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Abstract—Feature extraction and dimension reduction for networks is critical in a wide variety of domains. Efficiently and accurately

learning features for multiple graphs has important applications in statistical inference on graphs. We propose a method to jointly

embed multiple undirected graphs. Given a set of graphs, the joint embedding method identifies a linear subspace spanned by rank

one symmetric matrices and projects adjacency matrices of graphs into this subspace. The projection coefficients can be treated as

features of the graphs, while the embedding components can represent vertex features. We also propose a random graph model for

multiple graphs that generalizes other classical models for graphs. We show through theory and numerical experiments that under the

model, the joint embedding method produces estimates of parameters with small errors. Via simulation experiments, we demonstrate

that the joint embedding method produces features which lead to state of the art performance in classifying graphs. Applying the joint

embedding method to human brain graphs, we find it extracts interpretable features with good prediction accuracy in different tasks.

Index Terms—Graphs, embedding, feature extraction, statistical inference
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1 INTRODUCTION

IN many problems arising in science and engineering,
graphs arise naturally as data structure to capture complex

relationships between a set of objects. Graphs have been
used in various application domains as diverse as social net-
works [1], internet mapping [2], brain connectomics [3],
political voting networks [4], and many others. The graphs
are naturally high dimensional objects with complicated
topological structure, which makes graph clustering and
classification a challenge to traditional machine learning
algorithms. Therefore, feature extraction and dimension
reduction techniques are helpful in the applications of learn-
ing graph data. In this paper, we propose an algorithm to
jointly embed multiple graphs into low dimensional space.
We demonstrate through theory and experiments that the
joint embedding algorithm produces features which lead to
state of the art performance for subsequent inference tasks
on graphs.

There exist a few unsupervised approaches to extract
features from graphs. First, classical Principal Component
Analysis can be applied by treating each edge of a graph as a
raw feature [5]. This approach produces features which are
linear combinations of edges, but it ignores the topological
structure of graphs and the features extracted are not easily
interpretable. Second, features can be extracted by comput-
ing summary topological and label statistics from graphs [6],
[7]. These statistics commonly include number of edges,

number of triangles, average clustering coefficient, maxi-
mum effective eccentricity, etc. In general, it is hard to know
what intrinsic statistics to compute a priori and computing
some statistics can be computationally expensive. Third,
many frequent subgraph mining algorithms are developed
[8]. For example, the fast frequent subgraph mining algo-
rithm can identify all connected subgraphs that occur in a
large fraction of graphs in a graph data set [9]. Finally, spec-
tral feature selection can also be applied to graphs. It treats
each graph as a node and constructs an object graph based
on a similarity measure. Features are computed through the
spectral decomposition of this object graph [10].

Adjacency Spectral Embedding (ASE) and Laplacian
Eigenmap (LE) are proposed to embed a single graph
observation [11], [12]. The inference task considered in
these papers is learning of the block structure of the
graph or clustering vertices. Given a set of graphs
fGi ¼ ðVi; EiÞgmi¼1, ASE and LE need to embed an adjacency
matrix or Laplacian matrix of Gi individually, and there is
no easy way to combine multiple embeddings. The joint
embedding method considers the set of graphs together. It
takes a matrix factorization approach to extract features for
multiple graphs. The algorithmmanages to simultaneously
identify a set of rank one matrices and project adjacency
matrices into the linear subspace spanned by this set of
matrices. The joint embedding can be understood as a gen-
eralization of ASE for multiple graphs. We demonstrate
through simulation experiments that the joint embedding
algorithm extracts features which lead to good performance
for a variety of inference tasks. In the next section, we
review some random graph models and present a model
for generating multiple random graphs. In Section 3, we
define the joint embedding of graphs and present an algo-
rithm to compute it. In Section 4, we perform some theoreti-
cal analyses of our joint embedding. The theoretical results
and real data experiments are explored in Section 5. We
conclude the paper with a brief discussion of implications
and possible future work.
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2 SETTING

We focus on embedding unweighted and undirected graphs
for simplicity, although the joint embedding algorithm
works on weighted graphs, and directed graphs with some
modifications. Let fGi ¼ ðVi; EiÞgmi¼1 be m graphs, each with
n vertices, and Ai be the adjacency matrix of graph Gi. The
vertices in these graphs should be matched, which means
that all the graphs have a common vertex set V . The joint
embedding algorithm embeds all Gis simultaneously into
Rd and represents Gi by a vector �i 2 Rd. Before discussing
the joint embedding algorithm, we need a random graph
model on multiple graphs, on which the theoretical analysis
is based. Let us first recall a model on a single graph: Ran-
dom Dot Product Graph [13].

Definition Random Dot Product Graph (RDPG). Let X
be a subset of Rd such that xTy 2 ½0; 1� for all x; y 2 X . Let
X ¼ ½xT

1 ; x
T
2 ; . . . ; x

T
n � 2 Xn be a n� d matrix, and given X,

suppose that A is a random n� n adjacency matrix such that

Ast � BernoulliðxT
s xtÞ:

Alternatively,

P ðAjXÞ ¼
Y
s< t

ðxTs xtÞAstð1� xT
s xtÞ1�Ast :

Also, define P :¼ XXT to be edge probability matrix. We write
A � RDPGðXÞ to denote the distribution of a random dot
product graph with latent positions X. When the rows of X
are not fixed, but instead are random variables with a distribu-
tion F on X , ðX;AÞ � RDPGðF Þ denotes the distribution of a
random dot product graph with latent positions distributed
according to F .

The RDPG is a convenient model which is designed to
capture the relationship between the vertices of a graph
using latent positions, and some extensions have been pro-
posed to capture more general connectivity structures [14].
Moreover, other popular models, including the stochastic
block model (SBM) [15] and mixed membership SBM [16]
are special cases of the RDPG and its generalizations. The
RDPG can be further generalized to a Latent Position Graph
by replacing the inner product by a kernel [17]. The Adja-
cency Spectral Embedding of a RDPG adjacency matrix is
well studied [18]. Next, we propose a new random graph
model which generalizes the RDPG to multiple graphs.

Definition Multiple Random Eigen Graphs (MREG).
Let h1; . . . ; hd be vectors in Rn with khik2 ¼ 1; i ¼ 1; . . . ; d,
and denote by X � Rd the set of vectors satisfyingPd

k¼1 �½k�hkh
T
k 2 ½0; 1�n�n for all � 2 X , where �½k� is the kth

entry of vector �. The random adjacency matrices A1; . . . ;Am

follow a d-dimensional multiple random eigen graphs
model, denoted by

fAigmi¼1 � MREGðf�igmi¼1; h1; . . . ; hdÞ;
if the entries of Ai are independent Bernoulli random variables,

Ai½s; t� � Bernoulli

 Xd
k¼1

�i½k�hk½s�hk½t�
!
:

Pi :¼
Pd

k¼1 �i½k�hkh
T
k is defined to be the edge probability

matrix for graph i. In cases that f�igmi¼1 are of primary inter-
est, they are treated as parameters. When the f�igmi¼1 are ran-
dom variables, F denotes their distribution on X , and the
model is expressed as

fð�i;AiÞgmi¼1 � MREGðF; h1; . . . ; hdÞ:
Compared to the RDPG model, MREG is designed to

model multiple graphs. The vectors fhkgdk¼1 are shared
across graphs and represent joint latent positions of the ver-
tices, where ðhj½1�; . . . ; hj½d�Þ 2 Rd represents the position of
vertex j; a �i represents the parameter of an individual
graph relative to the latent positions fhkgdk¼1. Note that for a
single graph, the edge probability matrix can be written
as Pi ¼ HLLiH

T , where H ¼ ½h1 � � �hd� 2 Rn�d and LLi ¼
diagð�iÞ. When the entries of �i are non-negative, then
Xi ¼ HLL

1=2
i are the latent positions of graph i, and hence, on

a single graph, RDPG and MREG are equivalent if the edge
probability matrix is positive semidefinite. In MREG, we
allow self loops to happen. This is mainly for theoretical
convenience. Next, we introduce another random graph
model: Stochastic Block Model [15], which generalizes the
Erdos-Renyi (ER) model [19] that corresponds to a SBM
with only one block. SBM is a widely used model to study
the community structure of a graph [20], [21].

Definition Stochastic Block Model (SBM). Let p be a prior
probability vector for block membership which lies in the unit
K � 1-simplex. Denote by t ¼ ðt1; t2; . . . ; tnÞ 2 ½K�n the
block membership vector, where t is a multinomial sequence
with probability vector p. Denote by B 2 ½0; 1�K�K the block
connectivity probability matrix. Suppose A is a random adja-
cency matrix given by,

P ðAjt;BÞ ¼
Y
i < j

B
As;t
ts;ttð1� Bts;ttÞð1�As;tÞ:

Then, A is an adjacency matrix of a K-block stochastic block
model graph, and the notation is A � SBMðp;BÞ. Sometimes,
t may also be treated as the parameter of interest, in this case
the notation is A � SBMðt;BÞ.
The top panel of Fig. 1 shows the relationships between

three randomgraphmodels defined above and the ERmodel
on 1 graph. The models considered are those conditioned on
latent positions, that is t, X and � in SBM, RDPG and MREG
respectively are treated as parameters; furthermore, loops
are ignored inMREG. If an adjacency matrixA � SBMðt;BÞ
and the block connectivity matrix B is positive semidefinite,
A can also be written as an RDPGðXÞ with X having at most
K distinct rows. If an adjacency matrix A � RDPGðXÞ, then
it is also a 1-graph MREGð�1; h1; . . . ; hdÞ with hk being the
normalized kth column of X and �1 being the vector contain-
ing the squared norms of columns of X. However, a 1-graph
MREGð�1; h1; . . . ; hdÞ is not necessarily an RDPG graph
since �1 could contain negative entries which may result in
an indefinite edge probability matrix.

The bottom panel of Fig. 1 shows the relationships
between the models on multiple graphs. For RDPG, the
graphs are sampled i.i.d. with the same parameters. MREG
has the flexibility to have � differ across graphs, which
leads to a more generalized model for multiple graphs. A d
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dimensional MREG can represent any SBM with K 	 d
blocks, in which the block memberships are the same across
all the graphs in the population, but possible different con-
nectivity matrices Bi for each graph, a common assumption
in modeling multilayer and time-varying networks [22],
[23]. Other models in this setting also allow some vertices of
the SBM to change their block memberships over time [22],
[24]; in this case, the MREG can still represent those models,
but the dimension d may need to increase. Actually, it turns
out that if d is allowed to be as large as nðn�1Þ

2 , MREG can
represent any distribution on binary graphs, which includes
distributions in which edges are not independent.

Theorem 2.1. Given any distribution F on graphs and a random
adjacency matrixA � F , there exists a dimension d, a distribu-
tion F on Rd, and a set of vectors fhkgdk¼1, such that
A � MREGðF; h1; . . . ; hdÞ.
Theorem 2.1 implies thatMREG is really a semi-parametric

model, which can capture any distribution on graphs. One
can model any set of graphs by MREG with the guaran-
tee that the true distribution is in the model with d being

large enough. However, in practice, a smaller d may lead
to better inference performance due to reduction in the
dimensionality.

In the next section, we consider the joint embedding
algorithm which can be understood as a parameter estima-
tion procedure for MREG.

3 JOINT EMBEDDING

3.1 Joint Embedding of Graphs

The joint embedding method considers a collection of ver-
tex-aligned graphs, and estimates a common embedding
space across all graphs and a loading for each graph. Specif-
ically, it simultaneously identifies a subspace spanned by a
set of rank one symmetric matrices and projects each adja-
cency matrix Ai into the subspace. The coefficients obtained
by projecting Ai are denoted by �̂i 2 Rd, which is called the
loading for graph i. To estimate rank one symmetric matri-
ces and loadings for graphs, the algorithm minimizes the
sum of squared Frobenius distances between adjacency
matrices and their projections as described below.

Definition Joint Embedding of Graphs (JE). Given m
graphs fGigmi¼1 with Ai being the corresponding adjacency
matrix, the d-dimensional joint embedding of graphs fGigmi¼1 is
given by

ð�̂1; . . . ; �̂m; ĥ1; . . . ; ĥdÞ ¼ argmin
�i;khkk¼1

Xm
i¼1

kAi �
Xd
k¼1

�i½k�hkh
T
k k2:

(1)

Here, k � k denotes the Frobenius norm and �i½k� is the kth
entry of vector �i.

To make sure that the model is identifiable and avoid the
scaling factor, hk is required to have norm 1. In addition,
fhkh

T
k gdk¼1 must be linearly independent to avoid identifi-

ability issues in estimating �i; however, fhkgdk¼1 needs not
to be linearly independent or orthogonal. To ease the nota-
tions, let us introduce two matrices LL 2 Rm�d and
H 2 Rn�d, where �i is the ith row of L and hk is the kth row
of H; that is, LL ¼ ½�T

1 ; . . . ; �
T
m� and H ¼ ½h1; . . . ; hd�. The

Equation (1) can be rewritten using LL andH as

ðL̂L; ĤÞ ¼ argmin
LL;khkk¼1

Xm
i¼1

kAi �
Xd
k¼1

LLikhkh
T
k k2:

Denote the function on the left hand side of the equation by
fðLL;HÞ which is explicitly a function of �is and hks. There
are several alternative ways to formulate the problem. If
vector �i is converted into a diagonal matrix Di 2 Rd�d by
putting entries of �i on the diagonal of Di, then solving
Equation (1) is equivalent to solving

argmin
Di;khkk¼1

Xm
i¼1

kAi �HDiH
Tk2

subject to Di being diagonal.

Equation (1) can be also viewed as a tensor factorization
problem. If fAigmi¼1 are stacked in a 3-D array A 2 Rm�n�n,
then solving Equation (1) is also equivalent to

Fig. 1. Relationships between random graph models on 1 graph and
multiple graphs. The top panel shows the relationships between the
random graph models on 1 graph. The models considered are those
conditioned on latent positions, that is t, X and � in SBM, RDPG and
MREG respectively are treated as parameters. ER is a 1-block SBM. If a
graph follows SBM with a positive semidefinite edge probability matrix, it
also follows the RDPG model. Any SBM and RDPG graph can be repre-
sented by a d-dimensional MREG model with d being less than or equal
to the number of blocks or the dimension of RDPG. On one graph, inho-
mogeneous ER (IER), n-dimensional MREG and n-block SBM are
equivalent. The bottom panel shows the relationships between the
random graph models on multiple graphs. The models considered are
those conditioned on latent positions, and for ER, SBM and RDPG
graphs are sampled i.i.d. with the same parameters. In this case, MREG
has the flexibility to have � differ across graphs, which leads to a more
generalized model for multiple graphs.
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argmin
LL;khkk¼1

kA�
Xd
k¼1

LL
k � hk � hkk2;

where � denotes the tensor product and LL
k is the kth col-
umn of LL. It is well known in the tensor factorization com-
munity that the solution to Equation 1 may not necessarily
exist for d � 2. This phenomenon was first found by Bini
et al. [25], and Silva and Lim gives a characterization all
such tensors in the order-3 rank-2 case [26]. Although there
may not exist a global minimum, finding the local solution
in a compact region still provide significant insights to the
data. We design an algorithm which is guaranteed to con-
verge, and provide analysis under the d ¼ 1 case.

The joint embedding algorithm assumes the graphs are
vertex-aligned and undirected. The vertex-aligned graphs
are common in many applications of interest such as neuro-
imaging [27], multilayer networks [28] or time-varying
graphs [7]. In case that the graphs are not aligned, graph
matching should be performed before the joint embedding
[29], [30]. The mis-alignments of some vertices will have
adverse effects in estimating corresponding latent positions
in H; however, a small number of mis-aligned vertices
should not have a big impact in estimating LL. If the graphs
have weighted edges, the joint embedding can still be
applied. Also, the MREG model can be easily extended to
weighted graphs by replacing the Bernoulli distribution
with other proper distributions. In fact, in the experiment of
Section 5.3, the graphs are weighted, where the edge
weights are the log of fiber counts across regions of brains.
In case of directed graphs, to apply the joint embedding,
one can symmetrize the graph by removing the direction of
edges. Alternatively, hkh

T
k in Equation (1) can be replaced

by hkg
T
k , with hk and gk representing the in and out latent

positions respectively. With this modification, Equation (1)
becomes the tensor factorization problem [31].

The optimization problem in Equation (1) is similar to
Principal Component Analysis (PCA) in the sense of mini-
mizing squared reconstruction error to recover loadings
and components [5]. However, there are extra symmetries
and rank constraints on the components. Specifically, if
hkh

T
k is replaced by a matrix Sk in Equation (1)

ð�̂1; . . . ; �̂m; Ŝ1; . . . ; ŜdÞ ¼ argmin
�i;S

Xm
i¼1

kAi �
Xd
k¼1

�i½k�Skk2;

(2)

the problem can be solved by applying PCA on vectorized
adjacency matrices. In this case, there is a Sk to estimate for
each latent dimension which has nðnþ1Þ

2 parameters. Com-
pared to PCA, the joint embedding estimates a rank one
matrix hkh

T
k for each latent dimension which has n parame-

ters, and hk can be treated as latent positions for vertices,
but the joint embedding yields a larger approximation error
due to the extra constraints. Similar optimization problems
have also been considered in the simultaneous diagonaliza-
tion literature [32], [33]. The difference is that the joint
embedding is estimating an n-by-d matrix H by minimizing
reconstruction error instead of finding a n-by-n non-singular
matrix by trying to simultaneously diagonalize all matri-
ces. The problem in Equation (1) has considerably fewer

parameters to optimize, which makes it more stable and
applicable with n being moderately large. In case of embed-
ding only one graph, the joint embedding is equivalent to the
Adjacency Spectral Embedding solved by singular value
decomposition [11]. Next, we describe an algorithm to opti-
mize the objective function fðLL;HÞ.

3.2 Alternating Descent Algorithm

The joint embedding of fGigmi¼1 is estimated by solving the
optimization problem in Equation (1). There are a few meth-
ods proposed to solve similar problems. Alternating least
squares (ALS) is a popular method to solve similar prob-
lems [31], [34], but often ignore symmetric constraints.
Gradient approaches have also been considered for similar
problems [35], [36]. We develop an alternating descent algo-
rithm to minimize fðLL;HÞ that combines ideas from both
approaches [37]. The algorithm can also be understood as a
block coordinate descent method with LL and H being the
two blocks [38], [39]. The algorithm iteratively updates one
of LL and H while treating the other parameter as fixed.
Optimizing LL when fixing H is straightforward, since it is
essentially a least squares problem. However, optimizing H
when fixing LL is hard due to the fact that the problem is
non-convex and there is no closed form solution available.
In this case, the joint embedding algorithm utilizes gradient
information and takes an Armijo backtracking line search
strategy to updateH [40].

Instead of optimizing all columns LL and H simulta-
neously, we consider a greedy algorithm which solves the
optimization problem by only considering one column of H
at a time. Specifically, the algorithm fixes all estimates for
the first k0 � 1 columns of LL and H at iteration k0, and then
the objective function is minimized by searching through
only the k0th column of LL andH. That is,

ðL̂L
k0 ; ĥk0Þ ¼ argmin
LL
k0 ;khk0k¼1

Xm
i¼1

kAi �
Xk0�1

k¼1

L̂Likĥkĥ
T
k

� LLik0hk0h
T
k0
k2: (3)

When m ¼ 1, by the Eckart-Young theorem, the solution for
ðL̂L1;k0 ; ĥk0Þ is given by the leading eigenvalue and eigenvec-

tor of A1 �
Pk0�1

k¼1 L̂L1kĥkĥ
T
k , and hence the solution obtained

by our greedy approach coincides with the eigendecompo-

sition of A1. If m > 1 there is no closed-form solution in

general, so we develop an optimization method next.
Let fðLL
k0 ; hk0Þ denote the sum on the left hand side of

the equation. To compute a d-dimensional joint embedding
ðL̂L; ĤÞ, the algorithm iteratively finds one component at a
time by solving the optimization for the one dimensional
embedding problem (3). Once a new component k0 is found,
the matrix of loadings L̂L is updated by minimizing the opti-
mization problem (1) with the first k0 components fixed at
ĥ1; . . . ; ĥk0 , resulting in the least squares problem

ðL̂L
1; . . . ; L̂L
k0Þ ¼ argmin
LL2Rm�k0

Xm
i¼1

kAi �
Xk0
k¼1

LLikĥkĥ
T
k k2: (4)

This step finds the projection of the graphs into the space
spanned by the first k0 components fĥkĥ

T
k gk0k¼1. The
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algorithm solves the d-dimensional embedding problem by
iteratively updating Ĥ and L̂L using Equations (3) and (4).

There are a few advantages in iteratively solving one
dimensional embedding problems. First, there are fewer
parameters to fit at each iteration, since the algorithm is
only allowed to vary hk0 at iteration k0. This makes ini-
tialization and optimization steps much easier compared
to optimizing all columns of H simultaneously. Second,
it implicitly enforces an ordering on the columns of H.
This ordering allows us to select the top few columns of
LL and H in cases where model selection is needed after
the joint embedding. Third, it allows incremental compu-
tation. If d and d0 dimensional joint embeddings are both
computed, the first minðd; d0Þ columns of Ĥ will be the
same. Fourth, although the global rank-d tensor approxi-
mation problem does not always have a solution for
d � 2, a one dimensional embedding that corresponds to
a rank-1 tensor approximation always have a solution
[26]. Finally, based on numerical experiments, the differ-
ence between optimizing iteratively and optimizing all
the parameters when d is small is negligible; however,
the iterative algorithm yields a slightly smaller objective
function when d is large. The disadvantage of optimizing
each column separately is that the algorithm is more
likely to end up at a local minimum when the objective
function is structured not in favor of embedding itera-
tively. In practice, this problem can be mitigated by run-
ning the joint embedding algorithm several times with
random initializations.

To find LL
k0 and hk0 in Equation (3), the algorithm

needs to evaluate two derivatives: @f
@hk0

and @f
@LLik0

. Denote by

Rik0 the residual matrix after iteration k0 � 1 which is

Ai �
Pk0�1

k¼1 L̂Likĥkĥ
T
k . The gradient of the objective function

with respect to hk0 is given by

@f

@hk0

¼ �4
Xm
i¼1

LLik0ðRik � LLik0hk0h
T
k0
Þhk0 : (5)

The derivative of the objective function with respect to LLik0

is given by

@f

@LLik0

¼ �2hRik � LLik0hk0h
T
k0
; hk0h

T
k0
i:

Setting the derivative to 0 yields

L̂Lik0 ¼ hRik; hk0h
T
k0
i; (6)

where h�; �i denotes the inner product.
Once a new component ĥk0 ĥ

T
k0

is obtained, the algorithm
proceeds to update LL by solving the optimization problem
(4). Note that the problem can be split into m least square
subproblems, one for each graph Ai, of the form

ðL̂Li1; . . . ; L̂Lik0Þ ¼ argmin
LL2Rk0

kAi �
Xk0
k¼1

LLkĥkĥ
T
k k2;

for each i ¼ 1; . . . ;m. By obtaining the derivative with
respect to LL for all i ¼ 1; . . . ;m and setting them equal to
zero, LL is updated by solving m systems of linear equations
with k0 variables each. Let GG be a k0 � k0 matrix and CC be a

k0 �m matrix such that GGkj ¼ ðĥT
j ĥkÞ2 and CCki ¼ ðĥT

kAiĥkÞ.
The algorithm updates the first k0 columns of LL by solving

GGL̂LT

;1:k0 ¼ CC: (7)

The joint embedding algorithm alternates between
updating L̂L
k0 and ĥk0 according to Equations (5) and (6),
after which the values of all the loadings ðL̂L
1; . . . ; L̂L
k0Þ are
updated using Equation (7). Algorithm 1 describes the gen-
eral procedure to compute the d-dimensional joint embed-
ding of graphs fGigmi¼1. The algorithm outputs two
matrices: L̂L and Ĥ. The rows of L̂L denoted by f�̂igmi¼1 can be
treated as estimates of f�igmi¼1 in MREG and features for
graphs. Columns of Ĥ denoted by fĥkgdk¼1 are estimates of

fhkgdk¼1. If a new graph G is observed with adjacency matrix

A, A can be projected into the linear space spanned by

fĥkĥ
T
k gdk¼1 to obtain features for the graph.

In case of Ai being large, the updating Equations (5) and
(6) are not practical due to hkh

T
k and Rik being large and

dense. However, they can be rearranged to avoid explicit
computation of hkh

T
k and Rik. Equation (5) becomes

@f

@hk0

¼ �4
Xm
i¼1

LLik0Aihk0 þ 4
Xm
i¼1

LLik0

Xk0�1

k¼1

LLikðhT
k hk0Þhk þ 4

�
Xm
i¼1

LL2
ik0

hk0 :

Similarly, Equation (6) can be rewritten as

L̂Lik0 ¼ hT
k0
Aihk0 �

Xk0�1

k¼1

LLikðhT
k0
hkÞ2:

Based on the rearranged equations, efficiently evaluating
matrix vector product Aihk0 is needed to calculate the deriv-
atives. This can be completed for a variety of matrices, in
particular, sparse matrices [41].

The Algorithm 1 is guaranteed to converge to a station-
ary point. Specifically, at the termination of iteration k0,
@f
@hk0

 0 and @f
@LLik0

 0. First, @f
@LLik0

 0 is ensured due to exact

updating by Equation (6). Second notice that updating
according to Equations (5) and (6) always decreases the
objective function. Due to the fact that hk0 lies on the unit
sphere and the objective is twice continuous differentiable,
@f
@hk0

is Lipschitz continuous. This along with Armijo back-

tracking line search guarantees a “sufficient” decrease

ck @f
@hk0

k2 in objective function each time when the algorithm

updates hk0 [40], where c is a constant independent of hk0 .
Since the objective function is bounded below by 0, this
implies convergence of gradient, that is @f

@hk0
! 0.

The joint embedding of graphs model requires for identi-
fiability that the basis of the embedding space fhkh

T
k gmk¼1

is linearly independent. This condition also ensures that
Equation (4) has a unique solution. Although the optimiza-
tion problem (3) does not directly enforce this constraint,
the next theorem guarantees that the components obtained
by our method are linearly independent. The proof is given
in the appendix.
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Theorem 3.1. Suppose that L̂L ¼ ðL̂L
1; . . . ; L̂L
k0Þ and

Ĥ ¼ ½ĥ1; . . . ; ĥk0 � are obtained by iteratively solving (3) and

(4) for k0 components, and the first k0 � 1 components

fĥkĥ
T
k gk0�1

k¼1 are linearly independent. Then fĥkĥ
T
k gk0k¼1 are also

linearly independent, or L̂Lik0 ¼ 0 for all i ¼ 1; . . . ;m.

In general, the objective function may have multiple sta-
tionary points due to non-convexity. Therefore, the joint
embedding algorithm is sensitive to initializations. Actually,
like many of the problems in tensor factorization, finding the
global minimum in joint embedding is NP-Hard [42]. When
time permits, we recommend running the joint embedding
several times including many random initializations. In
Section 5.1, we study the effects of different initialization
approaches through a numerical simulation experiment. For
other simulation and real experiments, we initialize ĥk0 using
the top left singular vector of the average residual matrixP

Rik0=m. Computing this vector is computationally cheap
compared to the computational cost of the joint embedding
when the number of graphsm is larger than 1. Whenm ¼ 1,
the SVD initialization and the joint embedding solution coin-
cide, and when m > 1 the SVD initialization gives a good
approximation to the solution if all the graphs are identically
distributed. The optimization algorithm described above
may not be the fastest approach to solving the problem; how-
ever, numerical optimization is not the focus of this paper.
Based on results from numerical applications, our approach
works well in estimating parameters and extracting features
for subsequent statistical inference. Next, we discuss some
variations of the joint embedding algorithm.

Algorithm 1. Joint Embedding

1: procedure FIND JOINT EMBEDDING L̂L; Ĥ of fAigmi¼1

2: Set residuals: Ri1 ¼ Ai

3: for k ¼ 1 : d do
4: Initialize hk and LL
k
5: while not convergent do
6: Fixing LL
k, update hk by gradient descent (5)
7: Project hk back to the unit sphere
8: Fixing hk, update LL
k by (6)
9: Compute objective

Pm
i¼1 kRik � LLikhkh

T
k k2

10: end while
11: Update LL by solving (7)
12: Update residuals: Riðkþ1Þ ¼ Ai �

Pk
j¼1 LLijhjh

T
j

13: end for
14: Output L̂L ¼ ½LL
1; . . . ;LL
d� and Ĥ ¼ ½h1; . . . ; hd�
15: end procedure

3.3 Variations

The joint embedding algorithm described in the previous
section can be modified to accommodate several different
settings.

Variation 1. When all graphs come from the same distri-
bution, we can force estimated loadings �̂i to be equal
across all graphs. This is useful when the primary
inference task is to extract features for vertices. Since
all graphs share the same loadings, with slightly abus-
ing notations, let LL be a vector in Rd and the optimiza-
tion problem becomes

ðL̂L; ĤÞ ¼ argmin
LL;khkk¼1

Xm
i¼1

kAi �
Xd
k¼1

LLkhkh
T
k k2;

which is equivalent to

ðL̂L; ĤÞ ¼ argmin
LL;khkk¼1

k 1

m

Xm
i¼1

Ai �
Xd
k¼1

LLkhkh
T
k k2:

Therefore, the optimization problem can be solved
exactly by finding the singular value decomposition of
the average adjacency matrix 1

m

Pm
i¼1 Ai.

Variation 2. When there is a discrete label yi 2 Y associated
with the graph Gi available, we may require all loadings
�̂i to be equal within class. Let LL 2 RjYj�d, the optimiza-
tion problem becomes

ðL̂L; ĤÞ ¼ argmin
LL;khkk¼1

Xm
i¼1

kAi �
Xd
k¼1

LLyikhkh
T
k k2:

In this case, when updating LL as in Equation (6), the algo-
rithm should averageLLyk within the same class, that is

L̂Lyk ¼
Xm
i¼1

Ifyi ¼ yghRik; hk0h
T
k0
i

 !� Xm
i¼1

Ifyi ¼ yg
 !

:

Variation 3. In some applications, we may require all LLik to
be greater than 0, as in non-negative matrix factorization.
One advantage of this constraint is that graph Gi may be
automatically clustered based on the largest entry of �̂i.
In this case, the optimization problem is

ðL̂L; ĤÞ ¼ argmin
LL�0;khkk¼1

Xm
i¼1

kAi �
Xd
k¼1

LLikhkh
T
k k2:

To guarantee nonnegativity, the algorithm should use
nonnegative least squares in updating LL [43]. Further-
more, a constraint on the number of non-zero elements
in ith row of LL can be added as in K-SVD [44], and a basis
pursuit algorithm could be used to update LL [45], [46].
Next, we discuss some theoretical properties of the
MREG model and joint embedding when treated as a
parameter estimation procedure for the model.

4 THEORETICAL RESULTS

In this section, we consider a simple setting where
graphs follow a 1-dimensional MREG model, that is
fð�i;AiÞgmi¼1 � MREGðF; h1Þ. The 1-dimensional joint
embedding is well defined in this case, that is �̂i and ĥ1

defined in Equation 1 is guaranteed to exist. Under this
MREG model, the joint embedding of graphs can be under-
stood as estimators for parameters of the model. Specifically,
�̂i and ĥ1 are estimates of �i and h. We prove two theorems
concerning the asymptotic behavior of estimator ĥ1 produced
by joint embedding.

Let ĥm
1 denote the estimates based on m graphs and

define functions r,Dm andD as below:

rðAi; hÞ ¼ kAi � hAi; hh
T ihhTk2;
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Dmðh; h1Þ ¼ 1

m

Xm
i¼1

rðAi; hÞ;

Dðh; h1Þ ¼ EðrðAi; hÞÞ:

One can understand Dm and D as sample and population
approximation errors respectively. By Equation (1),

ĥm
1 ¼ argmin

khk¼1

argmin
�i

Xm
i¼1

kAi � �ihh
Tk:

By Equation (6),

hAi; hh
T i ¼ argmin

�i

Xm
i¼1

kAi � �ihh
Tk:

Therefore,

ĥm
1 ¼ argmin

khk¼1

Dmðh; h1Þ:

The first theorem states that ĥm
1 converges almost surely to a

global minimum of Dðh; h1Þ. Alternatively, the theorem
implies the sample minimizer converges to the population
minimizer.

Theorem 4.1. The estimator ĥm
1 converges almost surely to

the set of global minimizers of Dðh; h1Þ as m goes to infinity.
That is,

P lim
m!1 ĥm

1 2 argmin
h

Dðh; h1Þ
� �

¼ 1:

Theorem 4.1 ensures that, in the limit, ĥm is arbitrarily
close to parameters in the set of global minimizer of
Dðh; h1Þ. However, the global minimizer is definitely not
unique due to the symmetry up to sign flip of h, that is
Dðh; h1Þ ¼ Dð�h; h1Þ for any h. This problem can be
addressed by forcing an orientation of ĥm

1 or stating that the
convergence is up to a sign flip. In this case, Theorem 4.1
does not apply. We are currently only certain that when all
graphs are from the Erdos-Renyi random graph model, the
global minimizer is unique up to a sign flip. The next theo-
rem concerns the asymptotic bias of h0. It gives a bound on
the difference between the population minimizer h0 and the
truth h1.

Theorem 4.2. If h0 is a minimizer ofDðh; h1Þ, then

kh0 � h1k 	 2Eð�iÞ
Eð�2

i ÞðhT
1 h

0Þ2 :

To see an application of Theorem 4.2, let us consider the
case in which all graphs are Erdos-Renyi graphs with 100
vertices and edge probability of 0.5. Under this setting, The-
orem 4.2 implies kh0 � h1k 2 ½0; 0:04� [ ½1:28; 1:52�. The sec-
ond interval is disturbing. It is due to the fact that when
hT
1 h

0 is small, the bound is useless. We provide some
insights as to why the second interval is there and how we
can get rid of it with additional assumptions. In the proof of
Theorem 4.2, we show that the global optimizer h0 satisfies

h0 ¼ argmax
khk¼1

EðhAi; hh
T i2Þ:

Taking a closer look at EðhAi; hh
T i2Þ,

EðhAi; hh
T i2Þ ¼ EðhPi; hh

T i2Þ þ EðhAi � Pi; hh
T i2Þ

¼ Eð�2
i ÞðhT

1 hÞ4 þ EððhT ðAi � PiÞhÞ2Þ:
Therefore,

h0 ¼ argmax
khk¼1

Eð�2
i ÞðhT

1 hÞ4 þ EððhT ðAi � PiÞhÞ2Þ:

We can see that Eð�2
i ÞðhT

1 hÞ4 is maximized when h ¼ h1;

however, the noise term EððhT ðAi � PiÞhÞ2Þ is generally not
maximized at h ¼ h1. If n is large, we can apply a concentra-

tion inequality to ðhT ðAi � PiÞhÞ2 and have an upper bound

on EððhT ðAi � PiÞhÞ2Þ. If we further assume Ai is not too

sparse, that is Eð�2
i Þ grows with n fast enough, then the sum

of these two terms is dominated by the first term. This pro-
vides a way to have a lower bound on hT

1 h
0. We may then

replace the denominator of the bound in Theorem 4.2 by the
lower bound. In general, if n is small, the noise term may
cause h0 to differ from h1 by a significant amount. In this
chapter, we focus on the case that n is fixed. The case that n
goes to infinity for Random Dot Product Graph is consid-
ered in [47].

The two theorems above concern only the estimation of
h1, but not �i. Based on Equation (6), the joint embedding
estimates �i by

�̂m
i ¼ hAi; ĥ

m
1 ĥ

mT
1 i:

Whenm goes to infinity, we can apply Theorem 4.1,

�̂m
i ¼ hAi; ĥ

m
1 ĥ

mT
1 i !a:s: hAi; h

0h0T i ¼ h0TAih
0:

Then, applying the bound on kh0 � h1kderived in Theorem4.2

and utilizing the fact that hTAih is continuous in h, we can

obtain an upper bound on j�̂m
i � hT

1Aih1j. When Ai is large,

hT
1Aih1 is concentrated around �i with high probability. As a

consequence, with high probability j�̂m
i � �1j is small. In the

next section, we demonstrate properties and utilities of the

joint embedding algorithm through experiments.

5 EXPERIMENTS

Before going into details of our experiments, we want to dis-
cuss how to select the dimensionality d of the joint embed-
ding. Estimating d is an important model selection question
that has been studied for years under various settings [48].
Model selection is not the focus of this paper, but we still
face this problem in numerical experiments. In the simula-
tion experiments of this section, we assume d is known to
us and simply set the dimensionality estimate d̂ equal to d.
In the real data experiment, we recommend two approaches
to determine d̂. Both approaches require first running the
d0-dimensional joint embedding algorithm, where d0 is suffi-
ciently large. We then plot the objective function versus
dimension, and determine d̂ to be where the objective starts
to flatten out. Alternatively, we can plot fL̂Likgmi¼1 for
k ¼ 1; . . . ; d0, and select d̂ when the loadings start to look
like noise with 0 mean. These two approaches should yield
a similar dimensionality estimate of d̂.
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5.1 Simulation Experiment 1: Joint Embedding
Under a Simple Model

In the first experiment, we present a simple numerical
example to demonstrate some properties of the joint embed-
ding procedure as the number of graphs grows. We repeat-
edly generate graphs with 20 vertices from 3-dimensional
MREG, where �i½1� � Uniformð8; 16Þ, �i½2� � Uniformð0; 2Þ
and �i½3� � Uniformð0; 1Þ, with

h1 ¼ ½1; 1; 1; . . . ; 1�=
ffiffiffiffiffi
20

p

h2 ¼ ½1;�1; 1;�1; 1;�1; . . . ;�1�=
ffiffiffiffiffi
20

p

h3 ¼ ½1; 1;�1;�1; 1; 1;�1;�1; . . . ;�1�=
ffiffiffiffiffi
20

p
:

We keep doubling the number of graphs m from 24 to 212.
At each value of m, we compute the 3-dimensional joint
embedding of graphs. Let the estimated parameters based

on m graphs be denoted by �̂m
i and ĥm

k . Two quantities

based on ĥm
k are calculated. The first is the norm difference

between the current hk estimates and the previous esti-

mates, namely kĥm
k � ĥ

m=2
k k. This provides numerical evi-

dence for the convergence of our principled estimation

procedure. The second quantity is kĥm
k � hkk. This investi-

gates whether ĥk is an unbiased estimator for hk. The proce-

dure described above is repeated 20 times. Fig. 2 presents

the result.
Based on the plot, the norm of differences kĥm

k � ĥ
m=2
k k

seem to converge to 0 as m increases. This suggests the con-
vergence of ĥm

1 . Second, we notice that the bias kĥm
2 � h2k

and kĥm
3 � h3k do not converge to 0; instead, it stops

decreasing at around 0.1 and 0.2 respectively. This suggests
that ĥk is an asymptotically biased estimator for hk. Actu-
ally, this is as to be expected: when there are infinitely many
nuisance parameters present, Neyman and Scott demon-
strate that maximum likelihood estimator is inconsistent
[49]. In our case, there are infinitely many �i as m grows;
therefore, we do not expect the joint embedding to provide
an asymptotic consistent estimate of hk.

In applications such as clustering or classifying multiple
graphs, we may be not interested in ĥk. �̂i is of primary
interest, which provides information specifically about the
graphs Gi. Here, we consider two approaches to estimate

�i½1�. The first approach is estimating �i½1� through joint
embedding, that is

�̂i½1� ¼ hAi; ĥ
m
1 ĥ

mT
1 i:

The second approach estimates �i by assuming h1 is known.
In this case, Equation (6) gives

�̂i½1� ¼ hAi; h1h
T
1 i:

�̂i½1� calculated this way can be thought as the ‘oracle’ esti-
mate. Fig. 3 shows the differences in estimates provided by
two approaches. Not surprisingly, the differences are small
due to the fact that ĥm

1 and h1 are close.
Next, we investigate the effects of four different ini-

tialization approaches. The first approach utilizes SVD on
average residual matrix to initialize hk at each iteration.
The second approach randomly samples independent
Gaussian variable for each entry of hk. The third approach
takes the best initialization among 10 random initializa-
tions. The fourth approach initializes hk using the truth.
To compare these approaches, we generate 16 graphs
from the MREG model and jointly embed them with four
different initializations. Then, another 16 graphs are gen-
erated and the objective function on these graphs are
evaluated using Ĥ estimated by joint embedding. This
procedure is repeated 100 times. Mean objective function
and total running time with standard error of these four
approaches are shown in Table 1. Based on Wilcoxon
signed-rank test, SVD and truth initializations are signifi-
cantly better than random initializations on this scenario.
For the rest experiments, the initialization is completed
by SVD.

Fig. 2. Mean bias (kĥm
k � hkk) and mean difference between estimates

(kĥm
k � ĥ

m=2
k k) across 20 simulations are shown. The standard errors are

also given by error bars. The graphs are generated from a 3-dimensional
MREG model as described in Section 5.1. ĥm

k has small asymptotic bias;
however, it seems to converge asm increases.

Fig. 3. Distribution of differences between �̂i½1� estimated using ĥm
1 and

h1. The graphs are generated from the three-dimensional MREG model
as described in section 5.1. The differences are small due to the fact
that ĥm

1 and h1 are close.

TABLE 1
Objective Function and Running Time

of Four Initialization Approaches

Initialization Objective Running time (sec.)

SVD 375.22(1.21) 8.3(1.0)
1 Random 383.29(1.60) 9.2(1.4)
Best of 10 Random 379.63(1.39) 96.5(5.3)
Truth 374.69(1.22) 7.8(1.0)

The standard error is shown in parenthesis. SVD and truth initializations are
significantly better than random initializations on this scenario.
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5.2 Simulation Experiment 2: Joint Embedding
to Classify Graphs

In this experiment, we consider the inference task of classi-
fying graphs. We have m pairs fðAi; yiÞgmi¼1 of observations.
Each pair consists of an adjacency matrix Ai 2 f0; 1gn�n and
a label yi 2 ½K�. Furthermore, all pairs are assumed to be
independent and identically distributed according to an
unknown distribution FA;y, that is

ðA1; y1Þ; ðA2; y2Þ; . . . ; ðAm; ymÞ �<i:i:d:
FA;y:

The goal is to find a classifier g which is a function
g : f0; 1gn�n ! ½K� that has a small classification error
Lg ¼ P ðgðAÞ 6¼ yÞ.

We consider a binary classification problemwhere y takes
value 1 or 2. 200 graphs with 100 vertices are independently
generated. The graphs are sampled from a 2-dimensional
MREGmodel. Let h1 and h2 be two vectors inR100, and

h1 ¼ ½0:1; . . . ; 0:1�T , and h2 ¼ ½�0:1; . . . ;�0:1; 0:1; . . . ; 0:1�T :
Here, h2 has �0:1 as its first 50 entries and 0.1 as its last 50
entries. Graphs are generated according to the MREG
model,

fð�i;AiÞg200i¼1 � MREGðF; h1; h2Þ; (8)

where F is a mixture of two point masses with equal
probability,

F ¼ 1

2
If� ¼ ½25; 5�g þ 1

2
If� ¼ ½22:5; 2:5�g:

We let the class label yi indicate which point mass �i is sam-
pled from. In terms of SBM, this graph generation scheme is
equivalent to

Aijyi ¼ 1 � SBM

�
ð1; . . . ; 1; 2; . . . ; 2Þ; 0:3 0:2

0:2 0:3

� ��

Aijyi ¼ 2 � SBM

�
ð1; . . . ; 1; 2; . . . ; 2Þ; 0:25 0:2

0:2 0:25

� ��
:

To classify graphs, we first jointly embed 200 graphs. The
first two dimensional loadings are shown in Fig. 4. We can
see two classes are separated after being jointly embedded.

Then, a 1-nearest neighbor classifier (1-NN) is constructed
based on loadings f�̂igmi¼1.

We compare classification performances of using the
joint embedding to extract features to five other feature
extraction approaches: Adjacency Spectral Embedding,
Laplacian Eigenmap, Graph Statistics, Graph Spectral Statis-
tics, and PCA. For Adjacency Spectral Embedding (ASE)
and Laplacian Eigenmap (LE), we first embed each adja-
cency matrix or normalized Laplacian matrix and then com-
pute the Procrustes distance between embeddings. For
Graph Statistics (GS), we compute topological statistics of
graphs considered by Park et al. in [7]. For Graph Spectral
Statistics (GSS), we compute the eigenvalues of adjacency
matrices and treat them as features [50]. For PCA, we vec-
torize the adjacency matrices and compute the factors
through SVD. After the feature extraction step, we also
apply a 1-NN rule to classify graphs. We let the number of
graphs m increase from 4 to 200. For each value of m, we
repeat the simulation 100 times. Fig. 5 shows the result.
The joint embedding takes advantage of increasing sample
size and outperforms other approaches when given more
than 10 graphs.

5.3 Real Data Experiment 1: Subject Classification
on HNU1 Data

In this section, we use the HNU1 data [51] to classify graphs
from different subjects. These data consist of diffusion ten-
sor imaging (DTI) records of the brain of 30 healthy differ-
ent subjects, each of which was scanned 10 times over a
period of one month. Each scan was processed with the
NeuroData’s MRI to Graphs (NDMG) pipeline [52] using
the Talairach atlas [53] to register the vertices, and we
obtained a sample of 300 graphs (10 graphs per subject),
each of which is composed of 1105 vertices.

It has been suggested that the information encoded in
patterns of brain connectivity can uniquely identify differ-
ent subjects [54], [55], and there is some evidence of low-
rank structure in those differences [56], [57]. We study how

Fig. 4. Scatter plot of loadings computed by jointly embedding 200
graphs. The graphs are generated from the two-dimensional MREG
model as described in Equation (8). The loadings of two classes are sep-
arated after being jointly embedded.

Fig. 5. Mean classification accuracy of joint embedding, Adjacency Spec-
tral Embedding, Laplacian Eigenmap, Graph Statistics, Graph Spectral
Statistics, and PCA with their standard errors are shown. The graphs are
generated from a two-dimensional MREG model as described in the
Equation (8). The features are first extracted using methods described
above; subsequently, we apply a one-NN to classify graphs. For each
value of m, the simulation is repeated 100 times. ASE, LE, GS, and GSS
do not take advantage of increasing sample size in the feature extraction
step. PCA has poor performance when the sample size is small. Joint
embedding takes advantage of increasing sample size and outperforms
other approaches when given more than 10 graphs.
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low-dimensional representations can capture inter-individual
variability by using the HNU1 data to classify subject scans.
The joint embedding of graphs is an ideal method for this
task, since it provides a low-rank representation of each of the
graphswhich is jointly learned from the sample.

The information encoded in the adjacencymatrices can be
used to accurately discriminate between different individu-
als. This can be confirmed by a 1-NN classifier using the vec-
torized adjacency matrices, which gives an almost perfect
classification accuracy. However, our goal here is to study
the accuracy of low-dimensional representations of the
graphs to discriminate between subjects. Thus, we measure
how does our joint dimensional embeddingmethod perform
as the number of embedding dimensions grows. We com-
pare the performance of our method with PCA, as another
dimensionality reductionmethod. Note that the joint embed-
ding of graphs directly imposes a rank-one restriction on the
components, enforcing a low-rank representation of the
graphs. PCA instead represents the adjacencymatrices using
components that are usually full rank, and requires many
more parameters to represent those components.

Before computing the embedding, all graphs are centered

by the mean, that is, we compute ~Ai ¼ Ai � 1
300

P300
j¼1 Aj.

Using a 5-fold cross-validation, the data of each subject is
divided into training and test sets. We measure the effect of
the sample size using two different scenarios, the first uses
30 graphs on the training set (one scan per subject) and the
second uses 240 graphs (eight scans per subject). The rest of
the graphs are used in the test set to evaluate the accuracy,
and the average over the 5 folds is computed. We follow the
same procedure as in experiment 1. Using the training set,
we compute an embedding of the graphs into d dimensions,
either by doing JEG or PCA on the vectorized adjacency
matrices. After that, all the data is projected into the
d-dimensional embedding, and we use 1-NN to estimate the
labels of the test data.

Fig. 6 shows a comparison of the average classification
accuracy and model complexity for both methods. We mea-
sure model complexity as the number of embedding dimen-
sions d, and as the total number of parameters used in each
instance (dðnþmÞ for JEG and dðn2 þmÞ for PCA). In gen-
eral, both methods are able to perform very accurate classifi-
cation when d is large enough, but JEG uses far fewer

parameters in the components for the same number of
dimensions (see middle plot). The advantage of JEG is espe-
cially remarkable when the sample size is small (first row).
In this case, JEG shows a better performance than PCA
when d is not large. For values close to 30, PCA shows
almost perfect performance, which is not surprising, since
the maximum number of principal components that can be
obtained by PCA is m ¼ 30, and thus PCA is not really per-
forming any dimensionality reduction when d is close to
this value, but rather projecting onto the training data itself.
JEG on the other hand is able to provide very accurate clas-
sification error in all scenarios using low-rank representa-
tions of the graphs with a fewer number of parameters that
are interpretable. These can be observed in Fig. 7, which
shows the latent positions of the vertices obtained by JEG
for the first seven dimensions. To construct these plots, only
the vertices that are labeled as left (507 of them) or right
(525) were considered. As it can be observed, several dimen-
sions of the latent positions show a structure that is clearly
related to the hemisphere side. This structure is specially
highlighted on the 7th dimension of the embedding.

5.4 Real Data Experiment 2: Joint Embedding to
Cluster Vertices

In the previous experiments, we focus on feature extraction
for graphs. Here, we consider a different task, that is spectral
clustering through the joint embedding. In general, spectral
clustering first computes (generalized) eigenvalues and
eigenvectors of adjacency matrix or Laplacian matrix, then
clusters the latent positions into groups [11], [12]. The cluster
identities of latent positions become the cluster identities of
vertices of the original graph. Adjacency Spectral Embed-
ding (ASE) is one of the spectral clustering algorithms used
to find the latent positions of the vertices to fit the SBM and
RDPG [58], which are special cases of our MREG model.
When applied to one graph, the joint embedding is equiva-
lent to Adjacency Spectral Embedding (ASE). When given
multiple graphs, the joint embedding can estimate latent

positions for graph i as ½�̂i½1�
1
2ĥ1; �̂i½2�

1
2ĥ2; . . . ; �̂i½d�

1
2ĥd� or

equivalently ĤD̂
1
2
i . Alternatively, the matrix of components

Fig. 6. Comparison of average classification accuracy and model
complexity (number of embedding dimensions and description length)
for JEG and PCA on the HNU1 data. A d dimensional representation
is estimated using a training sample (top row: one graph per subject,
bottom row: eight graphs per subject), after which all data is embedded,
and the test data is classified using one-NN. The representations
obtained by JEG are more accurate with fewer model parameters than
PCA, especially when the sample size is small.

Fig. 7. Latent positions of the vertices found by JEG for the first seven
dimensions using the HNU1 data. The color indicates the hemisphere
side according to the Talairach atlas. The off-diagonal panels contain
scatter plots of the vertices and diagonal plots show the density. Several
dimensions of the embedding show a relationship between the latent
positions and the hemisphere side.
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Ĥ ¼ ½ĥ1; . . . ; ĥd� gives joint latent positions for all the graphs.
Then, a clustering algorithm can be applied to the latent posi-
tions to obtain communities.

We apply this spectral clustering approaches to two
Wikipedia graphs [59]. The vertices of these graphs repre-
sent Wikipedia article pages. Two vertices are connected by
an edge if either of the associated pages hyperlinks to the
other. Two graphs are constructed based on English web-
pages and French webpages. The full graph has 1382 verti-
ces which represents articles within 2-neighborhood of
“Algebraic Geometry”. Based on the content of the associ-
ated articles, they are grouped by hand into 6 categories:
people, places, dates, things, math terms, and categories.

We consider a subset of vertices from 3 categories: peo-

ple, things, and math terms. After taking the induced sub-

graph of these vertices and removing isolated vertices, there

are n ¼ 704 vertices left. Specifically, 326, 181, and 197 verti-

ces are from people, things and math terms respectively.

We consider approaches to embed the graphs to obtain
latent positions. First, we consider clustering of each graph

separately by doing ASE on the English graph Aen (ASE

+EN), or equivalently, JE on Aen, and ASE on the French

Graph Afr (ASE+FR), and compare with the individual

latent positions obtained by JE ĤD̂
1
2
en (JE+EN) and ĤD̂

1
2
fr (JE

+FR). We also consider methods to estimate joint latent
positions, by doing ASE on the mean of both graphs
�A ¼ ðAen þAfrÞ=2 (ASE+(EN+FR)) [56], and the matrix Ĥ
obtained by JE on both graphs (JE+(EN,FR)). The dimension
d is set to 3 for all approaches, and the latent positions are
scaled to have norm 1 for degree correction. Then, we apply
3-means algorithm to the latent positions.

The joint latent positions of the graphs Ĥ estimated
by the joint embedding are provided on Fig. 8. The latent
positions of math terms are separated from the other two
clusters. However, the latent positions of people and things
are mixed. Table 2 shows the clustering results measured
by adjusted rand index and the purity of clustering [60],
[61]. The standard error is estimated through repeatedly
clustering bootstrapped latent positions. All methods yield

clustering results which are significantly better than ran-
dom. The English graph demonstrates clearer community
structure than the French graph. The joint embedding pro-
duces latent positions that combine the information in
both graphs, and leads to better clustering performance.
The JE and ASE give similar results on the English graph,
but JE is able to improve the clustering performance on
the French graph significantly. The JE also shows better
performance than ASE on �A, which also uses the informa-
tion of both graphs. These results show that our method
provide interpretable representations for the vertices, with
an accuracy comparable to state of the art methods for
spectral clustering.

6 CONCLUSION

In summary, we developed a joint embedding method
that can simultaneously embed multiple graphs into low
dimensional space. The joint embedding can be utilized to
estimate features for inference problems on multiple vertex
matched graphs. Learning on multiple graphs has signifi-
cant applications in diverse fields and our results have
both theoretical and practical implications for the problem.
As the real data experiment illustrates, the joint embedding
is a practically viable inference procedure. We also pro-
posed a Multiple Random Eigen Graphs model. It can be
understood as a generalization of the Random Dot Product
Graph model or the Stochastic Block Model for multiple
random graphs. We analyzed the performance of joint
embedding on this model under simple settings. We dem-
onstrated that the joint embedding method provides esti-
mates with bounded error. Our approach is intimately
related to other matrix and tensor factorization approaches
such as singular value decomposition and CP decomposi-
tion. Indeed, the joint embedding and these algorithms all
try to estimate a low dimensional representation of high
dimensional objects through minimizing a reconstruction
error. We are currently investigating the utility of joint
embedding with more or less regularizations on parame-
ters and under different set ups. We are optimistic that our
method provides a viable tool for analyzing multiple
graphs and can contribute to a deeper understanding of
the joint structure of networks.

TABLE 2
Clustering Performance on Wikipedia Graphs

Method ARI Purity

ASE+EN 0.152 (0.02) 0.555 (0.018)
JE+EN 0.154 (0.019) 0.55 (0.019)

ASE+FR 0.114 (0.019) 0.521 (0.017)
JE+FR 0.154 (0.019) 0.549 (0.017)

ASE+(EN+FR) 0.155 (0.02) 0.547 (0.016)
JE+(EN, FR) 0.156 (0.02) 0.551 (0.021)

The adjusted rand index (ARI) and the purity of clustering of dif-
ferent spectral clustering approaches are shown. The first two sce-
narios consider each graph separately, and the third considers
them jointly. The standard error (included in parenthesis) is esti-
mated through repeatedly clustering bootstrapped latent positions.
The joint embedding estimates latent positions which combine the
information in both graphs with good clustering performance.

Fig. 8. The joint latent positions of Ĥ estimated by the JE are shown. The
first three plots on the diagonal are density estimates of latent positions
for each dimension and category, and the last plot shows the number
of points from each category. The first three plots of the last row show
latent positions histograms for each dimension and category, and the first
three plots of the last column are the corresponding box plots. The pairs
plots of latent positions are given in the off-diagonal panels. The latent
positions of math terms are separated from the other two clusters.
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