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Abstract—Coherent point drift is a well-known algorithm for solving point set registration problems, i.e., finding corresponding points

between shapes represented as point sets. Despite its advantages over other state-of-the-art algorithms, theoretical and practical

issues remain. Among theoretical issues, (1) it is unknown whether the algorithm always converges, and (2) the meaning of the

parameters concerning motion coherence is unclear. Among practical issues, (3) the algorithm is relatively sensitive to target shape

rotation, and (4) acceleration of the algorithm is restricted to the use of the Gaussian kernel. To overcome these issues and provide a

different and more general perspective to the algorithm, we formulate coherent point drift in a Bayesian setting. The formulation brings

the following consequences and advances to the field: convergence of the algorithm is guaranteed by variational Bayesian inference;

the definition of motion coherence as a prior distribution provides a basis for interpretation of the parameters; rigid and non-rigid

registration can be performed in a single algorithm, enhancing robustness against target rotation. We also propose an acceleration

scheme for the algorithm that can be applied to non-Gaussian kernels and that provides greater efficiency than coherent point drift.

Index Terms—Non-rigid point set registration, coherent point drift, variational Bayesian inference, motion coherence, fast computation

Ç

1 INTRODUCTION

THE goal of point set registration is to find pairs of corre-
sponding points between shapes represented as point

sets. Algorithms for finding shape correspondences have
been actively studied in computer vision and computer
graphics. Why do we need to find corresponding points
between shapes? This is because shapeswith correspondence
information become a foundation to organize, reconstruct,
and synthesize a broader class of shapes. We begin with a
summary concerning some of the active research fields in
which point set registration arises.

Shape Reconstruction. A goal of computer vision and
graphics is to reconstruct the entire 3D surface of an object
from range images, i.e., 2D images with depth information,
captured at different camera positions. To this end, range
images are typically converted into point sets, also called
point clouds. A naı̈ve conversion of range images embeds the
corresponding point clouds into local coordinate systems. If
every point cloud partially overlaps with some of the others,
point set registration finds overlaps of the point clouds and
aligns them in a global coordinate system.

Shape Retrieval. As a result of advances in computer
graphics, a vast number of 3D shapes have been generated.
One aim is to rapidly retrieve 3D shapes that resemble a
query object from a database. One approach to performing
this task is to define a measure of similarity between shapes
and return a shape having a significant similarity with a
query object. Here, we refer to shapes with and without cor-
respondence information as structured and unstructured

shapes, respectively. Defining an adequate measure of simi-
larity is, however, a non-trivial task because typical 3D
shapes are unstructured. Additionally, each shape model
might be embedded in a local coordinate system. Let us
assume that shapes are structured and located in a global
coordinate system. Then, a naı̈ve similarity measure based
on the Euclidean distance, for example, can be a reasonable,
computationally efficient similarity measure. Point set regis-
tration converts unstructured shapes into structured ones.

Shape Model Learning. If we have a class of structured
shapes such as human faces, we can learn a shape model
that summarizes shape variations in the class using a statis-
tical learning technique, e.g., principal component analysis
(PCA). This is because each element in a structured shape
vector can be interpreted as a statistical variable with a spe-
cific meaning, e.g., the tip of a nose. Point set registration
converts points in unstructured shapes into statistical varia-
bles. The shape model after the learning can be used for
shape blending and shape completion, for example.

a) Shape Blending. If 3D shapes can be automatically syn-
thesized, the efforts of graphic designers can be reduced sig-
nificantly. A PCA-based shape model, for example, allows
us to generate an infinite number of 3D shapes endowed
with the characteristics of training shapes. Shape generation
based on structured shapes is called shape blending.

b) Shape Completion.A 3D surface generated by the scan of a
real object typically contains missing regions due to occlusion.
The missing regions can be recovered naturally by fitting a
PCA-based watertight shape model, i.e., a shape model with-
out defective holes or gaps, to the scanned surface. The interpo-
lation ofmissing regions in a scan is called shape completion.

Types of Registration Algorithms. Various registration algo-
rithms have been developed to solve shape correspondence
problems. Typically, registration algorithms are categorized
as either rigid or non-rigid according to the transformation
models that deform shapes and align them. Rigid registration
algorithms find a map that preserves the distance between
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every pair of points, i.e., a map defined as rotation and trans-
lation. The reconstruction of an entire 3D surface from partial
scans typically requires rigid registration.

In contrast, non-rigid registration algorithms find a map
that does not necessarily preserve the distance between
points. Non-rigid registration algorithms can be divided
into two groups involving either non-linear maps or linear
maps, e.g., similarity transformations and affine transforma-
tions. We note that non-rigid registration algorithms based
on similarity transformations are sometimes categorized
into rigid registration algorithms owing to their simplicity.
Shape model learning and shape retrieval typically involve
non-rigid registration with a non-linear map.

Coherent Point Drift. Coherent point drift (CPD) [1], [2] is a
collection of three different registration algorithms based on a
Gaussian mixture model (GMM). Among them, the best-
known algorithm is a non-rigid algorithm with a non-linear
map, which is based on the motion coherence theory [3]. We
hereafter refer to it as CPD unless otherwise specified. CPD is
considered a state-of-the-art non-rigid registration algorithm
because of its registration performance and scalability to large
point sets [4]. A primary reason for its stability is its estimation
of shape correspondence in a soft-matching manner; point-to-
point correspondences are not assumed to be one-to-one.
Additionally, the sequential update of the residual variance in
theGMMautomatically shrinks the set of candidate points cor-
responding to each source point during the optimization [5].

Our Contribution. We formulate CPD in a Bayesian setting;
we replace the motion coherence theory, i.e., the theoretical
basis of CPD, with Bayesian inference; we introduce motion
coherence using a prior distribution of displacement vectors.
We also derive an algorithm that overcomes several issues of
CPD on the basis of variational Bayesian inference (VBI). The
algorithm is endowedwith the following characteristics:

� Convergence of the algorithm is guaranteed.
� The parameters regarding motion coherence can be

interpreted intuitively.
� The algorithm combines the rigid CPD and the non-

rigid CPD.
� The algorithm can be accelerated with non-Gaussian

kernel functions.
In numerical studies, we evaluate the registration perfor-

mance of the algorithm by comparing it with the state-of-
the-art algorithms. The remainder of the paper is organized
as follows: In Section 2, we review point set registration
methods related to our study. In Section 3, we follow the
derivation of the non-rigid CPD algorithm and summarize
several issues to be addressed. In Section 4, we present our
methodological contributions with a summary of VBI. In
Section 5, we evaluate the registration performance of our
algorithm. In Section 6, we conclude this study. Appendices
and Supplementary Video 1 can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2020.2971687. The implementation of
the algorithm is available at the author’s GitHub repository:
https://github.com/ohirose/bcpd.

2 RELATED WORK

In this section, we review registration algorithms related
to our work. As described in the previous section, point set

registration algorithms are typically categorized into rigid
and non-rigid registration algorithms. Among these algo-
rithms, rigid registration algorithms have been intensively
studied [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17]. Rigid registration can also be performed through 3D
keypoint detection, local surface feature description, and
surface matching. The algorithms related to this approach
are broadly covered in a survey paper [18].

Various transformation models for non-rigid point set
registration have been proposed. A majority of the non-rigid
transformations are based on thin plate spline functions
[19], [20], [21], [22], [23], Gaussian functions [1], [2], [24],
[25], [26], [27], and local affine transformations [28], [29],
[30], [31], [32]. These methods are classified according to the
formulation of the point set registration problem: the mini-
mization of a weighted squared loss function with penalty
terms [20], [23], [28], [29], [30], [31], [32] and the likelihood
maximization of Gaussian mixture models [1], [2], [9], [19],
[21], [22], [24], [25], [26], [27]. Registration methods with
such different formulations are closely related; however,
there is a clear difference in the estimation of the residual
variance during optimization [9].

The handling of outliers, i.e., points that are irrelevant to
the actual object geometry, is amajor issue of non-rigid regis-
tration. Various approaches have been proposed to deal with
outliers, such as statistical analysis for distances between
corresponding points [9], [33], [34], soft assignments [20],
[35], trimming point sets through iterative random sampling
[36], kernel correlation [37], explicit probabilistic modeling
of outliers [1], [2], [25], [26], [27], and the use of robust estima-
tors such as the L2E estimator [21] and a scaled Geman–
McClure estimator [38], [39].

Non-rigid registration techniques typically assume the
smoothness of a displacement field, i.e., motion coherence,
in which displacement vectors to define a shape deforma-
tion gradually become parallel as the distance between two
points decreases. The smoothness is typically introduced by
imposing local rigidity on the surface of a deformed shape
[40], [41] and the penalty on a non-smooth displacement
field [1], [2], [19], [20], [21], [22], [23], [25], [26], [27]. By the
assumption of the smooth displacement field, non-rigid reg-
istration algorithms seek to find transformations with suffi-
cient global flexibility while preserving the local topology of
a point set. Besides the coherent moves based on the prox-
imity, several types of coherent moves have been utilized to
register shapes involving more specific deformations such
as human face [42], [43], human hand shape and pose [44],
and human body pose [28], [38], [45], [46], [47], [48], [49],
[50], [51], [52].

3 PRELIMINARY

In this section, we follow the derivation of the CPD algo-
rithm [2] to clarify the formulation difference between CPD
and our Bayesian variant. CPD is derived by first defining a
GMM, which implicitly encodes the unknown correspond-
ences between points, and then minimizing the negative
log-likelihood function using the EM algorithm.

Notation 1. The goal of point set registration is to find the
map T that transforms the geometric shape represented as
a point set Y ¼ fy1; . . . ; yMg so that the transformed shape
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matches the target shape represented as the other point set
X ¼ fx1; . . . ; xNg. Here, we refer to a point set to be deformed
as a source point set, and refer to the other point set that
remains fixed as a target point set. The set of T ðyÞ � y for any
y 2 RD is called a displacement field, as it defines the dis-
placement of each point in Y . We denote the displacement
field by vðyÞ or v. Additionally, we refer to any point that
is irrelevant to the actual object geometry as an outlier.
Throughout this paper, we use the following notation:

� N;M – the numbers of points in target and source
point sets, respectively.

� D – the dimensionality of the space in which a point
set is embedded.

� xn ¼ ðxn1; . . . ; xnDÞT 2 RD – the nth point in a target
point setX ¼ fx1; . . . ; xNg.

� ym ¼ ðym1; . . . ; ymDÞT 2 RD – the mth point in a
source point set Y ¼ fy1; . . . ; yMg.

� Trð�Þ, j � j, dð�Þ – the trace of a matrix, the determinant
of a matrix, and the operation that converts a vector
into its corresponding diagonal matrix, respectively.

� ID, IM – the identity matrices of sizesD andM.
� 1D, 1M , 1N – the vectors of all 1s of sizesD,M, andN .
We also use the symbols of the point sets X and Y as the

matrix symbols, which are defined as X ¼ ðx1; . . . ; xNÞT
and Y ¼ ðy1; . . . ; yMÞT . The notation used throughout this
paper is summarized in Appendix E, available online.

3.1 Gaussian Mixture Model for Point
Set Registration

We begin with the definition of a GMM, which is the basis
of CPD. In the framework of CPD, a set of points represent-
ing a deformed shape, i.e., T ðY Þ, is assumed to be centroids
of a GMM, and a target point xn is a data point generated
by the GMM. The mth component distribution of the GMM
is defined as follows:

pðxnjm; u0Þ ¼ j2ps2IDj�1=2exp
n
� 1

2s2
jjxn � T ðymÞjj2

o
;

where T ðymÞ ¼ ym þ vðymÞ is a transformation model to
move source points, and u0 ¼ ðv; s2Þ is the set of parameters.
With the outlier distribution poutðxnÞ ¼ 1=N , the GMM is
defined as follows:

pðxn; u0Þ ¼ vpoutðxnÞ þ ð1� vÞ
XM
m¼1

1

M
pðxnjm; u0Þ;

where v is the prior probability that xn is an outlier. By the
construction of the probabilistic model, point set registration
is replaced with the estimation of u0 based onminimization of
the negative likelihood regarding theGMM.

3.2 EM Algorithm and the Q-Function

Owing to the lack of a closed-form expression for u0 ¼
ðv; s2Þ that minimizes the negative likelihood of the GMM, a
sequential optimization technique called the EM algorithm
is applied to the minimization. The CPD algorithm is
obtained as the result of applying the EM algorithm, and it
seeks to find a local minimum of the negative likelihood
by iterating the following procedure: (1) computation of the

matching probability between xn and ym, denoted by pmn,
and (2) minimization of the objective function, called the
Q-function, given pmn. The former and latter are called the
E-step and M-step, respectively. Suppose u00 ¼ ðv0; s02Þ is
the alternative set of parameters u0. From the theory of the
EM algorithm, theQ-function is derived as follows:

Qðu0; u00Þ ¼
N̂D

2
ln s2 þ 1

2s2

XN
n¼1

XM
m¼1

pmnjjxn � ðym þ vðymÞÞjj2;

where N̂ ¼
PN

n¼1

PM
m¼1 pmn � N is the estimated number of

current matching points. The posterior matching probability
pmn is derived as follows:

pmn ¼
expð� 1

2s02 jjxn � ðym þ v0ðymÞÞjj2Þ
c0 þ

PM
m0¼1 expð� 1

2s02 jjxn � ðym0 þ v0ðym0 ÞÞjj2Þ
;

where c0 ¼ v
1�v

M
N j2ps02IDj1=2. Thematching probability pmn is

dependent only on u00, and therefore the update of pmn and the
minimization of theQ-function regarding u0 can be alternated.
We note that theQ-function is considered as an error function
of the shape deformation under the current alignment u00. The
E-step andM-step can therefore be interpreted as follows: the
E-step aligns point sets X and Y in a soft-matching manner,
whereas the M-step finds the shape that is closest to the target
shape given the current alignment u00.

3.3 Regularization and the Motion
Coherence Theory

If no constraint is imposed on the displacement field vðyÞ,
the minimization of the Q-function given u00 is ill-posed; for
example, the Q-function is obviously minimized if displace-
ment vectors satisfy x1 ¼ ym þ vðymÞ for all m given a fixed
s2. A regularization term to avoid trivial solutions is incor-
porated into the Q-function as follows:

Q0ðu0; u00Þ ¼ Qðu0; u00Þ þ �

Z
RD

j~vðsÞj2
~GðsÞ

ds; (1)

where � is a trade-off parameter, the tilde symbol indicates
the Fourier transform, and ~G is a positive function that tends
to zero as jjsjj ! 1. We note that 1=~G is a high-pass filter,
and therefore the penalization of the displacement field
is increased as it becomes rougher. Myronenko et al., the
authors of the CPD algorithm, used the Gaussian function

GbðzÞ ¼ expð� jjzjj2
2b2

Þ as a choice of G. One of the reasons for

this choice is that the regularization term is equivalent to

that of the motion coherence theory [3], which penalizes

non-coherent moves of neighboring points. Therefore, this

regularization implies that motion coherence is imposed on

the source points to be moved for registration.

3.4 Minimization of the Q-Function

The remaining task to derive the CPD algorithm is to mini-
mizeQ0ðu0; u00Þ regarding u0 ¼ ðv; s2Þ given the current align-

ment u00 ¼ ðv0; s02Þ. Owing to the nonlinear dependence
between v and s2, a closed-form expression of their simul-
taneous updates is not available. Therefore, v and s2 are
updated separately. To derive the equation for updating v,

HIROSE: BAYESIAN FORMULATION OF COHERENT POINT DRIFT 2271



we first assume that s2 is given. The alternative parameter
set u00 defines the current soft-matching, and therefore, the
minimization of Q0 regarding v is interpreted as a function-
fitting problem based on the regularization theory [54]. The
solution of the problem is guaranteed to be

vðyÞ ¼
XM
m¼1

wmGðy� ymÞ þ ’ðyÞ;

where wm 2 RD is a coefficient vector, and ’ðyÞ is a function

that spans the null space of the functional
R
RD

j~vðsÞj2
~GðsÞ ds [55].

Specifically, if the function G is positive definite, ’ðyÞ is

guaranteed to be zero. The Gaussian function Gb as a choice

of G guarantees ’ðyÞ ¼ 0 owing to the positive definiteness

of Gb. Suppose Ŷ ¼ ðŷ1; . . . ; ŷMÞT 2 RM�D with ŷm ¼ ymþ
v0ðymÞ 2 RD is the matrix that represents a current deformed

shape given u00. By using the general solution to solve the

Euler-Lagrange equation related to Eq. (1), the equation for

updating vðyÞ is obtained through the coefficient matrix

W ¼ ðw1; . . . ; wMÞT 2 RM�D as follows:

W ¼ ðGþ �s2dðP1NÞ�1Þ�1ðdðP1NÞ�1PX � Ŷ Þ;

where P ¼ ðpmnÞ 2 ½0; 1�M�N and G ¼ ðgðbÞ
mm0 Þ 2 RM�M with

g
ðbÞ
mm0 ¼ Gbðym � ym0 Þ. After the update of the displacement

field vðyÞ, the residual variance s2 is updated. By equating

the corresponding derivative of Q0 to zero, the equation for

updating s2 is obtained as follows:

s2 ¼ 1

N̂D
TrfXTdðPT1MÞX � 2Ŷ TPX þ Ŷ TdðP1NÞŶ g:

The CPD algorithm is designed to perform iterative updates

of P , W , and s2 under a suitable initialization on the basis

of the EM algorithm.

3.5 Several Issues

Despite the advantages of CPD over state-of-the-art algo-
rithms, several issues remain in both theoretical and practical
aspects. One theoretical issue of CPD is that it is unknown
whether the algorithm always converges, as suggested
by Myronenko et al. [2]. If we find û0 ¼ ðv̂; ŝ2Þ satisfying
Q0ðû0; u00Þ � Q0ðu00; u00Þ at the minimization step, convergence
is guaranteed from the theory of the EM algorithm. How-
ever, it is unknownwhether the updates of v and s2 in theM-
step satisfy the condition, because the equations for updating
them are obtained by the partial minimization of Q0 regard-
ing either v or s2 given the other. Another theoretical issue of
CPD is the difficulty in interpreting tuning parameters � and
b. Both parameters control the degree of motion coherence,
i.e., the smoothness of a displacement field, and their differ-
ence is unclear. Therefore, the tuning parameters tend to be
controlled in a non-intuitive manner. In a practical aspect,
CPD is relatively sensitive to the rotation of a target. This is
because (1) CPD captures the target’s rotation using the non-
rigid displacement term vðyÞ, and (2) the rotation of a source
shape for registration is penalized by the regularization as
well as its non-rigid deformation. Another practical issue is
that the acceleration scheme of CPD is limited to the case of
the Gaussian function, which will be reviewed in Section 4.6.

Through a Bayesian formulation of CPD, we address both
theoretical and practical issues.

4 METHODS

We propose a Bayesian formulation of CPD and derive
an algorithm called Bayesian coherent point drift (BCPD). In
Section 4.1, we review VBI. In Section 4.2, we formulate point
set registration in a Bayesian settingwithout themotion coher-
ence theory. In Section 4.3, we derive the BCPD algorithm
using VBI, which guarantees convergence of the algorithm. In
Section 4.4, we summarize the difference between CPD and
BCPD, and we show that CPD is recovered from BCPD. In
Section 4.5, we provide a statistical view of motion coherence.
In Section 4.6, we present an acceleration scheme of BCPD
that can be applied to non-Gaussian kernel functions.

4.1 Variational Bayesian Inference

One important task of Bayesian inference is to estimate a set
of unobserved variables, u, from a set of observations, z. To
this end, we need to compute themaximummode of a poste-
rior distribution pðujzÞ or the expectation of u over pðujzÞ,
because they are reasonable estimates of u. However, this
task is often hampered by the difficulty in computing the
estimates; e.g., the analytic form of the maximum mode is
unavailable because of the multimodality of the posterior
distribution, or the computational cost of evaluating the
expectation is prohibitively large because of the existence of
many discrete variables. VBI relaxes the difficulty by approx-
imating pðujzÞ using an alternative distribution qðuÞ with the
property that themaximummode or the expectation is easily
computed. The distribution qðuÞ itself is generally unknown;
therefore, finding reasonable estimates of u is replaced with
finding the distribution qðuÞ that approximates pðujzÞ as
much as possible. Typically, VBI is defined as the minimiza-
tion of the Kullback–Leibler (KL) divergence between qðuÞ
and pðujzÞ, as follows:

q̂ðuÞ ¼ argminq

(
�
Z

qðuÞ ln
� pðujzÞ

qðuÞ

�
du

)
: (2)

The equivalent definition suitable for deriving the general
solution is the maximization of the lower bound LðqÞ for the
log model evidence ln pðzÞ, where LðqÞ is defined as follows:

LðqÞ ¼
Z

qðuÞ ln
 
pðz; uÞ
qðuÞ

!
du;

i.e., the negative KL divergence between qðuÞ and pðz; uÞ. If
no constraint is imposed on qðuÞ, the computations of the
expectation and the maximum mode remain intractable
because the solution of this optimization problem is q̂ðuÞ ¼
pðujzÞ. Here, we suppose that u can be divided into J
groups, i.e., u ¼ ðu1; . . . ; uJÞ, and we denote the marginal
distribution of uj with respect to qðuÞ by qjðujÞ. To find qðuÞ
that relaxes the difficulty in computing the estimates of u,
the posterior distribution qðuÞ is constrained to be the prod-
uct of its marginals, i.e., qðuÞ ¼

QJ
j¼1 qjðujÞ. This factorization

works for splitting the original problem, Eq. (2), into its sub-
problems. Here, we assume that only qi is unknown among
the factorized distributions fq1; . . . ; qJg. Then, the
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maximization of the lower bound LðqÞ is replaced by the
one that focuses on qi

q̂iðuiÞ ¼ argmaxqi

Z
qiðuiÞ ln

� expEi½ln pðz; uÞ�
qiðuiÞ

�
dui; (3)

where Ei½ln pðz; uÞ� ¼
R
ln pðz; uÞ

QJ
jð6¼iÞ qjðujÞduj. We note that

the addition of a constant inside the integral does not change
the solution. As the integral term forms a negative KL diver-
gence, the general solution is obtained as follows:

ln q̂iðuiÞ ¼ Ei½ln pðz; uÞ� þ const:; (4)

where the constant term corresponds to the normalization
constant of q̂iðuiÞ. Suppose ~qðuÞ ¼ q̂iðuiÞ

QJ
jð6¼iÞ qjðujÞ. Then,

the inequality of the lower bounds Lð~qÞ � LðqÞ always holds
and is tight if and only if q̂iðuiÞ ¼ qiðuiÞ for any ui. This is
because the subproblem, Eq. (3), is replaced by theminimiza-
tion of the KL divergence; the KL divergence DKLðp1jjp2Þ is
non-negative, and becomes zero if and only if p1ðxÞ ¼ p2ðxÞ
for any x [53]. Therefore, a solution for the optimization
problem, Eq. (2), is obtained by the following procedure:

1) Initialize qi for all i 2 f1; . . . ; Jg.
2) Cycle the update of qi with the other qj fixed for each

i 2 f1; . . . ; Jg using Eq. (4).
3) Repeat step 2 until convergence.
Convergence is guaranteed because LðqÞ is monotoni-

cally increasing and bounded because of the inequalities
ln pðzÞ � Lðq̂Þ � Lð~qÞ � LðqÞ.

4.2 Bayesian Formulation of CPD

We formulate point set registration in a Bayesian-inferenceman-
ner; that is, we first define a probabilistic model that generates a
target point set X from a source point set Y with unobserved
random variables u, and then estimate u givenX and Y . In this
section, we focus on the construction of the generative model of
X. The key difference between our formulation and the original
CPD formulation is that we define motion coherence using a
prior distribution instead of the regularization term. We sup-
pose that T ðymÞ is the function that deforms the shape repre-
sented as Y tomatch itwith the shape represented asX.

Assumptions. As in the definition of Myronenko et al., we
assume that a target point set X is generated under the fol-
lowing assumptions:

1) A target point xn is selected as either a point forming
a target shape or an outlier with the outlier probabil-
ity v.

2) If a target point xn is selected as an outlier, xn is gen-
erated from an outlier distribution poutðxnÞ.

3) If xn is a non-outlier, an index m 2 f1; . . . ;Mg, indi-
cating that xn corresponds to ym, is sampled with a
probability am, where

PM
m¼1 am ¼ 1.

4) Then, xn is generated from a D-dimensional multi-
variate normal distribution with a mean vector T ðymÞ
and a covariancematrix s2ID.

5) A target point setX is generated by an N-times repe-
tition of 1, 2, 3, and 4.

The original formulation of CPD constrains am to be 1=M
for all m 2 f1; . . . ;Mg. On the basis of these assumptions,
we define the generative model ofX.

Notation 2. Here, we define the notation required for the
definition of the generative model as follows:

� x ¼ ðxT
1 ; . . . ; x

T
NÞ

T 2 RDN – the vector representation
of a target point setX ¼ fx1; . . . ; xNg.

� y ¼ ðyT1 ; . . . ; yTMÞT 2 RDM – the vector representation
of a source point set Y ¼ fy1; . . . ; yMg.

� v ¼ ðvT1 ; . . . ; vTMÞT 2 RDM – the vector representation
of displacement vectors that characterize a non-rigid
transformation of a source shape.

� c ¼ ðc1; . . . ; cNÞT 2 f0; 1gN – the vector of indicator
variables, where cn takes 1 if the nth target point is a
non-outlier, and is 0 otherwise.

� e ¼ ðe1; . . . ; eNÞT 2 f1; . . . ;MgN – the vector of index
variables representing that the nth target point corre-
sponds to themth source point if en ¼ m.

� a ¼ ða1; . . . ;aMÞT 2 ½0; 1�M – the vector of probabili-

ties that satisfies
PM

m¼1 am ¼ 1, where am represents
the probability of an event en ¼ m for any n.

� r ¼ ðs;R; tÞ – the set of random variables that defines
the similarity transformation T .

� fðz;m; SÞ – the multivariate normal distribution of z
with a mean vector m and a covariance matrix S.

We note that y 2 RDM and v 2 RDM are, hereafter, used
as vector symbols that are different from those for defining
the displacement field vðyÞ : RD ! RD in Section 3.

Transformation Model. We begin with the definition of the
non-rigid transformationmodel T that deforms a source shape.
Unlike in CPD, we define it as a combination of a similarity
transformation T and a non-rigid transformation as follows:

T ðymÞ ¼ T ðym þ vmÞ ¼ sRðym þ vmÞ þ t;

where s 2 R is a scale factor, R 2 RD�D is a rotation matrix,
t 2 RD is a translation vector, and vm 2 RD is a displacement
vector that characterizes a non-rigid transformation.

GaussianMixtureModel.We define aGMM that generates a
point in a target point set and plays a role in a likelihood func-
tion for solving registration problems. Under assumption 4,
we define the distribution of xn for an event en ¼ m as a mul-
tivariate normal distribution as follows:

fðxn; T ðymÞ; s2IDÞ

¼ j2ps2IDj�1=2exp
n
� 1

2s2
jjxn � T ðymÞjj2

o
;

where j � j represents the determinant of a square matrix.
Unlike in the original CPD paper, we define a GMMwith an
explicit definition of unknown correspondence, i.e., cn and
en. Under assumptions 1, 2, 3, and 4,we define the joint distri-
bution of ðxn; en; cnÞ given ðy; v;a; r; s2Þ as a combination of a
two-component mixture distribution and an M-component
mixture distribution as follows:

pðxn; en; cnjy; v;a; r; s2Þ

¼ fvpoutðxnÞg1�cn

(
ð1� vÞ

YM
m¼1

ðamfmnÞdmðenÞ
)cn

;

where fmn is an abbreviation of fðxn; T ðymÞ; s2IDÞ and
dmðenÞ is the indicator function, with a value of 1 if en ¼ m
and 0 otherwise. Notation with respect to corresponding
points is shown in Fig. 1.
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Prior Distributions. We define motion coherence as a prior
distribution of displacement vectors. Suppose G ¼ ðgmm0 Þ 2
RM�M with gmm0 ¼ Kðym; ym0 Þ is a positive-definite matrix,
where Kð�; �Þ is a positive-definite kernel. We define the prior
distribution of v as follows:

pðvjyÞ ¼ fðv; 0; ��1G	 IDÞ; (5)

where � is a positive constant and 	 denotes the Kronecker
product. The prior distribution encodes motion coherence
because displacement vectors vm and vm0 correlate with
each other if the affinity value between ym and ym0 , i.e.,
��1gmm0 , is sufficiently large. Additionally, we define pðaÞ
as a Dirichlet distribution

pðaÞ ¼ Dirðajk1MÞ;

where k > 0 is the parameter that controls the shape of the
Dirichlet distribution and 1M is the vector of all 1 s of size
M. For the simplicity of the generative model, we do not
introduce prior distributions over the source point set y, the
residual variance s2, or the set of variables r that defines a
similarity transformation T .

Full Joint Distribution. Incorporating the prior distribu-
tions into the GMM with assumption 5, we define the full
joint distribution pðx; y; uÞ as follows:

pðx; y; uÞ / pðvjyÞpðaÞ
YN
n¼1

pðxn; cn; enjy; v;a; r; s2Þ;

where u ¼ ðv;a; c; e; r; s2Þ is the set of latent variables that
mediate the generation of x given y. This definition of the
joint distribution replaces a point set registration with a prob-
abilistic density estimation. In the next section, we derive an
algorithm for estimating a reasonable u usingVBI.

4.3 Derivation of the BCPD Algorithm

In this section, we derive a registration algorithm based on
the Bayesian formulation described in Section 4.2. One
approach to solving a registration problem is to compute a
reasonable estimate of u, such as the expectation of u ¼
ðv;a; c; e; r; s2Þ over pðujx; yÞ, or the maximum mode of
pðujx; yÞ. The exact computation of the estimate is, however,
intractable for large M and N ; the number of evaluations of
pðujx; yÞ is roughly ðM þ 1ÞN times when a naı̈ve method is
applied. Therefore, we use VBI as described in Section 4.1.
To relax the difficulty in computing the estimate, we
approximate pðujx; yÞ as a distribution qðuÞ that is endowed
with the factorization

qðuÞ ¼ q1ðv;aÞq2ðc; eÞq3ðr; s2Þ:

We also assume q3ðr; s2Þ ¼ dðr; s2Þ for simplification, where
the symbol d with no subscript represents a Dirac delta
function, i.e., q3 is the distribution with a point mass at
ðr; s2Þ. This assumption means that q3 is characterized by
the first moment only, and the second and higher moments
can be represented as the product of the first moment.
Through VBI, themaximummode or the expectation regard-
ing q will be available after performing iterative updates of
q1, q2, and q3 until convergence. Furthermore, VBI guarantees
convergence of the algorithm.

Notation 3. Here, we list the useful symbols for describing
the closed-form expressions of q̂1, q̂2, and q̂3 as follows:

� G ¼ ðgmm0 Þ 2 RM�M with gmm0 ¼ Kðym; ym0 Þ – the
Gram matrix to define motion coherence, where
Kð�; �Þ is a positive-definite kernel.

� P ¼ ðpmnÞ 2 ½0; 1�M�N – the probability matrix where
pmn ¼ E½cndmðenÞ� represents the posterior probabil-
ity that xn corresponds to ym.

� n ¼ ðn1; . . . ; nMÞT 2 RM with nm ¼
PN

n¼1 pmn – the
estimated numbers of target pointsmatchedwith each
source point.

� n0 ¼ ðn01; . . . ; n0NÞ
T 2 ½0; 1�N with n0n ¼

PM
m¼1 pmn – the

vector of probabilities where n0n represents the poste-
rior probability that xn is a non-outlier.

� N̂ ¼
PN

n¼1

PM
m¼1 pmn � N – the estimated number of

matching points betweenX and Y .
� fmn – the abbreviation of fðxn; T ðymÞ; s2IDÞ.
For convenience, we simplify the notation concerning the

Kronecker product by attaching a tilde symbol to a matrix
or a vector as follows:

~G ¼ G	 ID; ~n ¼ n	 1D;

~P ¼ P 	 ID; ~n0 ¼ n0 	 1D:

As with the above notation, we denote the augmented form
of the similarity transformation by ~T , i.e.,

~T ðyÞ ¼ sðIM 	RÞyþ ð1M 	 tÞ:

Hereafter, we provide the closed-form expressions of q̂1, q̂2,
and q̂3 without derivations, which are available in Appendi-
ces A, B, andC, available in the online supplementalmaterial.

4.3.1 Update of q1ðv; aÞ
The update of q1ðv;aÞ corresponds to the update of the non-
linear shape deformation. Suppose q2ðc; eÞ and q3ðr; s2Þ are
given. From Eq. (4), the closed-form expression of q̂1ðv;aÞ
can be obtained as the product of a Dirichlet distribution
and a multivariate normal distribution as follows:

Proposition 1. The approximated posterior distribution q̂1ðv;aÞ
is factorized into its marginals, i.e., q̂1ðv;aÞ ¼ q̂aðaÞq̂vðvÞ. Fur-
thermore, q̂aðaÞ is a Dirichlet distribution and q̂vðvÞ is a multi-
variate normal distribution, which are defined as follows:

q̂aðaÞ ¼ Dirðajk1M þ nÞ;

q̂vðvÞ ¼ f
�
v;
s2

s2
~Sdð~nÞð ~T�1ðx̂Þ � yÞ; ~S

�
;

Fig. 1. Notation with respect to corresponding points. The point sets col-
ored red and blue represent the source point set Y and the target point
set X, respectively. The variable cn 2 f0; 1g indicates whether or not xn
is a non-outlier, whereas the variable en 2 f1; . . . ;Mg specifies the index
of a point in Y that corresponds to xn. Target points x1, x2, and x3
represent the point that corresponds to ym, a non-outlier that does not
correspond to ym, and an outlier, respectively.
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where x̂ ¼ dð~nÞ�1 ~Px 2 RDM is the shape for which ~T�1ðx̂Þ is
interpreted as the inverse alignment from x to y, and ~S ¼ S	
ID 2 RDM�DM with S ¼ ð�G�1 þ s2

s2
dðnÞÞ�1 2 RM�M is the

posterior covariance matrix of displacement vector v.

For reference, we list the vectors of size DM, which are
related to qvðvÞ and used hereafter, as follows:

x̂ ¼ ðx̂T
1 ; . . . ; x̂

T
MÞT ¼ dð~nÞ�1 ~Px;

v̂ ¼ ðv̂T1 ; . . . ; v̂TMÞT ¼ s2

s2
~Sdð~nÞð ~T�1ðx̂Þ � yÞ;

û ¼ ðûT
1 ; . . . ; û

T
MÞT ¼ yþ v̂;

ŷ ¼ ðŷT1 ; . . . ; ŷTMÞT ¼ ~T ðyþ v̂Þ:

This proposition provides some insight into motion coher-
ence. Because T�1ðx̂mÞ � ym is interpreted as the residual for
the mth source point, the meaning of the mean vector v̂ ¼
s2

s2
~Sdð~nÞð ~T�1ðx̂Þ � yÞ can be intuitively explained as follows:

� If � is sufficiently large, v̂m is approximated as
v̂m 
 s2

�s2

PM
m0¼1 gmm0 nm0 ðT�1ðx̂m0 Þ � ym0 Þ, i.e., v̂m is

computed by smoothing theweighted residual vector
nmðT�1 ðx̂mÞ � ymÞwith basis functions gm1; . . . ; gmM .

� In contrast, if � is close to zero, v̂m is approximated as
v̂m 
 T�1ðx̂mÞ � ym, i.e., v̂m is estimated as the resid-
ual vector T�1ðx̂mÞ � ym without smoothing.

In Section 4.5, we further discuss motion coherence from
a statistical aspect.

Remark. The proposition allows us to compute hami ¼ exp
ðE½lnam�Þ and hfmni ¼ expðE½lnfmn�Þ, which are required
to update q2ðc; eÞ. By using standard results regarding the
Dirichlet distribution and Remark 1 in Appendix D, avail-
able in the online supplemental material, hami and hfmni
are updated as follows:

hami ¼ exp
�
cðkþ nmÞ � cðkM þ N̂Þ

�
; (6)

hfmni ¼ fðxn; ŷm; s
2IDÞexp

n
� s2

2s2
Trðs2

mIDÞ
o
; (7)

where cð�Þ is the digamma function, also known as the
c-function, and s2

m is themth diagonal element of S.

4.3.2 Update of q2ðc; eÞ
Next, we proceed to the update of q2ðc; eÞ that encodes
shape correspondence between X and Y . Suppose q1ðv;aÞ
and q3ðr; s2Þ are given. From Eq. (4), we obtain the closed-
form expression of q̂2ðc; eÞ as follows:

Proposition 2. The approximated posterior distribution q̂2ðc; eÞ
is a combination of a Bernoulli distribution and a categorical
distribution, and is defined as follows:

q̂2ðc; eÞ ¼
YN
n¼1

ð1� n0nÞ
1�cn

�
n0n
YM
m¼1

� pmn

n0n

�dmðenÞ
�cn

;

where pmn and n0n are defined as

pmn ¼ ð1� vÞ hami hfmni
vpoutðxnÞ þ ð1� vÞ

PM
m0¼1 ham0 i hfm0ni

; (8)

and n0n ¼
PM

m¼1 pmn.

From this proposition, we see that q̂2ðc; eÞ is factorized

into q̂2ðc; eÞ ¼
QN

n¼1 q̂
ðnÞ
2 ðcn; enÞ. Additionally, the proposition

provides the following observations, some of which are con-
sistent with the description inNotation 3:

� The definition of pmn in Proposition 2 is consistent
with the one in Notation 3 because of E½cndmðenÞ� ¼
q̂
ðnÞ
2 ðcn ¼ 1; en ¼ mÞ ¼ pmn.

� The posterior marginal distribution of cn is the Ber-
noulli distribution with the probability n0n, and thus,
the posterior probability of xn being a non-outlier is n

0
n.

� The posterior conditional distribution of en given
cn ¼ 1 is the categorical distribution with M catego-
riy probabilites fpmn=n

0
ng

M
m¼1.

� The number of target points matching with ym can be
estimated as nm because of E½

PN
n¼1 cndmðenÞ� ¼ nm.

� The number of matching points between the target
and source point sets, X and Y , can be estimated as
N̂ because of E½

PN
n¼1

PM
m¼1 cndmðenÞ� ¼ N̂ .

This proposition guarantees that the update of P ¼ ðpmnÞ
with Eq. (8) increases the lower bound. The terms relating to
P , i.e., n ¼ P1N , n

0 ¼ PT1M , N̂ ¼ nT1M , are updated in turn.
We also see that the expectations required by the update of
q̂2 are summarized into hami and hfmni, which are computed
by Eqs. (6) and (7).

4.3.3 Update of q3ðr; s2Þ
The update of q3ðr; s2Þ corresponds to the update of the simi-
larity transformation T , parameterized by r ¼ ðs;R; tÞ. Sup-
pose q1ðv;aÞ and q2ðc; eÞ are given. From the assumption that
q3 is a Dirac delta function, q3 is characterized only by its
mode. Therefore, maximizing the lower bound LðqÞ without
resorting to Eq. (4) allows us to find the mode of q3ðr; s2Þ
that increases the lower bound. Let us define the following
notation:

�x ¼ 1

N̂

XM
m¼1

nmx̂m; �s2 ¼ 1

N̂

XM
m¼1

nms
2
m;

�u ¼ 1

N̂

XM
m¼1

nmûm;

Sxu ¼ 1

N̂

XM
m¼1

nmðx̂m � �xÞðûm � �uÞT ;

Suu ¼ 1

N̂

XM
m¼1

nmðûm � �uÞðûm � �uÞT þ �s2ID;

where s2
m is the mth diagonal element of S. Using this nota-

tion, we obtain the following proposition:

Proposition 3. Suppose the approximated posterior distribution
q3ðr; s2Þ is a Dirac delta function. Given q1ðv;aÞ and q2ðc; eÞ,
the lower bound is maximized by the following equations:

R̂ ¼ Fdð1; . . . ; 1; jFCT jÞCT ;

ŝ ¼ Tr
�
R̂TSxu

	

Tr
�
Suu

	
;

t̂ ¼ �x� ŝR̂�u;

ŝ2 ¼ 1

N̂D

�
xTdð~n0Þx� 2xT ~PT ŷþ ŷTdð~nÞŷ

�
þ ŝ2�s2;
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where F and C are the orthogonal matrices of size D�D
obtained by the singular value decomposition of Sxu, i.e.,
Sxu ¼ FS0

xuC
T with the diagonal matrix of singular values,

S0
xu 2 RD�D.

We note that the update of s2 is important as it gradually
shrinks the radius to define a candidate set of target points
that corresponds to each source point [5].

4.3.4 Outlier Distribution

Myronenko et al. used the uniform distribution defined as
poutðxnÞ ¼ 1=N. The distribution does not satisfy one of
the conditions concerning a probabilistic density function;
the integral of poutðxnÞ over RD is not one; the integral
approaches zero for any v asN becomes larger if the nonzero
region of poutðxnÞ is bounded, otherwise the integral becomes
infinity. Suppose V is the volume of the minimum bounding
box that covers the target point setX. To avoid the normaliza-
tion issue, we use an estimate of the D-dimensional uniform
distribution: poutðxnÞ ¼ 1=V if xn is in the bounding box and
poutðxnÞ ¼ 0 otherwise.

4.3.5 Initialization

VBI requires the initialization of the expectations for the
random variables, as described in Section 4.1. We initialize
the expectations in a non-informative manner; we set v̂ ¼ 0,
hami ¼ 1=M, s ¼ 1, R ¼ ID, and t ¼ 0. The initial guess of
residual variance s2 controls the randomness of point
matching during the early stage of the optimization. This is
suggested by the fact that pmn approaches 1=M for any m
and n if the outlier probability v is set to zero and the resid-
ual variance s2 in Eqs. (7) and (8) goes to infinity. CPD uses
s2

ini
¼ 1

NMD

PN
n¼1

PM
m¼1 jjxn � ymjj2 as an initial guess. For our

Bayesian variant of CPD, the use of s2
ini
is often too informa-

tive, especially when the target shape is largely rotated, and
the solution often falls into local optima. Therefore, we use
gs2

ini
as our initial guess of s2, where g is a positive constant.

As g increases, point matching during the early stage of the
optimization becomes random, and a moderately large g

often stabilizes registration. The BCPD algorithm is summa-
rized in Fig. 2.

4.4 Relation to the Original CPD

In this section, we show that CPD is recovered from BCPD.
First, we summarize the differences between CPD and BCPD.
The differences are listed as follows:

� The transformation model T ðymÞ is a combination of
non-rigid and similarity transformations, where the
non-rigidity is derived from the displacement vector v.

� The conditional distribution pðvjyÞ ¼ fðv; 0; ��1 ~GÞ
and the prior distribution pðaÞ ¼ Dirðajk1MÞ are
imposed on the displacement vector v and the mix-
ing coefficients a, respectively.

� The optimization is based on VBI instead of the EM
algorithm used in CPD.

� The initial guess of s2 is parameterized by g, which
controls the randomness of point matching during
the early stage of the optimization.

The CPD algorithm can be recovered by removing these
differences, i.e., by imposing the following constraints on
our Bayesian formulation:

1) The parameter k is set to infinity.
2) The similarity transformation T is replaced by the

identity function.
3) The posterior distribution qvðvÞ is assumed to be a

Dirac delta function.
4) The outlier distribution is defined as poutðxnÞ ¼ 1=N .
5) The parameter g is set to 1.
Condition 1 constrains all mixing coefficients to be equiv-

alent, i.e., hami ¼ 1=M for all m, and recovers the definition
of CPD with respect to the mixing coefficients. Condition 2
removes the update of r ¼ ðs;R; tÞ and replaces T and T�1

with the identity function. Condition 3 means that the sec-
ond moment of qvðvÞ, denoted by E½vvT �, is equivalent to the
product of the first moment, i.e., v̂v̂T . The condition drops
the terms expf� s2

2s2
Trðs2

mIDÞg, �s2ID, and s2�s2 from the

Algorithm: Bayesian Coherent Point Drift

� Input: x 2 RDN; y 2 RDM; v; �; k; g.

� Output:

ŷ ¼ ~T ðyþ v̂Þ ¼ sðIM 	RÞðyþ v̂Þ þ ð1M 	 tÞ.
� Initialization:

ŷ ¼ y, v̂ ¼ 0, S ¼ IM , s ¼ 1, R ¼ ID, t ¼ 0,

hami ¼ 1
M, s2 ¼ g

NMD

PN
n¼1

PM
m¼1 jjxn � ymjj2,

G ¼ ðgmm0 Þwith gmm0 ¼ Kðym; ym0 Þ:
� Optimization: Repeat until convergence.

- Update P ¼ ðpmnÞ and related terms.

hfmni ¼ fðxn; ŷm; s
2IDÞ expf� s2

2s2
Trðs2

mIDÞg,
pmn ¼ ð1�vÞhamihfmni

vpoutðxnÞþð1�vÞ
P

m0¼1
ham0 ihfm0ni

,

n ¼ P1N , n
0 ¼ PT1M , N̂ ¼ nT1M , x̂ ¼ dð~nÞ�1 ~Px.

- Update S, v̂, û, and hami for allm.

S�1 ¼ �G�1 þ s2

s2
dðnÞ, v̂ ¼ s2

s2
~Sdð~nÞð ~T�1ðx̂Þ � yÞ,

û ¼ yþ v̂, hami ¼ expfcðkþ nmÞ � cðkM þ N̂Þg.
- Update s, R, t, s2, ŷ and related terms.

�x ¼ 1
N̂

PM
m¼1 nmx̂m, �s2 ¼ 1

N̂

PM
m¼1 nms

2
m,

�u ¼ 1
N̂

PM
m¼1 nmûm,

Sxu ¼ 1
N̂

PM
m¼1 nmðx̂m � �xÞðûm � �uÞT ,

Suu ¼ 1
N̂

PM
m¼1 nmðûm � �uÞðûm � �uÞT þ �s2ID,

FS0
xuC

T ¼ svdðSxuÞ, R ¼ Fdð1; � � � ; 1; jFCjÞCT ,

s ¼ TrðRSxuÞ=TrðSuuÞ, t ¼ �x� sR�u, ŷ ¼ ~T ðyþ v̂Þ,
s2 ¼ 1

N̂D
fxTdð~n0Þx� 2xT ~PT ŷþ ŷTdð~nÞŷg þ s2�s2.

Fig. 2. BCPD algorithm. The tilde symbol attached to a matrix denotes the
Kronecker product between the matrix and ID, e.g., ~S ¼ S	 ID and
~P ¼ P 	 ID, whereas the tilde symbol attached to a vector denotes the Kro-
necker product between the vector and 1D, e.g., ~n ¼ n	 1D and
~n0 ¼ n0 	 1D. The symbolc represents the digamma function. Themth diag-
onal element of S is denoted by s2

m. The singular value decomposition is
denoted by “svd.” The determinant and trace of a squarematrix are denoted
by j � j andTrð�Þ, respectively. Unlike CPD, BCPD simultaneously estimates
the variables of non-rigid and similarity transformations. The acceleration of
computationsG,S, andP is discussed in Section 4.6.
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equations for updating hfmni, Suu, and s2, respectively. Con-
dition 4 replaces poutðxnÞ by 1=N . Therefore, the conditions
provide the same equation for updating pmn as in the E-step
in the CPD algorithm

pmn ¼
expf� 1

2s2
jjxn � ðym þ v̂mÞjj2g

c0 þ
PM

m0¼1 expf� 1
2s2

jjxn � ðym0 þ v̂m0 Þjj2g
; (9)

where c0 ¼ v
1�v

M
N j2ps2IDj1=2. Let us denote the expectation

of a displacement vector v̂ by the product between ~G ¼ G	
ID 2 RDM�DM and vector w 2 RDM , i.e., v̂ ¼ ~Gw. From the

definitions of v̂ and ~S, we obtain the same equations for

updating w and s2 as in the M-step in the CPD algorithm

w ¼ ð ~Gþ �s2dð~nÞ�1Þ�1ðx̂� yÞ;

s2 ¼ 1

N̂D

�
xTdð~n0Þx� 2xT ~PT ŷþ ŷTdð~nÞŷ

�
:

Therefore, the CPD algorithm is recovered by imposing the

conditions on the Bayesian formulation of CPD, i.e., BCPD is

a generalization of CPD.Here, we note some details regarding

the algorithms:

� Convergence of CPD, as well as BCPD, is guaranteed
by VBI.

� If we replace condition 2 with v ¼ 0, BCPD becomes
the rigid CPD, meaning that the non-rigid CPD and
the rigid CPD are combined as a single algorithm.

We also note that Eq. (9) suggests a connection between
the CPD algorithm and the iterative closest point (ICP) algo-
rithm [7], which is one of the best-known registration algo-
rithms.We then describe the connection to provide an insight
into BCPD.

Relation to ICP.We show that ICP is a special case of BCPD
regarding the estimation of corresponding points. ICP solves
the registration problem by repeatedly finding the point in
the current deformed shape that is closest to each point in the
target shape, and updating the deformed shape using the cur-
rent pairs of closest points. From the description in Section 3.2,
we see that the first and second steps of ICP are associated
with the E-step and M-step of CPD, respectively. To describe
a connection between BCPD and ICP, we focus on the E-step
of CPD, i.e., the computation of matching probabilities. From
Eq. (9), the matching probability pmn becomes a so-called soft-
max function for a fixed n if v is zero and all points in Y are
not identical to one another. Here, we assume that s2 is infini-
tesimal. Under these conditions, we have pmn ¼ 1 if ym is the
closest to xn among fy1; . . . ; yMg and pm0n ¼ 0 for allm0 6¼ m.
This corresponds to the first step of ICP, i.e., finding the clos-
est point in Y for xn. Therefore, we see that the first step of
ICP is a special case of the E-step in the CPD algorithm, which
means that BCPD is a generalization of ICP concerning the
correspondence estimation.

4.5 Statistical View of Motion Coherence

The Bayesian formulation in Section 4.2 provides a clear dif-
ference between tuning parameters that control motion
coherence. Here, we show that the directional correlation
between displacement vectors is dependent only on the
GrammatrixG regardless of �. As shown in Fig. 3, ifG is the

Gaussian affinity matrix parameterized by b, i.e.,G ¼ ðgðbÞ
mm0 Þ

with g
ðbÞ
mm0 ¼ expð� 1

2b2
jjym � ym0 jj2Þ, wewill see that

1) b controls the directional correlation between dis-
placement vectors, and

2) � controls the expected length of displacement vectors.
We begin with the case that G is non-Gaussian. From the

definition of pðvjyÞ, i.e., Eq. (5), the prior covariance matrix
between vm and vm0 is defined as

Covðvm; vm0 Þ ¼ ��1gmm0ID; (10)

for all m; m0 2 f1; . . . ;Mg. From this equation, the Pearson
correlation between vmd and vm0d is obtained as

Corrðvmd; vm0dÞ ¼ gmm0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gmmgm0m0

p
:

The correlation is not dependent on the index d, and thereby
defines a measure of directional correlation between dis-
placement vectors. Intuitively, the correlation represents the
deviation of the angle between displacement vectors; the
angle becomes zero without randomness if the correlation is
1 whereas the angle becomes random if the correlation is 0.
We note that the correlation is not dependent on �; it does
not contribute to the deviation of the angle between dis-
placement vectors. We also note that the correlation always
becomes 1 if two points ym and ym0 are the same and the cor-
responding gmm0 is not zero.

Next, we assume that G is Gaussian. We begin with the
role of b. From Eq. (10), the Pearson correlation between the
dth elements of vm and v0m is obtained as follows:

Corrðvmd; vm0dÞ ¼ g
ðbÞ
mm0 ; (11)

for all d because gðbÞmm is always 1 for all m. As discussed pre-
viously, the correlation represents a measure of directional
correlation between vm and vm0 . The correlation is dependent
only on b, regardless of �. Therefore, b is interpreted as a
parameter that controls the directional correlation between
displacement vectors. From this equation, we also see that the
correlation increases as the distance between ym and ym0

decreases, and it becomes 1 if the distance is 0. This means
that the displacement field for registering point sets is smooth,
i.e., displacement vectors gradually become parallel as the
distance between two points decreases.

We then proceed to the role of � when G is Gaussian.
From Eq. (10), we see that �jjvmjj2 follows the x2-distribu-
tion with the degree of freedom D. Therefore, the square
root of the expected squared norm of vm, denoted by lm, is
obtained as follows:

Fig. 3. Interpretation of tuning parameters b and � when the Grammatrix
G is Gaussian. (a) b controls the directional correlation between displace-
ment vectors. (b) � controls the expected length of displacement vectors.
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lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
��1D

p
; (12)

which is not dependent on m. From this equation, we see
that � is the parameter that controls the expected length of
displacement vectors regardless of b. We note that Eqs. (11)
and (12) hold for a non-Gaussian kernel if the kernel func-
tion parameterized by b is normalized, i.e., gðbÞmm ¼ 1 for all
m. We finally note that BCPD falls into a rigid registration
technique for sufficiently large � because lm becomes zero
for allm if � goes to infinity.

4.6 Acceleration of the BCPD Algorithm

In this section, we present an acceleration scheme for the
BCPD algorithm, which can be applied even if the Gram
matrixG is non-Gaussian. The bottleneck in BCPD lies in the
computations of the Gram matrix G, the posterior matching
probability P , and the covariance matrix S ¼ ð�G�1þ
s2

s2
dðnÞÞ�1, whose computational costs are OðM2Þ, OðMNÞ,

and OðM3Þ, respectively. The basis of our acceleration
scheme is the combination of the Nystr€om method [56] and
the KD tree search [57], which allow the computations of G,
P , and S in at most OððM þNÞlog ðM þNÞÞ time. We note
that the initialization of s2 is not a bottleneck as it can be com-
puted in OðM þNÞ by changing the order of the summation
andmultiplication.

By using the fast Gauss transform (FGT) [58], the original
CPD accelerates the eigendecomposition of G at the initiali-
zation step and the computation of P at the E-step. Owing to
the acceleration, CPD is scalable to large point sets, yet (1)
the eigendecomposition ofG is still time-consuming [59] and
(2) the computation of P requires the evaluations of trun-
cated Gaussian distributions near convergence [2], the
computational cost of which is OðMNÞ. Dupej et al. relaxed
(1) by computing the approximate eigendecomposition of G
using the Nystr€om method and the improved fast Gauss
transform (IFGT) [59]. The IFGT is an improved version of
the FGT, and it efficiently approximates the sum of Gaussian
functions in high-dimensional spaces [60]. Lu et al. relaxed
(2) by reducing the number of EM iterations using the
squared iterative EM algorithm, combined with a variant of
IFGT [61]. A problem of using the FGT and IFGT is that the
Gram matrix G must be Gaussian. To address this issue, we
accelerate the computation of G using only the Nystr€om
method. In addition, to relax (2), we accelerate the computa-
tion of P by the Nystr€om method during the early stage of
the optimization and the KD tree search near convergence,
which do not requireOðMNÞ computation.

4.6.1 Fast Computation of G and S

The Nystr€om method generates a low-rank approximation
of a Gram matrix using random sampling in OðMÞ time,
and it can also be applied to the approximated computation
of the rank-restricted eigendecomposition in OðMÞ time
[56]. Suppose K is the number of random samples. We
also suppose that the approximated eigendecomposition of
G is denoted by G 
 QLQT where Q 2 RM�K is a column-
orthonormal matrix and L 2 RK�K is a diagonal matrix, the
mth element of which is the mth approximated eigenvalue

of G. The use of the eigendecomposition and the Woodbury
identity replaces the computation of S as follows:

S 
 1

�
QL

(
IK � S

 
�s2

s2
L�1 þ S

!�1)
QT ;

where S ¼ QTdðnÞQ. Here, we note that the evaluations of all
elements in the approximated S, whose computational cost is
OðM2Þ, are not required; the required computations regard-

ing S are the displacement vector v̂ ¼ s2

s2
~Sdð~nÞð ~T�1ðx̂Þ � yÞ

and the diagonal elements of S for computing hfmni, Suu, and
�s2. The computational costs of evaluating all of them are

OðMÞ if we assume thatK is a constant.

4.6.2 Fast Computation of P

The first step to accelerating the evaluation of P is to replace
it with the evaluation of theGaussian affinitymatrix between
Y andX, denoted byKYX 2 RM�N , where themnth element
of KYX is defined as expf� 1

2s2
jjxn � ŷmjj2g. Suppose xðdÞ ¼

ðx1d; . . . ; xNdÞT 2 RN is the vector constructed from the dth
elements of x1; . . . ; xN . Then, the terms involving P are
replaced by those involvingKYX on the basis of the following
observations:

1) All computations regarding P can be expressed as
one of the products ~Px, n0 ¼ PT1M , or n ¼ P1N .

2) The vector ~Px can be computed through the prod-
ucts Pxð1Þ; . . .; PxðDÞ.

3) The computations of PxðdÞ, P
T1M , and P1N can be

replaced by the products involvingKYX.
The first observation is shown in Fig. 2. The third obser-

vation is obtained as follows:

q ¼ 1N �0 ðKT
YXbþ c001NÞ;

PT1M ¼ 1N � c00q;

P1N ¼ b � ðKYXqÞ;
PxðdÞ ¼ b � fKYXðq � xðdÞÞg;

where � and �0 represent elementwise product and division,

respectively, c00 ¼ v
1�v

poutðxnÞj2ps2IDj1=2 is a constant, and

b 2 RM represents a vector, the mth element of which is

bm ¼ hami expf� s2

2s2
Trðs2

mIDÞg. Therefore, if the computa-

tion of terms involving KYX is accelerated, the evaluation of

terms involving P is also accelerated. We accelerate those

separately for large s and small s.
a) For Large s. The matrix–vector products involving KYX

can be approximated in OðM þNÞ time by using the
Nystr€om method. Suppose V is a point set constructed by
the random sampling of points from the union between X
and Y , and we suppose J is the number of elements in V .
The Nystr€ommethod guarantees

KYX 
 KYVK
�1
V V K

T
XV ;

where KYV 2 RM�J , KXV 2 RN�J , and KVV 2 RJ�J are the
Gaussian affinity matrices between Y and V , betweenX and
V , and for V itself, respectively. Therefore, if D and J are
assumed to be constants that are much less than M and N ,
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the approximation of the products involving KYX can be
computed inOðM þNÞ time.

b) For Small s. One issue of using the Nystr€om method is
the inaccuracy that originates from the approximation,
which often hampers convergence. To avoid the conver-
gence issue without sacrificing computing time, we replace
the Nystr€om method for computing P with the KD tree
search method if s2 is sufficiently small. This approach is
reasonable because, if the optimization approaches conver-
gence, s2 is typically small and almost all elements in KYX

become nearly zero. The nonzero elements of KXY can be
found by the use of the KD tree search in
OððM þNÞlog ðM þNÞÞ time. BCPD with the use of the KD
tree search often registers point sets as accurately as BCPD
with exact computations while reducing the computational
costs. The computational costs for the bottleneck computa-
tions are summarized in Table 1.

5 EXPERIMENTS

In this section, we evaluate the registration performance of
BCPD. In Section 5.1, we describe the datasets used for
numerical evaluations. In Section 5.2, we evaluate the accu-
racy of non-rigid registrationmethods. In Section 5.3, we eval-
uate the registration performance of the accelerated BCPD. In
Section 5.4, we apply BCPD to datasets with non-artificial
deformations. In Section 5.5, we evaluate the accuracy of rigid
registrationmethods.

5.1 Datasets and Demonstrations

We begin with the datasets used in Sections 5.2 and 5.3,
shown in Fig. 4. We also provide several demonstrations.

Datasets. The first dataset is the bunny dataset, which is
included in the CPD software. The dataset is composed of
two bunny shapes: one is the same shape as that distributed
in the 3D Scanning Repository (http://graphics.stanford.
edu/data/3Dscanrep), and the other is deformed in a non-
rigid manner. We downloaded the armadillo and dragon
shapes from the 3D Scanning Library website, and we
obtained the monkey shape from Blender. For each shape,

we created the corresponding deformed shape using a non-
rigid deformation tool. The numbers of points in the bunny,
monkey, dragon, and armadillo data were 8,171, 7,958,
437,645, and 106,289, respectively. We note that the ground
truth of corresponding points is known for the datasets, and
thus exact registration errors can be evaluated.

Demonstrations. Figs. 5 and 6 show demonstrations of
BCPD using the bunny and armadillo datasets with artificial
disturbance. We used Gaussian and inverse multiquadric
kernel functions for the bunny and armadillo datasets,
respectively. Even when the kernel was non-Gaussian, BCPD
successfully registered the armadillo dataset, which hasmore
than 100,000 points. We summarized several demonstrations
of BCPD in Supplementary Video 1, available online.

5.2 Comparison of Registration Accuracy

In this section, we report the registration accuracy regarding
non-rigid registration methods: CPD [2], TPS-RPM [20],
GMM-REG [21], and BCPD.

Generation of Artificial Disturbance. To evaluate robustness
against rotation, outliers, and clustered outliers, we gener-
ated target point sets with artificial disturbance by repeating
the following procedure:

� Five hundred points are randomly subsampled from
both source and target point sets in the bunny, mon-
key, and dragon datasets so that the registration
methods with no acceleration scheme can handle
generated point sets.

� The subsampled target point sets are modified by
one of the following operations: rotation, the addi-
tion of outliers that follow a uniform distribution,
and the addition of clustered outliers that follow a
Gaussian distribution.

We changed the angle of rotation, the number of out-
liers, and the number of clustered outliers as described
hereafter.

a) Rotation. We changed the rotation angles from �120 to
120 degrees at intervals of five degree. The number of gener-
ated target point sets was 49 in total for each dataset.

TABLE 1
Computational Costs for the Evaluation of the

Bottleneck Terms Involving G, S, and P

Method G S P

Naı̈ve OðM2Þ OðM3Þ OðMNÞ
Nystr€om OðMÞ OðMÞ OðM þNÞ
KD tree – – OððM þNÞlog ðM þNÞÞ

The computations of terms involving G and S are accelerated by the Nystr€om
method throughout the optimization, whereas those involving P are accelerated
by the Nystr€ommethod for large s and the KD tree search for small s.

Fig. 6. Optimization trajectories for the armadillo data with rotation using
the inverse multiquadric kernel. Even if the kernel is non-Gaussian,
BCPD is scalable to point sets containing more than 100,000 points.

Fig. 4. Datasets used for numerical evaluations: bunny, monkey, dragon,
and armadillo. Each point set colored red was constructed by deforming
the point set colored blue in a non-linear manner.

Fig. 5. Optimization trajectories for bunny data with rotation and clus-
tered outliers. The points in the target and deformed shapes are colored
blue and red, respectively. The leftmost column shows the initial point
sets, and the optimization proceeds from left to right.
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Fig. 7. Evaluation of robustness against the rotations of target point sets: bunny (left), monkey (middle), and dragon (right). The non-rigid CPD with or
without the pre-alignment by the rigid CPD is denoted by “CPD (r+n)” or “CPD (n),” respectively.

Fig. 8. Evaluation of robustness against outliers: bunny (left), monkey (middle), and dragon (right). The figures in the bottom are enlarged views of the
top figures. The registration error of a method for each outlier/non-outlier ratio was measured by the median of RMSDs among 100 trials.

Fig. 9. Evaluation of robustness against clustered outliers: bunny (left), monkey (middle), and dragon (right). The figures in the bottom are enlarged
views of the top figures. The registration error of a method for each outlier/non-outlier ratio wasmeasured by themedian of RMSDs among 100 trials.
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b) Addition of outliers. We generated outliers that follow a
uniform distribution with the bounding box surrounding a
target point set. The length of an edge of the bounding box
along the dth axis was set to 1:2ld, where ld ¼ maxnfxndgNn¼1�
minnfxndgNn¼1. We changed the number of outliers from 50 to
1,000 at intervals of 50, i.e., from 0.1 to 2.0 at intervals of 0.1 in
outlier/non-outlier ratio. For each ratio, we repeated the
generation 100 times. The number of generated target point
sets was 2,000 in total for each dataset.

c) Addition of clustered outliers. We generated clustered
outliers based on the isotropic Gaussian distribution with
standard deviation 0.1 after normalizing a target point set.
The center of the distribution was randomly selected as a
point in the target point set. We changed the number of out-
liers from 25 to 250 at intervals of 25, i.e., from 0.05 to 0.5 at
intervals of 0.05 in outlier/non-outlier ratio. For each ratio,
we repeated the generation 100 times. The number of gener-
ated target point sets was 1,000 in total for each dataset.

Parameters. We used the Gaussian kernel and the shared
parameters ðb; �;vÞ ¼ ð2:0; 2:0; 0:1Þ for BCPD and CPD. To
observe the effect of parameters, we added the results of
v ¼ 0:2 and � ¼ 100 for point sets with outliers and clustered
outliers, respectively. The acceleration methods were dis-
abled for both methods. The remaining parameters of BCPD,
i.e., g and k, were set to 5.0 and infinity, respectively. The
maximum number of iterations for BCPDwas set to 500. The
remaining CPD parameters were set to the following values:

opt:method ¼0nonrigid0; opt:max it ¼ 100;

opt:normalize ¼ 1; opt:tol ¼ 1e� 10:

For GMM-REG, we used the following parameters:

method ¼0 TPS L20; normalize ¼ 1; level ¼ 3;

sigma ¼ ½0:5; 0:2; 0:02�; lambda ¼ 0;

max function evals ¼ ½20; 20; 100�:

For TPS-RPM, we used T_finalfac=500, frac=1, and
T_init=1.5.

Evaluation. We used the root-mean-squared distance
(RMSD) to measure registration errors. Except for the data-
sets with rotation, we computed the median RMSD among
100 trials because the generation of outliers and clustered out-
liers were dependent on randomnumbers.

Results. Here, we summarize the results of the evaluation.
a) Robustness against rotation. Fig. 7 shows the result of the

performance evaluation regarding the robustness against
target rotation. We added the evaluation of the non-rigid
CPD after pre-alignment by the rigid CPD to compare BCPD
with a naı̈ve combination of non-rigid and rigid registra-
tions. For all datasets, the range of angles within which
BCPD correctly registered was the largest among the ranges
within which the competitors did; BCPD outperformed the
naı̈ve combination of the rigid CPD and non-rigid CPD, sug-
gesting an advantage of the simultaneous optimization of
rigid and non-rigid transformations.

b) Robustness against outliers. Fig. 8 shows the result of the
performance evaluation regarding the robustness against
outliers that follow a uniform distribution. BCPD outper-
formedCPD for bothv ¼ 0:1 andv ¼ 0:2 despite the similar-
ity between the algorithms. This suggests that the difference

between the outlier distributions of BCPD and CPD affected
their performances. TPS-RPM was more robust against out-
liers than BCPDwith v ¼ 0:1; however, BCPDwas compara-
ble with TPS-RPMwhenv ¼ 0:2.

c) Robustness against clustered outliers. Fig. 9 shows the
result of the performance evaluation regarding the robust-
ness against clustered outliers. The registration accuracy of
BCPD and CPDweremoderately similar for both � ¼ 2:0 and
� ¼ 100 compared with case b). TPS-RPM was more robust
against clustered outliers than BCPD with � ¼ 2:0; however,
BCPDwas comparablewith TPS-RPMwhen � ¼ 100.

5.3 Performance of the Accelerated BCPD

In this section, we evaluate the registration performance of
the accelerated BCPD to show that the acceleration main-
tains registration accuracy and reduces computing times.

5.3.1 Acceleration Parameters Versus

Registration Accuracy

We evaluated the registration accuracy of BCPD for K and
J , i.e., the parameters of the Nystr€om method for accelerat-
ing the computation of fG;Sg and P , respectively. Further,
we evaluated the registration accuracy of the accelerated
CPD algorithm for the comparison between them.

Dataset and Parameters. We used the bunny dataset, as
shown in Fig. 4. We normalized the dataset before registra-
tion so that the mean and variance of the elements in a point
set vector were 0 and 1, respectively. For both methods, we
used the Gaussian kernel and ðb; �;vÞ ¼ ð2; 2; 0Þ. For BCPD,
we used ðg; kÞ ¼ ð1;1Þ, where g ¼ 1 and k ! 1 lead to the
same assumption on the initial s2 and the mixing coeffi-
cients as for CPD. The maximum number of iterations was
set to 500. We switched the Nystr€om method to the KD tree
search with search radius minð0:15; 7sÞ at s ¼ 0:2 only if we
chose the KD tree search option. To accelerate CPD, we
used the following parameters:

opt:method ¼0nonrigid lowrank0; opt:fgt ¼ 2;

opt:eigfgt ¼ 1; opt:viz ¼ 0; opt:corresp ¼ 0;

opt:normalize ¼ 1; opt:tol ¼ 1e� 10;

opt:max it ¼ 100;

where the first three options specify non-rigid registration
with the use of the fast Gauss transform, the eigendecompo-
sition of G, and the computation of truncated Gaussian
distributions.

Results. First, we investigated the influence of J , i.e., the
number of Nystr€ompoints for acceleratingP , on the registra-
tion performance. We accelerated the computations ofG and
S by setting K ¼ 70 because the direct inversion of S was
severely time-consuming and memory-inefficient. We sum-
marized the result in Fig. 10; the second figure is an enlarged
view of the first one. The RMSDs with the Nystr€om method
decreased as J increased; however, the RMSDwas relatively
large even if J ¼ 600, suggesting the need for more accurate
computations near convergence. Even if the use of the KD
tree search was allowed, it was not activated for J ¼ 50; 100,
and 150 because the corresponding ss were always greater
than the cutoff, i.e., 0.2. For J � 200, the KD tree search was
always activated. The corresponding RMSDswere very close
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to the RMSD with the direct computation of P and were
below 0.0344, the RMSD of the accelerated CPD. These
results suggest that the accelerated calculation ofP was suffi-
ciently accurate for the bunny dataset.

The third figure in Fig. 10 shows the influence of K on
registration performance. We calculated RMSDs in the
same way as in the previous case; however, we fixed J at
300 and varied K from 10 to 150. The minimum RMSD was
obtained at K ¼ 50, suggesting that the approximation of G
withK ¼ 50 is sufficiently accurate for the bunny dataset.

5.3.2 Computing Time Versus Registration Accuracy

We evaluated the computing time and registration accu-
racy of BCPD and CPD; the latter was the only method scal-
able to point sets with 105 points among the competitors
in Section 5.2. We used the implementation developed by
Myronenko et al. because the faster implementations of
CPD [59], [61] were not publicly available.

Dataset and Parameters. Using the armadillo dataset shown
in Fig. 4, we generated target and source point sets by ran-
domly extracting 10,000, 20,000, ..., 100,000 points. We set the
parameters shared by BCPD and CPD to ðb; �;vÞ ¼ ð3; 20; 0Þ.
For BCPD, we used the acceleration parameters ðJ;KÞ ¼
ð300; 100Þ, and we set the remaining parameters of BCPD
and CPD to the same values as in Section 5.3.1.

Computational Environment. We used a MacBook Pro
(15-inch Retina display, Early 2013, OS X El Capitan 10.11.6)
with a 2.4 GHz Intel Core i7 CPU and 16 GB RAM as our
computational environment. We implemented the BCPD
algorithm in C and used GCC 6.0 as a compiler. We also

implemented a parallelization option using OpenMP. We
note that CPU time is roughly the same as wall-clock time if
the parallelization is disabled.

Results. We first disabled the parallelization option imple-
mented in our software for a fair comparison. The left panel
in Fig. 11 shows the evolution of computing time and regis-
tration accuracy. BCPD achieved less computing time and
slightly less registration error than CPD did. Especially, for
the point sets containing 105 points, CPD repeated the E-step
and M-step 100 times, i.e., the maximum number of itera-
tions, without satisfying its convergence condition. The cor-
responding computing time and RMSD were 9389.8 s and
0.0079, respectively. BCPD repeated 62 cycles of VBI until
convergence, and the corresponding computing time and
RMSDwere 398.0 s and 0.0070, respectively.

We then measured computing times of BCPD for different
kernel functionswith parallelization disabled. Using the point
sets composed of 105 points, we compared Gaussian, inverse
multiquadric, and rational quadratic kernels. All of the kernel
functions are known to be positive definite [62]. The defini-
tions of the kernel functions are listed in Table 2. The second
panel of Fig. 11 shows the evolution of computing time and
registration accuracy until convergence. As shown in the
figure, the difference in computing times for the three kernels
was considerably small. This suggests that our acceleration
scheme can be applied even if the kernel function is non-
Gaussian.

Finally, we activated the parallelization option of our
software. We measured computing times of BCPD, chang-
ing the number of points in both target and source point

Fig. 10. Registration error versus the numbers of Nystr€om points, J and K, used for approximating P and G, respectively. The registration error was
measured by the root-mean-squared distance (RMSD) using the bunny dataset. The symbol s represents the square root of the residual variance
after the optimization, i.e., an estimate of registration error. The second figure is an enlarged view of the first figure, and it additionally includes
RMSDs computed by the BCPD that exactly calculated P and the accelerated CPD.

Fig. 11. Evolution of computing time and registration error (RMSD) for the armadillo dataset: CPD and BCPD (left) and the BCPD with different kernel
functions (middle). A dot represents an odd number of optimization iterations. Right: Number of points vs. computing time until convergence with or
without parallelization.
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sets from 104 to 105 at intervals of 104. The result is shown in
the third panel of Fig. 11. CPU times increased owing to the
multithreading overhead caused by parallelization; how-
ever, wall-clock times decreased by at least 50 percent.
These results suggest that BCPD has an advantage over
CPD in terms of computing time.

5.4 Real Data Examples

In this section, we report numerical experiments performed
using the space-time faces [63] and SHREC’19 human-
matching [64] datasets to demonstrate that BCPD can han-
dle non-artificial deformations.

5.4.1 Performance Evaluation Using Space-Time Faces

We evaluate the registration performance of BCPD using a
dataset of space-time faces, composed of a 3D+t sequence of
facial expressions with the ground truth of corresponding
points. The number of points in each face is 23,728. We used
the ith and the ðiþ 1Þth faces as the source and target point
sets for i ¼ 1; . . . ; 80. An example of source and target point
sets is shown in Fig. 12. We evaluated the registration accu-
racy of BCPD and CPD because GMM-REG and TPS-RPM
were not scalable enough to register point sets in this data-
set. We set the shared parameters of CPD and BCPD to the
same values, i.e., ðb; �;vÞ ¼ ð0:3; 104; 0Þ, and the remaining
parameters of BCPD were set to ðg; kÞ ¼ ð0:1;1Þ. The accel-
eration parameters of CPD were set to the same values as
those in Section 5.3.1, whereas those of BCPD were set to
ðJ;KÞ ¼ ð300; 150Þ, and the Nystr€om method was switched
to the KD tree search with search radius minð0:15; 7sÞ if
s < 0:2. Registration errors were measured using the
RMSD from the ground truth. The right panel of Fig. 12
shows the boxplot of RMSDs after taking the logarithm. The
RMSDs of BCPD were smaller than those of CPD, although
the difference in RMSDs was quite small.

5.4.2 Application to SHREC’19 Data

Here, we provide an example of the “shape transfer” as an
application of BCPD. The dataset was taken from a SHREC’19
track, called “matching humans with different connectivity”
[64]. Among 44 human body shapes, we used shape no. 1 as a
target point set and no. 42 as a source point set, as shown
in Fig. 13. After resampling 10,000 points for both point
sets using voxel grid filtering, we applied the BCPD with
the Gaussian kernel; we used the registration parameters
ð�;b;v; g; kÞ ¼ ð2; 2; 0; 10;1Þ and the same acceleration
parameters as those in Section 5.3.1. Shape (c) in the figure
shows shape no. 42 after the registration, clearly approaching
shape no. 1.

The rightmost shape of Fig. 13 shows the shape after the
second registration; we applied BCPD to shapes (b) and (c),
where we set (c) as the source shape for registration. We
used the registration parameters ð�;b;v; g; kÞ ¼ ð2; 1:2; 0;
0:1;1Þ; that is, we relaxed the motion coherence compared
with the first registration, andwe initialized s2 so that the ini-
tial matching was a “moderately hard” one. The deformed
shape became closer to shape no.1 as a whole, although some
parts of the body, e.g., the hands and arms, deformed unnat-
urally. This suggests that a tightly fit shape can be obtained
by the second registration with weak motion coherence and
a small g.

As described above, we applied BCPD twice with differ-
ent registration parameters. This was because the single exe-
cution of the BCPD algorithm failed to transfer shape (a) to
shape (b) under the weak motion coherence corresponding
to the second registration. This suggests that running the
algorithm twice contributed to preventing a local optimum
that would have resulted in an incorrect registration.

5.5 Rigid Registration

BCPD can be applied to rigid registration problems owing
to the similarity transformation incorporated into its trans-
formation model, as shown in Fig. 14. We evaluated the per-
formance of rigid registrations for BCPD by comparing it
with the methods implementing rigid registration techni-
ques: CPD [2], GMM-REG [21], and Go-ICP [14].

Datasets. The first dataset we used was the ASL dataset
[65]. Among the eight types of datasets, we used four types
of data: Apartment, Stairs, Mountain Plain, and Wood in
Summer. The second dataset we usedwas the set of 3D surfa-
ces with partial overlaps [66] included in the UWA dataset.

TABLE 2
Kernel Functions Used for the Evaluation of Computing Times

Kernel Kðym; ym0 Þ
Gaussian exp

�
� 1

2b2
jjym � ym0 jj2

�
Inverse multiquadric 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjym�ym0 jj2þb2
p

Rational quadratic 1� jjym�ym0 jj2

jjym�ym0 jj2þb2
Fig. 12. Performance evaluation using the datasets of space-time face. An
example of target and source point sets (left) and the registration accuracy
of CPD and BCPD for 80 pairs of point sets in the dataset (right).

Fig. 13. “Shape transfer” using BCPD. (a) Source shape taken from
SHREC’19 dataset. (b) Target shape taken from SHREC’19 dataset.
(c) Shape after the first registration. (d) Shape after the second
registration.
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We used all four objects in the dataset: Chef, Parasaurolo-
phus, T. Rex, and Chicken. We note that these datasets were
acquired with different sensors, having been acquired using
the Hokuyo UTM-30LX Scanning Rangefinder and the Kon-
icaMinolta Vivid 910 3D Scanner.

Pre-Processing. To reduce computing time for CPD and
GMM-REG,we decreased the number of points in each point
set in both datasets by approximately 2,000 using the voxel
grid filter implemented in GMM-REG. For CPD and GMM-
REG, we used the internal normalization methods imple-
mented in each software. For BCPD, we used the same nor-
malization method as CPD. For Go-ICP, we reduced the
number of points in each target point set by 1,000 using its
internal downsampling scheme; we normalized the point

sets to be inside ½�1; 1�3 by following its manual, because the
internal normalization scheme was not available in the
software.

Parameters. For BCPD, we used the parameters ð�;v;
g; kÞ ¼ ð109; 0:1; 10;1Þ; we used a large � because BCPD
becomes a rigid registration technique if � goes to infinity.
To accelerate BCPD, we used the Nystr€om method with
ðJ;KÞ ¼ ð300; 70Þ and switched it to the KD tree search with
search radius minð0:3; 7sÞ if s � 0:3. We used the Gaussian
kernel with b ¼ 2:0 to run the BCPD algorithm, although
the non-rigid deformation v was almost ignorable owing to
the large �. For CPD, we used the following parameters:

opt:omega ¼ 0:1; opt:method ¼0rigid0;

opt:tol ¼ 1e� 10; opt:normalize ¼ 1;

opt:fgt ¼ 1; opt:max it ¼ 100:

For GMM-REG, we used the parameters

level ¼ 2; sigma ¼ ½0:5; 0:2�; lambda ¼ 0;

max function evals ¼ ½20; 20�:

For Go-ICP, the parameter domain to explore was set to be
½�p;p�3 � ½�0:5; 0:5�3. The trimming rate and the conver-
gence threshold were set to be 0.1 and 0.001, respectively.

Evaluation.We registered the ith and the ðiþ 1Þth point sets
for i ¼ 1; . . . ; 10 for each of the eight datasets because all pairs
of the point sets were partially overlapped. We evaluated the
goodness of a rigid registration by the angle error against the
ground truth. The angular difference in degree between rota-
tion matrices R1 and R2 in R3, denoted by �, is computed by
the following formula: � ¼ 180

p
arccosð12 fTr ðR1R

T
2 Þ � 1gÞ. The

registration accuracy of a method was defined as the ratio of
correct registrations to 40 registration problems. A trial was
defined as being a success if the angular difference from the
ground truthwas less than a cutoff value.We changed the cut-
off values from 0.25 to 5.0 at intervals of 0.25.

Results. Fig. 15 shows the results for the ASL dataset (left)
and the UWAdataset (right). For the ASL dataset, BCPD out-
performed the competitors if the cutoff value to define the
successful registration was less than one degree. The accu-
racy of GMM-REGwas 1.0 if the cutoff was greater than three
degrees. The registration accuracy for BCPD and CPD
was clearly different despite the similarity of their algo-
rithms, suggesting that the difference in their acceleration
schemes and outlier distributions affected their registration
performance. For the UWA dataset, we observed that the
registration performance of Go-ICP was almost perfect.
Therefore, we used the result of Go-ICP as the ground truth
to compare the remainingmethods. The right panel in Fig. 15
shows the results for the UWA dataset. BCPD outperformed
CPD andGMM-REG, suggesting that the registration perfor-
mance of BCPD was the closest to that of Go-ICP for the
UWAdataset.

6 CONCLUSION

In this paper, we formulated CPD in a Bayesian setting; we
introduced motion coherence using the prior distribution of
displacement vectors rather than using themotion coherence
theory. We also derived BCPD registration algorithm, which
is interpreted as a generalization of the CPD algorithm, using
VBI. The Bayesian formulation provided a clear difference
between tuning parameters controlling the motion coher-
ence. We also proposed an acceleration scheme that can be
applied to non-Gaussian kernels.

In the numerical studies, we showed that our accelera-
tion method successfully reduced computing time without
losing registration accuracy. We compared BCPD with well-
known registration methods for both non-rigid and rigid
registration problems. The results showed that BCPD was
at least comparable to the competitors for all experiments,
suggesting its usefulness as a general-purpose registration
technique.

ACKNOWLEDGMENTS

The author would like to deeply thank the anonymous
referees who provided helpful, constructive, and detailed
comments on earlier versions of the manuscript. This
work was supported by JSPS KAKENHI Grant Number
17K12712.

Fig. 14. BCPD solves rigid registration problems under an appropriate
set of parameters owing to the similarity transformation incorporated into
its transformation model.

Fig. 15. Comparisons of rigid registrations using the ASL data (left) and
the UWA data (right). The y-axis represents the rate of correct registra-
tions using 40 pairs of point sets. A trial is defined as being a success if
the angular difference from the ground truth is less than a value specified
by the x-axis. For the UWA dataset, the ground truth was defined based
on the results of Go-ICP, owing to its almost perfect performance finding
partial overlaps in the dataset.
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