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Abstract—We describe a novel semi-supervised learning method that reduces the labelling effort needed to train convolutional neural
networks (CNNs) when processing georeferenced imagery. This allows deep learning CNNs to be trained on a per-dataset basis, which
is useful in domains where there is limited learning transferability across datasets. The method identifies representative subsets of
images from an unlabelled dataset based on the latent representation of a location guided autoencoder. We assess the method’s
sensitivities to design options using four different ground-truthed datasets of georeferenced environmental monitoring images, where
these include various scenes in aerial and seafloor imagery. Efficiency gains are achieved for all the aerial and seafloor image datasets
analysed in our experiments, demonstrating the benefit of the method across application domains. Compared to CNNs of the same
architecture trained using conventional transfer and active learning, the method achieves equivalent accuracy with an order of
magnitude fewer annotations, and 85 % of the accuracy of CNNs trained conventionally with approximately 10,000 human annotations
using just 40 prioritised annotations. The biggest gains in efficiency are seen in datasets with unbalanced class distributions and rare

classes that have a relatively small number of observations.

Index Terms—Semi-supervised learning, convolutional neural network, autoencoder, georeferenced imagery, pseudo-labelling

1 INTRODUCTION

GEOREFERENCED visual images taken by aircraft, satellites
and submersibles are widely used in environmental
monitoring. Modern robotic surveys using aerial drones and
Autonomous Underwater Vehicles (AUVs) can collect thou-
sands to tens of thousands of georeferenced images in a single
mission [1], [2], [3]. As the influx of images gathered by these
platforms increases, the need for domain expertise to generate
appropriate annotations becomes a bottleneck in our ability to
efficiently interpret the data. Supervised machine learning
techniques are potentially useful for automated interpreta-
tion. However, environmental studies have reported limited
transferability of learning from generic training datasets [4],
[5], citing the need for application-specific expert-annotated
training examples. This is limiting since comprehensive
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training datasets do not yet exist for many environmental
monitoring applications. The main reasons for this are the
high sensitivity of image appearance to environmental condi-
tions (e.g., lighting, atmosphere/water turbidity), observation
variables (e.g., range to target, spatial resolution, observation
footprint), the large variability in the appearance of unstruc-
tured scenes and the complexity of the annotation schemes
used in environmental monitoring applications [6], [7]. These
factors combined with the large number and different specifi-
cation of the imaging platforms used (e.g., wavelength sensi-
tivity, dynamic range, illumination source for underwater
applications) limit crossover between datasets. Although
unsupervised methods can efficiently process large volumes
of imagery without relying on human annotations, their out-
puts typically do not align with the class boundaries of inter-
est to experts, which limits their value for environmental
monitoring and infrastructure inspection [8], [9].

This paper develops a novel semi-supervised method that
improves learning efficiency when using georeferenced imag-
ery, and reduces the human effort needed to train classifiers for
environmental monitoring applications. The method is
designed for whole image classification of natural scenes in
downward looking imagery and consists of the following parts:

e Unsupervised learning - extracting latent representa-
tions of an unlabelled image dataset
e DPrioritised labelling - identifying a subset of repre-
sentative images for human annotation, and assign-
ing predictive pseudo-labels to the remaining data.
e Supervised learning - use of prioritised annotations
and pseudo-labels to train CNNs
For unsupervised learning, we investigate the impact
on downstream accuracy when two different types of
autoencoder are used to learn latent representations. The

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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first uses only the information in images and the second is a
location guided autoencoder (LGA) that also uses georefer-
ence information to regularise learning [9]. For prioritised
labelling, we investigate the impact of using different meth-
ods to automatically identify a small subset of images for pri-
oritised annotation and estimate class decision boundaries
when assigning predictive pseudo-labels in unannotated
images. The prioritised annotations and pseudo-labels can
be used to train different CNNs. We analyse the success and
sensitivity of the proposed method using four different real-
world datasets consisting of tens of thousands of georefer-
enced environmental monitoring image patches that have
expert human labels for training and validation. The gains in
learning efficiency are assessed based on the achieved accu-
racy and number of human annotations used in comparison
to CNNs trained using well established transfer and active
learning methods.

The advantages of the semi-supervised method for down-
stream classification tasks are:

e Unlike unsupervised methods, classifier outputs are
aligned with class boundaries of interest to humans
e Accurate results can be achieved with significantly
reduced human annotation effort compared to con-
ventional supervised methods, and significantly
reduced human and computational effort compared
to iterative training approaches (e.g., active learning)
The reduction in human effort needed to achieve an
equivalent accuracy to current state of the art approaches
means that end-to-end training can be achieved on a per-
dataset basis, making our approach suitable for use in
domains where there is limited transferability of learning
between datasets. The rest of this paper is structured as fol-
lows; section 2 reviews relevant machine learning literature
and section 3 describes the semi-supervised training method.
Experimental results for georeferenced seafloor and aerial
image datasets are presented in section 4.

2 BACKGROUND

2.1 Machine Learning for Environmental Monitoring
Determining the distribution of land cover, land use, habi-
tats, substrates and infrastructures are tasks that lie at the
core of environmental monitoring. One way of achieving
these tasks is to interpret imagery using established classifi-
cation schemes [10], [11], where often a small subset of
images are selected for human annotation from which aggre-
gate statistics can be derived. For more comprehensive anal-
ysis, many groups have reported automated interpretation
of imagery using machine learning, with representative liter-
ature described in the following subsections.

2.1.1 Supervised Learning

A large proportion of automated classifiers have used a
combination of hand-picked features chosen based on
expert knowledge of the application domain or through a
reward-based selection process [12], [13]. In [12] the authors
apply a Support Vector Machine (SVM) to texture- and col-
our-based features designed to classify seafloor images into
different substrates types for reef ecology surveys. In [14]
hand-picked geometric features are combined with SVM for

classification of satellite images. In [13] a similar approach
is applied for seafloor mineral prospecting. Spatial invariant
features such as Local Binary Patterns (LBP) [15] and Spatial
Pyramid Matching (SPM) [16] have also been effectively
applied to classification problems for land [17], [18] and sea-
floor imagery [19], [20]. However, these types of features
require manual tuning of parameters, or feature engineer-
ing, to efficiently describe each independent dataset. Fur-
thermore, a separate classification process is needed, which
typically requires further parameter tuning. As such these
methods often require expert knowledge of both the data
and application domain, and have limited versatility when
applied to multiple datasets.

A key advantage of deep learning techniques is that both the
latent representation of data and classification can be simulta-
neously optimised in a single end-to-end training process. This
avoids the need for costly and potentially subjective feature
engineering and reduces the need for parameter tuning, mak-
ing deep learning techniques a compelling choice for image
classification tasks. Deep learning techniques are widely used
for interpreting aerial and satellite imagery [21]. In [22] the
ResNet [23] deep learning CNN is used to classify images of
coral into nine separate classes, achieving higher classification
resolution than prior studies and demonstrating the ability of
deep learning to effectively model class boundaries used in sci-
entific taxonomy. However, to work effectively, deep learning
classification techniques typically require a large number of
annotated examples of each class. Although labelling platforms
tailored to aerial imagery [24] and seafloor imagery exist [2], [5],
the sensitivity of images to environmental and acquisition con-
ditions, complexity of annotation schemes and comparatively
small size of each environmental monitoring community
means that large-scale label repositories such as those in terres-
trial imaging [25] and autonomous driving [26] do not yet exist.
Several annotated datasets exist for satellite imagery [27]. How-
ever, most of these target built environments and artificial
objects, and the annotations are not suitable for monitoring and
conservation of the natural environment, where standardised
but complex hierarchical annotation schemes that consist of
hundreds to several thousands of terms are used [6], [7]. Fur-
thermore, for sub-sea imaging, most groups gather images
using custom built imaging hardware, where in [28] the authors
reported that even small differences in sub-sea imaging hard-
ware limits learning transferability and distorts deep learning
classifier outputs. In [29] a pipeline to make training datasets
transferable for inference on images from other datasets is pro-
posed for segmentation of marine organism. The work pro-
poses how to reduce scale variance across multiple datasets,
which is highlighted as an important consideration for seafloor
imagery. A detailed description of this and other domain spe-
cific distortions (e.g., blur, haziness, and colour distortion) that
affect seafloor imagery can be found in Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3140060.
For datasets where these disturbances are non-negligible, train-
ing on a per-dataset basis as is common in unsupervised learn-
ing can be considered a potentially effective solution.

Under these constraints, a reasonable approach for effec-
tive use of deep learning techniques is to train models on
the target dataset itself. However, the implied requirement
to annotate large numbers of images every time a new
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dataset is obtained is unlikely to be justified for most appli-
cations, forming a barrier to wide-spread adoption of deep
learning for image interpretation in environmental monitor-
ing applications. This motivates research into techniques for
effort reduction.

2.1.2 Unsupervised Learning

Unsupervised learning techniques have great potential for
image interpretation in environmental monitoring because
they do not require annotations, and so can be efficiently
trained and applied on a per-dataset basis. As with any
automated image analysis, feature engineering is crucial for
effective interpretation. In [8] LBP [15] features derived
from greyscale images, 3D rugosity and colour are applied
to seafloor image clustering. The authors later applied
SPM [16] as a more generic approach to describe seafloor
images [30]. These scale invariant features are also used for
clustering of aerial and satellite imagery [31]. In [32], the
non-parametric Bayesian clustering technique used in [8]
and [30] is extended to incorporate annotations made dur-
ing active learning [33] for seafloor imagery. In [34] the
accumulated histogram of oriented gradients from key-
points are used to describe each image, and this is applied
to clustering and anomaly detection. More recently, Shields
et al. [35] used unsupervised clustering results generated
from visual images as labels for supervised learning of ter-
rain elevation datasets. To avoid the demanding trial and
error process of feature engineering, we developed an unsu-
pervised deep learning LGA in our previous work [9]. The
proposed LGA learns latent representations without the
need for feature engineering. The georeference information
attached to each image is used to regularise learning, allow-
ing CNN architectures to leverage this information and
describe patterns that occur on spatial scales larger than a
single image frame in a single end-to-end process. Since the
LGA does not require any human annotations, it can be effi-
ciently trained and applied on a per-dataset basis, and this
has been shown to be effective for clustering and content-
based query of seafloor images. Tile2Vec [36] is a method
proposed for representation learning of aerial and satellite
imagery, where a similar approach based on the physical
distances between cropped image patches are leveraged
during training.

However, a disadvantage of unsupervised approaches is
that the resulting clusters do not attempt to align with the
class boundaries of interest to humans, and when latent rep-
resentations are optimised on a per-dataset basis, it is not
possible to make direct comparisons between clusters or
perform content-based queries across multiple processed
datasets.

2.2 Methods to Reduce Annotation Effort

The shortage of annotations is a common problem when
supervised learning is applied to real-world problems, and
a number of concepts have emerged to address this issue.

2.2.1 Transfer Learning

Transfer learning allows supervised learning models to be
trained using a relatively small number of annotations in
the target dataset by making use of much larger annotated

datasets from a different domain. Several frameworks have
been proposed to implement this concept [37]. Network-
based transfer learning has been applied in many applica-
tion domains including medical [38], satellite [39], and sea-
floor imaging [40]. This approach works by reusing
networks that have been pre-trained using large, generic
datasets (e.g., ImageNet [41], COCO [42], Pascal VOC [43])
that consist of hundreds of thousands to more than ten mil-
lion labels as an initial model. Though the number of data-
set specific annotations needed depends on the domain,
number of classes and data augmentation methods used,
previous studies on satellite [44] and medical imagery [38]
have required several hundreds of domain specific labels
for effective use.

2.2.2 Prioritised Labelling

Images in a dataset do not have equal value for CNN train-
ing. In [45] the authors demonstrate that training data selec-
tion can have a significant impact on learning, where CNNs
trained on a well selected subset of annotations can outper-
form CNNs trained using a larger number of annotations.
In [46] annotation efforts are prioritised using k£ means clus-
tering to estimate the entropy of each sample, showing sig-
nificant gains in performance compared to random selection.

In active learning [33], the learner interacts with human
annotators by iteratively proposing data samples that it con-
siders will most efficiently improve performance. Several strat-
egies have been proposed to achieve this. Most approaches
prioritise unlabelled samples that have the highest estimated
uncertainty, or are predicted to have the biggest impact on the
model. However, the heuristics used to suggest samples can
only be calculated after the initial subset has been analysed by
the algorithm. Although the initial subset can impact subse-
quent learning performance, its selection falls outside of the
scope of most active learning techniques [33], [47].

In [40] an autoencoder is used to locate objects of interest
in an unsupervised manner. The method highlights these
regions to human experts in order to facilitate efficient use
of time for manual segmentation. The approach leverages
the assumption that interesting objects are relatively rare in
the original image datasets they are applied to. Regions
with a high autoencoder reconstruction loss value are con-
sidered likely to include targets of potential interest, and
these regions are flagged for prioritised annotation by
humans. Active learning is also applied for seafloor image
interpretation in [32], [35], where the authors implemented
this with SPM as the feature descriptor.

2.2.3 Group Labelling and Label Extrapolation

Group-based labelling [48], [49] is a technique that assigns
annotations to subgroups of clustered data in order to reduce
the human annotation effort. An advantage of this approach
is that it can be applied to datasets with no labels by using
unsupervised clustering methods to generate the groups.
However, determining the annotation for a cluster of images
can be more complex than per-sample based annotation,
especially when unsupervised cluster decision boundaries
are not aligned with the desired class boundaries, resulting
in conflicted human annotations. In [50] the authors modi-
fied Gaussian mixture model based clustering to find
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Fig. 1. A flow diagram of the proposed pipeline for LGA driven Semi-Supervised (LGA-SS) training of CNNs. Once a dataset is gathered, the latent
representations of the images in the dataset are generated using the LGA [9] (section 3.1), after which hierarchical £ means clustering (section 3.2)
is used to identify a prioritised subset of images for human annotation. These annotations are used together with a set of algorithmically generated
pseudo-labels for the remaining unannotated data to train a CNN that can be used for downstream classification tasks. The proposed LGA-SS
method allows a CNN to be trained and applied to classification tasks on a per-dataset basis, making it effective in domains where there is limited

transferability of learning between datasets.

clusters with high intra-cluster similarity since the samples
in these clusters are considered to be more informative than
others. Although these techniques have shown significant
improvement in learning efficiency, the underlying assump-
tion is that effective clustering can be achieved.

Predictive pseudo-labelling [51] reduces human effort by
first training a classifier on a small subset of data that requires
fewer annotations than the target dataset. An advantage of
this over group labelling is that annotators consider individ-
ual images. After initial training, the classifier predicts labels
for the remaining data, and these pseudo-labels are used
together with the original annotations to fine-tune a classifier.
Li et al. [47] reports that SVM and Random Forest classifiers
outperform CNNs when generating pseudo-labels from an
initial annotated subset. Wu et al. [52] uses pseudo-labelling
to improve the classification performance for a hyperspectral
satellite image dataset, demonstrating effective application of
this approach to unstructured environmental monitoring
data, where random subsets were used for initial training.
The use of prioritisation methods for subset selection in
pseudo-labelling has not previously been investigated.

3 EFFICIENT LEARNING IN ENVIRONMENTAL
MONITORING IMAGERY

Our aim is to develop a method to efficiently learn class
boundaries of interest to humans with fewer annotations than
existing methods, and apply this to environmental monitoring
image classification problems. Fig. 1 shows the proposed
semi-supervised learning pipeline. It learns latent representa-
tions of images in a dataset using the LGA [9] (section 3.1).
Next, a subset of image samples are selected based on hierar-
chical k£ means clustering (section 3.2) for prioritised annota-
tion by humans. Pseudo-labels are assigned to all remaining
images (section 3.4) based on the annotated subset. The human
annotations and algorithm generated pseudo-labels are then
used to fine-tune a CNN, which can be used to solve a down-
stream classification task. The method is designed to work off-
line on a per-dataset basis, once the complete dataset has
been gathered. The initial latent representation learning and

identification of prioritised images for labelling are unsuper-
vised, where all images in the dataset are available for these
steps without the need for any human input. Human input is
only needed to annotate the subset of prioritised images,
where the number of prioritised images can be matched and
optimised according to the availability of human effort. As
such, the method is compatible with post data acquisition
workflows associated with environmental survey field work.
The LGA driven Semi-Supervised (LGA-SS) method is versa-
tile as it allows a CNN to be both trained and applied to classi-
fication on a per-dataset basis, making it effective in domains
where the transferability of learning between datasets is
limited.

3.1 Location Guided Autoencoder

Patterns of interest in environmental monitoring often occur
on spatial scales larger than the image patch size considered
by CNNs during their optimisation. The LGA overcomes
this problem by introducing georeference regularisation in
autoencoder training using a modified loss function [9].
This is designed to reflect the assumption that two images
captured within a close distance tend to look more similar than
two that are far away due to the presence of patterns beyond
the footprint of a single image frame. The approach allows
the LGA to recognise patterns that recur in images that are
close to each other and prioritise these in its learning with-
out introducing artefacts due to imperfect image stitching.
The latent representations obtained using the LGA have
been shown to perform better than those obtained using a
standard convolutional autoencoder when used for cluster-
ing and content-based image retrieval [9].

3.2 Data Selection for Prioritised Labelling

The standard CNN learning process expects class-balanced
distributions in training datasets. Skewed class distribu-
tions, such as those found in natural scenes on land and on
the seafloor, can result in overfitting of classes with rela-
tively large numbers of samples. If M images are randomly
selected for annotation, training datasets approximate the
skewed class distributions of the parent populations,
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resulting in non-ideal conditions for training and carrying a
risk that smaller classes may not be represented in training
for small M values.

In the proposed pipeline, k means clustering is applied to
the LGA’s latent representation to identify densely popu-
lated regions. The number of clusters should be large
enough to avoid missing small classes. As long as this con-
dition is satisfied, the outputs are not strongly sensitive to
small differences in & as the clusters attempt to evenly rep-
resent the different regions of the latent space. In this work
we define, k = [k,,10] x 10, where k, is a number of clusters
estimated by the elbow method [53]. The value of k is k.
rounded up to the nearest ten. Next, a subset of images for
prioritised annotation are selected by taking |[M/k| or
[M/k] images from each cluster so that the total number of
images is M. This generates a training class distribution that
follows the cluster distribution, which eases the class imbal-
ance problem as long as effective clustering is achieved. The
way samples are chosen from within each cluster can also
affect learning. In [46] it is assumed that the samples close
to the cluster boundaries are important as they have a
greater effect on classification decision boundaries. This
assumption is reasonable if the boundaries of clustering
and classification are comparable, but in situations where
class boundaries are ambiguous, like in many environmen-
tal monitoring application, it is possible that variability in
the annotations will degrade learning performance.

In this study, we consider that the samples provided for
training should represent the variability within each cluster in
order to deal with situations where the clustering resolution is
not sufficient to resolve class boundaries. We implement two
approaches to achieve this. The first approach uses k£ means
clustering and randomly samples data from within each clus-
ter so that each cluster in the LGA latent representation is
evenly represented in the training data. We also investigate a
more structured form of latent space representation, which
we implement using hierarchical £ means clustering. This
approach is originally proposed in [54] where a multi-stage
clustering process is introduced. The first stage explores the
dominant patterns in the whole dataset, and the following
stages attempt to select a representative set of samples from
within each cluster. This approach has also been applied to
extract representative data in text clustering problems [55]. In
this work, we consider that it is important to guarantee that
samples are selected from dense regions of the latent represen-
tation, and so after the first ¥ means clustering, we generate
|M/k| or [M/k] sub-clusters within each cluster and select
samples that are closest to each sub-cluster centroid so that the
total number of samples is M.

3.3 Data Augmentation

Data augmentation [56] plays an important role in reducing
the risk of overfitting during CNN training. Since most visual
features in downward looking images of the seafloor and of
land can be considered invariant to rotation and flipping [57],
we apply these augmentations randomly during the training
process, together with random shift operations to account for
uncertainty in position. These transformations are applied
with different parameters (i.e., rotation angle and offset) that
are randomly assigned every time an image is fed into the

model during training. Weighted sampling is also applied at
each epoch to balance the number of samples in each class.
Data augmentation is not applied to colour and scale distor-
tions since it can be consistently corrected taking into account
illumination and turbidity conditions and lens distortions [9].

3.4 Pseudo-Labelling

We predict pseudo-labels for each unseen image based on its
location relative to annotated samples in the LGA latent
space. Although the clustering results used to identify images
for prioritised annotation can be used for this purpose, the
decision boundaries of clusters and classes are not necessarily
aligned. Therefore, we investigate different approaches to
estimate class decision boundaries, comparing the perfor-
mance of nearest neighbour (1-NN), Random Forest and
SVM [58] with linear and Radial Basis Function (RBF) kernels
as methods capable of expressing varying degrees of com-
plexity of class boundaries in the latent space.

Although the original pseudo-labelling implementation
for deep learning applies a single winner takes all class label
to unseen data [51], recent research has demonstrated that
taking the uncertainty of each pseudo-label into consider-
ation can improve downstream classification accuracy [59],
[60]. Class boundaries in environmental monitoring data are
often ambiguous and so to address uncertainty near class
decision boundaries, we implement probabilistic pseudo-
labelling using a Gaussian Process classifier [61] to predict
class conditional probability distributions for each sample in
the latent space for comparison with the other methods.

Both the annotations and pseudo-labels assigned to the
remaining images are used to train CNNs, where for proba-
bilistic pseudo-labelling, the conditional probability distri-
butions are applied to the softmax loss of CNN training in
order to describe the pseudo-label uncertainty. The suitabil-
ity of these classifiers for pseudo-labelling is determined
through validation against human annotations.

4 EXPERIMENT

4.1 Dataset

The proposed method is applied to four different environ-
mental monitoring image datasets. Fig. 2 shows the spatial
and class distributions of the ground truth for each dataset.
The Seafloor dataset (Fig. 2a, see Appendix A, available in
the online supplemental material for further details) consists
of seafloor visual images collected by an AUV, and the aerial
image datasets (Figs. 2b, 2c and 2d, see Appendix B, available
in the online supplemental material for further details) are of
different types of scene (Mountain, Island and Urban). The
class distributions in these spatially continuous datasets are
highly skewed compared to the generic datasets that are
often used in benchmarking studies. Our experiments con-
sider each class to be of equal importance. The results are
assessed based on the macro-averaged F;-score, where we
take the mean and standard deviation (SD) of 10 repeated
sets of experiments under each test configuration.

4.2 Classification With Conventional Classifiers

We investigate the performance of conventional (non-CNN)
classifiers in order to generate effective pseudo-labels from a
small subset of annotated examples. Five well established
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Fig. 2. Spatial patterns (top) and class distributions (bottom) of ground truth classes in four environmental monitoring datasets. Each natural or artifi-
cial object class shows a unique spatial pattern in each dataset. The class distributions are highly skewed since all the images in the corresponding
areas are included in the datasets without any manual selection process. The Seafloor dataset (2a) consists of colour seafloor imagery collected by
an AUV. The three aerial datasets (Mountain, Island and Urban) consist of aerial images cropped from ESRI World Imagery. Details of these datasets
can be found in Appendices A and B, available in the online supplemental material, respectively.

classifiers; k-NN with k£ =1 (1-NN), Random Forest (RF), SVM
with linear (L-SVM) and RBF kernels (R-SVM) [58] and
Gaussian Process (GP) [61] classifiers are applied to the latent
space mapped by an LGA that has been trained on all avail-
able image patches. The results are compared with those of a
standard convolutional autoencoder that uses the same archi-
tecture as the LGA except for the georeference regularisation.
To evaluate the performance with a small number of annota-
tions, an adjusted cross-validation is applied. First, half of the
annotated image patches are randomly selected as a test sub-
set, preserving the class distribution of the entire dataset in
each dataset. Then )M images are selected from the remaining
patches based on random selection, £ means based selection,
and the proposed hierarchical £ means based selection. Fol-
lowing the equation defined in section 2.2.2, k = 20 is used for
both £ means and hierarchical £ means based selection for all
the datasets. In £ means based selection, M//20 images are
selected randomly from each cluster. In hierarchical ¥ means
based selection, the second stage k means is applied to each
cluster to find M /20 sub-cluster centroids, and the images
closest to each centroid are selected for annotation. Training
and testing are executed ten times for each configuration with
M =20, 40, 100, 200, 400, 1000 and 7500 (for the aerial datasets)
or 9370 (for the Seafloor dataset).

Tables 1 and 2 show the mean and SD of the F;-scores for
the ten-time cross-validation with each configuration (Al -
A20 in Table 1 and A’1 - A’20 in Table 2) on the seafloor and
aerial datasets, respectively. The data selection strategy has a
greater impact on performance than the choice of classifier,

with all classifiers benefiting significantly from hierarchical
k means prioritisation. The relative gains in accuracy com-
pared to random selection are especially large for small values
M (20, 40 and 100), confirming the importance of the data
selection strategy when training with a small number of anno-
tations. For the Seafloor dataset (Table 1), the combination of
LGA based pre-training and hierarchical k£ means based data
selection with a R-SVM (configuration A14) performs the best
among the tested cases for all values of M. The L-5VM and
GP generally perform better than 1-NN and RF, where the L-
SVM tends to be better for small values of M and GP better
for larger M. A similar trend is observed with the aerial data-
sets (Table 2). For small values of M, L-SVM outperforms R-
SVM; however, the difference is marginal. The largest effi-
ciency gains are achieved in the datasets that have rare classes
with the smallest number of relative observations (i.e., Sea-
floor and Mountain).

The standard deep learning autoencoder (configuration
A16 - A20 in Table 1 and A’16 - A’20 in Table 2) is significantly
less effective than the LGA for all the datasets investigated in
this work. This is an expected result since our previous work
has already shown that the autoencoder achieves poor cluster-
ing performance without georeference regularisation [9], and
the underlying assumption behind the data selection strategies
investigated here is that effective clustering can be achieved.
The results demonstrate that the proposed location guided
latent representation learning and representative image selec-
tion are effective for environmental applications using geore-
ferenced image datasets across application domains.
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F,-Score (Macro-Average) Mean and SD (%) of the Classification Result With Conventional Classifiers on the Seafloor Dataset

Config.  Feature Data Classifier Number of Annotations (/M)

Label  Learning Selection 20 40 100 200 400 1000 9370
Al LGA random 1-NN 31.8+9.1 40.1+3.0 44.0+45 47.6+33 489+3.1 50.6+£1.5 54.0+0.5
A2 RF 27.6+6.8 38.3+4.1 43.0+45 48.7+49 518433 56.4+14 61.0+03
A3 L-SVM  33.8+9.6 435+39 482+44 52.6+34 543+£25 56.3+£19 60.0£0.5
A4 R-SVM  31.6+7.6 424437 484437 544433 574437 602+0.8 63.3+0.7
A5 GP 29.6+52 39.1+6.2 461439 472452 525422 569420 63.2+0.6
A6 k means 1-NN 41.6+51 46.2+52 472+43 50.8+1.7 51.0£19 525+1.1 54.0£05
A7 RF 33.7457 431452 492440 547412 569+1.6 59.1+0.7 61.0+0.3
A8 L-SVM 432454 479458 51.5+42 56.6£1.3 57.1£14 59.9+1.0 60.0£0.5
A9 R-SVM  42.04+6.0 50.7£5.3 55.1+44 59.2+15 60.5+1.3 62.4+0.8 63.3+0.7

A10 GP 421+6.8 45.8+6.8 51.8+25 551+15 572416 60.0+0.8 63.2+0.6

All H-k means 1-NN 469+72 48.6143 489+29 522+24 523£17 53.0£0.8 54.0£05

A12 RF 421+74 479439 51.8+25 558+15 57.6+£15 59.3+09 61.0+0.3

Al13 L-SVM 474481 509+4.7 53.6+£3.0 56.8+1.6 583+1.2 60.84£0.9 60.0+0.5

Al4 R-SVM  48.04+83 54.8423 56.9+2.0 60.1+1.0 61.0+1.0 62.7+0.7 63.3+0.7

Al5 GP 445+77 514438 551+23 56.1+2.1 595412 61.2+1.1 63.2+0.6

Ale6 Auto- H-k means 1-NN 255+1.3 30.5+£1.5 332+1.0 33.8+12 35.6+14 36.6£0.8 383105

Al7 encoder RF 244+17 29.0£3.0 32.0+1.6 33.6+22 35.6+1.1 39.1+£0.8 41.1+04

A18 L-SVM  10.0+£5.6  8.3+4.5 6.0+3.4 8.51+8.5 6.7£2.6  1094£3.1 34.940.7

A19 R-SVM 217434 282426 29.6+4.0 35.0+1.8 383+1.5 42.04+09 44.940.6

A20 GP 9.7+0.0 9.7+0.0 9.7£0.0 10.3+1.4 149413 189408 21.54+0.3

TABLE 2

F1-Score (Macro-Average) Mean and SD (%) of the Classification Result With Conventional Classifiers on Aerial Datasets
(Mountain/Island/Urban Dataset)

Config. Feature

Data

Number of Annotations (M)

Label Learning Selection O 2ssifier 20 40 100 200 400 1000 7500

AT LGA random TNN  438f42  493%30  534%24  554%15 576209  594%08 621504
42.0/45.3/44.0 49.6/47.9/50.4 54.5/50.9/54.8 56.8/52.5/57.0 60.3/53.7/58.8 63.0/55.0/60.3 66.9/56.4/63.0

A2 RF 427462  494%50 558432 579423  608+12  633+09  66.6203
39.0/45.4/43.8 48.5/49.0/50.7 55.8/53.2/58.4 59.0/53.2/61.5 63.2/55.1/64.2 66.6/56.8/66.4 71.2/58.8/69.8

A3 LSVM 463445  52143.6 586423  6l1+l4  633+10  653+05  66.9+04
45.6/46.8/46.4 52.5/50.2/53.6 60.3/55.5/59.9 62.7/58.2/62.5 65.0/59.7/65.4 66.7/61.9/67.3 68.1/63.4/69.2

A4 RSVM 428447 511435 585422  6l4+14  63.8+10 657405  69.0+03
39.0/46.7/42.8 50.4/51.3/51.6 59.8/55.9/59.9 62.9/58.5/62.8 65.6/60.3/65.3 67.5/62.3/67.4 70.7/65.3/70.9

A5 GP 440441 501432 551427 576420  605+13 632410  68.1404
429/45.1/44.0 51.4/48.0/50.9 56.5/51.9/57.0 59.0/52.7/60.9 63.5/54.4/63.7 67.2/56.1/66.3 72.9/60.5/70.8

A6 Fmeans 1NN 471£43  511£24  540+21  559%14  571EL1 500507 617104
46.5/47.4/47.4 53.3/49.7/50.3 56.6/50.3/55.1 58.9/52.0/56.9 60.7/53.0/57.8 62.3/54.4/60.3 66.3/56.2/62.7

A7 RF 453457 514430 560419 584417  606+12 631409  66.4-0.4
42.8/47.9/45.1 51.5/50.9/51.8 57.0/52.4/58.5 59.9/54.0/61.2 63.3/55.0/63.6 66.2/56.9/66.3 71.2/58.7/69.3

A’ LSVM 491445 544423 586419  614+13  633+10  648+10 66404
47.3/50.0/50.0 56.1/52.1/54.9 60.9/54.7/60.1 63.7/57.3/63.2 65.4/59.6/65.1 66.5/60.6/67.4 68.0/62.3/69.0

A9 RSVM 456446 534435 580425  613+£14  633+1L1 652409  68.3+05
42.9/483/45.7 53.9/58.3/529 59.2/552/50.5 63.1/57.6/63.1 65.9/58.8/65.1 67.2/60.8/67.6 70.6/63.6/70.8

A'10 GP 476444 519430  561+18  585+17  604+12  63.0+08 677404
47.4/48.1/47.4 539/50.8/51.0 58.6/51.8/57.9 61.0/53.8/60.6 63.3/54.5/63.4 66.3/56.4/664 72.5/60.1/70.5

ATl HEmeans TNN 507430  527%24  566E16  582EL1  59.1507  603E06  624%04
50.8/49.9/51.4 55.8/49.2/52.9 60.9/51.3/57.5 61.6/53.9/59.1 63.5/53.8/60.0 64.5/54.8/61.4 67.4/56.4/63.3

A12 RF 490436 524429 579417 599417 621412 638407  66.9+0.4
47.1/49.3/50.7 51.5/52.1/53.6 59.3/54.3/60.0 60.4/56.6/62.8 64.8/56.7/64.6 67.7/56.9/66.7 72.3/58.9/69.6

A13 LSVM  518+3.1 550422 598416  61.8+14 632408 650407  67.1+03
52.5/50.2/52.7 58.0/50.5/56.4 63.0/54.1/62.3 65.0/57.2/63.1 65.9/58.7/65.0 66.9/61.0/67.0 69.0/63.5/68.9

A'l4 RSVM 508433 538424  593+19  6L9+13  635+07 655405  69.3+03
51.4/52.1/48.9 55.5/52.5/53.5 62.0/54.4/61.5 64.8/57.5/63.3 66.8/58.4/65.4 68.1/61.0/67.4 71.5/65.4/70.9

A5 GP 509431 536426 582420  605+18  625+12 641407 682404
51.0/50.1/51.7 56.1/50.7/54.0 61.7/53.1/60.0 63.0/55.8/62.8 66.0/56.3/65.0 68.3/57.0/67.0 73.4/60.6/70.8

Al6 “Auto HEmeans TNN 455532  480%23  5I8E18  530E12 536508  548E07  572%03
encoder 47.6/44.3/44.5 54.6/449/445 58.2/47.5/49.7 57.8/49.1/52.2 58.7/49.3/52.8 59.5/50.8/54.2 62.2/52.5/56.7

A7 RE 448433 483428 517421 546411 559409 581406  615+04
44.3/47.3/42.7 54.0/46.6/44.3 55.8/48.7/50.6 58.3/51.1/54.4 58.9/52.1/56.8 61.4/53.3/59.7 65.7/54.6/64.3

A18 LSVM 475427 494432 536421  547+14 564413 585415  62.7+04
49.5/46.2/46.7 52.7/48.1/47.4 57.9/51.0/52.0 57.0/51.3/55.6 58.2/53.5/57.4 58.9/56.2/60.5 66.1/59.1/62.9

A'19 RSVM 468435 496433 536420 553416  57.8+11 602416 652403
50.0/45.9/44.6 52.7/49.2/47.0 57.0/51.4/52.6 57.6/53.5/54.8 60.9/55.1/57.5 63.2/57.4/60.0 68.8/61.1/65.6

A20 GP 464434 491426 526418 550413  563+10 584405  62.7+05
48.1/46.0/45.1 55.9/46.5/44.9 56.9/49.5/51.4 58.4/51.5/55.1 59.3/52.5/57.3 61.3/53.5/60.4 67.2/55.6/65.4

The standard deviation values shown are the mean values of the standard deviations calculated for the three datasets.
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TABLE 3
F1-Score (Macro-Average) Mean and SD (%) of the Classification Result With CNN Trained by Standard Supervised Learning

(Section 4.3.1), Active Learning (Section 4.3.2) and the Proposed Pipeline (Section 4.3.3)

Number of Annotations (M)

Config. CNN Pre-training  Trained Layer Data Selection

Label 20 40 100 200 400 1000 9370
B1 AN IN last random 36.6£5.1 38.0+7.1 502458 57.7+15 59.4+17 59.7+£1.1 60.5+0.9
B2 RN18 IN last random 36.3+6.4 42.3+£3.8 483452 534455 57.7£2.6 603+27 62.8+0.7
B3 RN152 IN last random 349470 434450 49.746.6 542438 584424 588+2.6 61.4+1.1
B4 AN LGA last random 392474 432463 512453 58.3+19 62.0+£25 658+0.9 67.7+0.7
B5 AN IN all random 31.1£75 39.246.7 481459 53.8438 57.3£22 60.5+£2.0 68.6+0.7
B6 RN18 IN all random 34.1+£7.0 385+9.9 50.746.4 549451 585+3.1 61.9+1.1 69.4+0.6
B7 RN152 IN all random 353+6.4 382482 50.3+58 51.743.3 575420 59.1+1.8 64.9+1.1
B8 AN LGA all random 32947.0 44.6+4.0 449458 547435 57.7£27 60.1£14 66.3+0.9
C1 AN LGA last random+LC 30.5+6.2 34.9+6.7 47246.6 57.0+£3.8 62.0£1.8 637408 65.5+1.1
c2 AN LGA last random+margin  32.9+£5.6 40.3+4.4 49.6+£9.1 55.8+£74 605423 61.8+1.4 64.8+1.5
c3 AN LGA last random+entropy  36.9+£7.9 413487 534449 585435 62.0+1.5 63.7£13 66.2+0.5
C4 AN LGA last k means+LC 49.6+4.7 53.7£54 56.5+4.3 59.6£2.0 62.2+£1.8 628+15 65.6£1.0
G5 AN LGA last kmeans+margin = 48.9+4.2 525427 56.3£27 57.841.9 605+12 61.7£14 64.2+1.4
Coé AN LGA last k means+entropy  46.6+£52 49.8454 557434 583434 625+1.3 63.3+12 65.6+0.6
c7 RN18 IN all random+LC 334478 43.4+6.7 531445 56.8+22 58.6+£1.2 594409 63.5+0.7
Cc8 RN18 IN all random+margin  38.2+4.2 42.9+6.4 528458 543429 57.34+2.0 58.2+18 63.9+£0.5
c9 RN18 IN all random+entropy  35.9+£6.5 47.7+£6.2 552421 56.243.7 57.6+1.8 59.1+£13 63.6+0.8
C10 RN18 IN all k means+LC 50.3+£5.7 53.5+4.8 56.3+2.0 56.4+23 59.1+£13 59.5+14 64.0+0.9
C11 RN18 IN all kmeans+margin  49.146.2 50.846.1 53.4+4.9 545429 573411 585+1.0 63.7+£0.5
C12 RN18 IN all kmeans+entropy  49.2+7.0 521+£5.7 554429 575429 59.042.1 60.3£13 63.6+£0.7
D1 AN LGA last k means 43.6+4.0 51.4+48 567429 60.9+£2.0 64.5£1.0 66.0£09 67.7+£0.7
D2 AN LGA last H-k means 449464 53.2+4.2 581422 61.5+1.8 64.4+1.1 66.9+08 67.7+£0.7
D3 AN LGA last H-kmeans+PL ~ 50.4+83 57.8+3.0 60.44+2.6 62.841.0 62.7£12 647£08 67.7+0.7
D4 AN LGA last H-k means+PPL  31.3+2.7 40.1£2.8 52.04+2.6 572416 62.3£09 654408 67.7+£0.7
D5 RN18 IN all k means 455+8.0 49.6+7.2 554439 572423 59.5+1.6 62.0+£1.1 69.4+0.6
D6 RN18 IN all H-k means 44.748.1 53.04£53 579419 59.3+17 592427 621£15 69.4+0.6
D7 RN18 IN all H-kmeans+PL  51.9+7.6 59.1+2.7 604424 62.9+0.7 64.2+£1.0 648408 69.4+0.6
D8 RN18 IN all H-k means+PPL  46.2+32 512425 551424 589413 523415 664+1.1 69.4+0.6

The proposed method (D3 and D7) outperforms other configurations when M < 200. When M = 9370, all available training images are used making the selec-
tion strategy irrelevant. Bold and bold italics indicate the best and next best performer for each value of M.

4.3 Classification With CNN

This section evaluates the proposed LGA-SS learning pipe-
line’s performance using CNNs. The M training images and
test images are selected in the same way as in section 4.2.
When M is smaller than the total number of available train-
ing data, data augmentation (section 3.3), pseudo-labelling
(PL) or probabilistic pseudo-labelling (PPL) (section 3.4) are
applied so that the number of training images at each epoch
is the same as the total number of the training images to
allow for fair comparison of the results. Here we evaluate
the proposed pipeline on the dataset with the largest class
imbalance (i.e., Seafloor), since efficient handling of skewed
class distributions is an important consideration when inter-
preting natural environment datasets.

4.3.1 CNN Architecture Comparison (B1-B8)

The proposed LGA-SS training method can be applied to
any CNN architecture. Here, we investigate the impact of
using three well established CNN architectures on classifi-
cation accuracy: AlexNet, ResNetl8 and ResNet152 [23].
The accuracy of each configuration is evaluated based on
the mean F,-score (macro-average).

Each CNN is pre-trained using ImageNet, where experi-
ments are performed with all layers and only last layer train-
ing on the dataset following the network-based transfer
learning process described in [37]. Since AlexINet is used as
the basic architecture of the LGA implemented in this work,

the LGA’s encoder can be regarded as an AlexNet classifier
where the weight values have been optimised to describe all
the available images in the target dataset through latent repre-
sentation learning. The performance of the LGA pre-trained
CNN is compared to traditional ImageNet pre-trained CNNs
to assess the effectiveness of embedding georeference infor-
mation using the LGA.

The following parameters are experimentally determined
to achieve the best performance with each CNN architec-
ture: Mini-batch sizes of 128 samples are used for AlexNet
(all layer and final layer training) and ResNet18 (all layer
training), 32 for ResNet18 (final layer training) and 16 for
ResNet152, Adam [62] is used as the optimiser and the
learning rate is set to le-5 except for ResNet18 (final layer
training) where it is set to le-4, and the number of training
epochs is 50 for all configurations.

Table 3 shows the results for configuration B1 to BS. As
expected, the accuracy improves when a larger number of
annotations are used to train each CNN architecture. Over-
all, B4, which corresponds to AlexNet pre-trained using the
LGA where only the last layer is trained on the dataset,
shows the best performance except for when M = 40 and
9370. The performance gap between B4 and B8, where all
the layers are trained on the dataset, is potentially caused
by overfitting due to high model flexibility of B8. Though
B8 outperforms B4 for M = 40, the difference in perfor-
mance here is marginal. B8 shows a similar level of accuracy
to B5, where ImageNet is used for pre-training instead of
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the LGA, indicating that the advantage of LGA pre-training
is lost when all the layers are trained. The fact that B4 gener-
ally outperforms these configurations demonstrates the
advantage of embedding georeference information through
LGA pre-training using the target dataset. When M = 9370,
B6, corresponding to the case where all the layers of an
ImageNet pre-trained ResNet18 are trained on the dataset,
shows the best accuracy. This suggests that ResNet18's
deeper architecture and use of residual blocks allows for
better performance than AlexNet when a sufficient number
of training examples is available. However, B4 is the best
option overall for M < 1000, which is significant for this
study since we are interested in efficient training with a
small number of annotated examples.

The comparison between B1 to B3 (last layer only) and B5
to B7 (all layer) indicates that training only the last layer
limits the performance of each architecture for large values
of M, indicating that there is a significant difference
between the low-level and mid-level features of ImageNet
and the environmental monitoring dataset. In the proposed
pipeline, the number of training examples can be consid-
ered large due to the use of pseudo-labels. Therefore, we
choose to investigate B6 as it demonstrate the best capacity
for learning among B1 to B8, and we also examine B4 since
it is the most efficient learner for M < 1000.

4.3.2 Active Learning Comparison (C1-C12)

Active learning methods attempt to improve learning effi-
ciency by training classifiers on a subset of annotated sam-
ples, and proposing which samples should be annotated
next based on their prediction uncertainty [33]. CNNs are
well suited to this iterative process of prediction and priori-
tised annotation as their outputs are already conditional
probabilities against labels and so uncertainty metrics can
be easily derived. Common strategies for uncertainty based
prioritisation include Least Confidence (LC) sampling, mar-
gin sampling and entropy based sampling, all of which
have previously been demonstrated to be effective for envi-
ronmental monitoring applications [32].

Conventional active learning starts the iterative training
process with a randomly selected subset of samples. How-
ever, its performance is sensitive to this initial selection and
so we investigate whether an initial selection of samples
nearest to the centroids of the k£ means clusters in the LGA
latent space improves their performance. Subsequent
batches of samples (20 when M <1000 or 1000 when
M > 1000) are selected based on the active learning query
strategies and iteratively added to the subset of annotated
samples for training. A training epoch of 10 was chosen so
that the total number of epochs is comparable to the stan-
dard supervised learning results (B1-8) and proposed meth-
ods (D1-D8).

In our experiment, we assess two different CNN architec-
tures (AlexNet and ResNetl8), and compare the perfor-
mance of three well established active learning iterative
sampling techniques (LC sampling, margin sampling and
entropy based sampling). The active learning process is ini-
tialised using two different initial subset selection methods;
first where the initial subset is randomly sampled (corre-
sponding to traditional active learning workflows), and

second where active learning initialised by a £ means cen-
troid based sample initialisation (taking advantage of the
georeference embedded latent representations learnt during
LGA pre-training).

Configuration C1 to C12 in Table 3 show the accuracy
scores for CNNs trained using the different configurations
for active learning. Comparing the LGA pre-trained AlexNet
configurations (C1 to C3) with their transfer learning coun-
terpart (B4) shows that the active learning reduces accuracy.
However, for ResNet18, the accuracy increases when active
learning is applied (B6 and C7 to C9) for small values of M <
1000. It is noticeable that for larger M (particularly
M = 9370), active learning degrades performance, possibly
due to overfitting of CNN weights at an early phase of the
iterative learning process trapping them in local minima.
This is because the CNN is trained sequentially on discrete
subsets of data, where the stored weights are used to initial-
ise the optimisation of the next subset to limit the total num-
ber of training epochs required [63]. Although overfitting is
potentially mitigated by resetting the CNN weights between
each training subset [64], this requires a large number of
training epochs, making it impractical for use in domains
that require per-dataset training.

The use of the LGA k means centroids for initial sample
selection significantly improves performance (C4 to C6 and
C10 to C12), where the gains are largest for small numbers of
training examples, i.e., M < 100. Although this advantage is
lost as M increases, it does not cause any significant degrada-
tion in performance compared with the random initial subset
selection. The difference between the active learning strate-
gies is marginal for both the random and k& means initial selec-
tion. Although different hyperparameters (e.g., number of
epochs for each iteration) may improve active learning perfor-
mance, optimisation of these is outside the scope of this work
since there are no systematic methods available to determine
them.

4.3.3 Data Selection Strategy Comparison (D1-D8)

Four data selection strategies; k means, hierarchical £ means,
and hierarchical £ means with pseudo-labelling or probabi-
listic pseudo-labelling, are validated in this section. The pre-
vious section already confirmed that hierarchical £ means
based data selection is effective for small values of M when
combined with conventional non-CNN classifiers. In order
to allow for fair comparison, the number of training samples
used by the CNN at each training epoch is fixed to the total
number of available labelled training image patches (.e.,
9370 in this experiment). For configurations where all avail-
able labelled image patches are used in the training (i.e., all
pseudo-label and probabilistic pseudo-label configurations
and where M =9370 without pseudo or probabilistic
pseudo-labelling), each original labelled training image
patch is used once, and these samples are individually sub-
jected to data augmentations that randomise orientations,
flipping and position offsets at each training epoch before
being used by the CNN. For configurations where the num-
ber of labelled image patches used in the training is less than
available labelled training image patches (ie., M < 9370
with no pseudo or probabilistic pseudo labels), the selected
original images are sampled multiple times (e,
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Fig. 3. Comparison of classification performance investigated in section 4. Mean of F, (macro-average) values against each M are shown. Repre-
sentative configurations are chosen from Tables 1 and 3 for Fig. 3a and Table 2 for Fig.3b. The proposed georeference embedded sample selection
method improves performance for all the datasets analysed in our experiments. Larger gains in learning efficiency are achieved in datasets that have

a more heavily skewed class distribution.

approximately 9370/M times) so that a fixed number of
labelled training samples are provided to the CNN, where
each sample is subjected to random data augmentation
before being used by the CNN at each training epoch. In
[51], pseudo-labels are determined by the £ means clustering
results, corresponding to 1-NN in Table 1. However, Table 1
shows that R-SVM consistently estimates better class deci-
sion boundaries, and so will be used to assign predictive
pseudo-labels in this work. Although the GP classifier
described in section 3.4 did not perform as well as the R-
SVM, the prediction uncertainty may be useful for CNN
training and so experiments are also performed using these
outputs as probabilistic pseudo-labels.

Configuration D1 to D4 in Table 3 shows the perfor-
mance metrics for each data selection strategy with the LGA
pre-trained AlexNet CNN with last layer supervised train-
ing. D5 to D8 show the same comparison for ImageNet pre-
trained ResNet18 CNN with all layer supervised training,
where these base configurations where chosen since they
performed best in our CNN architecture comparison (B4
and B6 in section 4.3.1). For both AlexNet and ResNet18, the
combination of hierarchical £ means and pseudo-labelling
achieves the best performance for M < 200. Comparing the
cases with pseudo-labelling (D3 and D7) to the cases with-
out (D2 and D6) shows that pseudo-labelling consistently
improves classification performance. D7, which applies
hierarchical £ means and pseudo-labelling to ResNet18, per-
forms the best for M < 200 among all the configurations in
Table 3. The accuracies achieved by D7 with M = 20, 40, 100
are similar to the metrics achieved for Bl to B4 with M =
200, 400, 1000, which have an order of magnitude more
annotations. In particular, B6 and D7 use the same CNN
architecture, showing that gains in learning efficiency can
be attributed to the LGA-SS training method, resulting in a
significant reduction in human effort to achieve a similar
level of classification accuracy. Although the efficiency
gains diminish as the number of human annotations avail-
able for training increases, the LGA-SS method never
degrades the CNN’s performance for an equal number of

annotations. Another way to look at this is that the largest
gains in learning efficiency are achieved when there is only
a small amount of human effort available for annotation
tasks, where D7 with 40 prioritised annotations reaches
85 % of the accuracy achieved by the best performing super-
vised CNN, B6, trained using 9370 human annotations,
which represents just 0.4 % of the human effort. The data
also shows that the combination of hierarchical £ means
and pseudo-labelling improves the repeatability between
experiments under the same conditions, which is an impor-
tant attribute for practical application of automated data
interpretation.

Probabilistic pseudo-labelling outperforms pseudo-label-
ling only when M = 1000. This indicates that meaningful
probabilistic expression of pseudo-labels can only be taken
advantage of when a relatively large number of annotations
are available. On the other hand D2, where pseudo-labelling
is not applied, shows the best accuracy for M = 1000, and
similarly D1 shows the best performance for M = 400 with
D2 following it. This trend suggests that LGA pre-trained
AlexNet is effective at describing the class boundaries when
a sufficient number of annotated examples can be provided
for fine-tuning. The equivalent training approach for D5
and D6 does not show this behaviour, indicating that this is
a particular feature of using the LGA pre-trained network.
The advantages of the proposed method with hierarchical
k means for prioritised sample annotation and pseudo-
labelling using R-SVM is significant for M < 200 for both
CNN architectures (i.e., D3 and D7).

4.4 CNN and Conventional Classifier Comparison

Fig. 3 compares the performance metrics of several repre-
sentative configurations in Tables 1, 2 and 3. The result
under configuration Al4 are shown as this is the best per-
forming conventional (i.e., non-CNN) classifier. For the
CNN classifiers, configurations B4, B6, C7, C10, D3 and D7
are shown to demonstrate the effectiveness of the proposed
pipeline compared to other data selection strategies (ran-
dom selection and active learning) in Fig. 3a. Fig. 3b shows
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that the proposed LGA and H-k means based training data
selection is also effective on the aerial datasets. The perfor-
mance gains achieved here are is less than for the Seafloor
dataset, where this is thought to be due to the more skewed
class distribution in the Seafloor dataset (see Fig. 2), since
the H-k means selection strategy is most effective when
dealing with imbalanced classes.

Overall, the CNNs trained with proposed pipeline (D3 and
D7) outperform the conventional classifier (A14) and the best
performing CNN trained using active learning (C7 and C10),
except for M = 1000. The outputs of the A14 form the inputs
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Fig. 4. Confusion matrices and habitat maps predicted by ResNet18 trained using the random data selection (configuration B6 in Table 3). This corre-
sponds to conventional good practise, using a CNN pre-trained on the ImageNet annotation dataset and fine-tuning all the layers using randomly
sampled annotated images with data augmentation. The results show that for a values of M = 20 the ‘Artificial Object’ and ‘Bacterial Mat’ class that
contain the fewest samples are not efficiently learned, and even for M = 40, ‘Artificial Object’ is not recognised. The confusion matrix shows that
even with M = 1000, there is still significant confusion when classifying ‘Carbonate’ and ‘Shell Fragment'.

to train D3, where the same LGA is used for pre-training the
AlexNet CNN. The improvement in performance shows that
the CNN does not merely replicate the class boundaries found
in the annotations and the pseudo-labels, but learns new
boundaries that discriminate the classes more accurately.
ResNet18 (D7) shows better performance than AlexNet (D3)
when trained using the same outputs of A14, indicating an
ability to more accurately model complex class boundaries.
This was generally the case for all random selected training
data and the proposed pipeline. Comparing M = 1000 and

M = 9370, the conventional classifier's accuracy is not
Prediction Prediction
Ro Sa Ca SF BM AO Ro Sa Ca SF BM AO
Rock [E£10.30/0.11 0.01 0.00 0.02 Rock (UEF40.25 0.15 0.02 0.00 0.01
Sand 0.06 &3 0.05 0.01 0.00 0.01 Sand 0.05 06 0.06/0.00 0.00

Carbo. [0.17 EU0.03 0.01 I(].ﬂﬂ
Shell F. 0.01/0.18/0.23[280.15 0.01
0 Bact. M. |0.01 .0.(]] -0.04 0.12 (k4 0.00
Art. 0. 0.10/0.070.05 0.01 0.08 [T

Carbo. 0.11 [E320ERY0.08 .{].(]] 0.00
Shell F. 0.01 l] 15 0.11 (g 0.15 0.01
Bact. M. 0. 0[] 0.01 l] 02 0 i030.8
Art. O, 0,04 0.04 0.04 0.01 0.05 [k

round Truth
Grou nd Truth

M =20

M =40

M =100 M = 1000

Fig. 5. Confusion matrices and habitat maps predicted by ResNet18 trained using the proposed LGA-SS method with hierarchical £ means based
data selection and pseudo-labelling (configuration D7 in Table 3). Compared to Fig. 4, the results show improved learning efficiency, especially for
small values of M, where both the ‘Artificial Object’ and ‘Bacterial Mat’ classes are efficiently learned using just 20 human annotations, despite these

being rare classes with a small number of data samples. The performance with A/ = 100 shows similar performance to when the same CNN architec-
ture is trained using an order of magnitude more annotations from randomly selected data (i.e Fig. 4).
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significantly improved even though almost 10 times the num-
ber of annotations are used for training. On the other hand,
the CNNs achieves statistically significant increases from
M = 1000 to M = 9370 in all cases. This supports the common
understanding that deep learning CNNs are a better option
than conventional classifiers when large training datasets are
available, and that conventional classifiers are a reasonable
option when only a small number of annotations are available
for training.

Active learning (C7 and C10) benefits from LGA based
k means initialisation (C10), and shows better accuracy than
standard training (B4 and B6) for small M, but the perfor-
mance degrades when M is large due to overfitting as dis-
cussed previously. The proposed pipeline with prioritised
annotation and pseudo-labelling significantly outperforms
active learning for all M and both CNN architectures (D3, D7).
Pseudo-labelling is more robust to overfitting than active
learning since variability within the dataset is fully represented
as all the available images are used for training.

Other factors that are important for practical application
include the computational cost and the requirements for
human input. Compared with CNNs, conventional classi-
fiers require less time for training once LGA latent represen-
tations are generated and annotations have been made. In
active learning, the three main steps i.e., training with anno-
tated samples, inference for prioritising samples without
annotations and annotating by humans, need to be repeated
in sequence. This results in a large computational cost and
also leads to inefficiencies as human annotators are forced
to work around classifier retraining at each iteration. On the
other hand, the time investment needed for the proposed
pipeline is similar to conventional CNN training, since the
unsupervised training and LGA based sample prioritisation
do not require any human input, and the computation time
for predicting pseudo-labels is negligible.

4.5 Per-Class Performance

So far the macro-averaged F; score has been used as a metric
to compare the overall performance of different classifiers.
This is appropriate when we assume all classes in a dataset
are of equal importance. However, there are applications
where this is not the case, and in these scenarios it is
more valuable to consider performance on a per-class
basis. Figs. 4 and 5 compare the per-class confusion
matrices for M values of 20, 40, 100 and 1000 for config-
urations B2 and D7. These represent the outputs of the
best performing network, ResNet18, trained using standard
transfer learning and the proposed LGA-SS pipeline, respec-
tively. The values in each confusion matrix are normalised by
the number of ground truth annotations so that the diagonal
elements correspond to the recall value of each class. The con-
fusion matrices corresponding to the trials with the closest F;
score (macro-average) to the mean of ten repetitions (Table 3)
are chosen for each value of M. The values of zeros for M = 20
and 40 in Fig. 4 suggest no images corresponding to ‘Artificial
Object’ were selected in the random selection used for training
and so predictions could not be made effectively for this class.
On the other hand, Fig. 5 shows that all 6 classes in the dataset
are predicted for all M, illustrating the advantage of using
hierarchical £ means based data selection to avoid minor

classes from being overlooked even when the total number of
annotated images is small.

Comparing the habitat maps generated using the classifi-
cation results to the ground truth annotations (Fig. 2b) shows
that the random data selection (Fig. 4) requires a larger num-
ber of training samples M to capture the different spatial dis-
tribution patterns of each class. Using the proposed LGA-S5
training method (Fig. 5) results in more consistent per-class
performance, providing a better approximation of the ground
truth class distribution patterns even for small values of M.
The consistent performance for different numbers of input
training data is an important attribute for practical application
since the annotation resource available for different datasets is
likely to vary. These points favour the proposed method over
random sampling approaches that are more sensitive to the
number of available annotations, and require larger amounts
of training data to achieve similar performance.

5 CONCLUSION

This paper proposes a novel semi-supervised learning pipe-
line to classify georeferenced imagery using deep learning
CNNs. The main advantage of the proposed LGA-SS method
is that it can interpret images according to class boundaries of
interest for environmental monitoring more efficiently than
the alternative methods tested in this work, requiring less
human effort and achieving better accuracy. The method is
designed for per-dataset training in order to achieve high per-
formance with a realistic investment of human effort for prac-
tical application. Experiments on four georeferenced image
datasets spanning aerial and seafloor environments show that
the proposed georeference embedding and sample selection
methods are effective across application domains, achieving
the largest gains in efficiency are achieved on datasets that
have highly skewed class distributions, which are a common
feature in environmental monitoring applications. Other rele-
vant advantages include reduced variability between multi-
ple end-to-end training and classification runs under the
same configurations, and more consistent performance with
different sizes of input training data compared to traditional
naive (i.e., random sampling) based transfer learning meth-
ods. These properties make the LGA-SS method suitable for
use in domains where there is limited transfer of learning
between datasets. Our results demonstrate that:

e The proposed LGA-SS can achieve classification accu-
racy equivalent to naively trained CNNs with an order
of magnitude fewer human annotations (i.e., tens to
hundreds, as opposed to thousands). The results dem-
onstrate improvements in accuracy by a factor of 1.2 to
1.5 when a hundred or less annotations are used,
where the largest gains in learning efficiency are
achieved with small numbers of annotations. The
method also reduces the statistical variability between
independent trials under the same learning configura-
tions to approximately 0.6 of that when random sam-
pling is used. The proposed method reaches 85 % of
the accuracy achieved by the best performing naively
trained CNN (trained using 9370 human annotations)
with just 40 prioritised annotations, which represents
0.4 % of the human effort.
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The strategy to select data for human annotation
affects final classification performance. On the four
datasets, introducing structure to prioritise annotation
effort using hierarchical £ means in the latent repre-
sentation shows an average of 1.12 times improve-
ment, and leveraging LGA instead of an autoencoder
with the same CNN architecture achieved 1.23 times
higher accuracy in terms of R-SVM classification
results when the number of annotations is less than
100. A similar gain in performance is seen when the
LGA based k means selection is used to initialise active
learning, with a 1.25 factor improvement compared to
equivalent randomly initialised active learning setups.
The proposed method makes more efficient use of
human effort than traditional active learning based
techniques tested in this work, and is less prone to
overfitting, achieving a factor 1.12 and 1.22 improve-
ment in performance for AlexNet and ResNet18
respectively when compared to randomly initialised
active learning across all values of M.

CNN architectures are able to generalise class bound-
aries of interest to humans even when pseudo-labels
are assigned to all data in a training set. The resulting
CNN is able to improve the relative classification accu-
racy by an average of 6.4% compared to the classifica-
tion accuracy of the pseudo-labels themselves.

The performance of conventional classifiers for
pseudo-label generation is significantly improved
using k means based selection compared to random
selection when generating subsets of data for annota-
tion. A factor of 1.30 improvement in classification
accuracy is achieved for prioritised subsets with a
hundred samples or less.

Implementation of annotation effort prioritisation
strategies relies on effective unsupervised clustering
performance for seafloor images, where the use of
georeferencing information by the LGA compared to
an equivalent autoencoder that only uses information
in images resulted in an improvement in classification
accuracy by a factor of 1.4 to 8.9 (average 3.1) for the
configurations tested in this work.
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