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Abstract—We present a highly accurate and efficient, yet simple, two-stage voting scheme for distinguishing inlier 3D

correspondences by densely assessing and ranking their local and global geometric consistencies. The strength of the proposed

method stems from both the novel idea of post-validated voting set, as well as single-point superimposition transforms, which are

computationally cheap and avoid rotational ambiguities. Using a well-known dataset consisting of various 3D models and numerous

scenes that include different occlusion rates, the proposed scheme is evaluated against state-of-the-art 3D voting schemes, in terms of

both the correspondence PR (precision–recall) AUC (area under curve), and the execution time. A total of 374 experiments were

conducted for each method, which involved a combination of four models, 50 scenes, and two down-samplings. The proposed scheme

outperforms the state-of-the-art 3D voting schemes in terms of both accuracy and speed. Quantitatively, the proposed scheme scores

97:0%� 12:9% on the PR AUC metric, averaged over all of the experiments, while the two state-of-the-art schemes score

74:2%� 22:2% and 78:3%� 26:4%. Furthermore, the proposed scheme requires only 24:1%� 6:0% of the time consumed by the fastest

state-of-the-art scheme. The proposed voting scheme also demonstrates high robustness against occlusions and scarce inliers.

Index Terms—Outlier rejection, post-validated voting scheme, all-inlier correspondence set, local rigidity constraint, single-point

superimposition transforms

Ç

1 INTRODUCTION

FINDING maximal plausible correspondences within a con-
taminated set is a generic problem at the core of numer-

ous state-of-the-art computer vision techniques, such as
localization [1], [2], [3], motion estimation [4], pose estima-
tion [5], [6], [7], [8], [9], recognition [10], [11], [12], recon-
struction [13], [14], [15], registration [16], [17], [18], [19], and
tracking [20], [21], [22]. A crucial step of these applications
is to recover at least one geometric hypothesis that receives
sufficient support from the initial or putative correspon-
dence set [23], [24].

Although correspondence estimation has undergone large
advancements in the last few decades [25], contaminated cor-
respondence sets are still unavoidable. Approaches for corre-
spondence estimation include spectral embeddings [26], [27],
[28] and feature matching, where features are either local-
image features [29], [30], [31], [32], RGB-D features [33], [34],
[35], 3D features [36], [37], [38], or combinations of the above.
Nevertheless, uncertainties may arise due to the locality of
measurements, similarities in geometry and texture, or ambi-
guities originating from clutter and occlusions. All of these
issues increase the correspondence outlier rate, causing a

combinatorial search explosion while seeking a hypothesis
which is maximally supported by consistent correspondence
inliers.

Excluding spurious matches from high-outlier-rate corre-
spondences is still an open problem featuring high-
dimensionality issues [39]; yet, little research has been done
in this area. One of the early popular proposals was random
sample consensus (RANSAC) [40], which is based on ran-
dom sampling, as the name implies, and thus, suffers from
repeatability issues. Notably, Optimal RANSAC [41] is an
extension of the random sampling algorithm, which
addresses the repeatability issue to a high extent. Notwith-
standing, sampling methods in general are still sensitive to
high outlier rates and require a substantially large number
of samples for robust estimation, which is time-consuming.

Recently, more robust schemes have been proposed,
including guided sampling [42], [43], mathematical optimi-
zation [39], [44], [45], and convex/graph matching [25], [46],
[47], [48], [49], [50]. However, all of these approaches are
either complex and slow, or sacrifice the correspondence
quantity for the sake of quality [51]. Although a few applica-
tions are aimed at either ultra speed or extreme accuracy,
most applications seek a balance between these two aspects.
Simultaneously recovering high quality and abundant cor-
respondences is indispensable in obtaining a plausible
hypothesis set for proper model fitting [43]. Accordingly,
voting-based schemes have gained momentum recently,
due to their balanced performance.

More to the point, several studies have incorporated cor-
respondence consistency voting [23], [24], [51], [52], [53] to
increase the correspondence inlier rate, either by truncating
inconsistent correspondences or utilizing the voting ranks
to weight the model parameters. Some voting schemes [23],
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[24] have adapted the nearest-neighbor similarity ratio
(NNSR) [30], which was one of the earliest techniques to
detect spurious correspondences formed by indistinct fea-
tures. However, the NNSR was originally proposed for
high-dimensional intensity-based local-image features, and
thus its quality is questionable for low-dimensional geomet-
ric features. Similarly, the local rigidity constraint (LRC) has
been employed in some voting schemes [23], [54] to ensure
compatible euclidean distances in the surrounding neigh-
borhoods of the two corresponding points. Per contra, a
rigidity constraint is not sufficient to ensure the rotational
compatibility of neighboring correspondences. It is worth
noting, however, that neighborhood measurements are
unavoidable in voting schemes, and it is believed that
Ref. [24] made an error in claiming that k-nearest neighbor
(k-NN) queries are avoided in their method, while in reality
they employed a local reference frame (LRF) estimation
method [55], which internally and unavoidably relied on k-
NN queries. Although LRFs [55], [56], [57] have been
recently utilized in voting schemes [23], [24] to assess the
global consistency of correspondences, LRFs suffer from
noise and eigenvector sign ambiguities. Even after resolving
these ambiguities by following certain conventions [58],
using LRFs for global verification is still debatable, as they
were originally intended for local feature description. To
the best of our knowledge, both the accuracy and robustness
of voting schemes remain challenging problems at present.

Accordingly, the problem of rejecting outliers to find a
maximal plausible correspondence set still persists, which
has been set as the objective of this manuscript. Similar to the
state-of-the-art 3D correspondence voting schemes [23], [24],
we follow a two-stage scheme concept: in the first stage,
a voting set is elected based on the top coarsely-estimated
likelihoods; in the later stage, the correspondences are vali-
dated against the voting set and their fine-tuned likelihoods
are estimated accordingly. Nonetheless, it is challenging
to come up with criteria for each stage that maximize
the accuracy without affecting the efficiency. Our approach
for the first voting stage involves utilizing the LRC, similar
to Ref. [23], to obtain coarse inlier ranking scores. How-
ever, unlike Ref. [23], the resulting LRC scores are not subject
to a hard-threshold and are not combined with external
scores. Instead, they are utilized to guide the global scoring
stage, rather than constraining it and limiting the overall
performance.

Importantly, the strength of our proposed method stems
from the second voting stage, in which contamination is
minimized in both the voting set and its elementwise
hypotheses. While previous methods [23], [24] utilized the
putative correspondences in composing the global-stage
hypotheses (from both the correspondence source and desti-
nation sides, in the case of Ref. [23], and from the source cor-
respondence side in the case of Ref. [24]), we opted to
compose our hypotheses solely from the voting set, to mini-
mize outlier effects. Furthermore, the voting set is post-vali-
dated in the second stage of our scheme, which was not
carried out in previous methods [23], [24]. Our proposed
method also differs from both previous methods [23], [24],
as it does not rely on their underlying incompetent criteria
of NNSR or LRFs, which lacks local-rigidity checks or suf-
fers from rotational ambiguity, respectively. Instead, our

proposed single-point superimposition transforms (1PSTs)
are rotational ambiguity-free and computationally cheap,
compared to the noisy and usually ambiguous LRFs.

Briefly, we propose a voting scheme that is:

� highly accurate and extremely efficient,
� deterministic and rigorously repeatable, and
� simple to implement.
The remainder of this manuscript is organized as follows.

Section 2 describes the proposed scheme, while Section 3
explains the experimental setup, the dataset, and the perfor-
mance metrics that were utilized. The results are discussed
in Section 4, and Section 5 presents the conclusions and
future work.

2 METHODOLOGY

Let P; �P � R3 be the model and scene point clouds (multi-
ple rigid objects), and let C ¼ f pp; �p�pð Þ : pp 2 P; �p�p 2 �Pg � P � �P
be the initially-provided correspondence set. The goal is to
compute a likelihood set, S � 0; 1½ �, where each individual
element s ccið Þ 2 S represents the likelihood that a corres-
pondence cci 2 C is valid (i.e., an inlier).

In the first voting phase, a voting set Cl � C is elected,
based on the top-ranked elements of a local coarse ranking
set, L, that is estimated through verification of the LRC
(local rigidity constraint, Section 2.1). In the second voting
phase, the voting set Cl and the putative correspondence
set C are assessed against each other. The targeted likelihood
set S is estimated by calculating the elementwise covariance
of the putative set with single-point superimposition trans-
forms, which are derived from the voting set (Section 2.2).
A schematic representation of our proposed method is
shown in Fig. 1.

2.1 First Voting Stage: Voting Set Election

This section is aimed at electing a voting set Cl � C. Its
cardinality, jClj ¼ kl, is the first free parameter of our pro-
posed method. The voting set elected in this stage is utilized
to assess the putative correspondences C in the next voting
stage. To elect the voting set, the local rigidity constraint is
utilized, which asserts the mutual compatibility of two

correspondences cci ¼def ðppi; �p�piÞ 2 C and ccj ¼def ðppj; �p�pjÞ 2 C.
These two correspondences are said to have a high compati-
bility likelihood, �l cci; ccj

� � � 1, when their corresponding
domain and co-domain euclidean distances are approxi-
mately equal, �p�pj � �p�pi

�� ��
2
� ppj � ppi
�� ��

2
, thus complying with

the rigidity constraint. While several studies have formu-
lated the likelihood of the pairwise rigidity constraint as a
minimum between two ratios (e.g., see Ref. [23]), we opt to
formulate it as a Gaussian function, in order to capture the
physical aspects of the acquisition sensor:

�l cci; ccj
� � ¼ exp � ð �p�pj � �p�pi

�� ��
2
� ppj � ppi
�� ��

2
Þ2

2sa
2

 !
; (1)

where sa is the standard deviation of the acquisition accu-
racy, which constitutes the second free parameter of the
proposed scheme.

Due to the pairwise nature of this constraint, one needs to
pair each correspondence with several others to accumulate
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a decent disjoint probability estimation. Nonetheless, exces-
sive verification might lead to a combinatorial explosion.
Without loss of generality, we exploit the fact that inlier cor-
respondences tend to appear in groups [23], [59], in order
to improve the probability estimation while avoiding com-
putational issues. Although this assertion might reduce the
inlier recall, it is compensated for in the global voting stage
(Section 2.2).

Accordingly, for every matching keypoint of the
model Pc ¼ pp : pp; �p�pð Þ 2 Cf g the k-NN originating from the
same keypoints set, N k ppð Þ � Pc, is utilized, where k defines
the size of the neighborhood (i.e., jN kj). If applicable, reus-
ing such neighborhood information from the feature com-
putation phase will save some computational power;
otherwise, an approximate k-NN method [60] can be uti-
lized for fast estimation. Upon the availability of neighbor-
hood information, the local coarse ranking set L ¼ Ll ccið Þ :f
cci 2 Cg � R is estimated as the summation of the neighbor-
hood pairwise likelihoods:

Ll ccið Þ ¼
X

ppj2N k ppið Þ; ppj;�p�pjð Þ2C
�l cci; ccj
� �

: (2)

Notably, we arrived at the same conclusion as Ref. [23]; the
most efficient spatial neighborhood size jN kj ¼ k is actually
given by the cardinality of the voting set, jClj ¼ kl. That is,
the accuracy of the final likelihood scores decreases linearly
with neighborhood sizes smaller than the cardinality, and
begins to saturate for larger ones.

Subsequently, the putative set C is sorted in descending
order, according to its local coarse ranking scores L, and is
denoted as CL, from which the top kl-elements constitute
the voting set, Cl

CL ¼ Ci : i 2 arg sort �Lð Þf g;
Cl ¼ CLi

� �kl
i¼1

:
(3)

Thus, the first voting stage is concluded by the election of
the voting set Cl, which is utilized in the next section for the
assessment of the putative correspondences C.

2.2 Second Voting Stage: Post-Validation and
Scoring

In the first voting stage, we elected a voting set Cl from the
top-ranked elements of a local coarse ranking set L based

on local neighborhood measurements and support. How-
ever, inliers surrounded by contaminated neighborhoods
would not have received enough support at that stage. In
this stage, we address this particular issue by assessing
both the voting set Cl and the putative correspondence
set C against each other, and measure the covariance to
global single-point superimposition transforms derived
from the voting set. Unlike previous work [23], [24] which
utilize LRFs, 1PSTs are computationally cheap and, more
importantly, rotational ambiguity-free. Moreover, we con-
struct the hypotheses solely from the voting set and evalu-
ate both the putative and voting sets against each other,
while previous work [23], [24] involved a contaminated
putative set in forming their hypotheses and only evalu-
ated the putative set without post-validating the voting set.

Initially, each voting element cci 2 Cl is assigned a rota-
tional ambiguity-free and computationally cheap single-
point superimposition transform, T ccið Þ ¼ R ccið Þ tt ccið Þ½ �
2 SE3, as a candidate hypothesis, where R ccið Þ 2 SO3 is a
rotation matrix and tt ccið Þ 2 R3 is a translation vector. While
the translation vector can be given by tt ccið Þ ¼ �p�pi � R ccið Þppi,
the rotation matrix is a little bit more involved. For the pur-
pose of computing R ccið Þ, we utilize a method for superim-
position transform estimation [61] and borrow some
concepts from another method [38] originally proposed
for LRF estimation. Briefly, a covariance matrix between the
corresponding model and scene points is computed and
then decomposed to estimate a superimposition transform,
as per Ref. [61]. Furthermore, the covariance weights and
centroids are computed in a similar manner to Ref. [38]. The
covariance matrix C ccið Þ 2 R3�3 is given by:

C ccið Þ ¼
X

ppj2N k ppið Þ;ccj2C
v cci; ccj
� �

�p�pj � �p�pi
� �

ppj � ppi
� �œ

; (4)

where v cci; ccj
� � ¼ expð� ppj � ppi

�� ��2
2
=2sr

2Þ�l cci; ccj
� �p2 R is a

weighting term, similar to Ref. [38], to provide robustness

against both clutter and occlusions. Unlike Ref. [38], the

weighting term v cci; ccj
� �

is a bilateral kernel, which provides

robustness against within-neighborhood inconsistencies,

which partially depends on the local rigidity pairwise
consistency �lðcci; ccjÞ defined in Eq. (1). Additionally, our

weighting-term formulation includes sr as the standard

deviation of the neighborhood radius, as well as the power

Fig. 1. An overview of the proposed voting scheme. Our proposed scheme takes a set of putative correspondences (the yellow-colored dense lines
between the teal-colored source model and the tan-colored destination scene) as input and processes them in two stages. In the first
stage, Section 2.1, a local voting set, Cl (shown as yellow-colored sparse lines), is elected based on the local rigidity constraint. Each element in the
voting set represents a global hypothesis, and their elementwise support by the putative correspondence is utilized to post-validate the voting set at
the second voting stage, Section 2.2. The top supported hypotheses forms the global voting set, Cg. In the case shown above, only a single element
is selected (shown as the single green-colored line). Using the post-validated voting set, the likelihood scores, S, for the putative correspondences
being inliers are computed, according to their covariance with the post-validated voting set, where green-colored lines correspond to the inlier ones,
and magenta-colored lines correspond to the outliers. It is up to the high-level application to decide whether to truncate the scores, based on some
threshold, or to utilize them all in a weighted model.
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term p 2 R to adjust the standard accuracy deviation sa

without recomputing �l cci; ccj
� �

. Furthermore, as per Ref. [38],

the covariance centroids are approximated by the neighbor-

hood center points, in order to speed up the computation.

However, it is worth noting that the covariance matrix in our

formulation is not normalized, as this has no effect on the

underlying rotation. Additionally, the difference vectors, their

euclidean distances, and the neighborhoods N k ppð Þ, previ-
ously computed in Eq. (2), are reutilized in Eq. (4), which con-
tributes to the computational efficiency of our approach.

Moreover, to further speed the computations up, the
power term p ¼ 1=0:162 � 39 is empirically set to adjust the
standard accuracy deviation sa to 16 percent of its original
value without recomputing �l cci; ccj

� �
. Moreover, it is suffi-

cient to only consider the first kr ¼ 18 neighbors of the self-
including neighborhoods, k-NN, while setting the standard
deviation radius to just one half of the point cloud
resolution, sr ¼ 1

2 voxel. These parameters are believed suit-

able for datasets beyond our experimentations.
According to Ref. [61], the rotation matrix R ccið Þ is then

formed by multiplying the left and right singular value
decomposition (SVD) matrices, U;V 2 R3�3, of the covari-
ance matrix USVœ ¼ C ccið Þ

R ccið Þ ¼ U
1

1
det UVœð Þ

2
4

3
5Vœ; (5)

where the determinant det 	ð Þ in the middle diagonal matrix
is utilized to negate reflection cases. Notably, state-of-the-
art methods [23], [24] have employed LRF algorithms for
hypothesis estimation, which only depend on pp and V,
while our hypothesis depends on �p�p and U, as well.
Although they eventually compose the final hypotheses for
some P � �P LRFs set, their hypotheses are contaminated by
the inclusion of non-voting set LRFs. Moreover, the LRFs
suffer from sign ambiguities of the three eigenvectors
vv1 vv3 vv2½ � ¼ V which requires Oðn2Þ time complexity to
resolve [58]. Even with such resolution, there remains no
guarantee of correctness of such convention. See Fig. 2 for a
graphical demonstration.

In spite of the estimated single-point superimposition
transforms T ccð Þ : cc 2 Cl� �

it is essential to exclude invalid
transformations of the voting sets before imposing their
dubious assessment on the putative correspondence set, C.
To address this chicken-and-egg problem, we consider the
global compatibility likelihood of both the putative and vot-
ing sets, in an almost identical manner to Eqs. (1), (2), and
(3). Consequently, the global pairwise likelihoods �g cci; ccj

� �
between the putative correspondence set cci 2 C and the vot-

ing set ccj 2 Cl are formulated as

�g cci; ccj
� � ¼ exp � R ccj

� �
ppi þ tt ccj

� �� �p�pi
�� ��2

2

2se
2

 !
; (6)

where se is the standard deviation of the error tolerance,
which led to compelling discriminative likelihoods in our
experiments when set to four times the acquisition accuracy
(i.e., se ¼ 4sa). From an efficiency point of view, the global

pairwise likelihoods �g 2 RjCj�jClj should be computed once,
and then reused in the following steps.

Similar to Eq. (2), the global coarse ranking set G ¼ Lg ccj
� ��

:
ccj 2 Clg � R is estimated as the sum of the global pairwise-
likelihoods over the entire putative correspondence set

Lg ccj
� � ¼X

cci2C
�g cci; ccj
� �

: (7)

Then, similar to Eq. (3), the voting set Cl is sorted in a
descending order, according to the global coarse ranking
scores G, and is denoted as CG. The top kg-elements consti-
tute the post-validated voting set Cg

CG ¼ Cli : i 2 arg sort �Gð Þ� �
;

Cg ¼ CGi
� �kg

i¼1
;

(8)

where kg has some relation to the expected number of the
multi-structures in the scene. In this work, we set kg ¼ 1, as
the manuscript’s scope is limited to single-structure rigid-

Fig. 2. The concept of both global-geometric consistency techniques: the
existing LRF (local reference frame) and the proposed 1PST (single-
point superimposition transform). The first column depicts a single corre-
spondence, shown as a red line, between both the source and destina-
tion points, pp and �p�p, for which the elliptical dotted spheres surrounding
them depicts their neighborhoods. The second column shows the basis
vectors formed using the corresponding technique over a sphere surface
for all correspondences within a voting set. Since LRF, as the name
implies, computes the basis transformation of each source and destina-
tion point separately, Ti 2 SO3 and Tj 2 SO3, the transformation basis
for the correspondence is obtained by composing the inverse of its desti-
nation point transform and the source point transform, T ¼ T�1

j Ti. How-
ever, there are two issues with the LRF technique: (1) due to
eigenvectors’ sign ambiguity of each point transformation, there is no
guarantee that their composed transform is rotational ambiguity-free,
even after following certain conventions to resolve them. (2) the impuri-
ties within the neighborhoods of each point are not accounted for. As a
result, the transforms of the voting set of previous methods [23], [24]
that utilizes LRF are very chaotic, as shown over the sphere surface on
the first row. On the other hand, 1PST takes into consideration the
neighboring correspondences (shown as gray lines) to filter out impuri-
ties, as well as computing the correspondence transform, T 2 SE3, from
both the translation, tt 2 R3, and rotation, R 2 SO3, in a single pass
to avoid sign ambiguities. As a result, the voting set transformation is
accurate, as shown over the sphere surface in the second row.
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body correspondences. At any rate, kg 
 kl should be main-
tained for proper likelihood estimation, as demonstrated
in Fig. 3.

Finally, the fine-tuned likelihoods S ¼ s ccið Þ : cci 2 Cf g are
estimated for each putative correspondence cci 2 C, by aver-
aging their pairwise-likelihoods over the post-validated
voting set

s ccið Þ ¼ 1

kg

X
ccj2Cg

�g cci; ccj
� �

: (9)

This concludes the description of our proposedmethodology.
For the sake of simplicity and ease of comparability with

the state-of-the-art methods, we denote all methods as
functions ff 	; 	ð Þ of two arguments: the first denoting sort-
ing/trimming stage technique and the second denoting the
scoring stage technique. As the sorting stage in our pro-
posed method was based on the LRC of the putative corre-
spondences, and the scoring stage was based on the 1PST of
such correspondences, we refer to our proposed method
as ff LRC; 1PSTð Þ.

3 EXPERIMENTAL SETUP

In Section 2, we have proposed a two-stage voting scheme, in
which a voting set is elected in the first stage and is filtered
further in the second stage, before utilizing it to estimate the
inlier likelihoods of the input putative correspondences. To
demonstrate the accuracy and efficiency of this proposal,
we performed experiments to compare our approach with
the state-of-the-art. This section is dedicated to describing
the experimental setup. First, the utilized dataset is intro-
duced, and we explain how the putative correspondences
were obtained from it. After that, the performance indices

are discussed and, then, the compared methods and their
parameters are briefly introduced.

All compared methods were implemented as single-
threaded PythonTM [62] scripts, and were evaluated using a
laptop computer with a 2.7 GHz processor and 8 GB of avail-
able memory. Internally, the highly optimized NumPy pack-
age [63] was utilized for the linear algebra operations, while
the 2D graphs and 3Dgraphics were generated using theMat-
plotlib [64] and theMayaVi [65] packages, respectively.

3.1 Dataset

The UWA 3D object recognition (U3OR) dataset [57], [66]
features various real-world scanned objects, shown in
numerous scenes with different occlusion and clutter
rates (Fig. 4), and was utilized in our comparative experi-
ments. The dataset consists of four models (‘Chef’,
‘Chicken’, ‘Parasaurolophus’, and ‘T-Rex’) and 50 scenes
(RS1 to RS50). Each scene includes partial information about
several models, with a total of 188 model–scene combina-
tions and two different down-samplings; 374 of these com-
binations were utilized in this manuscript, as two pairs had
no inlier correspondences after sampling their point clouds.

In order to generate the putative correspondence set, the
dataset models and scenes were down-sampled to new res-
olutions, 2 and 5 mm, represented by 1 voxel hereafter.
Additionally, since some related studies [23], [24] utilize
LRF, which depends on surface normals, the datasets’ sur-
face normals were estimated using a principal component
analysis (PCA)-based method [67]. Concisely, the normal
vector is the eigenvector corresponding to the smallest
eigenvalue of the covariance matrix constructed with the k-
NN of a point. We limited the surface-normals neighbor-
hood size to k ¼ 30 with a radius of 2 voxel, to neutralize
both over-sampled and distant points. After that, fast point
feature histograms (FPFH) features [36] were computed for
the down-sampled point clouds, which resulted in a 33-
dimensional vector for each point, representing the point’s
spatial features. Finally, the feature-space vectors of the
models and scenes were matched together to form the puta-
tive correspondences C using an approximate k-NN
method [60] with k ¼ 1. See Fig. 5 for a visualized conceptu-
alization. The ground truth of a correspondence was
constructed based on the ground-truth relative pose trans-
formations of the model-scene pairs, which were part of the
dataset as well. A correspondence was considered an inlier
if it varied covariantly with the ground truth superimposi-
tion transform Tgt within an acceptable tolerance; that
is, Cgt ¼ fcc : Tgtppi � �p�pi

�� ��
2
< de; cc 2 Cg. The tolerance was set

Fig. 3. The effect of the kg ¼ jCgj parameter on the accuracy of the rank-
ing processes, from which it is apparent that kg ¼ 1 is sufficient for our
purposes. The green-colored lines indicate inlier correspondences, while
the magenta-colored ones indicate outliers, while Cg is the post-validated
voting set [Eq. (8)].

Fig. 4. Sample scans of the U3OR (UWA 3D object recognition) data-
set [57], [66], which was utilized in our comparative evaluation. The data-
set consists of four models (shown in teal color, namely: ‘Chef’,
‘Chicken’, ‘Parasaurolophus’, and ‘T-Rex’) and 50 scenes (the first ten
are shown in tan color).
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as twice the resolution of the point cloud, de ¼ 2 voxel.
Additionally, the dataset has an occlusion-rate ground truth,
which we utilized along with the inlier fraction jCgtj=jCj to
evaluate the robustness of the methods against these two
challenges. For conciseness, only the means and standard
deviations of the conducted experiments are reported.

3.2 Performance Metrics

As for the performance metrics, in order to evaluate both
the accuracy and efficiency, we measured the precision–
recall (PR) area under curve (AUC) and the execution time
of each evaluated method. While it is the standard, in the
context of retrieval and binary classification problems, to
utilize the PR criteria, such a criteria represents only a single
operating point of the voting scheme at a specific threshold.
In other words, one must choose a score threshold 0 � s � 1
to form a selected correspondence set Cs ¼ cc : S ccð Þ � s;f
cc 2 Cg, and thus compute the precision p sð Þ ¼ jCgt \ Csj=jCsj
and the recall r sð Þ ¼ jCgt \ Csj=jCgtj. On the other hand, the
aim is to evaluate the operating characteristics of the voting
scheme for any threshold, hence PR AUC is the most appro-
priate single-number criterion capturing the parametric PR
behavior throughout the entire range of s

PRAUC ¼
Z 1

0

p s rð Þð Þdr ¼
Z 0

1

p sð Þr0 sð Þds; (10)

where r0 	ð Þ is the recall derivative.

3.3 Compared Methods

In our comparative evaluation, besides our proposed
method, three baseline methods—nearest-neighbor dis-
tance (NND), NNSR, and LRC—, two state-of-the-art
methods [23], [24], and a robust randomized method
(Optimal RANSAC [41]) were used for comparison.

3.3.1 The Baseline Methods

Nearest-neighbor distance scores putative correspondences
according to their feature-space distances, while nearest-
neighbor similarity ratio scores correspondence distinc-
tiveness using the second-to-first feature-space distance
ratio. These two methods are not expected to have signifi-
cant scores, as they only depend on feature-based measure-
ments. Local rigidity constraint, however, verifies the
rigidity constraint of a correspondence in its local neighbor-
hood, as described in Section 2.1, where its score is the

normalized value of Eq. (2). This method is expected to per-
form quite well in comparison to the previous two, which is
why it forms part of our proposed method.

3.3.2 The State-of-the-Art Methods

The existing method of Ref. [23] initializes a voting set using
both NNSR and LRC for inlier sorting, and both LRC
and local reference frames are utilized for the final scoring.
Accordingly, we denote the method of Ref. [23] by ff NNSRð
þLRC;LRC +LRFÞ. Similarly, the more recent existing
method [24] is denoted by ff NNSR;LRFð Þ , as it sorts the vot-
ing set in the local phase using NNSR scores, and then
utilizes LRFs to construct SO3 hypotheses for global verifica-
tion and scoring. Refer to the paragraph just above Section 3
for the interpretation of ff 	; 	ð Þ.

3.3.3 Optimal RANSAC

Random sample consensus is a randomized method [40], in
which tentative sample correspondences are iteratively
drawn at random, and a superimposition hypothesis T 2 SE3

is elected if it receives sufficient support from the putative set.
Optimal RANSAC [41], which we compare our approach
against, improves upon the standard RANSAC algorithm’s
robustness by resampling the tentative correspondence set,
ensuring repeatability. The scores are obtained according to
the formula s ccið Þ ¼ expð� Tppi � �p�pik k22=2se

2Þ, which resembles
Eqs. (6) and (9) in our proposedmethod.

3.4 Parameters

As for the parameters, we set the cardinality of the voting
set jClj (and, thus, the local rigidity neighborhood size) to
kl ¼ 100 in all of our experiments. The deviation of the acqui-
sition accuracy, introduced in Eq. (1), was set to one fourth of
the point cloud resolution, sa ¼ 1

4 voxel. Thus, se ¼ 4sa

in Eq. (6) became 1 voxel. The LRC and Optimal RANSAC
methods were assigned the same values of the sa and se

parameters. It is alsoworth noting that the reported parameter
of Ref. [24], dr ¼ 10voxel, did not seemwell-tuned and placed
their method in a bad light. So here, we tuned it to 1 voxel for
better performance, as shown in Fig. 6. The remaining param-
eters of both state-of-the-art methods [23], [24] were as sug-
gested by their correspondingmanuscripts.

Fig. 5. Extraction of the putative correspondence set from the dataset.
The dataset models (shown in teal color) and scenes (shown in tan
color) are down-sampled, their surface normals and point features are
computed, and finally, they are matched together to generate the puta-
tive correspondence set (the yellow-colored dense lines), which forms
an input to the evaluated methods.

Fig. 6. Updating the parameter of a related study. Based on our experimental
results, we updated the parameter dr of ff NNSR;LRFð Þ related method [24]
from10voxel to 1 voxel to achieve better performance. A higher thePRcurve
indicates better accuracy. Noting that NNSR (nearest-neighbor similarity
ratio) and LRF (local reference frame) denote the underlying techniques
utilizedwithin the relatedmethod [24].
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4 RESULTS AND DISCUSSION

The proposed voting scheme in Section 2 was evaluated on
the U3OR dataset [57], [66], after computing its putative cor-
respondences (Section 3.1). The accuracy and efficiency of
the results were interpreted in terms of the PR AUC and exe-
cution time criteria (Section 3.2) for the proposed method
and several other methods, including the state-of-the-art
methods [23], [24] (Section 3.3). This section initiates a discus-
sion with the quantitative accuracy and efficiency results,
while the qualitative results follows in later parts.

The proposed method ff LRC; 1PSTð Þ outperforms all
compared methods, scoring 97:0%� 12:9% on the PR AUC
metric PRAUC , as shown in Fig. 7. This substantially high
score in terms of precision and recall is attributed to the
voting set post-validation (Eq. (8)) by collecting the puta-
tive correspondence support. Indeed, there is a similarity
between the proposed method’s operating characteristics
and those of Optimal RANSAC, which utilizes the closely
related concept of hypothesis support and scores the near-
est to the proposed method: 95:2%� 20:4%. On the other
hand, it is worth noting that RANSAC is a randomized
algorithm, thus its repeatability cannot match our deter-
ministic voting scheme.

Additionally in Fig. 7, the baseline methods NND, NNSR,
and LRC have PRAUC values of 5:7%� 2:8%, 20:1%� 10:4%,
and 73:4%� 22:0%, respectively. NND has the lowest operat-
ing characteristics, its precision remains below the corres-
pondence inlier fraction jCgtj=jCj. We believe that such worse-
than-guessing performance is related to the indistinctness and
low dimensionality of the FPFH features. These feature proper-
ties also affect the NNSR scores, to some extent, and might
explain why its PR AUC curve exponentially decays and
approaches the inlier fraction.

As for the state-of-the-art methods, ff NNSR + LRC;ð
LRC + LRFÞ [23] scores 74:2%� 22:2%, while ff NNSR;LRFð Þ
[24] scores 78:3%� 26:4%. Remarkably, the LRC approach

performs on par with the state-of-the-art methods, despite
its simplicity, and proves to be a highly competent crite-
rion for voting scheme initialization. We believe that the
main reason ff NNSR + LRC;LRC + LRFð Þ [23] does not
score considerably higher than LRC, despite using LRC as
part of the method, is two-fold. The major reason is that
the local and global scores, LRC and LRF, are multiplied
together at the scoring stage, instead of utilizing a
weighted summation or relying solely on the global scores
(see the following paragraph for further details). Another
reason is that it uses hard thresholding, performed in sev-
eral steps of the scheme, causing some loss of information.
Overall, the related methods have some operating charac-
teristic issues, and they are all outperformed by our pro-
posed scheme, including the two state-of-the-art methods
and the randomized one.

In order to gain in-depth insights about the novelty and
performance of the proposed method ff LRC; 1PSTð Þ, espe-
cially in comparison to the ff NNSR + LRC;LRC + LRFð Þ
method [23] and Optimal RANSAC [41], several hybrid
combinations between the existing methods and the pro-
posed one were studied. The results are shown in Fig. 8.
First, despite the fact that the LRC stage is utilized in the
existing method [23], the originality and effectiveness of our
formulation is apparent in Fig. 8a. The first curve corre-
sponds to Ref. [23], while the second, ff NNSR + LRC;ð
LRC + 1PSTÞ, is a hybrid method, replacing LRF with the
proposed 1PST. In these two curves, LRC is utilized in the
scoring phase, which drastically limits the performance,
regardless of what other scoring technique (i.e., LRF or
1PST), it is combined with. This is the major issue with the
method of Ref. [23] and can be alleviated by considering a
weighted summation or just avoiding LRC in the scoring
phase. However, scoring solely with LRF does not distinc-
tively outperform the original approach [23], as demon-
strated by the third curve, ff NNSR + LRC;LRFð Þ, due to
the incompetencies of LRF. Indeed, no significant perfor-
mance gain can be observed until 1PST is used solely in the

Fig. 7. Accuracy of the seven methods, in terms of their precision and
recall means (lines) and standard deviations (shades) over 374 experi-
ments. To enhance clarity, the nth means and deviations are denoted by
the points and the error bars. The horizontal axis corresponds to the
recall metric, while the vertical axis is the precision metric. In this
parametric plot, the higher a curve from the horizontal axis, the better its
results is. The proposed scheme ff LRC; 1PSTð Þ remains accurate over a
large recall range and outperforms all the related methods, including the
two state-of-the-art methods and a robust randomized method. Refer
to Section 3.3 for the details of compared methods.

Fig. 8. Demonstration of the impact of the proposed stages, by compar-
ing the proposed method to variants of competing methods combined
with one of the proposed stages in terms of their precision and recall
means (lines) and standard deviations (shades). To enhance clarity, the
nth means and deviations are denoted by the points and the error bars.
The horizontal axis corresponds to the recall metric, while the vertical
axis is the precision metric. In this parametric plot, the higher a curve
from the horizontal axis, the better its results. Note that only the data of
186 experiments (5 mm resolution) are utilized in these graphs, to avoid
memory issues in the combined methods: (a) ff NNSR + LRC;LRCð
þ LRFÞ method [23] with and without the proposed 1PST (single-point
superimposition transform) and (b) Optimal RANSAC [41] with and
without LRC (local rigidity constraint).
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scoring phase, as per the fourth curve, ff NNSR + LRC;ð
1PSTÞ. Similarly, combining NNSR with LRC in the sorting
phase harms the performance, rather than benefiting it, as
shown by the proposed method’s curve, ff LRC; 1PSTð Þ,
compared to the former ones.

Second, as shown in Fig. 8b, although coupling LRC with
Optimal RANSAC [41] enables the truncation of some out-
liers and, thus, an improvement of the PR AUC score, it
is still outperformed by ff LRC; 1PSTð Þ, thanks to the
proposed 1PST scoring stage. These in-depth experiments
indicate the importance of both the LRC sorting and 1PST
scoring stages, as no other combination outperforms our
approach; thus, stressing the meticulousness and signifi-
cance of the proposed method. It is worth noting that some
hybrid combinations ran out of memory resources when
utilizing the 2 mm resolution data; thus, only the 5 mm reso-
lution data was utilized, for which the results are a bit dif-
ferent from, but consistent with, the rest of figures in this
manuscript.

As shown in Fig. 9 the PR AUC score is inversely corre-
lated with the occlusion ratio and directly with the inlier
fraction; however, in both cases, the proposed method
remains robust. Notably, the state-of-the-art method [24]
denoted by ff NNSR;LRFð Þ exhibits a lack of robustness
against a high level of occlusions (Fig. 9a). This mostly origi-
nates from the fact this method does not perform local
neighborhood rigidity checks, but rather uses methods that
depend solely on feature-based measurements (i.e., NND
and NNSR). Furthermore, LRC and ff NNSR +LRC;LRC +ð
LRF Þ degrade, to some extent, and the most robust
methods are the proposed method ff LRC; 1PSTð Þ and
Optimal RANSAC. In Fig. 9b, only two methods demonstrate
robustness against scarce inliers—namely, the proposed
method and Optimal RANSAC—which is mostly due to their
hypothesis-support strategies. Therefore, in summary, only
the proposed method and Optimal RANSAC exhibit high
robustness to scarce inliers and large occlusions.

As for the computational efficiency analysis, aside from
Optimal RANSAC, the time complexity of the remaining
algorithms, including the proposed method, are OðjCjÞ, as
the voting sets of all these algorithms are fixed in size. This
can be also observed empirically from the linear relationships
between problem size and execution time. Fig. 10 shows such
relation, but in logarithmic scale to accommodate all results.
In comparison to our proposal, as per Fig. 10a, both of the
state-of-the-art methods [23], [24], ff NNSR +LRC;LRC +ð
LRFÞ and ff NNSR;LRFð Þ, have higher slope coefficients,
which indicates reduced efficiency. This is mostly because
the hypothesis transforms are computed for the entire puta-
tive set C and due to the additional computational power
being spent on resolving the LRF ambiguities. On the other
hand, in the proposed method we compute the hypotheses
only for the voting set Cl � C, and thus no further overhead
ambiguity exists for the 1PSTs.

Importantly, as per Fig. 10b, despite the robustness of
Optimal RANSAC, it takes a great deal of time when the
inlier fraction is less than 10 percent, which limits its appli-
cability to real-time scenarios. On the other hand, our
method consumes a constant time, much less than the state-
of-the-art methods, which can be tuned further based on the
desired application. Remarkably, the proposed method’s
execution time is only 24:1%� 6:0% of the time taken by
ff NNSR +LRC;LRC +LRFð Þ [23], and 18:0%� 4:1% of the
time taken by ff NNSR;LRFð Þ [24].

Finally, Fig. 11 shows a qualitative evaluation on some
of the dataset’s more challenging scenes with respect to the
four models. These qualitative results show similar tenden-
cies to the conclusions from the PR AUC scores. It is appar-
ent that only Optimal RANSAC and the proposed method
ff LRC; 1PSTð Þ perform adequately. Nevertheless, Optimal
RANSAC also has failure cases for all of the given qualitative
examples, despite its high repeatability and robustness; which
indicates the superior robustness and accuracy of the pro-
posedmethod.

We strongly urge researchers to address the scarcity of
unified benchmarks for correspondence evaluation, as well
as the lack of consensus on appropriate evaluation criteria.
We observed that the reported scores of any given method
were often not directly comparable to another, as the pro-
posed methods usually utilize different down-samplings

Fig. 9. Robustness analysis of competing methods against occlusions
and scarce inliers in terms of the PR AUC means (lines) and standard
deviations (shades), which corresponds to the vertical axis. To enhance
clarity, the nth means and deviations are denoted by the points and the
error bars. The vertical axes correspond to two: (a) the occlusions ratio
and (b) the inlier fraction. The occlusion ratio denotes the ratio between
observed surface points and the total surface points of the scene, which
falls in the approximate range of 62%–93%, where the higher the occlu-
sion ratio, the more challenging the problem. Similarly, the inlier
fraction jCgtj=jCj denotes the ratio between the count of ground-truth
inliers and the correspondences’ set size, which falls in the approximate
range of 1.5%–21%, where the lower the inlier fraction, the more chal-
lenging the problem. In both cases, the higher a curve is, the better its
robustness. Refer to Section 3.3 for the details of compared methods.

Fig. 10. Analysis of the computational efficiency of the seven methods, in
terms of their execution time means (lines) and standard deviations
(shades) over 374 experiments. To enhance clarity, the nth means and
deviations are denoted by the points and the error bars. The vertical axis
denotes the the elapsed time, while the horizontal axes corresponds to
(a) correspondence set cardinality jCj, and (b) the inlier fraction jCgtj=jCj.
Refer to Section 3.3 for the details of compared methods.
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Fig. 11. Qualitative performance matching four models (shown in teal color) with some challenging sample scenes (shown in tan color), all from
the U3OR (UWA 3D object recognition) dataset [57], [66] down-sampled to 5 mm. The input correspondences and their ground truths are shown in
the first and last rows, respectively. The remaining rows show the qualitative results for each method, which consist of (from top to bottom) three
baseline methods, two state-of-the-art voting schemes, a robust randomized method, and the proposed voting scheme. The green-colored lines
indicate inlier correspondences, while the magenta-colored ones indicate outliers. Only top-ranked correspondences are shown for each method,
with an equal count to their corresponding ground truth. Refer to Section 3.3 for the details of compared methods.
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and different features for computing the correspondences,
and also even follow different criteria for evaluation.

5 CONCLUSION

Rejection of spurious correspondences is an essential step
for proper geometric modeling, high-level computer vision,
and image processing tasks, such as motion estimation, rec-
ognition, and reconstruction, among others. Despite all the
progress in the field during recent decades, the correspon-
dence problem remains an open one, with few methods
tackling it. Most of these methods are either too complex
and slow, or lack adequate accuracy. For these reasons, we
proposed an extremely efficient, robust, accurate, and sim-
ple voting scheme for correspondence scoring. Our pro-
posed method consists of two stages, in which a voting set
is elected in the first stage, based on local rigidity consis-
tency. This voting set is post-validated, in the second stage,
by enumerating its element-wise global support from the
putative correspondence set. The post-validated voting set
is then utilized to score the putative correspondence set,
based on their pairwise covariances. While the proposal is
simple, its novelty lays in the careful formulation for post-
validation to solve this chicken-and-egg problem. It is worth
noting that the method is very flexible with respect to the
utilized correspondence estimation method, as it takes the
raw correspondences as input without any additional
dependency on the detector, descriptor, matching algo-
rithm, or any additional information (such as correspon-
dence quality scores).

The proposed scheme was evaluated on the U3OR data-
set [57], [66]. It demonstrated a high level of accuracy, with
an average of 97:0%� 12:9% for the PR AUC criterion over
a total of 374 experiments. On the other hand, the state-of-
the-art methods [23], [24] scored 74:2%� 22:2% and 78:3%
�26:4%; thus, they were outperformed by our proposed
method. The proposed method also demonstrated adequate
robustness against occlusions and scarce inliers, and a high
effectiveness. It seems as though the local rigidity constraint
is the major player in occlusion robustness, while collecting
hypothesis support improves performance when there are
scarce inliers. The effectiveness of our proposed method
comes from limiting the hypothesis computation to a rela-
tively small voting set, and thus its execution time is
only 24:1%� 6:0% of the time consumed by the fastest
state-of-the-art method. Overall, the proposed method
exceeded all the compared methods in all aspects.

However, we are not proposing an almighty scheme, as it
is currently limited to single-structure rigid-body geometric
fitting. Thus, addressing multi-structure geometric model-
ing would be an interesting extension of this proposal.
Moreover, our proposed scheme picks the highest sup-
ported hypothesis without resampling. However, resam-
pling seems to make the estimation more robust [41], [68],
[69], and thus constitutes one of the future directions.
Another future direction considers borrowing the concept
of higher-than-minimal subset sampling [70], [71] into the
voting schemes, perhaps by considering clustering corre-
spondences [72] or poses [73]. Moreover, only down-sam-
pled point clouds were employed, so involving complete
point clouds in hypothesis election or fine-tuning is

expected to bring about astonishing results. Finally, while
the method is proposed for the 3D scenario, extending it to
other scenarios (e.g., 2D), by adapting its scoring and trans-
formation estimation techniques, seems feasible and has
great implications.
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ABBREVIATIONS

k-NN k-nearest neighbor; 1PST single-point superimposi-
tion transform; AUC area under curve; FPFH fast point fea-
ture histograms; LRC local rigidity constraint; LRF local
reference frame; NND nearest-neighbor distance; NNSR
nearest-neighbor similarity ratio; PCA principal component
analysis; PR precision recall; RANSAC random sample
consensus; SVD singular value decomposition; U3OR UWA
3D object recognition.
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