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Abstract—Many learning algorithms such as kernel machines, nearest neighbors, clustering, or anomaly detection, are based on
distances or similarities. Before similarities are used for training an actual machine learning model, we would like to verify that they are
bound to meaningful patterns in the data. In this paper, we propose to make similarities interpretable by augmenting them with an
explanation. We develop BiLRP, a scalable and theoretically founded method to systematically decompose the output of an already
trained deep similarity model on pairs of input features. Our method can be expressed as a composition of LRP explanations, which
were shown in previous works to scale to highly nonlinear models. Through an extensive set of experiments, we demonstrate that
BiLRP robustly explains complex similarity models, e.g., built on VGG-16 deep neural network features. Additionally, we apply our
method to an open problem in digital humanities: detailed assessment of similarity between historical documents, such as astronomical
tables. Here again, BiLRP provides insight and brings verifiability into a highly engineered and problem-specific similarity model.

Index Terms—Similarity, layer-wise relevance propagation, deep neural networks, explainable machine learning, digital humanities

1 INTRODUCTION

UILDING meaningful similarity models that incorporate
Bprior knowledge about the data and the task is an impor-
tant area of machine learning and information retrieval [1],
[2]. Good similarity models are needed to find relevant items
in databases [3], [4], [5]. Similarities (or kernels) are also the
starting point of a large number of machine learning models
including discriminative learning [6], [7], unsupervised learn-
ing [8], [9], [10], [11], and data embedding/visualization [12],
[13], [14].

An important practical question is how to select the simi-
larity model appropriately. Assembling a labeled dataset of
similarities for validation can be difficult: The labeler would
need to inspect meticulously multiple pairs of data points
and come up with exact real-valued similarity scores. As an
alternative, selecting a similarity model based on perfor-
mance on some proxy task can be convenient (e.g., [15],
[16], [17], [18]). In both cases, however, the selection proce-
dure is exposed to a potential lack of representativity of the
training data (cf. the ‘Clever Hans’ effect [19]).—In this
paper, we aim for a more direct way to assess similarity
models, and make use of explainable ML for that purpose.
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Explainable ML [20], [21], [22] is a subfield of machine
learning that focuses on making predictions interpretable
for the human. Numerous methods have been proposed in
the context of ML classifiers [23], [24], [25], [26]. For exam-
ple, layer-wise relevance propagation (LRP) [24] explains
the prediction of a neural network classifier by performing
a backward pass in the network, which results in an attribu-
tion of the prediction to the different input features.

In this paper, we bring explainable ML to similarity. We
consider similarity models of the type

y(z,a') = (ppo...0¢(x), ¢ppo0...0¢ (),

e.g., dot products built on some hidden layer of a deep neural
network. We assume the similarity model to be already
trained. Explanation techniques developed in the context of
classifiers (e.g., [24], [25]) cannot be directly applied, because
they often assume some form of local linearity whereas dot
products have bilinearity. Hence, we propose a method for
explanation that adapts to this new setting.

Our method which we call ‘BiLRP’ is illustrated in Fig. 1.
BiLRP explanations can be produced in three steps:

e Step 1: Feed a pair of inputs to the neural network to
compute the feature representations.

Step 2: Compute an LRP explanation for each dimen-
sion of the two feature representations.

Step 3: Apply an outer product between the two col-
lections of LRP explanations.

The output of BiLRP is an attribution of the predicted simi-
larity score to the pairs of input features (e.g., pixels) of the
two inputs.

BiLRP can be embedded in the theoretical framework of
deep Taylor decomposition [27]. Specifically, the procedure
can be expressed as a collection of second-order Taylor expan-
sions performed in each layer. Elements of these expansions
identify the exact layer-wise redistribution strategy. BILRP can
also be interpreted as building layer after a layer a robustified
Hessian of the similarity model, that lets us extract meaningful
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Fig. 1. Proposed BiLRP method for explaining similarity. Produced
explanations are in terms of pairs of input features.
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explanations, even when the similarity is built on complex
deep neural networks.

We apply BiLRP on similarity models built at various
layers of the well-established VGG-16 image classification net-
work [28]. Our explanation method brings useful insights into
the strengths and limitations of each similarity model. We
also illustrate how the insights brought by BiLRP can be
actioned to produce an improved similarity model. We then
move to an open problem in the digital humanities, where
similarity between scanned astronomical tables needs to be
assessed [29]. We build a highly engineered similarity model
that is specialized for this task. Again BiLRP proves useful by
being able to inspect the similarity model and validate it from
limited data.

Altogether, the method we propose brings transparency
into a key ingredient of machine learning: similarity. Our
contribution paves the way for the systematic design and
validation of similarity-based ML models in an efficient,
fully informed, and human-interpretable manner.

1.1 Related Work

Methods such as LLE [30], diffusion maps [31], or t-SNE [14]
give insight into the similarity structure of large datasets by
embedding data points in a low-dimensional subspace
where relevant similarities are preserved. While these meth-
ods provide useful visualization, their purpose is more to
find global coordinates to comprehend a whole dataset, than
to explain why two individual data points are predicted to
be similar.

The question of explaining individual predictions has been
extensively studied in the context of ML classifiers. Methods
based on occlusions [32], [33], surrogate functions [25], [34],
gradients [23], [35], [36], [37], or reverse propagation [24], [32],
have been proposed, and are capable of highlighting the most
relevant features. Some approaches have been extended to
unsupervised models, e.g., anomaly detection [38], [39] and
clustering [40], and attention models have also been devel-
oped to explain tasks different from classification such as
image captioning [41] or similarity [42]. Our work goes further
along this direction and explains similarity built on general
neural network models, and by identifying relevant pairs of
input features.

Several methods for joint features explanations have been
proposed. Some of them extract feature interactions globally
[43], [44]. Other methods produce individual explanations for
simple pairwise matching models applied on the input fea-
tures [45], or some activation maps of a convolution network
[46]. Another method incorporates explicit multivariate struc-
tures into the model to identify joint contributions [47].
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Another method extracts joint feature explanations in nonlin-
ear models by estimating the integral of the Hessian [48]. In
comparison, our BiLRP method leverages the deep layered
structure of the model to robustly explain predicted similarity
in terms of input features.

A number of works improve similarity models by
leveraging prior knowledge or ground truth labels. Pro-
posed approaches include structured kernels [1], [49], [50],
[51], or siamese/triplet networks [52], [53], [54], [55], [56].
Beyond similarity, applications such as collaborative filter-
ing [57], transformation modeling [58], and information
retrieval [59], also rely on building high-quality matching
models between pairs of data.—Our work has an orthogo-
nal objective: It assumes an already trained well-performing
similarity model, and makes it explainable to enhance its
verifiability and to extract novel insights from it.

2 TOWARDS EXPLAINING SIMILARITY

In this section, we present basic approaches to explain the
predictions of a similarity model in terms of input features.
The similarity model is considered to be already trained.
We first discuss the case of a simple linear model, and then
extend the concept to more general nonlinear cases.

Let us begin with a simple scenario where z,z’ € R? and
the similarity score is given by some dot product y(z,z’) =
(Wz, Wx'), with W a projection matrix of size h x d. The
similarity score is bilinear with (z, z'). This score can be nat-
urally attributed to pairs of input features (i, ') by rewriting
it as the sum

y(% xl) = Zil‘/a/vz,ia WL’) : 957793;/7
and identifying the elements of the sum as the respective
contributions. Clearly, input features interact to produce a
high/low similarity score.

In practice, more accurate models of similarity can be
obtained by relaxing the linearity constraint. Consider
some similarity model y(z,z') = (¢(z), ¢(z’)) built on some
abstract feature map ¢ : R — R" which we assume to be
differentiable. A simple and general way of attributing
the similarity score to the input features is to compute a
Taylor expansion [24] at some reference point (z, ')

y(z, o) = y(z,2)
+ 3 VY@, @), (i — 20)
+ 220 Vy(=, 7)), (2 — 7))
+ 3 VY@, )] (2 —

;) (z)y — Ty)
+...

Here, V? denotes the Hessian. The explanation is then
obtained by identifying the multiple terms of the expansion.
Like for the linear case, some of these terms can be attrib-
uted to pairs of features (7,i’).

For special choices of functions, namely when ¢ is a
piecewise linear positively homogeneous function, we find
that choosing the reference point (z,z') =8 (z,2’) with §
almost zero leads to a simplified ‘Hessian x Product’ for-
mulation

y(z, o) =3 [Vy(z, z)]y @ @), 1)
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where second-order contributions can be easily computed.
This simple method we contribute will serve as a baseline in
the experiments.

A limitation of methods relying on the model derivatives
is that these derivatives can be noisy, especially when the
function to analyze is a deep neural network. Derivative
noise has been observed e.g., in [22], [60].

3 EXPLAINING SIMILARITY WITH BILRP

In the following, we introduce our new BiLRP method for
explaining similarities. It is based on merging the following
two ideas:

1)  Second-order Taylor expansions for producing explan-
ations in terms of pairs of input features, as described
in Section 2,

2) The layer-wise relevance propagation [24] technique
that robustly explains complex deep neural network
predictions.

BiLRP assumes as a starting point that the similarity

score is structured as a dot product over features of a neural
network

y(x,m’) = <¢LO '--Od)l(x)’ ¢LO-~'O¢1(m,)>'

The functions ¢, . . ., ¢; are the different layers of the network
and can either be linear/ReLU layers, or more general posi-
tively homogeneous functions. (The same network can also be
written as a single network y(z,z’) =1y o...0 ¢ (z, )
where  subsumes the two branches of the computation.)
Then, inspired by LRP, the BILRP method applies a purposely
designed message passing procedure from the top layer
where the similarity score is produced to the input layer
where the explanation is formed. However, unlike standard
LRP, BiLRP sends messages between pairs of neurons that
jointly contribute to the similarity score.

The presentation of BiLRP is structured as follows:
Section 3.1 explains how the messages to propagate are
obtained from second-order Taylor expansions. Section 3.2
discusses theoretical properties of BILRP and how the method
can be interpreted as building a robustified Hessian of the
similarity model. Finally, Section 3.3 shows how BiLRP can be
computed in a way that makes use of LRP as an inner compu-
tation, thereby considerably easing implementation.

3.1 Extracting BiLRP Propagation Rules

To build meaningful propagation rules, we make use of the
‘deep Taylor decomposition” (DTD) [27] framework. DTD
consists of applying Taylor expansions at each layer to iden-
tify the way the prediction must be redistributed to the layer
below.

Assume we have already run a few steps of propagation
starting from the output until some intermediate layer of
the network. At this stage, we have an attribution of the sim-
ilarity score on pairs of neurons at this layer. Let Ry, be a
‘relevance score’ that measures the share of similarity that
has been attributed to the pair of neurons (k, k') at this layer.

In the DTD framework, this quantity is first expressed as a
function of the vector of activations a in the layer below. The
relation between these two quantities is depicted in Fig. 2.
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layer 1—1

y(z,x')

Fig. 2. Diagram of the map used by DTD to derive BiLRP propagation
rules. The map connects activations at some layer to relevance in the
layer above.

Then, DTD seeks to perform a Taylor expansion of the
function Ry (a) at some reference point a

Ry (a) = Ry (a)
+ 3, [VRyw (@)]; - (a; — aj)
+ 3y VR (@) - (a7 — dy)
+ ij/ [V?Ryw (6)]jj’ -(a; — aj) (ay — ay)
+...,

so that messages R;;. i can be identified. In practice, the
function Ry (a) is difficult to analyze, because it subsumes
a potentially large number of forward and backward com-
putations. Therefore, DTD introduces the concept of a
‘relevance model’ Ry (a) which locally approximates the
true function Ry (a), but only depends on the neighboring
parameters and activations [27]. For linear/ReLU layers
[61], we define the relevance model

ﬁkk/(a) = (Z] ajwjk)+ (Z]‘/ aj/wjrk,/)+ CLl!

a, G.k.l

with ¢, a constant set in a way that J?kk/ (a) = Ry . (This rel-
evance model is justified later in Proposition 3.) We now
have an easily analyzable model, more specifically, a model
that is bilinear on the joint activated domain and zero else-
where. We search for a root point a at the intersection
between the two ReLU hinges and the plane {a(t,¢)|¢, ¢ €
R} where

[a(t, 1) lj=a;—taj-(1+y- L >0),
la(t,t)]; = ay —t'ay - (L+y - Ly, >0),

with y > 0 a hyperparameter. This search strategy can be
understood as starting with the activations a, and jointly
decreasing them (especially the ones with positive contribu-
tions) until Ry (a) becomes zero. Zero- and first-order terms
of the Taylor expansion vanish, leaving us with the interac-
tion terms R,y . Rewriting the interaction terms in closed
form and aggregating messages coming from the layer above
(e, Ry = v Rjy—w), we get the propagation rule

a;a ~/p(w.,-k.)p(w '/kJ)
Ry =Y ’ v

Ry, 2
7 2 @ity P(wik) p(wyi)

with p(wj,) = wj, + ywjk. A derivation is given in Appendix
A.1 of the Supplement, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2020.3020738. This propagation rule can
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be seen as a second-order variant of the LRP-y rule [62] used
for explaining DNN classifiers. It has the following interpreta-
tion: A pair of neurons (j, ') is assigned relevance if the fol-
lowing three conditions are met:

(i) it jointly activates,

(ii) some pairs of neurons in the layer above jointly react,
(iii)  these reacting pairs are themselves relevant.

In addition to linear/ReLU layers, we would like BiLRP
to handle other common layers such as max-pooling and
min-pooling. These two layer types can be seen as special
cases of the broader class of positively homogeneous layers
(i.e., satisfying VoV, : ar(ta) =t ai(a)). For these layers,
the following propagation rule can be derived from DTD

ajay [VQakay]

Riy = %,:Z]/ aja;[V? akak/} R, @
(cf. Appendix A.2 of the Supplement, available online). This
propagation rule has a similar interpretation to the one
above, in particular, it also requires for (7, j') to be relevant
that the corresponding neurons activate, that some neurons
(k, k') in the layer above jointly react, and that the latter neu-
rons are themselves relevant.

3.2 Theoretical Properties of BiLRP

A number of results can be shown about BiLRP. A first
result relates the produced explanation to the predicted
similarity. Another result lets us view the Hessian x Prod-
uct method as a special case of BILRP. A last result provides
a justification for the relevance models used in Section 3.1.

Proposition 1. For deep rectifier networks with zero biases,
BiLRP is conservative, i.e.,y s Ry = y(z, x’).

(See Appendix B.1 of the Supplement for a proof., avail-
able online) Conservation ensures that relevance scores are
in proportion to the output of the similarity model.

Proposition 2. When y = 0, explanations produced by BiLRP
reduce to those of Hessian x Product.

(See Appendix B.2 of the Supplement for a proof., avail-
able online) The proof relies on the fact that relevance scores
in linear/ReLU layers can also be expressed as R;; =
ajayc;y and Ry = apay cpy with

Qg Qg
Cjj = Z(wjk, + yw*,t) . (wj/k/ + ywtk,) c— — i/ 4)
Kk J J 2k 2R

where z; = 37 a;(wj; + ywj;,) and similarly for 2. For the
special case y = 0, the terms ay,/z; and ay /z;; become equiv-
alent to ReLU derivatives, and this makes Eq. (4) coincide
with the equation for propagating second-order derivatives
which is used to compute the Hessian. This theoretical con-
nection also hints at a more robust behavior of BiLRP when
y > 0: In this case the discontinuity of the ReLU derivative
disappears, and the propagation procedure can conse-
quently also be interpreted as building a robustified Hes-
sian of the similarity model. We demonstrate empirically in
Sections 4 and 5 that non-zero values of y give better
explanations.
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Proposition 3. The relevance computed by BiLRP at each layer
can be rewritten as R;y = ajajc;y, where c;y is locally approx-
imately constant.

(Cf. Appendix B.3 of the Supplement., available online) This
property supports the modeling of c¢;;,cyy,... as constant,
leading to easily analyzable relevance models from which the
BiLRP propagation rules of Section 3.1 can be derived.

3.3 BILRP as a Composition of LRP Computations
A limitation of a plain application of the propagation rules
of Section 3.1 is that we need to handle at each layer a num-
ber of relevance scores which grows quadratically with the
number of neurons. Consequently, for large neural net-
works, a direct computation of these propagation rules is
unfeasible. However, it can be shown that relevance scores
at each layer can also written in the factored form

Ry

= Zm 1 kaRA’ Rjj' = Zm 1 R}”"R?/m’

where h is the dimension of the top-layer feature map, and
where the factors can be computed iteratively as

a;p(wjy)
m oy (5)
Zz asoluw)
for linear/ReLU layers, and
a; Vak
1m - Z Z a, Vak] km; (6)

for positively homogeneous layers. The relevance scores
that result from applying these factored computations are
strictly equivalent to those one would get if using the origi-
nal propagation rules of Section 3.1. A proof is given in
Appendix C of the Supplement, available online.

Furthermore, in comparison to the (# neurons)” compu-
tations required at each layer by the original propagation
rules, the factored formulation only requires (# neurons x
2h) computations. The factored form is therefore especially
advantageous when £ is low. In the experiments of Section 5,
we will improve the explanation runtime of our similarity
models by adding an extra layer projecting output activa-
tions to a smaller number of dimensions.

Lastly, we observe that Equations (5) and (6) correspond
to common rules used by standard LRP. The first one is
equivalent to the LRP-y rule [62] used in convolution/ReLU
layers of DNN classifiers. The second one corresponds to
the way LRP commonly handles pooling layers [24]. These
propagation rules apply independently on each branch and
factor of the similarity model. This implies that BiLRP can
be implemented as a combination of multiple LRP proce-
dures that are then recombined once the input layer has
been reached

h
)=> LRP([¢,0...

m=1

BiLRP(y, z, ' © ¢, T)

@ LRP([¢p;0...0¢],,.2).

This modular approach to compute BiLRP explanations
is shown graphically in Fig. 3.
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A. Similarity computation o(z

¢
']llw

@)

Fig. 3. lllustration of our approach to compute BiLRP explanations: A.
Input examples are mapped by the neural network up to the layer at
which the similarity model is built. B. LRP is applied to all individual acti-
vations in this layer, and the resulting array of explanations is recom-
bined into a single explanation of predicted similarity.

BiLRP can therefore be easily and efficiently imple-
mented based on existing explanation software. We note
that the modular approach described here is not restricted
to LRP. Other explanation techniques could in principle be
used in the composition. Doing so would however lose the
interpretation of the explanation procedure as a deep Taylor
decomposition.

4 BILRP VERSUS BASELINES

This section tests the ability of the proposed BiLRP method
to produce faithful explanations. In general, ground-truth
explanations of ML predictions, especially nonlinear ones,
are hard to acquire [22], [63]. Thus, we consider an artificial
scenario consisting of:

(i) a hardcoded similarity model from which it is easy
to extract ground-truth explanations,

(i) a neural network trained to reproduce the hard-
coded model exactly on the whole input domain.

Because the hardcoded model and the neural network
become exact functional copies after training, explanations
for their predictions should be the same. Hence, this gives
us ground-truth explanations to evaluate BiLRP against
baseline methods.

The hardcoded similarity model takes two random
sequences of 6 digits as input and counts the number of
matches between them. The matches between the two
sequences form the ground truth explanation. The neural
network is constructed and trained as follows: Each digit
forming the sequence is represented as vectors in R!’. To
avoid a too simple task, we set these vectors to be corre-
lated. Vectors associated to the digits in the sequence are
then concatenated to form an input z € R9*!?. The input
goes through two hidden layers of size 100 and one top
layer of size 50 corresponding to the feature map. We train
the network for 10000 iterations of stochastic gradient
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Truth Saliency Curvature  Hess x Prod BiLRP
1 9 Lo -9 155 -9 1 9 1 g
2 8 2= - 2- -8 2 8 2 8
4 5 4= -6 4= -6 4 6 4 6
0 9 0= -9 0- -9 0 9 0 9
7 7 7 - -7 7 - -7 7 7 7 7
3 8 3 -8 3- -8 3 8 3 8
5 6 - 6 -

ACS: 0.31 0.30 0.77 0.89

Fig. 4. Benchmark comparison on a toy example where we have ground-
truth explanation of similarity. BILRP performs better than all baselines,
as measured by the average cosine similarity to the ground truth.

descent to minimize the mean square error between predic-
tions and ground-truth similarities, and reach an error of
1073, indicating that the neural network solves the problem
perfectly.

Because there is currently no well-established method for
explaining similarity, we consider three simple baselines
and use them as a benchmark for evaluating BiLRP:

- ‘Saliency”: R;y = (:vyac;,)2

- ‘Curvature’: Ry = ([V?y(z,')],y)°

- ‘Hessian x Product’: R,y = z;2/, [VZy(z, o)),y

Each explanation method produces a scoring over all
pairs of input features, ie., a (6 x 10) x (6 x 10)-dimen-
sional explanation. The latter can be pooled over embed-
ding dimensions (cf. Appendix D of the Supplement,
available online) to form a 6 x 6 matrix connecting the digits
from the two sequences. Results are shown in Fig. 4. The
closer the produced connectivity pattern to the ground
truth, the better the explanation method. High scores are
shown in red, low scores in light red or white, and negative
scores in blue.

We observe that the ‘Saliency” baseline does not differen-
tiate between matching and non-matching digits. This is
explained by the fact that this baseline is not output-depen-
dent and thus does not know the task. The ‘Curvature’ base-
line, although sensitive to the output, does not improve over
saliency. The ‘Hessian x Product’ baseline, which can be
seen as a special case of BiLRP with y =0, matches the
ground truth more accurately but introduces some spurious
negative contributions. BiLRP, through a proper choice of
parameter y (here set to 0.09) considerably reduces these
negative contributions.

This visual inspection is validated quantitatively by consid-
ering a large number of examples and computing the average
cosine similarity (ACS) between the produced explanations
and the ground truth. An ACS of 1.0 indicates perfect match-
ing with the ground truth. ‘Saliency’ and 'Curvature’ base-
lines have low ACS. The accuracy is strongly improved by
‘Hessian x Product’ and further improved by BiLRP. The
effect of the parameter y of BiLRP on the ACS score is shown
in Fig. 5.
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Fig. 5. Effect of the BiLRP parameter y on the average cosine similarity
between the explanations and the ground truth.

We observe that the best parameter y is small but non-
zero. Like for standard LRP, the explanation can be further
fine-tuned, e.g., by setting the parameter y different at each
layer or by considering a broader set of LRP propagation
rules [62], [64].

5 INTERPRETING DEEP SIMILARITY MODELS

Our next step will be to use BiLRP to gain insight into prac-
tical similarity models built on the well-established VGG-16
convolutional neural network [28]. We take a pretrained
version of this network and build the similarity model

y(z,2') = (VGG (z), VGG (2)),

i.e., a dot product on the neural network activations at layer
31. This layer corresponds to the last layer of features before
the classifier. The mapping from input to layer 31 is a
sequence of convolution/ReLU layers, and max-pooling
layers. It is therefore explainable by BiLRP. However, the
large number of dimensions entering in the dot product
computation (512 feature maps of size £ x &5 where w and h
are image dimensions), makes a direct application of BiLRP
computationally expensive. To reduce the computation
time, we append to the last layer a random projection layer
that maps activations to a lower-dimensional subspace. In
our experiments, we find that projecting to 100 dimensions
provides sufficiently detailed explanations and achieves the
desired computational speedup. We set the BiLRP parame-
ter y to 0.5,0.25,0.1,0.0 for layers 2-10, 11-17, 18-24, 25-31
respectively. For layer 1, we use the 25-rule, that specifically
handles the pixel-domain [27]. Finally, we apply a 8 x 8
pooling on the output of BiLRP to reduce the size of the
explanations.

Fig. 6 (A-F) shows our BiLRP explanations on a selection
of image pairs taken from the Pascal VOC 2007 dataset [65]
and resized to 128 x 128 pixels. Positive relevance scores
are shown in red, negative scores in blue, and score magni-
tude is represented by opacity. Example A shows two iden-
tical images being compared. BiLRP finds that eyes, nose,
and ears are the most relevant features to explain similarity.
Example B shows two different images of birds. Here, the
eyes are again contributing to the high similarity. In Exam-
ple C, the front part of the two planes are matched.

Examples D and E show cases where the similarity is not
attributed to what the user may expect. In Example D, the
horse’s muzzle is matched to the head of a sheep. In Exam-
ple E, while we expect the matching to occur between the
two large animals in the image, the true reason for similarity
is a small white calf in the right part of the first image. In
example F, the scene is cluttered, and does not let appear
any meaningful similarity structure, in particular, the two
cats are not matched. We also see in this last example that a
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substantial amount of negative relevance appears, indicat-
ing that several joint patterns contradict the similarity score.

The effect of the parameter y on the explanation is shown
in Fig. 6 (G). A low value of y gives noisy explanations with
many negative scores. A high value of y produces explana-
tions that are mainly positive but also less selective for the
exact patterns of similarity. Intermediate values of y pro-
duce the best explanations.

Opverall, the BiLRP method gives insight into the strengths
and weaknesses of a similarity model, by revealing the fea-
tures and their relative poses/locations that the model is able
or not able to match.

5.1 How Transferable is the Similarity Model?
Deep neural networks, through their multiple layers of
representation, provide a natural framework for multitask/
transfer learning [66], [67]. DNN-based transfer learning
has seen many successful applications [68], [69], [70]. In this
section, we consider the problem of transferring a similarity
model to some task of interest. We will use BiLRP to com-
pare different similarity models, and show how their trans-
ferability can be assessed visually from the explanations.
We take the pretrained VGG-16 model and build dot
product similarities at layers 5,10,17,24,31 (i.e., after each
max-pooling layer)

y(5> (.’1:,.’1,‘/) = <VGG5($)7VGG5("I:/)>7

YD (z,2') = <VGG231(x),VGG:31($')>-

Like in the previous experiment, we add to each feature
representation a random projection onto 100 dimensions in
order to make explanations faster to compute. In the follow-
ing experiments, we consider transfer of similarity to the
following three datasets:

- ‘Unconstrained Facial Images” (UFI) [71],
‘Labeled Faces in the Wild” (LFW) [72],

- ‘The Sphaera Corpus’ [29], [73].

The first two datasets are face identification tasks. In identi-
fication tasks, a good similarity model is needed in order to
reliably extract the closest matches in the training data [53],
[74]. The third dataset is composed of 358 scanned academic
textbooks from the 15th to the 17th century containing texts,
illustrations and tables related to astronomical studies.
Again, similarity between these entities is important, as it
can serve to consolidate historical networks [56], [75], [76].

Faces and illustrations are fed to the neural network as
images of size 64 x 64 pixels and 96 x 96 pixels respectively.
We choose for each dataset a pair composed of a test exam-
ple and the most similar training example. For each pair, we
compute the BiLRP explanations. Results for the similarity
model at layer 17 and 31 are shown in Fig. 7.

We observe that the explanation of similarity at layer 31
is focused on a limited set of features: the eyes or the nose
on face images, and a reduced set of lines on the Sphaera
illustrations. In comparison, explanations of similarity at
layer 17 cover a broader set of features. These observations
suggest that similarity in highest layers, although being
potentially capable of resolving very fine variations (e.g., for
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Fig. 6. Application of BiLRP to a dot-product similarity model built on VGG-16 features at layer 31. Top: BILRP explanations on different pairs of input
images from the Pascal VOC 2007 dataset. Red and blue color indicate positive and negative contributions to the similarity. (Details of the rendering
procedure are given in Appendix E of the Supplement, available online.) Bottom: Effect of the BiLRP parameter y on the explanation.

the eyes), might not have kept sufficiently many features in
other regions, in order to match images accurately.

To verify this hypothesis, we train a collection of linear
SVMs on each dataset where each SVM takes as input acti-
vations at a particular layer. On the UFI dataset, we use the
original training and test sets. On LFW and Sphaera, data

layer 17 layer 31

Unconstrained Facial Images (UFI)

Labeled Faces in the Wild (LFW)

Sphaera lllustrations

Fig. 7. Application of BiLRP to study how VGG-16 similarity transfers to
various datasets.

points are assigned randomly with equal probability to
the training and test set. The hyperparameter C' of the
SVM is selected by grid search from the set of values
{0.001,0.01,0.1, 1, 10, 100, 1000} over 4 folds on the training
set. Test set accuracies for each dataset and layer are shown
in Table 1.

These results corroborate the hypothesis initially con-
structed from the BiLRP explanations: Overspecialization of
top layers on the original task leads to a sharp drop of accu-
racy on the target task. Best accuracies are instead obtained
in the intermediate layers.

5.2 How Invariantis the Similarity Model?

To further demonstrate the potential of BiLRP for characteriz-
ing a similarity model, we consider the problem of assessing
its invariance properties. Representations that incorporate
meaningful invariance are particularly desirable as they
enable learning and generalizing from fewer data points [77],
(781, [79]1.

TABLE 1
Accuracy of a SVM Built on Different Layers of the
VGG-16 Network and for Different Datasets

layer
dataset # classes 5 10 17 24 31
UFI 605 0.45 0.57 0.62 0.54 0.19
LFW 61 0.78 0.86 0.92 0.89 0.75
Sphaera 111 0.93 0.96 0.98 0.97 0.96
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TABLE 2
Invariance Measured by Eq. (7) at Various Layers of the VGG-16
Network on the UCF Sports Action Dataset

layer
5 10 17 24 31
Inv 2.30 2.31 243 2.87 4.00

Invariance can however be difficult to measure in prac-
tice: On one hand, the model should respond equally to the
input and its transformed version. On the other hand, the
response should be selective [80], [81], i.e., not the same for
every input. In the context of neural networks, a proposed
measure of invariance that implements this joint require-
ment is the local/global firing ratio [81]. In a similar way,
we consider an invariance measure for similarity models
based on the local/global similarity ratio

:M

. (7)
<y(.’17, m/) >global

Inv

The expression (). denotes an average over pairs of
transformed points (which our model should predict to be
similar), and (-),,,, denotes an average over all pairs of
points.

We study the layer-wise forming of invariance in the
VGG-16 network. We use for this the “UCF Sports Action’
video dataset [82], [83], where consecutive video frames
readily provide a wealth of transformations (translation,
rotation, rescaling, etc.) which we would like our model to
be invariant to, i.e., produce a high similarity score. Videos
are cropped to square shape and resized to size 128 x 128.
We define (-),,. to be the average over pairs of nearby
frames in the same video (At < 5), and (), to be the aver-
age over all pairs, also from different videos. Invariance
scores obtained for similarity models built at various layers
are shown in Table 2.

Invariance increases steadily from the lower to the top
layers of the neural network and reaches a maximum score
at layer 31. We now take a closer look at the invariance score
in this last layer, by applying the following two steps:

(i) The invariance score is decomposed on the pairs of
video frames that directly contribute to it, i.e.,
through the term (-), ..., of Eq. (7).

(ii)  BiLRP is applied to these pairs of contributing video
frames in order to produce a finer pixel-wise expla-
nation of invariance.

This two-step analysis is shown in Fig. 8 for a selection of
videos and pairs of video frames.

The first example shows a diver rotating counterclock-
wise as she leaves the platform. Here, the contribution to
invariance is meaningfully attributed to the different parts
of the rotating body. The second example shows a soccer
player performing a corner kick. Part of the invariance is
attributed to the player moving from right to left, however,
a sizable amount of it is also attributed in an unexpected
manner to the static corner flag behind the soccer player.
The last example shows a golf player as he strikes the ball.
Again, invariance is unexpectedly attributed to a small red
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diving

Fig. 8. Explanation of measured invariance at layer 31. Left: Similarity
matrix associated to a selection of video clips. The diagonal band out-
lined in black contains the pairs of examples in (-)1,.,1- Aight: BiLRP
explanations for selected pairs from the diagonal band.

object in the grass. This small object would have likely been
overlooked, even after a preliminary inspection of the input
images.

The reliance of the invariance measure on unexpected
objects in the image (corner flag, small red object) can be
viewed as a ‘Clever Hans’ effect [19]: the observer assesses
how ‘intelligent’ (or invariant) the model is, based on look-
ing at the outcome of a given experiment (the computed
invariance score), instead of investigating the decision struc-
ture that leads to the high invariance score. This effect may
lead to an overestimation of the invariance properties of the
model.

Similar ‘Clever Hans’ effects can also be observed beyond
video data, e.g., when applying the similarity model to illus-
trations in the Sphaera corpus. Fig. 9 shows two pairs of illus-
trations whose content is equivalent up to a rotation, and for
which our model predicts a high similarity.

Once more, BiLRP reveals in both cases that the high sim-
ilarity is not due to matching the rotated patterns, but
mainly fixed elements at the center and at the border of the
image respectively.

Overall, we have demonstrated that BiLRP can be useful
to identify unsuspected and potentially undesirable reasons
for high measured invariance. Practically, applying this
method can help to avoid deploying a model with false
expectations in real-world applications. Our analysis also
suggests that better explanation-based invariance measures
could be designed in the future, potentially in combination
with optical flows [84], in order to better distinguish
between the matching structures that should and should
not contribute to the invariance score.

Fig. 9. Pairs of illustrations from the Sphaera corpus, explained with
BiLRP. The high similarity originates mainly from matching fixed features
in the image rather than capturing the rotating elements.
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Fig. 10. Pairs of illustrations from the Sphaera corpus and BiLRP explanation for the improved similarity model. Similarity captures rotating elements

such as letters.

6 BUILDING BETTER SIMILARITY MODELS

In this section we discuss how to produce better and more
useful similarity models with the help of BiLRP. First, we
show in Section 6.1 how the interpretable feedback pro-
vided by BiLRP can be used to fix a flawed similarity model.
Then, we engineer in Section 6.2 a domain-specific similar-
ity model which is both predictive and explainable with
BiLRP.

6.1 Fixing a ‘Clever Hans’ Similarity Model
In the example of Fig. 9, BiLRP has revealed a Clever Hans
effect of the similarity model: The model would assign high
similarity between rotated images not by matching the
rotated elements, but by matching the few elements that are
invariant to such rotation. With this particular decision
structure, the model will likely not generalize well to a
broader set of images.

To force rotation invariance into the model, a simple fix is to
compute the similarity score for all flips/rotations 7, 7 of the
two input images, and output the maximum similarity score

y(1o%) (2 4/ = max y(c(z), 7 (z')).

7,7

Note that 7, 7" can be expressed as linear operation on their
input, and the maximum function is also locally linear.
With these simple transformations, BiLRP remains applica-
ble and the explanation is obtained in this case by applying
BiLRP to the flips/rotations corresponding to the highest
similarity score. Explanations of similarities predicted by
the improved model are shown in Fig. 10.

ity Commrtinlll Cop Bheu
& BY LA ASGENSIONVM
bl

Compared to the original model (Fig. 9), some of the
rotating patterns are now being matched, for example, the
sequence of letters ‘tic” in the first pair of images.

However, this simple enhancement does not resolve all
weaknesses of the similarity model. In the second pair of
images, we observe that the actual image content, e.g., the
planet’s triangular shadow, remains largely unattended.
Therefore, further enhancements of the similarity model (e.g.,
extracting additional features from the images) are needed.
Comprehensively fixing a similarity model would require a
way to screen through many pairs of data points and their cor-
responding explanations (e.g., using the SpRAy visualization
technique [19]), and then, a mechanism to systematically turn
explanatory feedback into model improvements.

6.2 Engineering an Explainable Similarity Model
An alternative approach is to build specific similarity models
that do not rely on generic pretrained features, and are instead
engineered to address the peculiarities of the problem at hand.
We use this engineered approach to address another open
and significant problem in the digital humanities: assessing
similarity between numeric tables in historical textbooks. We
consider scanned numeric tables from the Sphaera Corpus
[29]. Tables contained in the corpus typically report astronom-
ical measurements or calculations of the positions of celestial
objects in the sky. Examples of such tables are given in
Fig. 11 A. Producing an accurate model of similarity between
astronomical tables would allow to further consolidate histor-
ical networks, which would in turn allow for better inferences.
The similarity prediction task has so far proven challeng-
ing: Unlike natural images, faces, or illustrations, which are

B. bigram network min max
: ﬁ ﬁj¢o{)
j=0...9
jk=00...99
C. |
bigram -.V _H' 'H }‘ga

network

VGG-16
layer 17

Fig. 11. A. Collection of tables from the Sphaera Corpus [29] from which we extract two tables with identical content. B. Proposed ‘bigram network’
supporting the table similarity model. C. BiLRP explanations of predicted similarities between the two input tables.



1158

all well represented by existing pretrained convolutional neu-
ral networks, table data usually requires ad-hoc approaches
[85], [86]. In particular, we need to specify which aspects of
the tables (e.g., numbers, style, or layout) the similarity model
should support. Furthermore, end-to-end similarity labels are
expensive to obtain, and it is easier to produce annotations for
table content directly, e.g., single digit labels. With these inter-
mediate labels, an ad-hoc training approach is needed. Lastly,
itis also essential that the produced model retains explainabil-
ity in order to verify that the knowledge built into the model is
effectively used. Therefore, the model must retain the basic
structures that make explanation techniques such as BiLRP
applicable.

6.2.1 The ‘Bigram Network’

We propose a novel ‘bigram network’ to predict table simi-
larity. Our network can be learned from a limited number
of single-digit annotations and is designed to encourage the
prediction to be based on relevant numerical features. Also,
it is only composed of linear/ReLU and positively homoge-
neous layers so that it remains explainable with BiLRP. The
proposed bigram network consists of two parts:

The first part is a standard stack of convolution/ReLU
layers taking a scanned table z as input and producing 10 acti-
vation maps {a;(z )} ., detecting the digits 0-9. The map
a;(x) is trained to produce small Gaussian blobs at locations
where digits of class j are present. The convolutional network
is trained on a few hundreds of single digit labels along with
their respective image patches. We also incorporate a compa-
rable amount of negative examples (from non-table pages) to
correctly handle the absence of digits.

The second part of the network is a hard-coded sequence
of layers that extracts task-relevant information from the
single-digit activation maps. The first layer in the sequence
performs an element-wise ‘min” operation
= min{a;(z), (ar(z))}.

The “min” operation can be interpreted as a continuous ‘AND’
[38], and tests at each location for the presence of bigrams
Jjk € 00-99. The function 7 represents some translation oper-
ation, and we apply several of them to produce candidate
alignments between the digits forming the bigrams (e.g.,
horizontal shifts of 8, 10, and 12 pixels). We then apply the
max-pooling layer

ajp(z) = maX,{algz)(w)}.

The ‘max’ operation can be interpreted as a continuous ‘or’,
and determines at each location whether a bigram has been
found for at least one candidate alignment. Finally, a global
sum-pooling layer is applied spatially

$jx(@) = [la(z)]];-

It introduces global translation invariance into the model
and produces a 100-dimensional output vector representing
the sum of activations for each bigram. The bigram network
is depicted in Fig. 11 B.

From the output of the bigram network, the similarity
score can be obtained by applying the dot product y(x, z’) =
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(¢(x), p(x')). Furthermore, because the bigram network is
exclusively composed of convolution/ReLU layers and
standard pooling operations, similarities built at the output
of this network remain fully explainable by BiLRP.

6.2.2 \Validating the ‘Bigram Network’ With BiLRP

We come to the final step which is to validate the ‘bigram
network” approach on the task of predicting table similarity.
Examples of common validation procedures include preci-
sion-recall curves, or the ability to solve a proxy task (e.g.,
table classification) from the predicted similarities. These
validation procedures require end-to-end label information,
which is however difficult to obtain for this type of data.
Furthermore, when the labeled data is not sufficiently repre-
sentative, these procedures are potentially affected by the
‘Clever Hans’ effect [19].

In the following, we will show that BiLRP, through the
explanatory feedback it provides, offers a much more data
efficient way of performing model validation. We take a pair
of tables (z,z'), which a preliminary manual inspection has
verified to be similar. We then apply BiLRP to explain:

(i)  the similarity score at the output of our engineered
task-specific ‘bigram network’,

(ii)  the similarity score at layer 17 of a generic pretrained
VGG-16 network.

For the bigram network, the BiLRP parameter y is set to
0.5 at each convolution layer. For the VGG-16 network, we
use the same BiLRP parameters as in Section 5. The result of
our analysis is shown in Fig. 11 C.

The bigram network similarity model correctly matches
pairs of digits in the two tables. Furthermore, matches are
produced between sequences occurring at different loca-
tions, thereby verifying the structural translation invariance
of the model. Pixel-level explanations further validate the
approach by showing that individual digits are matched in
a meaningful manner. In contrast, the similarity model built
on VGG-16 does not distinguish between the different pairs
of digits. Furthermore, part of the similarity score is sup-
ported by aspects that are not task-relevant, such as table
borders.— Hence, for this particular table similarity task,
BiLRP can clearly establish the superiority of the bigram
network over VGG-16.

We stress that this assessment could be readily obtained
from a single pair of tables. If instead we would have
applied a validation technique that relies only on similarity
scores, significantly more data would have been needed in
order to reach the same conclusion with confidence. This
sample efficiency of BiLRP (and by extension any successful
explanation technique) for the purpose of model validation
is especially important in digital humanities or other scien-
tific domains, where ground-truth labels are typically scarce
or expensive to obtain.

7 CONCLUSION

Similarity is a central concept in machine learning that is
precursor to a number of supervised and unsupervised
machine learning methods. In this paper, we have
shown that it can be crucial to get a human-interpretable
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explanation of the predicted similarity before using it to
train a practical machine learning model.

We have contributed a theoretically well-founded
method to explain similarity in terms of pairs of input fea-
tures. Our method called BiLRP can be expressed as a com-
position of LRP computations. It therefore inherits its
robustness and broad applicability, but extends it to the
novel scenario of similarity explanation.

The usefulness of BiLRP was showcased on the task of
understanding similarities as implemented by the VGG-16
neural network, where it could predict transfer learning
capabilities and highlight clear cases of ‘Clever Hans’ [19]
predictions. Furthermore, for a practically relevant problem
in the digital humanities, BILRP was able to demonstrate
with very limited data the superiority of a task-specific simi-
larity model over a generic VGG-16 solution.

Future work will extend the presented techniques from
binary towards n-ary similarity structures, especially aim-
ing at incorporating the different levels of reliability of the
input features. Furthermore we will use the proposed
research tool to gain insight into large data collections, in
particular, grounding historical networks to interpretable
domain-specific concepts.
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