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Abstract—Previous feed-forward architectures of recently proposed deep super-resolution networks learn the features of low-resolution

inputs and the non-linear mapping from those to a high-resolution output. However, this approach does not fully address themutual

dependencies of low- and high-resolution images.We proposeDeep Back-Projection Networks (DBPN), the winner of two image

super-resolution challenges (NTIRE2018 and PIRM2018), that exploit iterative up- and down-sampling layers. These layers are formed

as a unit providing an error feedbackmechanism for projection errors. We construct mutually-connected up- and down-sampling units

each of which represents different types of low- and high-resolution components.We also show that extending this idea to demonstrate a

new insight towardsmore efficient network design substantially, such as parameter sharing on the projectionmodule and transition layer

on projection step. The experimental results yield superior results and in particular establishing new state-of-the-art results across

multiple data sets, especially for large scaling factors such as 8�.

Index Terms—Image super-resolution, deep cnn, back-projection, deep concatenation, large scale, recurrent, residual

Ç

1 INTRODUCTION

SIGNIFICANT progress in deep neural network (DNN) for
vision [1], [2], [3], [4], [5], [6], [7] has recently been propa-

gating to the field of super-resolution (SR) [8], [9], [10], [11],
[12], [13], [14], [15], [16].

Single image SR (SISR) is an ill-posed inverse problem
where the aim is to recover a high-resolution (HR) image
from a low-resolution (LR) image. A currently typical
approach is to construct an HR image by learning non-linear
LR-to-HR mapping, implemented as a DNN [12], [13], [14],
[17], [18], [19], [20] and non DNN [21], [22], [23], [24]. For
DNN approach, the networks compute a sequence of fea-
ture maps from the LR image, culminating with one or
more upsampling layers to increase resolution and finally
construct the HR image. In contrast to this purely feed-for-
ward approach, the human visual system is believed to use
a feedback connection to simply guide the task for the rele-
vant results [25], [26], [27]. Perhaps hampered by lack
of such feedback, the current SR networks with only feed-
forward connections have difficulty in representing the LR-
to-HR relation, especially for large scaling factors.

On the other hand, feedback connections were used
effectively by one of the early SR algorithms, the iterative
back-projection [28]. It iteratively computes the reconstruc-
tion error, then uses it to refine the HR image. Although it

has been proven to improve the image quality, results still
suffers from ringing and chessboard artifacts [29]. More-
over, this method is sensitive to choices of parameters such
as the number of iterations and the blur operator, leading to
variability in results.

Inspired by [28], we construct an end-to-end trainable
architecture based on the idea of iterative up- and down-
sampling layers: Deep Back-Projection Networks (DBPN).
Our networks are not only able to remove the ringing and
chessboard effect but also successfully perform large scaling
factors, as shown in Fig. 1. Furthermore, DBPN has been
proven by winning SISR challenges. On NTIRE2018 [32],
DBPN is the 1 st winner on track 8� Bicubic downscaling.
On PIRM2018 [33], DBPN got 1 st on Region 2, 3 rd on Region
1, and 5th on Region 3.

Our work provides the following contributions:

1) Iterative up- and down-sampling units. Most of the exist-
ing methods extract the feature maps with the same
size of LR input image, then these feature maps are
finally upsampled to produce SR image directly or
progressively. However, DBPN performed iterative
up- and down- sampling layers so that it can capture
features at each resolution that are helpful in recover-
ing features at other resolution in a single framework.
Our networks focus not only on generating variants
of the HR features using the up-sampling unit but
also on projecting it back to the LR spaces using the
down-sampling unit. It is shown in Fig. 2d, alternat-
ing between up- (blue box) and down-sampling (gold
box) units, which represent the mutual relation of LR
and HR features. Each set of up- and down-sampling
layers achieve data augmentation in the feature space
to represent a certain set of features at LR andHR res-
olution. So, multiple sets of up- and down-sampling
layers represent multiple featuremaps that are useful
for producing the SR image of an input LR image.
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That is, even if all features extracted by these layers
are produced from the single input LR image, these
features can be different from each other by training
DBPN so that their variety helps to improve its output
(i.e., SR image). The detailed explanation can be seen
in Section 3.3.

2) Error feedback. We propose an iterative error-correct-
ing feedback mechanism for SR, which calculates
both up- and down-projection errors to guide the
reconstruction for obtaining better results. Here, the
projection errors are used to refine the initial features
in early layers. The detailed explanation can be seen
in Section 3.2.

3) Deep concatenation. Our networks represent different
types of LR and HR components produced by each
up- and down-sampling unit. This ability enables
the networks to reconstruct the HR image using con-
catenation of the HR feature maps from all of the up-
sampling units. Our reconstruction can directly use
different types of HR feature maps from different
depths without propagating them through the other
layers as shown by the red arrows in Fig. 2d.

In this work, we make the following extensions to dem-
onstrate a new insight towards more efficient network
design substantially compare to our early results [31]. This
manuscript focuses on optimized DBPN architecture with
advanced design methodologies. The detailed explanation
can be seen in Section 4.2. Based on this experiment, we
found several technical contributions as follows.

1) Parameter sharing on projection module. Due to a large
amount of parameters, it is hard to train deeper
DBPN. Based on our experiments, the deepest setting
uses T ¼ 10. However, using parameter sharing, we
can avoid the increasing number of parameters, while
widening the receptive field. The effectiveness of
parameter sharing was shown in Table 7 where
DBPN-R64-10 has better performance than D-DBPN
while reducing the number of parameters by 10�.

2) Transition layer on projection step. Inspired by dense
connection network [1], we use transition layer to
create multiple projection step. The last up- and
down-projection units were used as transition layer.
The last up-projection was used to produce final HR
feature-maps for each iteration, and the last down-
projection was used to produce the next input for the
next iteration. Table 7 shows that DBPN-RES-MR64-
3 outperforms previous setting, D-DBPN, by a large
margin. DBPN-RES-MR64-3 successfully improves
D-DBPN performance by 0.7 dB on Urban100 with-
out increasing the model parameter.

2 RELATED WORK

2.1 Image Super-Resolution Using Deep Networks

Deep Networks SR can be primarily divided into four types
as shown in Fig. 2.

a) Predefined upsampling commonly uses interpolation
as the upsampling operator to produce a middle res-
olution (MR) image. This scheme was proposed by
SRCNN [17] to learn MR-to-HR non-linear mapping

Fig. 1. Super-resolution result on 8� enlargement. PSNR: LapSRN [13]
(15.25 dB), EDSR [30] (15.33 dB), and Ours [31] (16.63 dB).

Fig. 2. Comparisons of Deep Network SR. (a) Predefined upsampling (e.g., SRCNN [17], VDSR [12], DRRN [14]) commonly uses the conventional
interpolation, such as Bicubic, to upscale LR input images before entering the network. (b) Single upsampling (e.g., FSRCNN [18], ESPCN [19])
propagates the LR features, then construct the SR image at the last step. (c) Progressive upsampling uses a Laplacian pyramid network to gradually
predict SR images [13]. (d) Iterative up- and down-sampling approach is proposed by our DBPN that exploit the mutually connected up- (blue box)
and down-sampling (gold box) units to obtain numerous HR feature maps in different depths.
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with simple convolutional layers as in non deep learn-
ing based approaches [21], [23]. Later, the improved
networks exploited residual learning [12], [14] and
recursive layers [20]. However, this approach has
higher computation because the input is the MR
imagewhich has the same size as the HR image.

b) Single upsampling offers a simple way to increase the
resolution. This approach was first proposed by
FSRCNN [18] and ESPCN [19]. These methods have
been proven effective to increase the resolution and
replace predefined operators. Further improvements
include residual network [30], dense connection [34],
and channel attention [15] However, they fail to learn
complicated mapping of LR-to-HR image, especially
on large scaling factors, due to limited feature maps
from the LR image. This problem opens the opportu-
nities to propose the mutual relation from LR-to-HR
image that can preserveHR components better.

c) Progressive upsampling was recently proposed in
LapSRN [13]. It progressively reconstructs the multi-
ple SR images with different scales in one feed-for-
ward network. For the sake of simplification, we can
say that this network is a stacked of single upsam-
pling networks which only relies on limited LR fea-
ture maps. Due to this fact, LapSRN is outperformed
even by our shallow networks especially for large
scaling factors such as 8� in experimental results.

d) Iterative up- and down-sampling is proposed by our net-
works [31]. We focus on increasing the sampling rate
of HR feature maps in different depths from iterative
up- and down-sampling layers, then, distribute the
tasks to calculate the reconstruction error on each unit.
This scheme enables the networks to preserve the HR
components by learning various up- and down-sam-
pling operators while generating deeper features.

2.2 Feedback Networks

Rather than learning a non-linear mapping of input-to-tar-
get space in one step, the feedback networks compose the
prediction process into multiple steps which allow the
model to have a self-correcting procedure. Feedback proce-
dure has been implemented in various computing tasks [35],
[36], [37], [38], [39], [40], [41].

In the context of human pose estimation, Carreira et al. [35]
proposed an iterative error feedback by iteratively estimating
and applying a correction to the current estimation. Pre-
dNet [41] is an unsupervised recurrent network to predic-
tively code the future frames by recursively feeding the
predictions back into the model. For image segmentation, Li
et al. [38] learn implicit shape priors and use them to improve
the prediction. However, to our knowledge, feedback proce-
dures have not been implemented to SR.

2.3 Adversarial Training

Adversarial training, such as with Generative Adversarial
Networks (GANs) [42] has been applied to various image
reconstruction problems [3], [6], [8], [43], [44]. For the SR
task, Johnson et al. [8] introduced perceptual losses based
on high-level features extracted from pre-trained networks.
Ledig et al. [43] proposed SRGAN which is considered as a

single upsampling method. It proposed the natural image
manifold that is able to create photo-realistic images by spe-
cifically formulating a loss function based on the euclidian
distance between feature maps extracted from VGG19 [45].
Our networks can be extended with the adversarial training.
The detailed explanation is available in Section 6.

2.4 Back-Projection

Back-projection [28] is an efficient iterative procedure tomin-
imize the reconstruction error. Previous studies have proven
the effectiveness of back-projection [22], [46], [47], [48]. Origi-
nally, back-projection in SR was designed for the case with
multiple LR inputs. However, given only one LR input
image, the reconstruction procedure can be obtained by
upsampling the LR image usingmultiple upsampling opera-
tors and calculate the reconstruction error iteratively [29].
Timofte et al. [48] mentioned that back-projection could
improve the quality of the SR images. Zhao et al. [46] pro-
posed a method to refine high-frequency texture details with
an iterative projection process. However, the initialization
which leads to an optimal solution remains unknown. Most
of the previous studies involve constant and unlearned pre-
defined parameters such as blur operator and number of
iteration.

3 DEEP BACK-PROJECTION NETWORKS

Let Ih and Il be HR and LR image with ðMh �NhÞ and
ðMl �NlÞ, respectively, where Ml < Mh and Nl < Nh.
The main building block of our proposed DBPN architec-
ture is the projection unit, which is trained (as part of the
end-to-end training of the SR system) to map either an LR
feature map to an HR map (up-projection), or an HR map to
an LR map (down-projection).

3.1 Iterative Back-Projection

Back-projection is originally designed with multiple LR
inputs [28]. Given only one LR input image, the iterative
back-projection [29] can be summarized as follows.

scale up: Îht ¼ ðIlt � pÞ "s; (1)

scale down: Î lt ¼ ðÎht � gÞ #s; (2)

residual: elt ¼ Ilt � Î lt; (3)

scale residual up: eht ¼ ðelt � pÞ "s; (4)

output image: Îhtþ1 ¼ Îht þ eht ; (5)

where Îhtþ1 is the final SR image at the tth iteration, p is a
constant back-projection kernel and g is a single blur filter,
"s and #s are the up- and down-sampling operator,
respectively.

The traditional back-projection relies on constant and
unlearned predefined parameters such as single sampling
filter and blur operator. To extend this algorithm, our pro-
posal preserves the HR components by learned various up-
and down-sampling operators and generates deeper features
to construct numerous pair of LR-and-HR feature maps. We
develop an end-to-end trainable architecture which focuses
to guide the SR task using mutually connected up- and
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down-sampling layers to learn non-linear mutual relation of
LR-to-HR components. The mutual relation between LR and
HR components is constructed by creating iterative up- and
down-projection layers where the up-projection unit gener-
ates HR featuremaps, then the down-projection unit projects
it back to the LR spaces as shown in Fig. 2d.

3.2 Projection Units

The up-projection unit is defined as follows:

scale up: Ht
0 ¼ ðLt�1 � ptÞ "s; (6)

scale down: Lt
0 ¼ ðHt

0 � gtÞ #s; (7)

residual: elt ¼ Lt
0 � Lt�1; (8)

scale residual up: Ht
1 ¼ ðelt � qtÞ "s; (9)

output feature map: Ht ¼ Ht
0 þHt

1; (10)

where * is the spatial convolution operator, "s and #s are,
respectively, the up- and down-sampling operator with scal-
ing factor s, and pt; gt; qt are (de)convolutional layers at stage t.

The up-projection unit, illustrated in the upper part
of Fig. 3, takes the previously computed LR feature map
Lt�1 as input, and maps it to an (intermediate) HR map Ht

0;
then it attempts to map it back to LR map Lt

0 (“back-
project”). The residual (difference) elt between the observed
LR map Lt�1 and the reconstructed Lt

0 is mapped to HR
again, producing a new intermediate (residual) map Ht

1; the
final output of the unit, the HR map Ht, is obtained by sum-
ming the two intermediate HR maps.

The down-projection unit, illustrated in the lower part
of Fig. 3, is defined very similarly, but now its job is to map
its input HR mapHt to the LR map Lt.

scale down: Lt
0 ¼ ðHt � g0tÞ #s; (11)

scale up: Ht
0 ¼ ðLt

0 � p0tÞ "s; (12)

residual: eht ¼ Ht
0 �Ht; (13)

scale residual down: Lt
1 ¼ ðeht � g0tÞ #s; (14)

output feature map: Lt ¼ Lt
0 þ Lt

1: (15)

We organize projection units in a series of stages, alternat-
ing between H and L. These projection units can be under-
stood as a self-correcting procedure which feeds a projection
error to the sampling layer and iteratively changes the solu-
tion by feeding back the projection error.

The projection unit uses large sized filters such as 8� 8
and 12� 12. In the previous approaches, the use of large-
sized filters is avoided because it can slow down the conver-
gence speed and might produce sub-optimal results. How-
ever, the iterative up- and down-sampling units enable the
mutual relation between LR and HR components. These
units also take benefit of large receptive fields to perform
better performance especially on large scaling factor where
the significant amount of pixels is needed.

3.3 Network Architecture

The proposed DBPN is illustrated in Fig. 4. It can be divided
into three parts: initial feature extraction, projection, and
reconstruction, as described below. Here, let convðf; nÞ be a
convolutional layer, where f is the filter size and n is the
number of filters.

1) Initial feature extraction. We construct initial LR fea-
ture-maps L0 2 RMl�Nl�n0 from the input using
convð3; n0Þ. Then convð1; nRÞ is used to reduce the
dimension from n0 to nR before entering projection
step where n0 is the number of filters used in the ini-
tial LR features extraction and nR is the number of
filters used in each projection unit.

2) Back-projection stages. Following initial feature extrac-
tion is a sequence of projection units, alternating
between construction of LR and HR feature maps
(Lt 2 RMl�Nl�nR and Ht 2 RMh�Nh�nR ). Later, it
further improves by dense connection where each
unit has access to the outputs of all previous units
(Section 4.1).

3) Reconstruction. Finally, the target HR image is reco-
nstructed as Isr ¼ fRecð½H1; H2; . . . ; Ht�Þ; where fRec

Fig. 3. Proposed up- and down-projection units in the DBPN. These units
produce residual e between the initial features and the reconstructed
features, then fuse it back by summing it to the initial features.

Fig. 4. An implementation of DBPN for super-resolution which exploits densely connected projection unit to encourage feature reuse.

4326 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 12, DECEMBER 2021



use conv(3, 3) as reconstruction and ½H1; H2; . . . ; Ht�
refers to the concatenation of the feature-maps pro-
duced in each up-projection unit which called as
deep concatenation.

Due to the definitions of these building blocks, our net-
work architecture is modular. We can easily define and train
networks with different numbers of stages, controlling the
depth. For a network with T stages, we have the initial
extraction stage (2 layers), and then T up-projection units
and T � 1 down-projection units, each with 3 layers, fol-
lowed by the reconstruction (one more layer). However, for
the dense projection unit, we add convð1; nRÞ in each pro-
jection unit, except the first three units as mentioned in
Section 4.1.

4 THE VARIANTS OF DBPN

In this section, we show how DBPN can be modified to
apply the latest deep learning trends.

4.1 Dense Projection Units

The dense inter-layer connectivity pattern in DenseNets [1]
has been shown to alleviate the vanishing-gradient prob-
lem, produce improved features, and encourage feature
reuse. Inspired by this we propose to improve DBPN, by
introducing dense connections in the projection units called,
yielding Dense DBPN.

Unlike the original DenseNets, we avoid dropout and
batch norm, which are not suitable for SR, because they
remove the range flexibility of the features [30]. Instead, we
use 1� 1 convolution layer as the bottleneck layer for fea-
ture pooling and dimensional reduction [11], [49] before
entering the projection unit.

In Dense DBPN, the input for each unit is the concatena-
tion of the outputs from all previous units. Let the L

~t and
H

~t be the input for dense up- and down-projection unit,
respectively. They are generated using convð1; nRÞwhich is

used to merge all previous outputs from each unit as shown
in Fig. 5. This improvement enables us to generate the fea-
ture maps effectively, as shown in the experimental results.

4.2 Recurrent DBPN

Here, we propose recurrent DBPN which is able to reduce
the number of parameters and widen the receptive field
without increasing the model capacity. In SISR, DRCN [20]
proposed recursive layers without introducing new param-
eters for additional convolutions in the networks. Then,
DRRN [14] improves residual networks by introducing
both global and local residual learning using a very deep
CNNmodel (up to 52-layers). DBPN can also be treated as a
recurrent network by sharing the projection units across the
stages. We divided recurrent DBPN into two variants as
mentioned below.

a) Parameter sharing on projection unit (DBPN-R). This
variant uses only one up-projection unit and one
down-projection unit which is shared across all
stages without dense connection as shown in Fig. 6.

b) Transition layer on projection step (DBPN-MR). This vari-
ant uses multiple up- and down-projection units as
shown in Fig. 7. The last up- and down-projection
units were used as transition layer. Instead of taking
the output from each up-projection unit, DBPN-MR
takes the HR features only from the last up-projection
unit, then concatenates the HR features from each iter-
ation. Here, the output from the last down-projection
unit is the input for the first up-projection layer on the
next iteration. Then, the last up-projection unit will
receive the output of all previous down-projection
units in the corresponding iteration.

4.3 Residual DBPN

Residual learning helps the network to converge faster and
make the network have an easier job to produce only the
difference between HR and interpolated LR image. Initially,
residual learning has been applied in SR by VDSR [12].
Residual DBPN takes LR image as an input to reduce the
computational time. First, LR image is interpolated using
Bicubic interpolation; then, at the last stage, the interpolated
image is added to the reconstructed image to produce final
SR image.

5 EXPERIMENTAL RESULTS

5.1 Implementation and Training Details

In the proposed networks, the filter size in the projection unit
is various with respect to the scaling factor. For 2�, we use
6� 6 kernel with stride = 2 and pad by 2 pixels. Then, 4� use

Fig. 5. Proposed up- and down-projection unit in the Dense DBPN. The
feature maps of all preceding units (i.e., ½L1; . . . ; Lt�1� and ½H1; . . . ; Ht� in
up- and down-projections units, respectively) are concatenated and
used as inputs, and its own feature maps are used as inputs into all sub-
sequent units.

Fig. 6. Recurrent DBPN with shared parameter (DBPN-R).

Fig. 7. Recurrent DBPN with transition layer (DBPN-MR).

HARIS ET AL.: DEEP BACK-PROJECTINETWORKS FOR SINGLE IMAGE SUPER-RESOLUTION 4327



8� 8 kernel with stride = 4 and pad by 2 pixels. Finally, the
8� use 12� 12 kernel with stride = 8 and pad by 2.1

We initialize the weights based on [50]. Here, standard
deviation (std) is computed by ð ffiffiffiffiffiffiffiffiffi

2=nl

p Þwhere nl ¼ f2
t nt, ft is

the filter size, and nt is the number of filters. For example,
with ft ¼ 3 and nt ¼ 8, the std is 0.111. All convolutional and
deconvolutional layers are followed by parametric rectified
linear units (PReLUs), except the final reconstruction layer.

We trained all networks using images from DIV2K [51]
with augmentation (scaling, rotating, flipping, and random
cropping). To produce LR images, we downscale the HR
images on particular scaling factors using Bicubic. We use
batch size of 16 with size 40� 40 for LR image, while HR
image size corresponds to the scaling factors. The learning
rate is initialized to 1e� 4 for all layers and decrease by a
factor of 10 for every 5� 105 iterations for total 106 itera-
tions. We used Adam with momentum to 0.9 and trained
with L1 Loss. All experiments were conducted using
PyTorch 0.3.1 and Python 3.5 on NVIDIA TITAN X GPUs.
The code is available in the internet.2

5.2 Model Analysis

There are six types of DBPN used for model analysis:
DBPN-SS, DBPN-S, DBPN-M, DBPN-L, D-DBPN-L, D-
DBPN, and DBPN. The detailed architectures of those net-
works are shown in Table 1. Other methods, VDSR [12],
DRCN [20], DRRN [14], LapSRN [13], was chosen due to
the same nature in number of parameter.

Depth Analysis. To demonstrate the capability of our pro-
jection unit, we construct multiple networks: DBPN-S
(T ¼ 2), DBPN-M (T ¼ 4), and DBPN-L (T ¼ 6). In the fea-
ture extraction, we use n0 ¼ 128 and nR ¼ 32. Then, we use
convð1; 1Þ for the reconstruction. The input and output
image are luminance only.

The results on 4� enlargement are shown in Fig. 8. From
the first 50k iteration, our variants are outperformed VDSR.

Finally, starting from our shallow network, DBPN-S gives
the higher PSNR than VDSR, DRCN, and LapSRN. DBPN-S
uses only 12 convolutional layers with smaller number of
filters than VDSR, DRCN, and LapSRN. At the best perfor-
mance, DBPN-S can achieve 31.59 dB which better 0.24 dB,
0.06 dB, 0.05 dB than VDSR, DRCN, and LapSRN, respec-
tively. DBPN-M shows performance improvement which
better than all four existing methods (VDSR, DRCN,
LapSRN, and DRRN). At the best performance, DBPN-M
can achieve 31.74 dB which better 0.39 dB, 0.21 dB, 0.20 dB,
0.06 dB than VDSR, DRCN, LapSRN, and DRRN respec-
tively. In total, DBPN-M uses 24 convolutional layers which
has the same depth as LapSRN. Compare to DRRN (up to
52 convolutional layers), DBPN-M undeniable shows the
effectiveness of our projection unit. Finally, DBPN-L outper-
forms all methods with 31.86 dB which better 0.51 dB,
0.33 dB, 0.32 dB, 0.18 dB than VDSR, DRCN, LapSRN, and
DRRN, respectively.

The results of 8� enlargement are shown in Fig. 9. Our
networks outperform the existing networks for 8� enlarge-
ment, from the first 50k iteration, which clearly show the
effectiveness of our proposed networks on large scaling
factors. However, we found that there is no significant per-
formance gain from each proposed network especially for

TABLE 1
Model Architecture of DBPN

“Feat0” and “Feat1” refer to first and second convolutional layer in the initial feature extraction stages. Note: (f; n; st; pd)
where f is filter size, n is number of filters, st is striding, and pd is padding.

Fig. 8. The depth analysis of DBPNs compare to other networks
(VDSR [12], DRCN [20], DRRN [14], LapSRN [13]) on Set5 dataset for
4� enlargement.

1. We found these settings to work well based on general intuition
and preliminary experiments.

2. The implementation is available here.
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DBPN-L and DBPN-M networks where the difference only
0.04 dB.

Number of Parameters. We show the tradeoff between per-
formance and number of network parameters from our net-
works and existing deep network SR in Figs. 10 and 11.

For the sake of low computation for real-time processing,
we construct DBPN-SS which is the lighter version of
DBPN-S, ðT ¼ 2Þ. We use n0 ¼ 64 and nR ¼ 18. However,
the results outperform SRCNN, FSRCNN, and VDSR on
both 4� and 8� enlargement. Moreover, DBPN-SS performs
better than VDSR with 72 and 37 percent fewer parameters
on 4� and 8� enlargement, respectively.

DBPN-S has about 27 percent fewer parameters and
higher PSNR than LapSRN on 4� enlargement. Finally, D-
DBPN has about 76 percent fewer parameters, and approxi-
mately the same PSNR, compared to EDSR on 4� enlarge-
ment. On the 8� enlargement, D-DBPN has about 47 percent

fewer parameters with better PSNR compare to EDSR. This
evidence show that our networks has the best trade-off
between performance and number of parameter.

Deep Concatenation. Each projection unit is used to dis-
tribute the reconstruction step by constructing features
which represent different details of the HR components.
Deep concatenation is also well-related with the number of
T (back-projection stage), which shows more detailed fea-
tures generated from the projection units will also increase
the quality of the results. In Fig. 12, it is shown that each
stage successfully generates diverse features to reconstruct
SR image.

Error Feedback. As stated before, error feedback (EF) is
used to guide the reconstruction in the early layer. Here, we
analyze how error feedback can help for better reconstruc-
tion. We conduct experiments to see the effectiveness of
error feedback procedure. On the scenario without EF, we
replace up- and down-projection unit with single up-
(deconvolution) and down-sampling (convolution) layer.

We show PSNR of DBPN-S with EF and without EF
in Table 2. The result with EF has 0.53 dB and 0.26 dB better
than without EF on Set5 and Set14, respectively. In Fig. 13,
we visually show how error feedback can construct better
and sharper HR image especially in the white stripe pattern
of the wing.

Moreover, the performance of DBPN-S without EF is
interestingly 0.57 dB and 0.35 dB better than previous
approaches such as SRCNN [17] and FSRCNN [18], respec-
tively, on Set5. The results show the effectiveness of iterative

Fig. 9. The depth analysis of DBPN on Set5 dataset for 8� enlargement.
DBPN-S (T ¼ 2), DBPN-M (T ¼ 4), and DBPN-L (T ¼ 6).

Fig. 10. Performance versus number of parameters for 4� enlargement
using Set5. The horizontal axis is log-scale.

Fig. 11. Performance versus number of parameters for 8� enlargement
using Set5. The horizontal axis is log-scale.

Fig. 12. Sample of feature maps from up-projection units in D-DBPN
where t ¼ 7. Each feature has been enhanced using the same grayscale
colormap. Zoom in for better visibility.

TABLE 2
Analysis of EF Using DBPN-S on 4� Enlargement

Red indicates the best performance.

Fig. 13. Qualitative comparisons of DBPN-S with EF and without EF on
4� enlargement.
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up- and downsampling layers to demonstrate the LR-to-HR
mutual dependency.

We further analyze the effectiveness of EF comparing
the same model size as shown in Table 3 using D-DBPN
model. The better setting is to remove the subtraction (-)
and addition (+) operations in the up-/down-projection
unit. The results demonstrate the effectiveness of our EF
module.

Filter Size. We analyze the size of filters which is used in
the back-projection stage on D-DBPN model. As stated
before, the choice of filter size in the back-projection stage is
based on the preliminary results. For the 4� enlargement,
we show that filter 8�8 is 0.08 dB and 0.09 dB better than fil-
ter 6 � 6 and 10 � 10, respectively, as shown in Table 4.

Luminance versus RGB. In D-DBPN, we change the input/
output from luminance to RGB color channels. There is no
significant improvement in the quality of the result as
shown in Table 5. However, for running time efficiency,
constructing all channels simultaneously is faster than a
separated process.

5.3 Comparison of Each DBPN Variant

Dense Connection. We implement D-DBPN-L which is a
dense connection of the L network to show how dense
connection can improve the network’s performance in all
cases as shown in Table 6. On 4� enlargement, the dense
network, D-DBPN-L, gains 0.13 dB and 0.05 dB higher
than DBPN-L on the Set5 and Set14, respectively. On 8�,
the gaps are even larger. The D-DBPN-L has 0.23 dB and
0.19 dB higher that DBPN-L on the Set5 and Set14,
respectively.

Comparison Across the Variants.We compare six DBPNvar-
iants: DBPN-R64-10, DBPN-R128-5, DBPN-MR64-3, DBPN-
RES-MR64-3, DBPN-RES, and DBPN. First, DBPN, which
was the winner of NTIRE2018 [32] and PIRM2018 [33], uses
n0 ¼ 256, nR ¼ 64, and t ¼ 10 for the back-projection stages,
and dense connection between projection units. In the recon-
struction, we use convð3; 3Þ. DBPN-R64-10 uses nR ¼ 64with
10 iterations to produce 640 HR features as input of

reconstruction layer. DBPN-R128-5, uses nR ¼ 128 with 5
iterations, produces 640 HR features. DBPN-MR64-3 has the
same architecture with D-DBPN but the projection units are
treated as recurrent network. DBPN-RES-MR64-3 is DBPN-
MR64-3 with residual learning. Last, DBPN-RES is DBPN
with residual learning. All variants are trainedwith the same
training setup.

The results are shown in Table 7. It shows that all var-
iants successfully have better performance than D-
DBPN [31]. DBPN-R64-10 has the least parameter compare
to other variants, which is suitable for mobile/real-time
application. It can reduce 10� number of parameter com-
pare to DBPN and maintain to get good performance. We
can see that increasing nR can improve the performance of
DBPN-R which is shown by DBPN-R128-5 compare to
DBPN-R64-10. However, better results is obtained by
DBPN-MR64-3, especially on Urban100 and Manga109 test
set compare to other variants. It is also proven that residual
learning can slightly improve the performance of DBPN.
Therefore, it is natural that we performed the combination
of multiple stages recurrent and residual learning called
DBPN-RES-MR64-3 which performs the best results and
has lower parameter than DBPN.

5.4 Comparison With the-State-of-the-Arts on SR

To confirm the ability of the proposed network, we per-
formed several experiments and analysis. We compare our
network with 14 state-of-the-art SR algorithms: A+ [23],
SRCNN [17], FSRCNN [18], VDSR [12], DRCN [20],
DRRN [14], LapSRN [13], MS-LapSRN [52], MSRN [53], D-
DBPN [31], EDSR [30], RDN [34], RCAN [15], and SAN [54].
We carry out extensive experiments using 5 datasets:
Set5 [55], Set14 [56], BSDS100 [57], Urban100 [58] and
Manga109 [59]. Each dataset has different characteristics.
Set5, Set14 and BSDS100 consist of natural scenes; Urban100
contains urban scenes with details in different frequency
bands; andManga109 is a dataset of Japanesemanga.

Our final network, DBPN-RES-MR64-3, combines
dense connection, recurrent network and residual

TABLE 3
Analysis of EF Module on Same Model Size (D-DBPN)

on 4� Enlargement

Red indicates the best performance.

TABLE 4
Analysis of Filter Size in the Back-Projection Stages

on 4� Enlargement From D-DBPN

Red indicates the best performance.

TABLE 5
Analysis of Input/Output Color Channel

Using DBPN-L

Red indicates the best performance.

TABLE 6
Comparison of the DBPN-L and D-DBPN-L on 4�

and 8� Enlargement

Red indicates the best performance.
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learning to boost the performance of DBPN. It uses
n0 ¼ 256, nR ¼ 64, and t ¼ 7 with 3 iteration. In the
reconstruction, we use convð3; 3Þ. RGB color channels are
used for input and output image. It takes around 14
days to train.3

PSNR and structural similarity (SSIM) [60] were used to
quantitatively evaluate the proposed method. Note that
higher PSNR and SSIM values indicate better quality. As
used by existing networks, all measurements used only the
luminance channel (Y). For SR by factor s, we crop s pixels
near image boundary before evaluation as in [18], [30].
Some of the existing networks such as SRCNN, FSRCNN,
VDSR, and EDSR did not perform 8� enlargement. To this
end, we retrained the existing networks by using author’s
code with the recommended parameters.

Fig. 14 shows that EDSR tends to generate stronger edge
than the ground truth and lead to misleading information
in several cases. The result of EDSR shows the eyelashes
were interpreted as a stripe pattern. Our result generates
softer patterns which is subjectively closer to the ground
truth. On the butterfly image, EDSR separates the white pat-
tern and tends to construct regular pattern such ac circle
and stripe, while D-DBPN constructs the same pattern as
the ground truth.

We show the quantitative results in the Table 8. Our net-
work outperforms the existing methods by a large margin

in all scales except RCAN and SAN on 2�. For 4�, EDSR
has 0.26 dB higher than D-DBPN but outperformed by
DBPN-RES-MR64-3 with 0.44 dB margin on Urban100.
Recent state-of-the-art, SAN [54] and RCAN [15], performs
better results than our network on 2�. However, on 4�, our
network has 0.26 dB higher than RCAN on Urban100. The
biggest gap is shown on Manga109, our network has 0.52
dB higher than RCAN.

Our network shows its effectiveness on 8� enlargement
which outperforms all of the existing methods by a large
margin. Interesting results are shown on Manga109 dataset
where D-DBPN obtains 25.50 dB which is 0.61 dB better
than EDSR. While on the Urban100 dataset, D-DBPN
achieves 23.25 which is only 0.13 dB better than EDSR. Our
final network, DBPN-RES-MR64-3, outperforms all previ-
ous networks. DBPN-RES-MR64-3 is roughly 0.2 dB better
than RCAN [15] across multiple dataset. The biggest gap is
on Manga109 where DBPN-RES-MR64-3 is 0.47 dB better
than RCAN [15]. The overall results show that our networks
perform better on fine-structures images especially manga
characters, even though we do not use any animation
images in the training.

The results of 8� enlargement are visually shown
in Fig. 15. Qualitatively, our network is able to preserve the
HR components better than other networks. For image
“img 040.png”, all of previous methods fail to recover the
correct direction of the image textures, while ours produce
more faithful results to the ground truth. For image
“Hamlet 2.png”, other methods suffer from heavy blurring

TABLE 7
Quantitative Evaluation of DBPN’s Variants on 4�

Red indicates the best performance.

Fig. 14. Qualitative comparison of our models with other works on 4� super-resolution.

3. It takes around five days to train on PyTorch 1.0 and CUDA10.
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artifacts and fail to recover the details. While, our network
successfully recovers the fined detail and produce the clos-
est result to the ground truth. It shows that our networks
can successfully extract not only features but also create
contextual information from the LR input to generate HR
components in the case of large scaling factors, such as 8�
enlargement.

5.5 Runtime Evaluation

We present the runtime comparisons between our networks
and three existing methods: VDSR [12], DRRN [14], and
EDSR [30]. The comparison must be done in fair settings.
The runtime is calculated using python function timeit

which encapsulating only forward function. For EDSR, we
use original author code based on Torch and use timer

function to obtain the runtime.
We evaluate each network using NVIDIA TITAN X

GPU (12G Memory). The input image size is 64� 64,
then upscaled into 128� 128 (2�), 256� 256 (4�), and
512� 512 (8�). The results are the average of 10 times
trials.

Table 9 shows the runtime comparisons on 2�, 4�, and
8� enlargement. It shows that DBPN-SS and DBPN-S obtain
the best and second best performance on 2�, 4�, and 8�

enlargement. Compare to EDSR, D-DBPN shows its effec-
tiveness by having faster runtime with comparable quality
on 2� and 4� enlargement. On 8� enlargement, the gap is
bigger. It shows that D-DBPN has better results with lower
runtime than EDSR.

Noted that input for VDSR and DRRN is only lumi-
nance channel and need preprocessing to create middle-
resolution image. So that, the runtime should be added by
additional computation of interpolation computation on
preprocessing.

6 PERCEPTUALLY OPTIMIZED DBPN

We also can extend DBPN to produce HR outputs that
appear to be better under human perception. Despite many
attempts, it remains unclear how to accurately model per-
ceptual quality. Instead, we incorporate the perceptual qual-
ity into the generator by using adversarial loss, as introduced
elsewhere [43], [44], [61]. In the adversarial settings, there
are two building blocks: a generator (G) and a discriminator
(D). In the context of SR, the generator G produces HR
images (from LR inputs). The discriminator D works to dif-
ferentiate between real HR images and generated HR
images (the product of SR network G). In our experiments,

TABLE 8
Quantitative Evaluation of State-of-the-Art SR Algorithms: Average PSNR/SSIM for Scale Factors 2�, 4�, and 8�

Red indicates the best and blue indicates the second best performance.
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the generator is a DBPN network, and the discriminator is a
network with five hidden layers with batch norm, followed
by the last, fully connected layer.

The generator loss in this experiment is composed of four
loss terms, following [44]: MSE, VGG, Style, and Adversar-
ial loss.

Fig. 15. Qualitative comparison of our models with other works on 8� super-resolution.
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LG ¼ w1 � Lmse þ w2 � Lvgg þ w3 � Ladv þ w4 � Lstyle:

(16)

� MSE loss is pixel-wise loss which calculated in the
image space Lmse ¼ jjIh � Isrjj22.

� VGG loss is calculated in the feature space using pre-
trained VGG19 network [45] on multiple layers. This
loss was originally proposed by [8], [70]. Both Ih and
Isr are first mapped into a feature space by differen-
tiable functions fi from VGG multiple max-pool
layers ði ¼ 2; 3; 4; 5Þ then sum up each layer distan-
ces. Lvgg ¼

P5
i¼2 jjfiðIhÞ � fiðIsrÞjj22.

� Adversarial loss. Ladv ¼ �logðDðGðIlÞÞÞ, whereDðxÞ
is the probability assigned by D to x being a real HR
image.

� Style loss is used to generate high quality textures.
This loss was originally proposed by [71] which is
later modified by [44]. Style loss uses the same differ-
entiable function f as in VGG loss. Lstyle ¼

P5
i¼2 jj

uðfiðIhÞÞ � uðfiðIsrÞÞjj22 where Gram matrix uðF Þ ¼
FFT 2 Rn�n.

The training objective for D is

LD ¼ �logðDðIhÞÞ � logð1�DðGðIlÞÞÞ:

As is common in training adversarial networks, we alternate
between stages of training G and training D. We use pre-
trainedDBPNmodel which optimized byMSE loss only, then
fine-tuned with the perceptual loss. We use batch size of 4

with size 60� 60 for LR image, while HR image size is
240� 240. The learning rate is initialized to 1e� 4 for all layers
for 2� 105 iteration using Adam with momentum to 0.9.

This method was included in the challenge associated
with PIRM2018 [33], in conjunction with ECCV 2018. In the
challenge, evaluation was conducted in three disjoint
regimes defined by thresholds on the RMSE; the intuition
behind this is the natural tradeoff between RMSE and
perceptual quality of the reconstruction. The latter is mea-
sured by combining the quality measures of Ma [72] and
NIQE [73] as below,

Perceptualindex ¼ 1=2ðð10�MaÞ þNIQEÞ: (17)

The three regimes correspond to Region 1: RMSE � 11:5 ,
Region 2: 11:5 < RMSE � 12:5, and Region 3: 12:5 < RMSE
� 16. We select optimal parameter settings for each regime.
This process yields

� Region 1 (w1 : 0:5; w2 : 0:05; w3 : 0:001; w4 : 1)
� Region 2 (w1 : 0:1; w2 : 0:2; w3 : 0:001; w4 : 1)
� Region 3 (w1 : 0:03; w2 : 0:2; w3 : 0:001; w4 : 10)
Our method achieved 1 st place on Region 2, 3 rd place

on Region 1, and 5th place on Region 3 [33] as shown in
Table 10. In Region 3, it shows very competitive results
where we got 5th, however, it is noted that our method has
the lowest RMSE among other top 5 performers which
means the image has less distortion or hallucination w.r.t
the original image.

We show qualitative results from our method which is
shown in Fig. 16. It can be seen that there are significant
improvement on high quality texture on each region com-
pare to MSE-optimized SR image. ESRGAN [63], the winner
of PIRM2019 on Region 3, gets the best perceptual results
among other methods. However, our proposal contains less
noise among other methods (the smallest RMSE) while
maintaining good perceptual quality on Region 3.

7 CONCLUSION

We have proposed Deep Back-Projection Networks for Sin-
gle Image Super-resolution which is the winner of two sin-
gle image SR challenge (NTIRE2018 and PIRM2018). Unlike
the previous methods which predict the SR image in a feed-
forward manner, our proposed networks focus to directly
increase the SR features using multiple up- and down-
sampling stages and feed the error predictions on each depth

TABLE 9
Runtime Evaluation With Input Size 64�64

Red indicates the best, blue indicates the second best performance, * indicates
the calculation using function timer in Torch, and N.A. indicates that the algo-
rithm runs out of GPU memory.

TABLE 10
PIRM2018 Challenge Results [33]

The top 9 submissions in each region. For submissions with a marginal PI difference (up to 0.01), the one with the lower RMSE is
ranked higher. Submission with marginal differences in both the PI and RMSE are ranked together (marked by �).
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in the networks to revise the sampling results, then, accumu-
lates the self-correcting features from each upsampling stage
to create SR image. We use error feedbacks from the up- and
down-scaling steps to guide the network to achieve a better
result. The results show the effectiveness of the proposed
network compares to other state-of-the-art methods. More-
over, our proposed network successfully outperforms other
state-of-the-art methods on large scaling factors such as 8�
enlargement. We also show that DBPN can be modified into
several variants to follow the latest deep learning trends to
improve its performance.
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