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Abstract—The success ofmonocular depth estimation relies on large and diverse training sets. Due to the challenges associated

with acquiring dense ground-truth depth across different environments at scale, a number of datasets with distinct characteristics and

biases have emerged.We develop tools that enablemixingmultiple datasets during training, even if their annotations are incompatible.

In particular, we propose a robust training objective that is invariant to changes in depth range and scale, advocate the use of principled

multi-objective learning to combine data from different sources, and highlight the importance of pretraining encoders on auxiliary tasks.

Armedwith these tools, we experiment with five diverse training datasets, including a new,massive data source: 3D films. To demonstrate

the generalization power of our approach we use zero-shot cross-dataset transfer, i.e. we evaluate on datasets that were not seen during

training. The experiments confirm thatmixing data from complementary sources greatly improvesmonocular depth estimation. Our

approach clearly outperforms competingmethods across diverse datasets, setting a new state of the art for monocular depth estimation.

Index Terms—Monocular depth estimation, single-image depth prediction, zero-shot cross-dataset transfer, multi-dataset training

Ç

1 INTRODUCTION

DEPTH is among the most useful intermediate representa-
tions for action in physical environments [1]. Despite

its utility, monocular depth estimation remains a challeng-
ing problem that is heavily underconstrained. To solve it,
one must exploit many, sometimes subtle, visual cues, as
well as long-range context and prior knowledge. This calls
for learning-based techniques [2], [3].

To learnmodels that are effective across a variety of scenar-
ios, we need training data that is equally varied and captures
the diversity of the visual world. The key challenge is to
acquire such data at sufficient scale. Sensors that provide
dense ground-truth depth in dynamic scenes, such as struc-
tured light or time-of-flight, have limited range and operating
conditions [6], [7], [8]. Laser scanners are expensive and can
only provide sparse depth measurements when the scene is
in motion. Stereo cameras are a promising source of data [9],
[10], but collecting suitable stereo images in diverse environ-
ments at scale remains a challenge. Structure-from-motion
(SfM) reconstruction has been used to construct training data
formonocular depth estimation across a variety of scenes [11],

but the result does not include independently moving objects
and is incomplete due to the limitations of multi-viewmatch-
ing. On the whole, none of the existing datasets is sufficiently
rich to support the training of a model that works robustly on
real images of diverse scenes. At present, we are faced with
multiple datasets that may usefully complement each other,
but are individually biased and incomplete.

In this paper,we investigateways to train robustmonocular
depth estimation models that are expected to perform across
diverse environments. We develop novel loss functions that
are invariant to the major sources of incompatibility between
datasets, including unknown and inconsistent scale and base-
lines. Our losses enable training on data that was acquired
with diverse sensing modalities such as stereo cameras (with
potentially unknown calibration), laser scanners, and struc-
tured light sensors. We also quantify the value of a variety of
existing datasets for monocular depth estimation and explore
optimal strategies for mixing datasets during training. In
particular, we show that a principled approach based on
multi-objective optimization [12] leads to improved results
compared to a naive mixing strategy. We further empirically
highlight the importance of high-capacity encoders, and show
the unreasonable effectiveness of pretraining the encoder on a
large-scale auxiliary task.

Our extensive experiments, which cover approximately
six GPU months of computation, show that a model trained
on a rich and diverse set of images from different sources,
with an appropriate training procedure, delivers state-
of-the-art results across a variety of environments. To dem-
onstrate this, we use the experimental protocol of zero-shot
cross-dataset transfer. That is, we train amodel on certain data-
sets and then test its performance on other datasets that were
never seen during training. The intuition is that zero-shot
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cross-dataset performance is a more faithful proxy of “real
world” performance than training and testing on subsets of a
single data collection that largely exhibit the same biases [13].

In an evaluation across six different datasets, we outper-
form prior art both quantitatively and qualitatively, and set
a new state of the art for monocular depth estimation.
Example results are shown in Fig. 1.

2 RELATED WORK

Early work on monocular depth estimation used MRF-
based formulations [3], simple geometric assumptions [2],
or non-parametric methods [14]. More recently, significant
advances have been made by leveraging the expressive
power of convolutional networks to directly regress scene
depth from the input image [15]. Various architectural inno-
vations have been proposed to enhance prediction accu-
racy [16], [17], [18], [19], [20]. These methods need ground-
truth depth for training, which is commonly acquired using
RGB-D cameras or LiDAR sensors. Others leverage existing
stereo matching methods to obtain ground truth for super-
vision [21], [22]. These methods tend to work well in the
specific type of scenes used to train them, but do not gener-
alize well to unconstrained scenes, due to the limited scale
and diversity of the training data.

Garg et al. [9] proposed to use calibrated stereo cameras
for self-supervision. While this significantly simplifies the
acquisition of training data, it still does not lift the restriction
to a very specific data regime. Since then, various approaches
leverage self-supervision, but they either require stereo

images [10], [23], [24] or exploit apparent motion [24], [25],
[26], [27], and are thus difficult to apply to dynamic scenes.

We argue that high-capacity deep models for monocular
depth estimation can in principle operate on a fairly wide
and unconstrained range of scenes. What limits their perfor-
mance is the lack of large-scale, dense ground truth that
spans such a wide range of conditions. Commonly used
datasets feature homogeneous scene layouts, such as street
scenes in a specific geographic region [3], [28], [29] or indoor
environments [30]. We note in particular that these datasets
show only a small number of dynamic objects. Models that
are trained on data with such strong biases are prone to fail
in less constrained environments.

Efforts have been made to create more diverse datasets.
Chen et al. [34] used crowd-sourcing to sparsely annotate ordi-
nal relations in images collected from the web. Xian et al. [32]
collected a stereo dataset from the web and used off-the-shelf
tools to extract dense ground-truth disparity; while this data-
set is fairly diverse, it only contains 3,600 images. Li and
Snavely [11] used SfM and multi-view stereo (MVS) to recon-
struct many (predominantly static) 3D scenes for supervision.
Li et al. [38] used SfMandMVS to construct a dataset fromvid-
eos of people imitating mannequins (i.e. they are frozen in
action while the camera moves through the scene). Chen et al.
[39] propose an approach to automatically assess the quality
of sparse SfM reconstructions in order to construct a large
dataset. Wang et al. [33] build a large dataset from stereo vid-
eos sourced from theweb,while Cho et al. [40] collect a dataset
of outdoor scenes with handheld stereo cameras. Gordon et al.
[41] estimate the intrinsic parameters of YouTube videos in

Fig. 1. We show how to leverage training data from multiple, complementary sources for single-view depth estimation, in spite of varying and
unknown depth range and scale. Our approach enables strong generalization across datasets. Top: input images. Middle: inverse depth maps pre-
dicted by the presented approach. Bottom: corresponding point clouds rendered from a novel view-point. Point clouds rendered via Open3D [4]. Input
images from the Microsoft COCO dataset [5], which was not seen during training.
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order to leverage them for training. Large-scale datasets that
were collected from the Internet [33], [38] require a large
amount of pre- and post-processing. Due to copyright restric-
tions, they often only provide links to videos, which fre-
quently become unavailable. This makes reproducing these
datasets challenging.

To the best of our knowledge, the controlled mixing of
multiple data sources has not been explored before in this
context. Ummenhofer et al. [42] presented a model for two-
view structure and motion estimation and trained it on a
dataset of (static) scenes that is the union of multiple smaller
datasets. However, they did not consider strategies for opti-
mal mixing, or study the impact of combining multiple
datasets. Similarly, Facil et al. [43] used multiple datasets
with a naive mixing strategy for learning monocular depth
with known camera intrinsics. Their test data is very similar
to half of their training collection, namely RGB-D recordings
of indoor scenes.

3 EXISTING DATASETS

Various datasets have been proposed that are suitable for
monocular depth estimation, i.e. they consist of RGB images
with corresponding depth annotation of some form [3], [11],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [40],
[44], [45], [46], [47], [48]. Datasets differ in captured environ-
ments and objects (indoor/outdoor scenes, dynamic
objects), type of depth annotation (sparse/dense, absolute/
relative depth), accuracy (laser, time-of-flight, SfM, stereo,
human annotation, synthetic data), image quality and cam-
era settings, as well as dataset size.

Each single dataset comes with its own characteristics
and has its own biases and problems [13]. High-accuracy
data is hard to acquire at scale and problematic for dynamic
objects [35], [47], whereas large data collections from Inter-
net sources come with limited image quality and depth
accuracy as well as unknown camera parameters [33], [34].
Training on a single dataset leads to good performance on
the corresponding test split of the same dataset (same cam-
era parameters, depth annotation, environment), but may
have limited generalization capabilities to unseen data with
different characteristics. Instead, we propose to train on a
collection of datasets, and demonstrate that this approach
leads to strongly enhanced generalization by testing on
diverse datasets that were not seen during training. We list

our training and test datasets, together with their individual
characteristics, in Table 1.

Training Datasets. We experiment with five existing and
complementary datasets for training. ReDWeb [32] (RW) is
a small, heavily curated dataset that features diverse and
dynamic scenes with ground truth that was acquired with a
relatively large stereo baseline. MegaDepth [11] (MD) is
much larger, but shows predominantly static scenes. The
ground truth is usually more accurate in background
regions since wide-baseline multi-view stereo reconstruc-
tion was used for acquisition. WSVD [33] (WS) consists of
stereo videos obtained from the web and features diverse
and dynamic scenes. This dataset is only available as a col-
lection of links to the stereo videos. No ground truth is pro-
vided. We thus recreate the ground truth according to the
procedure outlined by the original authors. DIML Indoor
[31] (DL) is an RGB-D dataset of predominantly static
indoor scenes, captured with a Kinect v2.

Test Datasets. To benchmark the generalization perfor-
mance of monocular depth estimation models, we chose six
datasets based on diversity and accuracy of their ground
truth. DIW [34] is highly diverse but provides ground truth
only in the form of sparse ordinal relations. ETH3D [35] fea-
tures highly accurate laser-scanned ground truth on static
scenes. Sintel [36] features perfect ground truth for synthetic
scenes. KITTI [29] and NYU [30] are commonly used data-
sets with characteristic biases. For the TUM dataset [37], we
use the dynamic subset that features humans in indoor envi-
ronments [38]. Note that we never fine-tune models on any
of these datasets. We refer to this experimental procedure
as zero-shot cross-dataset transfer.

4 3D MOVIES

To complement the existing datasets we propose a new data
source: 3D movies (MV). 3D movies feature high-quality
video frames in a variety of dynamic environments that
range from human-centric imagery in story- and dialogue-
driven Hollywood films to nature scenes with landscapes
and animals in documentary features. While the data does
not provide metric depth, we can use stereo matching to
obtain relative depth (similar to RW and WS). Our driving
motivation is the scale and diversity of the data. 3D movies
provide the largest known source of stereo pairs that were
captured in carefully controlled conditions. This offers the

TABLE 1
Datasets Used in Our Work

Dataset Indoor Outdoor Dynamic Video Dense Accuracy Diversity Annotation Depth # Images

DIML Indoor [31] @ @ @ Medium Medium RGB-D Metric 220K
MegaDepth [11] @ (@) (@) Medium Medium SfM No scale 130K
ReDWeb [32] @ @ @ @ Medium High Stereo No scale & shift 3600
WSVD [33] @ @ @ @ @ Medium High Stereo No scale & shift 1.5M
3DMovies @ @ @ @ @ Medium High Stereo No scale & shift 75K

DIW [34] @ @ @ Low High User clicks Ordinal pair 496K
ETH3D [35] @ @ @ High Low Laser Metric 454
Sintel [36] @ @ @ @ @ High Medium Synthetic (Metric) 1064
KITTI [28], [29] @ (@) @ (@) Medium Low Laser/Stereo Metric 93K
NYUDv2 [30] @ (@) @ @ Medium Low RGB-D Metric 407K
TUM-RGBD [37] @ (@) @ @ Medium Low RGB-D Metric 80K

Top: Our training sets. Bottom: Our test sets. No single real-world dataset features a large number of diverse scenes with dense and accurate ground truth.
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possibility of tapping into millions of high-quality images
from an ever-growing library of content. We note that 3D
movies have been used in related tasks in isolation [49],
[50]. We will show that their full potential is unlocked by
combining them with other, complementary data sources.
In contrast to similar data collections in the wild [32], [33],
[38], no manual filtering of problematic content was
required with this data source. Hence, the dataset can easily
be extended or adapted to specific needs (e.g. focus on danc-
ing humans or nature documentaries).

Challenges.Movie data comes with its own challenges and
imperfections. The primary objective when producing ste-
reoscopic film is providing a visually pleasing viewing expe-
rience while avoiding discomfort for the viewer [51]. This
means that the disparity range for any given scene (also
known as the depth budget) is limited and depends on both
artistic and psychophysical considerations. For example, dis-
parity ranges are often increased in the beginning and the
end of a movie, in order to induce a very noticeable stereo-
scopic effect for a short time. Depth budgets in the middle
may be lower to allow for more comfortable viewing. Ster-
eographers thus adjust their depth budget depending on the
content, transitions, and even the rhythm of scenes [52].

In consequence, focal lengths, baseline, and convergence
angle between the cameras of the stereo rig are unknown
and vary between scenes even within a single film. Further-
more, in contrast to image pairs obtained directly from a
standard stereo camera, stereo pairs in movies usually con-
tain both positive and negative disparities to allow objects
to be perceived either in front of or behind the screen. Addi-
tionally, the depth that corresponds to the screen is scene-
dependent and is often modified in post-production by
shifting the image pairs. We describe data extraction and
training procedures that address these challenges.

Movie Selection and Preprocessing. We selected a diverse
set of 23 movies. The selection was based on the following
considerations: 1) We only selected movies that were shot
using a physical stereo camera. (Some 3D films are shot
with a monocular camera and the stereoscopic effect is
added in post-production by artists.) 2) We tried to balance
realism and diversity. 3) We only selected movies that are
available in Blu-ray format and thus allow extraction of
high-resolution images.

We extract stereo image pairs at 1920 x 1080 resolution
and 24 frames per second (fps). Movies have varying aspect
ratios, resulting in black bars on the top and bottom of the
frame, and some movies have thin black bars along frame
boundaries due to post-production. We thus center-crop all
frames to 1880x800 pixels. We use the chapter information
(Blu-ray meta-data) to split each movie into individual
chapters. We drop the first and last chapters since they usu-
ally include the introduction and credits.

We use the scene detection tool of FFmpeg [53] with a
threshold of 0.1 to extract individual clips. We discard clips
that are shorter than one second to filter out chaotic action
scenes and highly correlated clips that rapidly switch
between protagonists during dialogues. To balance scene
diversity, we sample the first 24 frames of each clip and addi-
tionally sample 24 frames every four seconds for longer clips.
Since multiple frames are part of the same clip, the complete
dataset is highly correlated. Hence, we further subsample

the training set at 4 fps and the test and validation sets
at 1 fps.

Disparity Extraction. The extracted image pairs can be
used to estimate disparity maps using stereo matching.
Unfortunately, state-of-the-art stereo matchers perform
poorly when applied to movie data, since the matchers
were designed and trained to match only over positive dis-
parity ranges. This assumption is appropriate for the recti-
fied output of a standard stereo camera, but not to image
pairs extracted from stereoscopic film. Moreover, disparity
ranges encountered in 3D movies are usually smaller than
ranges that are common in standard stereo setups due to
the limited depth budget.

To alleviate these problems, we apply a modern optical
flow algorithm [54] to the stereo pairs.We retain the horizon-
tal component of the flow as a proxy for disparity. Optical
flow algorithms naturally handle both positive and negative
disparities and usually perform well for displacements of
moderate size. For each stereo pair we use the left camera as
the reference and extract the optical flow from the left to the
right image and vice versa. We perform a left-right consis-
tency check and mark pixels with a disparity difference of
more than 2 pixels as invalid. We automatically filter out
frames of bad disparity quality following the guidelines of
Wang et al. [33]: frames are rejected if more than 10 percent
of all pixels have a vertical disparity>2 pixels, the horizontal
disparity range is <10 pixels, or the percentage of pixels
passing the left-right consistency check is <70 percent. In a
final step, we detect pixels that belong to sky regions using a
pre-trained semantic segmentation model [55] and set their
disparity to theminimumdisparity in the image.

The complete list of selected movies together with the
number of frames that remain after filtering with the auto-
matic cleaning pipeline is shown in Table 2. Note that dis-
crepancies in the number of extracted frames per movie
occur due to varying runtimes as well as varying disparity
quality. We use frames from 19 movies for training and set
aside two movies for validation and two movies for testing,
respectively. Example frames from the resulting dataset are
shown in Fig. 2.

5 TRAINING ON DIVERSE DATA

Training models for monocular depth estimation on diverse
datasets presents a challenge because the ground truth
comes in different forms (see Table 1). It may be in the form
of absolute depth (from laser-based measurements or stereo
cameras with known calibration), depth up to an unknown
scale (from SfM), or disparity maps (from stereo cameras
with unknown calibration). The main requirement for a sen-
sible training scheme is to carry out computations in an
appropriate output space that is compatible with all ground-
truth representations and is numerically well-behaved. We
further need to design a loss function that is flexible enough
to handle diverse sources of data while making optimal use
of all available information.

We identify threemajor challenges. 1) Inherently different
representations of depth: direct versus inverse depth repre-
sentations. 2) Scale ambiguity: for some data sources, depth
is only given up to an unknown scale. 3) Shift ambiguity:
some datasets provide disparity only up to an unknown
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scale and global disparity shift that is a function of the
unknown baseline and a horizontal shift of the principal
points due to post-processing [33].

Scale- and Shift-Invariant Losses. We propose to perform
prediction in disparity space (inverse depth up to scale and
shift) together with a family of scale- and shift-invariant
dense losses to handle the aforementioned ambiguities. Let
M denote the number of pixels in an image with valid
ground truth and let uu be the parameters of the prediction
model. Let d ¼ dðuuÞ 2 RM be a disparity prediction and let
d� 2 RM be the corresponding ground-truth disparity. Indi-
vidual pixels are indexed by subscripts.

We define the scale- and shift-invariant loss for a single
sample as

Lssiðd̂; d̂�Þ ¼ 1

2M

XM
i¼1

r d̂i � d̂�
i

� �
; (1)

where d̂ and d̂� are scaled and shifted versions of the pre-
dictions and ground truth, and r defines the specific type of
loss function.

Let s : RM ! Rþ and t : RM ! R denote estimators of
the scale and translation. To define a meaningful scale- and
shift-invariant loss, a sensible requirement is that prediction
and ground truth should be appropriately aligned with
respect to their scale and shift, i.e. we need to ensure that
sðd̂Þ � sðd̂�Þ and tðd̂Þ � tðd̂�Þ. We propose two different
strategies for performing this alignment.

The first approach aligns the prediction to the ground
truth based on a least-squares criterion:

ðs; tÞ ¼ argmin
s;t

XM
i¼1

sdi þ t� d�
i

� �2
;

d̂ ¼ sdþ t; d̂� ¼ d�;

(2)

where d̂ and d̂� are the aligned prediction and ground truth,
respectively. The factors s and t can be efficiently deter-
mined in closed form by rewriting (2) as a standard least-
squares problem: Let ~di ¼ ðdi; 1Þ> and h ¼ ðs; tÞ>, then we
can rewrite the objective as

hopt ¼ argmin
h

XM
i¼1

~d>
i h� d�

i

� �2
; (3)

which has the closed-form solution

hopt ¼
XM
i¼1

~di
~d>
i

 !�1 XM
i¼1

~did
�
i

 !
: (4)

We set rðxÞ ¼ rmseðxÞ ¼ x2 to define the scale- and shift-
invariant mean-squared error (MSE). We denote this loss as
Lssimse.

The MSE is not robust to the presence of outliers. Since all
existing large-scale datasets only provide imperfect ground
truth, we conjecture that a robust loss function can improve
training. We thus define alternative, robust loss functions
based on robust estimators of scale and shift:

tðdÞ ¼ medianðdÞ; sðdÞ ¼ 1

M

XM
i¼1

jd� tðdÞj: (5)

We align both the prediction and the ground truth to have
zero translation and unit scale:

d̂ ¼ d� tðdÞ
sðdÞ ; d̂� ¼ d� � tðd�Þ

sðd�Þ : (6)

We define two robust losses. The first, which we denote as
Lssimae, measures the absolute deviations rmaeðxÞ ¼ jxj. We
define the second robust loss by trimming the 20 percent larg-
est residuals in every image, irrespective of their magnitude:

Lssitrimðd̂; d̂�Þ ¼ 1

2M

XUm

j¼1

rmae d̂j � d̂�
j

� �
; (7)

with jd̂j � d̂�
j j � jd̂jþ1 � d̂�

jþ1j and Um ¼ 0:8M (set empiri-
cally based on experiments on the ReDWeb dataset). Note
that this is in contrast to commonly used M-estimators,
where the influence of large residuals is merely down-
weighted. Our reasoning for trimming is that outliers in the
ground truth should never influence training.

Related Loss Functions. The importance of accounting for
unknown or varying scale in the training of monocular
depth estimation models has been recognized early. Eigen
et al. [15] proposed a scale-invariant loss in log-depth space.
Their loss can be written as

Lsilogðz; z�Þ ¼ min
s

1

2M

XM
i¼1

�
log ðesziÞ � log ðz�i Þ

�2
; (8)

where zi ¼ d�1
i and z�i ¼ ðd�

i Þ�1 are depths up to unknown
scale. Both (8) and Lssimse account for the unknown scale of

TABLE 2
List of Films and the Number of Extracted Frames

in the 3D Movies Dataset After Automatic Processing

Movie title # frames

Training set 75074
Battle of the Year (2013) 4821
Billy Lynn’s Long Halftime Walk (2016) 4178
Drive Angry (2011) 328
Exodus: Gods and Kings (2014) 8063
Final Destination 5 (2011) 1437
A very Harold & Kumar 3D Christmas (2011) 3690
Hellbenders (2012) 120
The Hobbit: An Unexpected Journey (2012) 8874
Hugo (2011) 3189
The Three Musketeers (2011) 5028
Nurse 3D (2013) 492
Pina (2011) 1215
Dawn of the Planet of the Apes (2014) 5571
The Amazing Spider-Man (2012) 5618
Step Up 3D (2010) 509
Step Up: All In (2014) 2187
Transformers: Age of Extinction (2014) 8740
Le Dernier Loup / Wolf Totem (2015) 4843
X-Men: Days of Future Past (2014) 6171

Validation set 3058
The Great Gatsby (2013) 1815
Step Up: Miami Heat / Revolution (2012) 1243

Test set 788
Doctor Who - The Day of the Doctor (2013) 508
StreetDance 2 (2012) 280
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the predictions, but only Lssimse accounts for an unknown
global disparity shift. Moreover, the losses are evaluated on
different depth representations. Our loss is defined in dis-
parity space, which is numerically stable and compatible
with common representations of relative depth.

Chen et al. [34] proposed a generally applicable loss for
relative depth estimation based on ordinal relations:

rordðzi � zjÞ ¼ log ð1þ expð�ðzi � zjÞlijÞ; lij 6¼ 0

ðzi � zjÞ2; lij ¼ 0;

�
(9)

where lij2 �1; 0; 1f g encodes the ground-truth ordinal rela-
tion of point pairs. This encourages pushing points as far
apart as possible when lij 6¼ 0 and pulling them to the same
depth when lij ¼ 0. Xian et al. [32] suggest to sparsely evalu-
ate this loss by randomly sampling point pairs from the
dense ground truth. In contrast, our proposed losses take all
available data into account.

Recently, Wang et al. [33] proposed the normalized mul-
tiscale gradient (NMG) loss. To achieve shift invariance in
addition to scale invariance in disparity space, they evaluate
the gradient difference between ground-truth and rescaled
estimates at multiple scales k:

Lnmgðd;d�Þ ¼
XK
k¼1

XM
i¼1

jsrk
xd�rk

xd
�j þ jsrk

yd�rk
yd

�j:

(10)

In contrast, our losses are evaluated directly on the ground-
truth disparity values, while also accounting for unknown
scale and shift. While both the ordinal loss and NMG can,
conceptually, be applied to arbitrary depth representations
and are thus suited for mixing diverse datasets, we will
show that our scale- and shift-invariant loss variants lead to
consistently better performance.

Final Loss. To define the complete loss, we adapt the
multi-scale, scale-invariant gradient matching term [11] to
the disparity space. This term biases discontinuities to be
sharp and to coincide with discontinuities in the ground
truth. We define the gradient matching term as

Lregðd̂; d̂�Þ ¼ 1

M

XK
k¼1

XM
i¼1

�jrxR
k
i j þ jryR

k
i j
�
; (11)

where Ri ¼ d̂i � d̂�
i , and Rk denotes the difference of dis-

parity maps at scale k. We use K ¼ 4 scale levels, halving
the image resolution at each level. Note that this term is
similar to Lnmg, but with different approaches to compute
the scaling s.

Our final loss for a training set l is

Ll ¼ 1

Nl

XNl

n¼1

Lssi

�
d̂n; ðd̂�Þn�þ a Lreg

�
d̂n; ðd̂�Þn�; (12)

whereNl is the training set size and a is set to 0.5.

Fig. 2. Sample images from the 3D movies dataset. We show images from some of the films in the training set together with their inverse depth maps.
Sky regions and invalid pixels are masked out. Each image is taken from a different film. 3D movies provide a massive source of diverse data.

1628 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 3, MARCH 2022



Mixing Strategies. While our loss and choice of prediction
space enable mixing datasets, it is not immediately clear in
what proportions different datasets should be integrated
during training with a stochastic optimization algorithm.
We explore two different strategies in our experiments.

The first, naive strategy is to mix datasets in equal parts
in each minibatch. For a minibatch of size B, we sample
B=L training samples from each dataset, where L denotes
the number of distinct datasets. This strategy ensures that
all datasets are represented equally in the effective training
set, regardless of their individual size.

Our second strategy explores amore principled approach,
where we adapt a recent procedure for Pareto-optimalmulti-
task learning to our setting [12]. We define learning on each
dataset as a separate task and seek an approximate Pareto
optimum over datasets (i.e. a solution where the loss cannot
be decreased on any training set without increasing it for at
least one of the others). Formally, we use the algorithm pre-
sented in [12] to minimize the multi-objective optimization
criterion

min
uu

�L1ðuuÞ; . . . ;LLðuuÞ
�>

; (13)

where model parameters uu are shared across datasets.

6 EXPERIMENTS

We start from the experimental setup of Xian et al. [32] and
use their ResNet-based [56] multi-scale architecture for sin-
gle-image depth prediction. We initialize the encoder with
pretrained ImageNet [57] weights and initialize other layers
randomly. We use Adam [58] with a learning rate of 10�4 for
randomly initialized layers and 10�5 for pretrained layers,
and set the exponential decay rate to b1 ¼ 0:9 and b2 ¼ 0:999.
Images are flipped horizontally with a 50 percent chance,
and randomly cropped and resized to 384� 384 to augment
the data and maintain the aspect ratio across different input
images. No other augmentations are used.

Subsequently, we perform ablation studies on the loss
function and, since we conjecture that pretraining on Image-
Net data has significant influence on performance, also the
encoder architecture. We use the best-performing pretrained
model as the starting point for our dataset mixing experi-
ments.We use a batch size of 8L, i.e.whenmixing three data-
sets the batch size is 24. When comparing datasets of
different sizes, the term epoch is not well-defined; we thus
denote an epoch as processing 72; 000 images, roughly the
size of MD and MV, and train for 60 epochs. We shift and
scale the ground-truth disparity to the range [0,1] for all
datasets.

Test Datasets and Metrics. For ablation studies of loss and
encoders, we use our held-out validation sets of RW (360
images), MD (2,963 images – official validation set), and MV
(3,058 images – see Table 2). For all training dataset mixing
experiments and comparisons to the state of the art, we
test on a collection of datasets that were never seen during
training: DIW, ETH3D, Sintel, KITTI, NYU, and TUM. For
DIW [34] we created a validation set of 10,000 images from
theDIW training set for our ablation studies and used the offi-
cial test set of 74,441 images when comparing to the state of
the art. For NYU we used the official test split (654 images).

For KITTI we used the intersection of the official validation
set for depth estimation (with improved ground-truth depth
[59]) and the Eigen test split [60] (161 images). For ETH3D
and Sintel we used the whole dataset for which ground truth
is available (454 and 1,064 images, respectively). For the TUM
dataset, we use the dynamic subset that features humans in
indoor environments [38] (1,815 images).

For each dataset, we use a single metric that fits the
ground truth in that dataset. For DIW we use the Weighted
Human Disagreement Rate (WHDR) [34]. For datasets that
are based on relative depth, we measure the root mean
squared error in disparity space (MV, RW, MD). For data-
sets that provide accurate absolute depth (ETH3D, Sintel),
we measure the mean absolute value of the relative error
ð1=MÞPM

i¼1 zi � z�i
�� ��=z�i in depth space (AbsRel). Finally, we

use the percentage of pixels with d ¼ maxðziz�
i
;
z�
i
zi
Þ > 1:25 to

evaluate models on KITTI, NYU, and TUM [15]. Follow-
ing [10], we cap predictions at an appropriate maximum
value for datasets that are evaluated in depth space. For
ETH3D, KITTI, NYU, and TUM, the depth cap was set to
the maximum ground-truth depth value (72, 80, 10, and 10
meters, respectively). For Sintel, we evaluate on areas with
ground-truth depth below 72 meters and accordingly use a
depth cap of 72 meters. For all our models and baselines,
we align predictions and ground truth in scale and shift for
each image before measuring errors. We perform the align-
ment in inverse-depth space based on the least-squares cri-
terion. Since absolute numbers quickly become hard to
interpret when evaluating on multiple datasets, we also
present the relative change in performance compared to an
appropriate baseline method.

Input Resolution for Evaluation.We resize test images so that
the larger axis equals 384 pixels while the smaller axis is
resized to a multiple of 32 pixels (a constraint imposed by the
encoder), while keeping an aspect ratio as close as possible to
the original aspect ratio. Due to the wide aspect ratio in KITTI
this strategy would lead to very small input images. We thus
resize the smaller axis to be equal to 384 pixels on this dataset
and adopt the same strategy otherwise to maintain the aspect
ratio. Most state-of-the-art methods that we compare to are
specialized to a specific dataset (with fixed image dimensions)
and thus did not specify how to handle different image sizes
and aspect ratios during inference. We tried to find the best-
performing setting for all methods, following their evaluation
scripts and training dimensions. For approaches trained on
square patches [32], we follow our setup and set the larger
axis to the training image axis length and adapt the smaller
one, keeping the aspect ratio as close as possible to the origi-
nal. For approaches with non-square patches [11], [33], [34],
[38] we fix the smaller axis to the smaller training image axis
dimension. For DORN [19] we followed their tiling protocol,
resizing the images to the dimensions stated for their NYU
and KITTI evaluation, respectively. For Monodepth2 [24] and
Struct2Depth [27], which were both trained on KITTI and
thus expect a very wide aspect ratio, we pad the input image
using reflection padding to obtain the same aspect ratio, resize
to their specific input dimension, and crop the resulting pre-
diction to the original target dimensions. For methods where
model weights were available for different training resolu-
tions we evaluated all of them and report numbers for the
best-performing variant.
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All predictions were rescaled to the resolution of the
ground truth for evaluation.

Comparison of Loss Functions. We show the effect of differ-
ent loss functions on the validation performance in Fig. 3.
We used RW to train networks with different losses. For the
ordinal loss (cf. Equation (9)), we sample 5,000 point pairs
randomly [32]. Where appropriate, we combine losses with
the gradient regularization term (11). We also test a scale-
invariant, but not shift-invariant, MSE in disparity space
Lsimse by fixing t ¼ 0 in (1). The model trained with Lord cor-
responds to our reimplementation of Xian et al. [32]. Fig. 3
shows that our proposed trimmed MAE loss yields the low-
est validation error over all datasets. We thus conduct all
experiments that follow using Lssitrim þ Lreg.

Comparison of Encoders. We evaluate the influence of the
encoder architecture in Fig. 4. We define the model with a
ResNet-50 [56] encoder as used originally by Xian et al. [32]
as our baseline and show the relative improvement in per-
formance when swapping in different encoders (higher is
better). We tested ResNet-101, ResNeXt-101 [61] and Dense-
Net-161 [62]. All encoders were pretrained on Image-
Net [57]. For ResNeXt-101, we additionally use a variant
that was pretrained with a massive corpus of weakly-super-
vised data (WSL) [63] before training on ImageNet. All
models were fine-tuned on RW.

We observe that a significant performance boost is
achieved by using better encoders. Higher-capacity encoders
perform better than the baseline. The ResNeXt-101 encoder
that was pretrained on weakly-supervised data performs sig-
nificantly better than the same encoder that was only trained

on ImageNet. We found pretraining to be crucial. A net-
work with a ResNet-50 encoder with random initializa-
tion performs on average 35 percent worse than its
pretrained counterpart. In general, we find that Image-
Net performance of an encoder is a strong predictor for
its performance in monocular depth estimation. This is
encouraging, since advancements made in image classifi-
cation can directly yield gains in robust monocular depth
estimation. The performance gain over the baseline is
remarkable: up to 15 percent relative improvement, with-
out any task-specific adaptations. We use ResNeXt-101-
WSL for all subsequent experiments.

Training on Diverse Datasets. We evaluate the usefulness
of different training datasets for generalization in Tables 3
and 4. While more specialized datasets reach better perfor-
mance on similar test sets (DL for indoor scenes or MD for
ETH3D), performance on the remaining datasets declines.
Interestingly, every single dataset used in isolation leads to
worse generalization performance on average than just
using the small, but curated, RW dataset, i.e. the gains on
compatible datasets are offset on average by the decrease on
the other datasets.

Fig. 3. Relative performance of different loss functions (higher is better)
with the best performing loss Lssitrim þ Lreg used as reference. All our
four proposed losses (white area) outperform current state-of-the-art
losses (gray area).

Fig. 4. Relative performance of different encoders across datasets
(higher is better). ImageNet performance of an encoder is predictive of
its performance in monocular depth estimation.

TABLE 3
Relative Performance With Respect to the Baseline
in Percent When Fine-Tuning on Different Single

Training Sets (Higher is Better)

Performance better than the baseline in green, worse performance in red. Best
performance is bold, second best is underlined. The absolute errors of the RW
baseline are shown on the top row. While some datasets provide better perfor-
mance on individual, similar datasets, average performance for zero-shot
cross-dataset transfer degrades.

TABLE 4
Absolute Performance When Fine-Tuning on Different

Single Training Sets – Lower is Better

DIW ETH3D Sintel KITTI NYU TUM

WHDR AbsRel AbsRel d > 1:25 d > 1:25 d > 1:25

RW! RW 14.59 0.151 0.349 27.95 18.74 21.69
RW! DL 20.08 0.148 0.364 48.35 12.68 17.48
RW!MV 18.39 0.175 0.403 25.12 20.65 22.44
RW!MD 19.18 0.145 0.383 34.73 19.05 32.96
RW!WS 19.31 0.196 0.359 37.59 24.72 20.99

This table corresponds to Table 3.

TABLE 5
Combinations of Datasets Used for Training

Mix RW DL MV MD WS

MIX 1 @ @
MIX 2 @ @ @
MIX 3 @ @ @ @
MIX 4 @ @ @ @
MIX 5 @ @ @ @ @
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The difference in performance for RW, MV, and WS is
especially interesting since they have similar characteristics.
Although substantially larger than RW, both MV and WS
showworse individual performance. This could be explained
partly by redundant data due to the video nature of these
datasets and possibly more rigorous filtering in RW (human
experts pruned samples that had obvious flaws). Comparing
WS and MV, we see that MV leads to more general models,
likely because of higher-quality stereo pairs due to the more
controlled nature of the images.

For our subsequentmixing experiments, we use Table 3 as
reference, i.e. we start with the best performing individual
training dataset and consecutively add datasets to the mix.
We showwhich datasets are included in the individual train-
ing sets in Table 5. To better understand the influence of the

Movies dataset, we additionally show results where we train
on all datasets except Movies (MIX 4). We always start train-
ing from the pretrained RWbaseline.

Tables 6 and 7 show that, in contrast to using individual
datasets, mixingmultiple training sets consistently improves
performance with respect to the baseline. However, we also
see that adding datasets does not unconditionally improve
performance when naive mixing is used (see MIX 1 versus
MIX 2). Tables 8 and 9 report the results of an analogous
experiment with Pareto-optimal dataset mixing. We observe
that this approach improves over the naive mixing strategy.
It is also more consistently able to leverage additional data-
sets. Combining all five datasets with Pareto-optimal mixing
yields our best-performing model. We show a qualitative
comparison of the resultingmodels in Fig. 5.

TABLE 6
Relative Performance of Naive Dataset Mixing With Respect

to the RW Baseline (Top Row) – Higher is Better

While we usually see an improvement when adding datasets, adding datasets
can hurt generalization performance with naive mixing.

TABLE 7
Absolute Performance of Naive Dataset Mixing – Lower is Better

DIW ETH3D Sintel KITTI NYU TUM

WHDR AbsRel AbsRel d > 1:25 d > 1:25 d > 1:25

RW 14.59 0.151 0.349 27.95 18.74 21.69
MIX 1 13.00 0.136 0.362 22.91 10.98 14.53
MIX 2 13.62 0.138 0.338 25.39 11.10 13.94
MIX 3 12.62 0.135 0.332 24.06 10.54 15.39
MIX 4 12.88 0.134 0.331 24.78 11.46 14.00
MIX 5 12.79 0.132 0.324 25.41 11.52 13.62

This table corresponds to Table 6.

TABLE 8
Relative Performance of Dataset Mixing With Multi-Objective

Optimization With Respect to the RW Baseline
(Top Row) – Higher is Better

Principled mixing dominates the solutions found by naive mixing.

TABLE 9
Absolute Performance of Dataset Mixing With Multi-Objective

Optimization – Lower is Better

DIW ETH3D Sintel KITTI NYU TUM

WHDR AbsRel AbsRel d > 1:25 d > 1:25 d > 1:25

RW 14.59 0.151 0.349 27.95 18.74 21.69
MIX 1 13.22 0.140 0.376 24.26 10.48 14.50
MIX 2 12.54 0.138 0.346 23.05 10.21 14.76
MIX 3 12.29 0.133 0.331 24.68 9.78 14.66
MIX 4 12.35 0.130 0.343 23.13 10.61 13.41
MIX 5 12.27 0.129 0.327 23.90 9.55 14.29

This table corresponds to Table 8.

Fig. 5. Comparison of models trained on different combinations of datasets using pareto-optimal mixing. Images from Microsoft COCO [5].
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Comparison to the State of the Art. We compare our best-
performing model to various state-of-the-art approaches in
Tables 10 and 11. The top part of each table compares to
baselines that were not fine-tuned on any of the evaluated

datasets (i.e. zero-shot transfer, akin to our model). The
bottom parts show baselines that were fine-tuned on a
subset of the datasets for reference. In the training set col-
umn, MC refers to Mannequin Challenge [38] and CS to

TABLE 10
Relative Performance of State of the Art Methods With Respect

to Our Best Model (Top Row) – Higher is Better

Top: models that were not fine-tuned on any of the datasets. Bottom: models
that were fine-tuned on a subset of the tested datasets.

TABLE 11
Absolute Performance of State of the Art Methods,

Sorted by Average Rank

This table corresponds to Table 10.

Fig. 6. Qualitative comparison of our approach to the four best competitors on images from the Microsoft COCO dataset [5].
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Fig. 7. Qualitative results on the DIW test set.
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Cityscapes [45]. A ! B indicates pretraining on A and fine-
tuning on B.

Ourmodel outperforms the baselines by a comfortablemar-
gin in terms of zero-shot performance. Note that our model
outperforms the Mannequin Challenge model of Li et al. [38]
on a subset of the TUMdataset that was specifically curated by
Li et al. to showcase the advantages of their model. We show
additional results on a variant of our model that has a smaller
encoder based on ResNet-50 (Ours – small). This architecture
is equivalent to the network proposed by Xian et al. [32]. The
smaller model also outperforms the state of the art by a com-
fortablemargin. This shows that the strong performance of our
model is not only due to increased network capacity, but fun-
damentally due to the proposed training scheme.

Some models that were trained for one specific dataset
(e.g. KITTI or NYU in the lower part of the table) perform
very well on those individual datasets but perform signifi-
cantly worse on all other test sets. Fine-tuning on individual
datasets leads to strong priors about specific environments.
This can be desirable in some applications, but is ill-suited
if the model needs to generalize. A qualitative comparison
of our model to the four best-performing competitors is
shown in Fig. 6.

Additional Qualitative Results. Fig. 7 shows additional qual-
itative results on the DIW test set [34]. We show results on a
diverse set of input images depicting various objects and
scenes, including humans, mammals, birds, cars, and other
man-made and natural objects. The images feature indoor,
street and nature scenes, various lighting conditions, and
various camera angles. Additionally, subject areas vary from
close-up to long-range shots.

We show qualitative results on the DAVIS video data-
set [64] in our supplementary video, https://youtu.
be/D46FzVyL9I8. Note that every frame was processed
individually, i.e. no temporal information was used in any
way. For each clip, the inverse depthmapswere jointly scaled
and shifted for visualization. The dataset consists of a diverse
set of videos and includes humans, animals, and cars in
action. This dataset was filmed with monocular cameras,
hence no ground-truth depth information is available.

Hertzmann [65] recently observed that our publicly
available model provides plausible results even on abstract

line drawings. Similarly, we show results on drawings and
paintings with different levels of abstraction in Fig. 8. We
can qualitatively confirm the findings in [65]: The model
shows a surprising capability to estimate plausible relative
depth even on relatively abstract inputs. This seems to be
true as long as some (coarse) depth cues such as shading or
vanishing points are present in the artwork.

Failure Cases. We identify common failure cases and
biases of our model. Images have a natural bias where the
lower parts of the image are closer to the camera than the
higher image regions. When randomly sampling two
points and classifying the lower point as closer to the cam-
era, [34] achieved an agreement rate of 85.8 percent with
human annotators. This bias has also been learned by our
network and can be observed in some extreme cases that
are shown in the first row of Fig. 9. In the example on the
left, the model fails to recover the ground plane, likely
because the input image was rotated by 90 degrees. In the
right image, pellets at approximately the same distance to
the camera are reconstructed closer to the camera in the
lower part of the image. Such cases could be prevented by
augmenting training data with rotated images. However,
it is not clear if invariance to image rotations is a desired
property for this task.

Another interesting failure case is shown in the second
row of Fig. 9. Paintings, photos, and mirrors are often not
recognized as such. The network estimates depth based on
the content that is depicted on the reflector rather than pre-
dicting the depth of the reflector itself.

Additional failure cases are shown in the remaining
rows. Strong edges can lead to hallucinated depth discon-
tinuities. Thin structures can be missed and relative depth
arrangement between disconnected objects might fail in
some situations. Results tend to get blurred in background
regions, which might be explained by the limited resolu-
tion of the input images and imperfect ground truth in the
far range.

7 CONCLUSION

The success of deep networks has been driven by massive
datasets. For monocular depth estimation, we believe that

Fig. 8. Results on paintings and drawings. Top row: A Friend in Need, Cassius Marcellus Coolidge, and Bathers at Asni�eres, Georges Pierre Seurat.
Bottom row:Mittagsrast, Vincent van Gogh, and Vector drawing of central street of old european town, Vilnius,@Misha

1634 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 3, MARCH 2022

https://youtu.be/D46FzVyL9I8
https://youtu.be/D46FzVyL9I8
@Misha


existing datasets are still insufficient and likely constitute
the limiting factor. Motivated by the difficulty of capturing
diverse depth datasets at scale, we have introduced tools
for combining complementary sources of data. We have
proposed a flexible loss function and a principled dataset
mixing strategy. We have further introduced a dataset
based on 3D movies that provides dense ground truth for
diverse dynamic scenes.

We have evaluated the robustness and generality of
models via zero-shot cross-dataset transfer. We find that
systematically testing models on datasets that were never
seen during training is a better proxy for their performance
“in the wild” than testing on a held-out portion of even the
most diverse datasets that are currently available.

Our work advances the state of the art in generic monocu-
lar depth estimation and indicates that the presented ideas
substantially improve performance across diverse environ-
ments. We hope that this work will contribute to the

deployment of monocular depth models that meet the
requirements of practical applications. Ourmodels are freely
available at https://github.com/intel-isl/MiDaS.
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