg specificity spi 82% 93% 67% 40%

Suppose the group with high predicted risk (or high probability) is most relevant.
AUC, as a global measure, obscures all of the group measures (those with sub-
script i). The high risk group’s AUCn1 or balanced average accuracy of 85% is
higher than AUC, but its average sensitivity se1 is significantly lower at 67%.
Average sensitivity always increases to the right, while average specificity (spi)
always increases to the left, hence the need forAUCni to make comparisons.

1. Note: when points are not uniquely defined the user must explicitly
specify the boundary as a coordinate or theymust apply a policy as in [9].
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of patients by predicted risk (e.g., patients at high predicted
risk for the condition)? We need more than a pairwise per-
spective, we need the individual perspective.

Two other less commonly known interpretations of the
AUC are that AUC equals average sensitivity across all
thresholds, and AUC equals average specificity across all
thresholds [33] (Table 1 Global column). This has a concrete
interpretation for individuals, across all thresholds. That is,
a classifier with an AUC that is 2% higher than another, is
on average, over all possible thresholds, 2% more sensitive
at detecting positives and 2% more specific (i.e., it detects
negatives 2% better).

However, this interpretation is not true for part of an
ROC curve, where, in general, average sensitivity differs
from average specificity (Fig. 3) [9] and both differ from nor-
malized AUC.

Carrington et al. establish [9] that AUC, for any part of an
ROC curve, is the average of the vertical and horizontal
areas (7) (Fig. 2), and call it the concordant partial AUC.
This is useful, but these areas are abstract when it comes to
interpretation.

When this measure is normalized and expressed in terms
of average sensitivity and average specificity (1), then the
interpretation is relatable. It represents a balanced view of
detecting positives and negatives. We explain this balance
and normalization in a later section (Section 9).

Normalization is required to compare performance in one
group or part, to the whole, or to any other group (Table 1).

Please note that our newly introduced term, balanced
average accuracy, should not be confused with balanced
accuracy, nor an average thereof. Balanced accuracy only
equals AUC in the special case of an ROC curve with one
point aside from ð0; 0Þ and ð1; 1Þ [34] which occurs for a dis-
crete classifier [2] such as a decision tree or rule. This special
case is sometimes incorrectly described as the result of a
”single run” or experiment [34], [35] and sometimes mis-
taken for AUC in general [36].

In the sections that follow we discuss related work, back-
ground, our method, two case studies, limitations, conclu-
sions and future work.

4 RELATED WORK

ROC analysis is commonly used to select prediction models
by computing and comparing the AUC. ROC curves are
also plotted to interpret the AUC—e.g., is one model’s ROC
curve better than another in all parts/groups or only some?

Instead of visual ROC comparison, deep ROC analysis
quantifies that comparison in parts/groups and quantifies
part/group performance for a single ROC curve. To achieve
this, we use the three measures from the literature (one
recent) which are readily and inherently meaningful: AUC,
average sensitivity and average specificity in a part or group.

Historically, measures have not been normalized to be
interpreted as AUC, average sensitivity or average specific-
ity—and some measures have been misunderstood. Hence,
we review the history of AUC-relatedwork and alternatives.

4.1 Measures we use

Two decades ago Bradley [11] recommended AUC [33] over
accuracy as an overall measure of performance. However,

numerous authors have identified issues with the AUC [3],
[5], [8], [37]. For example, the AUC, as an overall measure,
includes unrealistic or unused thresholds [3], [5] and it lacks
information about the distribution of errors along the ROC
curve [3]. These criticisms also apply to the C statistic (for
binary outcomes) which is equal to the AUC of an empirical
ROC curve [32], [38], [39].

Some criticisms of AUC expect it to fulfill calibration [3]
and clinical utility [3], [5] too. However, standard advice
from Steyerberg et al. [1] recommends reporting measures
of discrimination and calibration (separately), including the
C statistic or AUC, and a calibration plot. This approach is
common in medical literature and our method supplements
it with deeper analysis. They also recommend measuring
net benefit as a measure of clinical utility in a separate cate-
gory, for clinical decision-making.

Instead of an overall measure, McClish [6] and, sepa-
rately, Thomson and Zucchini [7] proposed the partial AUC
(pAUC) (Fig. 3a) in parametric form2. We show the non-
parametric form (2) [40] but our discussion pertains to both
forms. For a range of FPR ½x2; x1� and an ROC curve y ¼ rðxÞ,
where y represents TPR, partial AUC computes an areaAy:

pAUCðx1; x2Þ ¼ Ay ¼
Z x2

x1

rðxÞ dx (2)

This looks like a sensible generalization of AUC:

AUC ¼
Z 1

0

rðxÞ dx (3)

The partial AUC was a first step toward more in-depth
analysis. However, the name ”partial AUC” is misleading
because, when normalized (signified by ”n”) to the range
[0,1] by its maximum possible area ð1 � DxÞ ¼ x2 � x1, it is
average sensitivity se (Fig. 3a) [9] without any component of
specificity:

pAUCnðx1; x2Þ ¼ Ay

Dx
¼ se (4)

In contrast, AUC summarizes and represents sensitivity
and specificity [33]. The formula for AUC itself (3) is an
over-simplification that works because the (whole) AUC is
a special case where the horizontal and vertical areas are
the same, so the horizontal perspective is redundant [9].

Mallet et al. used partial AUC to mistakenly claim two
”tests are equally effective” [4, Fig. 3e,f], however, that is
clearly false when the range of sensitivity was the same, but
one test had markedly better specificity (78�95%) than the
other (50�60%).

Shortly thereafter, McClish acknowledged that pAUC is
flawed as a measure of AUC in a part [8] because, when
standardized, it monotonically increases to the right in an
ROC plot—and others also found fault with it [41]. Hence,
McClish proposed the standardized Partial Area (sPA) [8]
which begins with the pAUC, subtracts the area under the
major diagonal, and then standardizes the result.

2. The parametric form assumes binormality in ROC data.
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Unfortunately, sPA is also flawed [9], [42]. It produces
negative results for ROC curves that are partly above the
major diagonal and partly below it, which occur in real life
[24], [33], [42], [43] with positive AUC values.

Hence, to briefly summarize, the partial AUC, pAUC
measures sensitivity but not AUC. When normalized, it is
average sensitivity [9], [30].

Its counterpart measures specificity. Jiang et al. [30] define
a partial area index, PAI, which measures average specificity
se ¼ PAI based on the area to the right of an ROC curve.
PAI assumes a fixed boundary at the top-right of an ROC
plot and is parametric with a binormality assumption. For
our purposes, we need both boundaries to be selected rather
than fixed, hence we use a similar but non-parametric form
(without assumptions) by Carrington et al. [9] as follows.

The horizontal partial AUC (Fig. 3b), for a range of TPR
½y1; y2� in a ROC curve x ¼ r�1ðyÞ, is normalized by its maxi-
mum possible area ð1 � DyÞ ¼ y2 � y1:

pAUCxnðy1; y2Þ ¼ 1

Dy

Z y2

y1

1� r�1ðyÞdy (5)

¼ Ax

Dy
¼ sp (6)

Next, to measure AUC in part of an ROC curve, as
McClish sought, we refer to Carrington et al.’s concordant
partial AUC [9] which we denote AUCi (Fig. 2) as a proper
generalization of AUC to a part or group labelled iwith ver-
tical and horizontal perspectives. It is defined for the range
ui ¼ ðx1; x2; y1; y2Þ as follows:

AUCiðuiÞ ¼ 1

2

Z x2

x1

rðxÞ dxþ 1

2

Z y2

y1

1� r�1ðyÞdy (7)

Carrington et al. derived its meaning from how the par-
tial C statistic is computed, which can be visualized in the
concordance matrix [9]. They normalize it to [0,1] [9, Table
3] consistent with the following:

AUCniðuiÞ ¼ AUCi

1
2 ðDxþ DyÞ (8)

The equation above (8) is equal to an earlier equation we ref-
erenced (1), just in a different form.

Our method uses three familiar concepts of sensitivity,
specificity and AUC. We measure the average sensitivity in
a group of predicted risk (or thresholds), average specificity
in a group, and normalized AUC in a group (Table 1)—
along with other (post-test) measures.

4.2 Measures we do not use

There are several alternatives that we do not apply because
they do not have familiar interpretations with inherent and
well-established value, like the measures we use.

Bradley [44] provides an alternative, the half-AUC, to
examine the area in an ROC plot in two parts, separated by
the minor diagonal which extends from the top left to the
bottom right, and where sensitivity and specificity are sepa-
rately emphasized in each part. This approach is sensible,
but limits analysis to two groups with fixed bounds. While
it is scaled to the same range as the AUC or C statistic, it is

not shown to have the same meaning. Empirically, its val-
ues are close to AUCi with two groups, which does have
established meaning.

Wu et al.’s novel partial area index [45] learns costs from
human decision-makers to formulate a measurement base-
line—a neat concept although its methodology needs more
detail.

Yang et al.’s two-way AUC [46] examines a portion of
AUC limited by cutoffs in sensitivity and false positive rate.
It was introduced to choose between two models, not ana-
lyze the performance of one. Two-way AUC looks at an
ROC part or group in isolation, not compared to the
whole—where the whole is required to properly evaluate C
statistics, AUC, fairness and equity. Carrington et al.
describe the same concept, local concordance, as an interim
step they discard as flawed and insufficient [9]. Also, Yang
et al. modify and reference a U statistic that does not handle
ties in scores.

Kallus and Zhou [47] define the cross AUC (xAUC) as
a way to examine fairness issues in a model, by examin-
ing how events in group a rank against non-events in
group b, and how events in group b rank against non-
events in group a (and other combinations). There are 4
xAUC measures (see balanced xAUC [47]) for each pair
of groups: relative measures, whereas AUC and other
measures that we use are absolute (and comparative).
For 4 groups, there are 6 pairs multiplied by 4 measures
(24 in total). Kallus and Zhou also define a within-group
AUC, but that is flawed like local concordance [9] (dis-
cussed previously).

In contrast to xAUC, Carrington et al.’s [9] partial C sta-
tistic measures the events in group a against all non-events,
and the non-events in group a against all events—together
as one measure. The concordant partial AUC (AUCi) is
equal in value but it is defined in a continuous instead of
discrete form.

Also, in Kallus and Zhou [47]: groups are defined by
instances instead of boundaries in TPR and/or FPR; and
ties in score are not properly handled.

Narasimhan et al. [48] describe pair-wise measures for
fairness between and in groups—mostly relative measures,
but they also include measures for average sensitivity and
average specificity. They do not measure AUC (or C) in a
group—and their measures have the same shortcomings as
Kallus and Zhou.

Hand and Till [49] generalize AUC to the multi-class case
instead of the partial case.

Examples of ROC analysis in the literature that applied a
group-wise approach like our method include Provost et al.
who describe the dominant classifier in groups by slope (or
skew) where a different classifier dominates in each group
[50]. Dominance ensures better performance by a variety of
common measures: accuracy, sensitivity, specificity, bal-
anced accuracy, positive predictive value, etc. However, the
question arises: how much better is the performance? Pro-
vost et al. do not quantify the difference, but they show con-
fidence intervals toward that goal.

Carrington et al. [9] and Wernly et al. [51] compare classi-
fiers by the partial AUC and the concordant partial AUC in
groups, but without normalization which eases comparison
and interpretation.
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4.3 Average precision as an alternative to AUC

Deeper analysis of ROC plots often arises in the context of
imbalanced data, and common alternatives employed in
that case are the F1 score [10], [16] at a point, which is too
specific, and the area under the precision recall (PR) curve
(AUPRC) a.k.a. average precision (AP) [19], which is too
general.

Like AUC, the trouble with AP or AUPRC is that it
includes all thresholds–and there are no partial measures
defined for them, but they focus on precision or positive
predictive value (PPV), which is relevant to low prevalence
data. Ideally, one should be able to compute both pre and
post test measures, as in our method. Our method allows
average PPV to be computed in subgroups and in intervals
defined in several different ways including intervals that
correspond to calibration plots.

A further criticism of F1 and AP or AUPRC is that they
vary with the prevalence of data in hidden (implicit) ways,
i.e., their biases are not detectable. However, Flach and Kull
fix that issue in AUPRC with PR gain curves, while Powers
[52] provides versions of the F1 score and precision (in
AUPRC) that can explicitly account for the skew (which
includes prevalence).

4.4 Multiple measures in tandem

Since Deep ROC analysis uses multiple measures in tan-
dem, we review similar work.

Steyerberg et al. [1] discuss five categories of performance
measures to report: overall performance, discrimination,
calibration, reclassification and clinical usefulness—a good
reference although Hilden aptly criticizes reclassification.

Steyerberg and Vergouwe [53] discuss three categories
and only four measures in total.

Sokolova et al. [34] claim that common performance meas-
ures are insufficient when two classes are equally important
or compare algorithms. They propose using: Youden’s index,
likelihood ratios, and discriminant power.

Sokolova and Lapalme [36] survey the invariant proper-
ties of performance measures and recommend measures for
natural language processing.

Mallett et al. [4] discuss various measures of discrimina-
tion and clinical utility, while Obuchowski and Bullen [21]
provide a survey of case studies or applications of AUC and
related measures.

Several reporting guidelines for diagnostic tests and pre-
diction models have been produced with guidance on meas-
ures to report for completeness and transparency. For
example, STARD asks authors to report positivity cut-offs,
how they were determined and whether they were defined
a priori [54]. TRIPOD asks authors to define all predictors
and the outcome that is predicted by the prediction model,
including how and when they were measured [55].

A GRADE assessment reports our confidence that the
true accuracy of a diagnostic test lies above or below a
threshold, or in a specified range [56] that depends on prev-
alence, and optionally, the cost of a test’s effects.

5 METHOD: DEEP ROC ANALYSIS

We provide an explanation and justification of deep ROC
analysis (DRA) in Section 2. To apply DRA, one performs

the following steps (e.g., using our Python toolkit3 for
reference).

1) Ensure that the models you wish to analyze, use
probabilities or calibrated scores (discussed further
below).

2) Decide if there is a region in an ROC plot or group of
persons in your data by predicted risk, that is of great-
est interest or concern. For example, in health care:
those at greatest risk, or eligible for treatment based
on risk, or applicable to a specific/different clinical
setting, or the model’s weak spot in prediction, or the
user/clinician’s weak spot in prediction, or the region
(at right) applicable to ruling-in or screening, or the
region at left, applicable to ruling-out or diagnosis, or
the region of Bayes error where positives and nega-
tivesmay be hardest to distinguish (themiddle).

3) Based on your business or clinical needs in step two,
decide how you will define groups for analysis:
a) as groups in FPR (or its complement, specificity)
b) as groups in TPR, i.e., sensitivity or recall
c) as groups in percentiles of predicted risk or prob-

ability (possibly to match a calibration quantile-
quantile plot)

4) Based on your answers in steps two and three, decide
how many groups of predicted risk/probability to
use and their boundary values. Consider examples in
case studies with three and six group if that helps.
There should be at least 30 patients in each group—
the minimum number of samples for a normal distri-
bution, to report means and confidence intervals.

5) Create a table of average pre-test and post-test meas-
ures as in Table 2.

6) Assess if one model is better than another using stan-
dard ROC analysis. For example, which model has
the best AUC (note any statistical significance per
DeLong’s method). Is the ROC curve of the best
model dominant (higher) throughout the plot or
only in some regions? Add any other measures you
use or prefer to the table (e.g., AUPRC, se, sp, F1).

7) Assess if one model is better than another in the
group(s) of interest, or in each group, using deep
ROC analysis. That is, for group i, is AUCni better for
one model? If so, is it better in both sei and spi? Is it
better in PPV i andNPV i? Based on the answers from
step two, you may favour positive measures (sei and
PPV i) over negative measures (spi and NPV i), or
vice-versa.

8) Within a model, assess which groups according to
AUCni perform better, the same or worse than the
overall AUC and compared to each other. Note statis-
tical significance according to confidence intervals
[57].
� Observe the values underlying each value of

AUCni in case there is anything unusual: average
sensitivity (sei) and average specificity (spi). The
usual behaviour of groups from left to right (in
FPR) or bottom to top (in TPR) are monotonically
increasing sei andmonotonically decreasing spi.

3. https://github.com/Big-Life-Lab/deepROC
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We elaborate on the calibrated scores mentioned in step 1.
Calibrated scores are needed to meaningful interpret and
compare model results as predicted risk or probabilities.
Some machine learning models do not produce calibrated
scores by default.

In binary classification and diagnostic testing, models not
only estimate binary outcomes, they also output classifica-
tion scores that are used to create ROC curves. Statistical
models such as logistic regression or naive Bayes produce
scores which are probabilities in the range ½0; 1� [58], how-
ever machine learning models may produce scores in the
range ½�1;þ1� or ½a; b�; a; b 2 R like some support vector
machines and some neural networks respectively, while
others may score in ½0; 1�.

Calibration [59] is a process that has two purposes,
either: (a) to turn non-probabilistic scores into probabilities;
or (b) to change a model’s output distribution to improve
measures of calibration [1] such as calibration in the large.

Calibration [59] is an extra stage of processing that uses
isotonic regression [60], [61] or Platt’s method [62], [63]. It
may be built into a model, or it made be performed as a sep-
arate post-processing step.

6 CASE STUDY 1: US ADULT INCOME

The Adult data set contains information on 48,842 adults
from the United States Census Bureau regarding demo-
graphics, work and capital gains/losses which are used to
predict personal income as either >50k or <50k.

We observe the following from deep ROC analysis
(DRA) on the 10-fold cross-validation results (Table 2) with
penalized logistic regression (LR), random forests (RF) and
extreme gradient boosting (XGB), using groups by FPR:

� Twomodels, LR and XGB, have the samemean AUC,
with a tighter confidence interval for XGB. DRA
shows that XGB is slightly better for high predicted

income in all group measures, while LR is better for
mediumpredicted income.

� RF has a worse average PPV than other models for
low predicted income, with statistical significance.

� The rightmost group has a higher AUCn3 because
each part of the ROC curve from left to right has
a diminishing height (Fig. 4) and diminishing con-
tribution in specificity compared to near perfect
sensitivity.

It may be more natural to examine groups by sensitivity
(TPR) or events (Table 3), where we observe the following:

� The high risk group (at left) has a higher AUCn1

because each part of the ROC curve from top to bot-
tom has a diminishing width and diminishing contri-
bution in average sensitivity.

� The medium risk group performs significantly worse
than the overall AUC.

7 CASE STUDY 2: MORTALITY PREDICTION BASED

ON ARTERIAL BLOOD GAS ANALYSIS OF SEPTIC

PATIENTS

Wernly et al. [51] compare four different machine learning
and clinical algorithms to predict the 32:4% of septic patients
who would pass away within the next 96 hours in a multi-
center ICU observational study. They evaluate a recurrent
neural network using long-short term memory (LSTM) on
arterial blood gas data against several baseline models and
clinical scales: Logistic Regression (LR), the SOFA score
evaluating functioning of six organs, and against blood
lactate levels as a sole predictor. We normalize the par-
tial area measures reported by Wernly et al. (Tables 4, 5)
for interpretation.

TABLE 2
Performance of Adult Income Models With Confidence Intervals,
in 3 Even Groups by False Positive Rate (FPR) or Non-Events,

for High, Medium and low Predicted Income

FPR [0,1] [0,.33] [.33,.67] [.67,1]

Pred. Risk All High Medium Low

AUC 86.6%�0.5 Penalized Logistic Regression
AUCni 86.6%�0.5 85.1%�0.5 86.2% �1.0 91.8%�0.8
sei 86.6%�0.5 67.2%�1.0 93.9% �0.4 98.6%�0.2
spi 86.6%�0.5 91.9%�0.2 54.1% �0.5 18.1%�0.7
PPV i 55.4%�0.7 69.6%�1.0 38.0% �0.1 27.3%�0.0
NPV i 90.3%�0.1 86.1%�0.2 96.4% �0.3 97.5%�0.3

AUC 86.3%�0.5 Random Forests
AUCni 86.3%�0.5 85.2%�0.5 85.2% �0.6 90.8%�1.1
sei 86.3%�0.5 67.0%�1.0 93.4% �0.5 98.4%�0.2
spi 86.3%�0.5 92.1%�0.3 53.8% �0.4 17.1%�0.3
PPV i 55.3%�0.7 69.7%�1.0 37.9% �0.1 27.3%�0.1
NPV i 90.2%�0.2 86.1%�0.1 96.1% �0.3 97.1%�0.4

AUC 86.6%�0.4 Extreme Gradient Boosting
AUCni 86.6%�0.4 85.5%�0.4 85.6% �0.9 91.9%�0.6
sei 86.6%�0.4 67.7%�0.8 93.6% �0.4 98.6%�0.2
spi 86.6%�0.4 92.1%�0.3 53.5% �0.7 18.6%�1.1
PPV i 56.0%�0.6 70.7%�0.9 37.9% �0.1 27.4%�0.1
NPV i 90.3%�0.1 86.2%�0.1 96.2% �0.2 97.6%�0.4

Fig. 4. This ROC plot from an Extreme Gradient Boosting (XGB)
machine on the Adult income data, shows that for even groups of FPR
or specificity, AUCni tends to be larger at right, where the change in
height of the curve in the group becomes vanishingly small. The near-
perfect performance in the 3rd group’s vertical dominates in contribution.
AUCni is as unaffected by the class ratio, as AUC is.
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First, we examine AUC as an overall measure. SOFA has
an AUC, or average balanced accuracy of 72% (Table 5),
which is moderately predictive [51], while Lactate and
Logistic Regression perform well with an AUC of 80% and
82% respectively and LSTM’s AUC of 88% is best (Table 4)
at 6% above the others.

Since AUC is equal to average sensitivity and average
specificity, this means that, across all thresholds, LSTM is
on average 88% sensitive and 88% specific. For parts of an
ROC curve however, AUCni, average sensitivity and aver-
age specificity differ (Table 4) as expected [9].

In the ROC plot (Fig. 5) for FPR<0.35, the curves are
above each other (better) in the same order as AUC, but for
FPR>0.5 Lactate is better than LR, and at FPR>0.63 SOFA is
better than LR too.

Wernly et al. [51] indicate that high-risk patients are the
most clinically relevant: predicting patients with “poor
prognosis” and predicting with “high accuracy, with low
false-positive rates”. Hence, that brings focus to the high
risk group among the three groups shown.

In the high risk group AUCni is 67%, 81%, 85% and
89% for SOFA, Lactate, Logistic Regression and LSTM,
respectively. SOFA is 5% worse in that group, than what
the overall AUC indicates, while LR is 3% better, and
LSTM and Lactate are 1% better. This analysis confirms
that LSTM not only performs best overall, but also in
that particular group, in quantitative terms beyond eye-
balling the ROC plot or choosing a single point in each
group.

If we examine average sensitivity in the high-risk region,
the differences between LSTM and Logistic Regression

grows from 4% in AUCni to a 9% difference in average sen-
sitivity—which is more important than average specificity
in this scenario. Lactate has 58% average sensitivity in the
high risk group, which is hidden if one only looks at AUC
as a summary measure, and SOFA is only 39% sensitive
there on average.

The poor sensitivity of SOFA is striking, but it makes
sense. That is, in high-risk patients, there will be a lot of
morbidity or organ dysfunction which SOFA identifies, e.g.,
if creatinine rises from 1.0 to 2.0 mg/dL. However, a rise in
creatinine from 3.0 to 6.0 mg/dL might not reflect the same
importance; and the same concept applies to bilirubin, coag-
ulation, etc. This underscores the merit of risk stratification
tools with higher granularity, as in the LTSM that Wernly
et al. propose rather than SOFA.

TABLE 4
The Neural Network Using Long-Short Term Memory (LSTM)
Performs Consistently Well in AUCi Across Groups of High,

Medium and low Predicted Risk, Defined by FPR

FPR [0,1] [0,.33] [.33,.67] [.67,1]

Pred. Risk All High Medium Low

AUC 88% LSTM
AUCni 88% 89% 85% 87%
sei 88% 76% 91% 97%
spi 88% 94% 57% 20%
PPV 60% at t=0.5
NPV 96% at t=0.5

Average sensitivity is always maximal at right, while average specificity is
always maximal at left.

TABLE 5
Logistic Regression (LR) Performs Slightly Better Than
Lactate as a Predictor, but not Adequately and SOFA

Performs Poorly in Groups of Risk by FPR

FPR [0,1] [0,.33] [.33,.67] [.67,1]

Pred. Risk All High Medium Low

AUC 82% Logistic Regression
AUCni 82% 85% 81% 76%
sei 82% 67% 84% 94%
spi 82% 93% 67% 40%
PPV 48% at t=0.5
NPV 95% at t=0.5

AUC 80% Lactate
AUCni 80% 81% 80% 80%
sei 80% 58% 88% 94%
spi 80% 91% 65% 14%
PPV -
NPV -

AUC 72% SOFA
AUCni 72% 67% 72% 84%
sei 72% 39% 82% 94%
spi 72% 80% 60% 44%
PPV 23% at t=0.5
NPV 92% at t=0.5

SOFA performs best in the wrong group.

Fig. 5. The ROC plot for the four classifiers: SOFA, Lactate, Logistic
Regression (LR) and LSTM. LSTM is best (dominant) in most regions.

TABLE 3
If Events (Actual Positives) are of Interest, Then Analyze
3 Even Groups of Sensitivity (TPR) or Events, for High,

Medium and low Predicted Income

TPR [0,1] [0,.33] [.33,.67] [.67,1]

Pred. Risk All High Medium Low

AUC 86.6%�0.4 Extreme Gradient Boosting
AUCni 86.6%�0.4 94.4%�0.6 83.8% �0.5 85.4%�0.4
sei 86.6%�0.4 22.8%�0.7 53.6% �0.5 92.4%�0.3
spi 86.6%�0.4 99.3%�0.1 93.5% �0.4 67.1%�0.9
PPV i 56.0%�0.6 89.3%�1.7 71.9% �1.2 40.3%�0.3
NPV i 90.3%�0.1 79.2%�0.0 85.9% �0.1 95.2%�0.2
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Scores such as SOFA or qSOFA or Lactate concentrations
were developed to “rule in” high-risk patients. However,
the approach by Wernly et al. is different, they want to “rule
out” patients who are very unlikely to benefit from further
critical care. SOFA performs best (AUCn3) where it matters
least (Table 5), while Lactate performs consistently across
all three risk groups.

8 CASE STUDY 3: GERMAN BREAST CANCER

STUDY GROUP

In survival analysis of patients in the German breast cancer
study group [64], 33% of patients with positive node primary
breast cancer had isolated locoregional recurrence at two
years after treatment. For this low prevalence situation, the
minority of positives are most clinically relevant—i.e., high-
risk patients identified by the leftmost part of the ROC plot.

We applied four models to this data set: penalized logis-
tic regression (LR), a linear support vector machine (LSVM),
a non-linear support vector machine with a Gaussian RBF
kernel (SVM), and a neural network (NN) with Rectified
Linear Units. Because the data are small, shallow learning
algorithms were used.

We performed 10-fold cross-validation using a random
search of the hyperparameter space.

We perform deep ROC analysis using 6 groups by FPR.
Rather than reporting results in tabular form, we plot AUCni

(Table 6).
The plot reveals that a linear support vector machine (red),

elastic net logistic regression (blue) and neural network
(orange) perform about the same overall with AUC values of
66.4%, 66.1% and 65.8% respectively (dashed line) but the
AUCni in each group fit with loess curves, differ. Hence the
need for deep ROC analysis to quantify inequities in perfor-
mance between groups of predicted risk. Applying isotonic
regression for calibrationmay reduce those inequities.

Additional plots for the other measures, average sensitiv-
ity, average specificity, average PPV and average NPV,
were also produced but are not shown for brevity.

9 AUC IS BALANCED AVERAGE ACCURACY

Carrington et al. [9] generalize AUC with the concordant
partial AUC, which we denote AUCni. For any contiguous
part or group of an ROC curve it meets the following prop-
erties of AUC:

1) converges to and equals AUC for bounds at (0,0) &
(1,1)

2) adds up to AUC for a covering but non-overlapping
set of ROC curve parts or groups

3) is explicitly related to the ROC curve’s average sensi-
tivity and average specificity

4) is interpretable as a C statistic and equal to it
5) is interpretable as meaningful area(s) ”under” the

ROC curve
6) can be computed for any empirical or continuously

defined ROC curve
7) properly handles ties in scores
8) is non-negative
9) can be normalized to [0,1] for fair comparison with

other (normalized) AUC measures

10) ignores, or has the effect of ignoring the class ratio, in
the same manner as AUC

The last property is the balance in balanced average accu-
racy. We explain that as follows.

AUC equals average sensitivity se related to vertical area;
and equals average specificity sp related to horizontal area
[33]. se and sp are given the same weight thereby ignoring
imbalance in the class ratio.

For part of an ROC curve with a small vertical area in
comparison to a larger horizontal area (Fig. 3), we must give
proportional weight to those areas in order to continue
ignoring the class ratio in the same way as AUC (i.e., for a
balanced view). Hence, the proportional weights in:

AUCni ¼ Dx

Dxþ Dy
� seþ Dy

Dxþ Dy
� sp (9)

which can be compared to any other AUCni or AUC. We
refer to this as balanced average accuracy. This is the normali-
zation, Carrington et al. applied in a table [9, Table 3] for the
concordant partial AUC, while showing an alternative nor-
malization in formulas for the partial C statistic. That is,
Eq. (9) above is a global normalization, whereas the alterna-
tive is to normalize ”locally” in each of the two terms sepa-
rately (two signified by ”nn”). We do not recommend the
following local normalization (Fig. 7):

AUCnni ¼ 1

2
� Ay

Dx
þ 1

2
�Ax

Dy
(10)

¼ 1

2
seþ 1

2
sp (11)

The local normalization is affected by the class distribu-
tion in groups and has group values almost always less than
AUC with values that demonstrably sag lower than AUC at
the left and right extremes. It fails to meet the last criterion
for proper balance. The normalized partial C statistics in Car-
rington et al. [9, Eqs. 4,7] should be updated accordingly.

We note that any measure derived from AUC that
attempts to generalize it, can easily meet AUC’s first prop-
erty for convergence and equality. So showing that equality

Fig. 6. For the German Breast cancer Study Group the AUC (dashed
lines) are shown relative to the loess fitted values of AUCni across 6
groups by FPR. Points from each of 10 cross-validation folds are jittered
for visual clarity.
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is superfluous. The critical thinking is in understanding the
full suite of AUC’s properties and applying them.

Also, measuring part of an ROC curve has two require-
ments that append to the previous list:

1 can be computed for any unique bounds at any point
continuously along the ROC curve

2 can be computed for any unique bounds at any point
continuously along the ROC curve

The partial AUC and horizontal partial AUC meet all of
AUC’s properties except the third and fourth. Hence, they
are not proper generalizations of AUC (from the whole to a
part).

10 LIMITATIONS

One possible limitation of our method is that the additional
information introduces more complexity which could com-
plicate communication of results.

Another limitation of ourmethod is that there is always the
chance that there may not be any clear choice between mod-
els, with or without statistical significance. Additional analy-
sesmay be prudent, such as: decision curve analysis[14].

A third limitation is that we recommend at least 30
patients in each group (in the test set) since that satisfies the
sample size for a normal distribution when reporting means
and confidence intervals. For small data this may limit the
number of groups.

11 CONCLUSION

We selected and interpreted three key pre-test measures
from the literature and showed how to use them in tandem
as familiar concepts, but newly applied to groups or parts
of an ROC curve or plot. We call this method deep ROC
analysis.

We have shown that models (or tests) can and do behave
differently in different risk groups—with better or worse
performance than what AUC indicates.

We provided a new interpretation of AUC, in whole or
part, that permits a new and pragmatic interpretation for
individual patients or instances, not just pairs.

In the first case study (adult income) our method largely
confirms the similarity in overall AUC, however it also allows

one to choose XGB for slightly better performance in the high
risk group or choose logistic regression for slightly better per-
formance in themedium risk group.

In the second case study, our method indicates that logis-
tic regression is not just better than Lactate overall (by 2%)
but it is particularly better in the high risk group which mat-
ters most (with 5% and 9% better AUCn1 and se). It also fur-
ther describes SOFA’s inadequacy.

In the third case study deep ROC analysis shows that
penalized logistic regression and a linear support vector
machine perform similarly, but in a non-uniform manner
across risk groups; while a neural network performed dif-
ferently. Depending on one’s needs, the choice of model
may differ based on these details.

In summary, deep ROC analysis provides in-depth infor-
mation by groups that will sometimes improve model eval-
uation, selection, explanation and audit over standard ROC
analysis. We recognize that other analysis (of utility) may
still be needed and performed separately.

Our approach could support tuning a model’s threshold
to a particular clinical setting and risk group, or choosing
thresholds at the point of service for more personalized
medicine.

Our method also indicates group measures to consider as
objectives in loss functions for optimization or re-optimiza-
tion of models.

12 FUTURE WORK

Future work may include computing the odds ratio at each
point and taking its average in the group; or comparing
results with AUPRC and the F1 score. Examining how
DeLong’s method pertains to part of an ROC curve would
also be helpful.

Recent work permits neural networks to be optimized for
proxy measures of AUC, instead of cross-entropy. Hence,
future work may consider proxy measures for AUCni and
linear combinations thereof.

Further investigation is also warranted to understand any
advantages or disadvantages of measuring average PPV and
average NPV by traversing the ROC curve uniformly, as we
do, instead of traversing the precision recall curve by units of
recall.

LIST OF ABBREVIATIONS

AI: Artificial intelligence
AUC: Area under the ROC curve
AUPRC: Area under the precision recall curve
C: The C statistic for binary outcomes,

but not Harrell or Uno’s C statistic
FNR: False negative rate
FPR: False positive rate, or 1-specificity
pAUCi: Partial area under the ROC curve (i.e., vertical)
pAUCni: Partial area under the ROC curve (normalized)
AUCi: Concordant partial area under the ROC curve
AUCni: Concordant partial area under the

ROC curve (normalized) or cpAUCni

pAUCxi: Horizontal partial area under the curve
pAUCxni: Horizontal partial area under the

ROC curve (normalized)
LR: Logistic Regression
LSTM: Long Short-Term Memory

Fig. 7. Local normalization has undesirable effects: values less than
AUC and sagging at left and right.
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PAI: Partial area index
PRC: Precision recall curve
ROC: Receiver operating characteristic
SOFA: Sequential organ failure assessment
sPA: Standardized partial area
TNR: True negative rate, or specificity, or selectivity
TPR: True positive rate, or sensitivity, or recall
xAI: Explainable artificial intelligence

AVAILABILITY OF CODE AND DATA

The Python code that produced the measurement numbers,
plots and tables, is available at: https://github.com/Big-
Life-Lab/deepROC

http://deepROC.org
The German Breast Cancer data is available at: https://

biostat.app.vumc.org/wiki/Main/DataSets
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