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Abstract—While numerous deep approaches to the problem of vision-aided localization have been recently proposed, systems

operating in the real world will undoubtedly experience novel sensory states previously unseen even under the most prodigious training

regimens. We address the localization problem with online error correction (OEC) modules that are trained to correct a vision-aided

localization network’s mistakes. We demonstrate the generalizability of the OEC modules and describe our unsupervised deep neural

network approach to the fusion of RGB-D imagery with inertial measurements for absolute trajectory estimation. Our network, dubbed

the Visual-Inertial-Odometry Learner (VIOLearner), learns to perform visual-inertial odometry (VIO) without inertial measurement unit

(IMU) intrinsic parameters or the extrinsic calibration between an IMU and camera. The network learns to integrate IMU measurements

and generate hypothesis trajectories which are then corrected online according to the Jacobians of scaled image projection errors with

respect to spatial grids of pixel coordinates. We evaluate our network against state-of-the-art (SoA) VIO, visual odometry (VO), and

visual simultaneous localization and mapping (VSLAM) approaches on the KITTI Odometry dataset as well as a micro aerial vehicle

(MAV) dataset that we collected in the AirSim simulation environment. We demonstrate better than SoA translational localization

performance against comparable SoA approaches on our evaluation sequences.

Index Terms—Visual-inertial odometry, unsupervised deep learning, refinement, localization, neural networks

Ç

1 INTRODUCTION

DESPITE remarkable successes in computer vision related
tasks such as image classification, deep approaches

are still generally outperformed by comparable shallow
approaches in the domains of vision-aided localization and
navigation (e.g., visual odometry (VO), visual-inertial odome-
try (VIO), and visual simultaneous localization and mapping
(VSLAM)). While unsupervised approaches have helped to
overcome the supervised dataset problems, robustness still
plagues deep approaches to vision-aided localization. In part,
this is due to the very low error tolerances of localization
problems-a single mistake while estimating the individual
poses that constitute a trajectory can cause catastrophic failure
and render the entire localization solution unusable.

It is impractical to train feedforward networks to handle
every foreseeable situation that might occur in the real
world. Instead, we propose to address the localization prob-
lem by baking in online error correction (OEC) modules
that can be trained to detect and correct mistakes in interme-
diate network outputs and ultimately produce lower error

estimates. A high-level overview of our architecture and its
OEC modules can be seen in Fig. 1.

Here we describe Visual-Inertial-Odometry Learner (VIO-
Learner) which is an unsupervised visual-inertial odometry
network that learns to correct its own mistakes at runtime
using novel trainable OEC modules. The OEC modules cor-
rect feedforward errors from intermediate network outputs to
prevent catastrophic failures and trajectory divergences.

While our approach is capable of operating with only mon-
ocular imagery and inertialmeasurement unit (IMU)measure-
ments when RGB-D imagery is unavailable (and thus will
generate unscaled trajectories; see Section 7.7.1 for more
detail), we have chosen to include depth in our input domain
as ameans of achieving absolute scale recovery:while absolute
depth can be generated using an onboard sensor, the same
cannot be said for the change in pose between image pairs.

We demonstrate superior performance compared to simi-
lar state-of-the-art (SoA) approaches. VIOLearner achieves
SoA performance onKITTI [1] for learning-based approaches.
To our knowledge,we are only the seconddeepvisual-inertial
approach (the first being VINet of [2]). Additionally, we show
how the OEC modules provide increased VIO robustness
against spatial misalignments between a camera and IMU
that plague SoA traditional approaches to VIO [3], [4], [5].

In addition to results presented in [6], here we thoroughly
evaluate the benefit of the OEC modules. In particular, we
separate the effects of the OEC modules from the pose esti-
mates extracted from IMU measurements by leveraging the
highly controlled nature of robotic simulation environments.
We evaluate our approach on simulated data from a quad-
copter in the Unreal Engine backed AirSim micro aerial
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vehicle (MAV) simulation package [7]. As described later in
Section 5.4.2, we are able to vary IMU-camera extrinsics
which allows us to empirically separate the effects of the dif-
ferentmodules in VIOLearner.

The main contribution of the approach here described is
the unsupervised learning of trajectory estimates with abso-
lute scale recovery fromRGB-D + inertial measurements with

� Built-in OEC modules;
� Real-time operation; and
� Loosely temporally synchronized camera and IMU.
In this paper, we provide an exhaustive evaluation show-

ing the benefit of the online error corrector by validating VIO-
Learner against a second dataset, performing depth ablation
studies to demonstrate ourOECmodules andmulti-hypothe-
sis approach, and analyzing VIOLearner for robustness to
spatial misalignments of a camera and an IMU.

The remainder of the paper is organized as follows:
Section 2 provides background information and motivations;
Section 3 presents related work; Section 4 outlines our deep
network approach; Section 5 describes our architecture and
experimental approach; Section 6 describes our evaluation
procedures; Section 7 presents and discusses our experimen-
tal results; and Section 8 offers concluding thoughts and
directions for futurework.

2 BACKGROUND

2.1 Vision-Aided Localization

Originally coined to characterize honey bee flight [8], the term
“visual odometry” describes the integration of apparent
image motions for dead-reckoning-based navigation (liter-
ally, as an odometer for vision) [9]. While work in what came
to be known as visual odometry (VO) began in the 1980s for
the Mars Rover project [10], [11], the term was not popular-
ized in the engineering context until around 2004 [12].

While VO and VSLAM (described below in Section 3.1)
can be performed by amonocular camera system, only scaled
rotation can be recovered.Monocular VO approaches recover
translation up to an unknown scale [13], [14], [15], [16] as
depth is unobservable from monocular cameras and thus
there is ambiguity in the scale of translational estimates.

Successful large-scale monocular systems for autonomous
navigation are uncommon, primarily due to scale drift [17].
To recover scale, depth or some other fixed reference is
needed (see below in Sections 2.1.1 and 2.1.2). As described
below, RGB-D data is an ideal source of information for
vision-aided localization and is becoming increasingly avail-
able on robotic platforms.

2.1.1 Visual-Inertial

Approaches in VIO combine visual estimates of motion with
thosemeasured bymulti-axis accelerometers and gyroscopes
in IMUs. As IMUs measure only linear accelerations and
angular velocities, inertial approaches to localization are
prone to exponential drift over time due to the double inte-
gration of accelerations into pose estimates. Combining iner-
tial estimates of pose change with visual estimates allows for
the ‘squashing’ of inertial estimates of drift. For VIO, integrat-
ing raw IMU measurements can provide noisy, short-term
estimates of scale.

While IMU measurements can help resolve scale ambigu-
ity, gravitymust be separated from themeasured linear accel-
erations which means that the orientation of the IMU in the
world frame must be correctly estimated [18]. Accumulated
map drift introduces orientation error that leads to scale error
fromwhich systems can not always recover.

2.1.2 Stereo and RGB-D Imagery

For stereo imagery a metric baseline distance between cam-
eras is known and with this information, translational scale
and depth can be recovered, potentially alleviating visual-
inertial approaches of the full burden of scale estimation.
However, a downside of using stereo cameras to infer depth
is that stereo cameras have effective ranges that are inversely
proportional to the baseline between the stereo camera pair:
small camera baselines produce high-error depth estimates
for scene elements further from the cameras while large cam-
era baselines fail to capture depth close to the cameras and
introduce calibration difficulties which can lead to poor per-
formance [19] (not to mention that maximum baselines are
system/vehicle dependent-a 1 m stereo camera baseline on
an 0.35 m diagonal MAV would be quite impractical, for
example).

RGB-D data is simply RGB imagery with a fourth channel
that contains the corresponding metric depth at each pixel
location. Asmentioned earlier, this depth can bemeasured by
stereo cameras, an RGB-D sensor (e.g., Microsoft Kinect, Asus

Fig. 1. Generalized overview of our VIOLearner network (see Fig. 2 for a
more detailed/accurate representation of the architecture). Note the hier-
archical architecture where u, the true change in pose between images,
is estimated at multiple scales and then corrected via convolutional proc-
essing of the Jacobian of euclidean projection error at that scale with
respect to a grid of source coordinates. The final Level n computes m
hypothesis reconstructions (and associated estimates ûn;m) and the ûn;m
with the lowest paired euclidean projection error between the recon-
struction and true target image Ijþ1 is output as the final network esti-
mate ûn.
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Xtion, Orbec Astra, or new indoor/outdoor Intel RealSense
cameras), or LIDARs (e.g., a Velodyne VLP-16 or PUCK Lite)
directly onboard a vehicle. Camera RGB images along with
measurements from scanning LIDARs can be converted to
RGB-D imagery assuming extrinsic and intrinsic sensor cali-
brations are known (see Section 5.3.1 formore detail).

3 RELATED WORK

3.1 Traditional Methods

In VO and VSLAM, only data from camera sensors is used
and tracked across frames to determine the change in the
camera pose. Simultaneous localization and mapping
(SLAM) approaches typically consist of a front end, in which
features are detected in the image, and a back end, in which
features are tracked across frames andmatched to keyframes
to estimate camera pose, with some approaches performing
loop closure as well. ORB-SLAM2 [20] is a VSLAM system
for monocular, stereo, and RGB-D cameras. It used bundle
adjustment and a sparse map for accurate, real-time perfor-
mance on CPUs. ORB-SLAM2 performed loop closure to cor-
rect for the accumulated error in its pose estimation. ORB-
SLAM2 has shown SoA performance on a variety of VO
benchmarks.

In VIO and visual-inertial SLAM, the fusion of imagery
and IMU measurements are typically accomplished by filter-
based approaches or nonlinear optimization approaches. The
multi-state constraint Kalman filter (MSCKF) [21] has become
a standard for filtering-based approaches to VIO. While its
complexity is linear in the number of features being used for
egomotion estimation and it was generally more robust com-
pared to optimization-based approaches (as has been recently
reported in [22]), MSCKF approaches are typically less accu-
rate in comparison. ROVIO [5] is another filtering-based VIO
algorithm for monocular cameras, which used a robust and
efficient robocentric approach in which 3D landmark posi-
tions were estimated relative to the current camera pose. It
used an ExtendedKalman Filter (EKF) to fuse the sensor data,
utilizing the intensity errors in the update step. However,
because ROVIO is a monocular approach, accurate scale is
not recovered. OKVIS [3] is a optimization-based keyframe
visual-inertial SLAM approach for monocular and stereo
cameras. OKVIS relied on keyframes, which consisted of an
image and estimated camera pose, a batch nonlinear optimi-
zation on saved keyframes, and a local map of landmarks to
estimate camera egomotion. However, it did not include loop
closure, unlike the SLAMalgorithmswith SoA performance.

There are also several approaches which enhance VIO
with depth sensing or laser scanning. Twomethods of depth-
enhanced VIO are built upon the MSCKF [21], [23] algorithm
mentioned above. One method is the MSCKF-3D [24]
algorithm, which used amonocular camera with a depth sen-
sor, or RGB-D camera system. The algorithm performed
online time offset correction between camera and IMU,which
is critical for its estimation process, and used a Gaussian mix-
ture model for depth uncertainty. Pang et al. [25] also demon-
strated a depth-enhanced VIO approach based on MSCKF,
with 3D landmark positions augmented with sparse depth
information kept in a registered depth map. Both approaches
showed improved accuracy over VIO-only approaches. [26]
also demonstrated dense RGB-D-Inertial SLAM using a

hand-held RGB-D camera in small, indoor environments.
Finally, Zhang and Singh [27] proposed amethod for leverag-
ing data from a 3D laser. The approach utilized a multi-layer
pipeline to solve for coarse to fine motion by using VIO as a
subsystem and matching scans to a local map. It demon-
strated high position accuracy and was robust to individual
sensor failures.

3.2 Learning-Based Methods

Recently, there have been several successful unsupervised
approaches to depth estimation that are trained using recon-
structive loss from image warping similar to our own net-
work. Garg et al. [28], Godard et al. [29], Zhan et al. [30], and
Smolyanskiy et al. [31] used such methods with stereo image
pairs with known camera baselines and reconstructive loss
for training. Thus, while technically unsupervised, the known
baseline effectively provides a known transform between two
images. Our network approaches the same problem from the
opposite direction: we assume known depth and estimate an
unknown pose difference.

Pillai and Leonard [32] demonstrated visual egomotion
learning by mapping optical flow vectors to egomotion esti-
mates via a mixture density network (MDN). Their approach
not only required optical flow to already be externally gen-
erated (which can be very computationally expensive), but
also was trained in a supervised manner and thus required
the ground truth pose differences for each exemplar in the
training set.

SFMLearner [33] demonstrated the unsupervised learning
of unscaled egomotion and depth from RGB imagery. They
input a consecutive sequence of images and output a change
in pose between the middle image of the sequence and every
other image in the sequence, and the estimated depth of the
middle image. However, their approach was unable to
recover the scale for the depth estimates or, most crucially,
the scale of the changes in pose. Thus, their network’s trajec-
tory estimates needed to be scaled by parameters estimated
from the ground truth trajectories and in the real world, this
information will of course not be available. SFMLearner also
required a sequence of images to compute a trajectory. Their
best resultswere on an input sequence of five imageswhereas
our network only requires a source-target image pairing. The
recent work of [34] extended SFMLearner with a semi-differ-
entiable iterative closest point (ICP)module.

UnDeepVO [35] is another unsupervised approach to
depth and egomotion estimation. It differs from [33] in that
it was able to generate properly scaled trajectory estimates.
However, unlike [33] and similar to [28], [29], it used stereo
image pairs for training where the baseline between images
is known and thus, UnDeepVO can only be trained on data-
sets where stereo image pairs are available. Additionally,
the network architecture of UnDeepVO cannot be extended
to include motion estimates derived from inertial measure-
ments because the spatial transformation between paired
images from stereo cameras are unobservable by an IMU
(stereo images are recorded simultaneously).

VINet [2] was the first end-to-end trainable visual-inertial
deep network. While VINet showed robustness to temporal
and spatial misalignments of an IMU and camera, it still
required extrinsic calibration parameters between camera
and IMU. This is in contrast to our VIOLearner which
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requires no IMU intrinsics or IMU-camera extrinsics. In addi-
tion, VINet was trained in a supervised manner and thus
required the ground truth pose differences for each exemplar
in the training set which are not always readily available.

Finally, LS-Net [36] was a recent approach to learning-
based monocular multi-view stereo and egomotion estima-
tion. While VIOLearner [6], [37], which the present work
extends, was the first approach to use a learned optimizer to
minimize photometric loss for egomotion estimation, [36]
similarly leveraged Jacobians and optimized both for egomo-
tion as well as depth. However, their approach is supervised
and required ground truth. Additionally, their approach, is
not end-to-end trainable in practice (the initialization net-
work must be pre-trained before the optimization network).
DeepTAM [38] is another recent approach to learning-based
VSLAM that also learns to refine depth predictions and oper-
ates atmultiple scales, similar to our approach.

3.3 Existing Datasets

While numerous datasets aimed at vision-aided odometry
exist [39], [40], [41], [42], [43], [44], few heterogeneous datasets
of sizes suitable for deep learning applications onRGB-Ddata
are available. The KITTI dataset [1] included RGB and depth
data captured over 39.2 km and was ground truthed with
accuracies within 10cm via an OXTS RT 3003 GPS solution.
However, KITTI only used software synchronization between
sensors which causes issues for some VIO approaches due to
the inaccurate time synchronization between imagery and
IMUdata.

We have elected to use the KITTI odometry dataset to eval-
uate our approach and details can be found in Sections 5.3
and 5.3.1. As described and explained in Section 5.4, we also
elected to generate our own RGB-D datasets using the AirSim
MAV simulation environment [45] to provide an aerial
vehicle benchmarking dataset that includes depth, in contract
to the popular EuRoCMAV [43] and Zurich UrbanMAV [41]
datasets.

4 APPROACH

VIOLearner is an unsupervised VIO deep network that esti-
mates the scaled egomotion of a moving camera between
some time tj at which source image Ij is captured and time
tjþ1 when target image Ijþ1 is captured. VIOLearner receives
an input RGB-D source image, a target RGB image, IMU data
from tj�1 to tjþ1, and a camera calibration matrix K with the
camera’s intrinsic parameters. With access to K, VIOLearner
can generate camera pose changes in the camera frame using
a view-synthesis approach where the basis for its training is
in the euclidean loss between a target image and a recon-
structed target image generated using pixels in a source
image sampled at locations determined by a learned 3D affine
transformation (via a spatial transformer of [46]).

4.1 Multi-Scale Projections and Online
Error Correction

Similar to [33], VIOLearner performs multi-scale projec-
tions. We scale projections by factors of 8, 4, and 2. How-
ever, in our network, multi-scale projections not only help
to overcome gradient locality during training (see [33], [47]

for a broader discussion of this well-known issue), but also
aid in online error correction at runtime.

Generally, at each level, the network computes the Jaco-
bians of the reprojection error at that level with respect to the
grid of coordinates. Convolutions are then performed on this
Jacobian (sized HxWx2) and a dû is computed. This dû is
added to the previously generated affine matrix û. This is
repeated for each level in the hierarchy. VIOLearner uses a
total of 5 levels and additional detail on the computations per-
formed at each level is provided in the following sections.

Generally, a Jacobian of aminimum sizeHxWx6would be
needed for traditional least-squares optimization. While our
HxWx2 Jacobian only directly represents 2D information
and does not include error with respect to depth, the convo-
lutional processing of these Jacobians enables it to glean
3D information from this 2D representation and update the
6-DOF camera pose. In practice, we found that using this
compressed HxWx2 2D Jacobian was an effective 6-DOF
pose optimizer.

4.2 Level 0

VIOLearner first takes raw IMU measurements and learns
to compute an estimated 3D affine transformation û0 that
will transform a source image Ij into a target image Ijþ1 (the
top left of Fig. 2a). The network downsamples (# in Fig. 2)
the source image Ij (and associated depth and adjusted
camera matrix K for the current downsampling factor) by a
factor of 8 and applies the 3D affine transformation to a nor-
malized grid of source coordinates ½Xsrc; Ysrc� to generate a
transformed grid of target coordinates ½Xtgt; Ytgt�.

VIOLearner then performs bilinear sampling to produce
a reconstruction image Ir by sampling from the source
image Ij at coordinates ðx; yÞ 2 ½Xtgt; Ytgt�

Irðx; yÞ ¼
XW;H

w;h

Ijðw; hÞ maxð0; 1� jx� wjÞ maxð0; 1� jy� hjÞ:

(1)

As in [46], by only evaluating at the sampling pixels, we
can therefore compute sub-gradients that allow error back-
propagation to the affine parameters û0 by computing error
with respect to the coordinate locations ðx; yÞ. For each pixel
k, these Jacobians are computed as

@Irk
@xk
¼

XW;H

w;h

Ijðw; hÞmaxð0; 1� jyk � hjÞ
0; jw� xkj � 1
1; w � xk
�1; w < xk

8<
:

(2)

@Irk
@yk
¼

XW;H

w;h

Ijðw; hÞmaxð0; 1� jxk � wjÞ
0; jh� ykj � 1
1; h >¼ yk:
�1; h < yk:

8<
:

(3)

Starting with Level 0, the euclidean loss is taken between
the downsampled reconstructed target image and the actual
target image. For Level 0, this error is computed as

E0 ¼ kIr0 � I0jþ1k2: (4)
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The final computation performed by Level 0 is of the
Jacobian of the euclidean loss of Equation (4) with respect to
the source coordinates G0 from Equations (2) and (3). The
resulting Jacobian matrix J0 has the same dimensionality as
the grid of source coordinates G0 (

H
8x

W
8 x2) and is depicted in

Fig. 2a. In traditional approaches, the gradient and error
equations above are only used during training. However,
VIOLearner is novel in that it also computes and employs

these gradients during each inference step of the network.
During both training and inference, the Jacobian J0 is com-
puted and passed to the next level for processing.

4.3 Levels i to n-1

For the intermediate levels i through n� 1, the previous
level’s Jacobian Ji�1 is input and processed through layers

of convolutions to generate a @ûi. This @ûi represents a

Fig. 2. VIOLearner: (a) IMU data is fed into a series of convolutional neural network (CNN) layers which output a 3D affine matrix estimate of change

in camera pose û0 between a source image Ij and target image Ijþ1. The transform û0 is applied to a downsampled source image via a spatial trans-

former module and the euclidean error between the spatial transformation and the downsampled target image is computed as E0. The Jacobian @E0
@G0

of the error image E0 is taken with respect to the source coordinates G0, and fed to the next level. (b) The Jacobian @Ei�1
@Gi�1 from the previous level is fed

through CNN layers to produce an additive refinement @ûi that is summed with the previous transform estimate ûi�1 to produce a new transform esti-

mate ûi. The Jacobian @Ei
@Gi

is propagated forward. (c) In the final level, the previous Jacobian @En�1
@Gn�1 is processed through CNN layers for m hypothesis

refinements.
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computed correction to be applied to the previous level’s 3D
affine transform ûi�1. @ûi is summed with ûi�1 to generate ûi
which is then applied to generate a reconstruction that is
downsampled by a factor 23�i. Error is again computed as
above in Equation (4) and the Jacobian is similarly found as
it was in Level 0 and input to the next Level iþ 1.

4.4 Level n and Multi-Hypothesis Pathways

The final level of VIOLearner employs multi-hypothesis
pathways similar to [48] where several possible hypotheses
for the reconstructions of a target image (and the associated
transformations ûm, m 2M which generated those recon-
structions) are computed in parallel. The lowest error hypoth-
esis reconstruction is chosen during each network run and
the corresponding affinematrix ûm�which generated thewin-
ning reconstruction is output as the final network estimate of
camera pose change between images Ij and Ijþ1.

Thismulti-hypothesis approach allows the network to gen-
erate several different pathways and effectively sample from
an unknown noise distribution. For example, as IMUs only
measure linear accelerations, they fail to accurately convey
motion during periods of constant velocity. Thus, a window
of integrated IMUmeasurements are contaminatedwith noise
related to the velocity at the beginning of the window. With a
multi-hypothesis approach, the network has a mechanism to
model uncertainty in the initial velocity (see Section 7.4 for a
discussion).

Error for this last multi-hypothesis level is computed
according to a winner-take-all (WTA) euclidean loss rule (see
[48] for more detail and justifications)

Irn;� � argmin
k
kIrn;k � Injþ1k2 (5)

En ¼ kIrn;� � Injþ1k2; (6)

where Irn;� is the lowest error hypothesis reconstruction.
Loss is then only computed for this one hypothesis pathway
and error is backpropagated only to parameters in that one
pathway. Thus, only parameters that contributed to the
winning hypothesis are updated and the remaining param-
eters are left untouched.

The final loss L by which the network is trained is then
simply the sum of the euclidean loss terms for each level
plus a weighted L1 penalty over the bias terms which we
empirically found to better facilitate training and gradient
backpropagation

L ¼
Xn
i¼0

Ei þ �jbiasj: (7)

5 METHODS

5.1 Network Architecture

5.1.1 IMU Processing

The initial level of VIOLearner uses two parallel pathways
of 7 convolutional layers for the IMU angular velocity and
linear accelerations, respectively (see Fig. 1 for more detail
on the architecture). Each pathway begins with 2 convolu-
tional layers each of 64 single-stride 3 x 5 filters on the

batch x 20 x 3 IMU angular velocity or linear accelerations
followed by 2 convolutional layers of 128 filters each of stride
2 with the same 3 x 5 kernel. Next, 3 convolutional layers of
256 filters are applied with strides of 2, 1, and 1, and kernels
of size 3 x 5, 3 x 3, and 3 x 1. The final convolutional layer in
the angular velocity and linear acceleration pathways were
flattened into batch x 1 x 3 tensors using a convolutional layer
with three filters of kernel size 1 and stride 1 before being
concatenated together into a tensor pose imu.

5.1.2 3D Affine Transformations

The first three components in pose_imu correspond to rota-
tions ½a0;b0; g0� representing rotations about the x, y, and z
axes respectively. Rotation matrices are computed as

R0
xða0Þ ¼

1 0 0
0 cosa0 � sina0

0 sina0 cosa0

2
4

3
5 (8)

R0
yðb0Þ ¼

cos b0 0 sinb0

0 1 0
� sin b0 0 cosb0

2
4

3
5 (9)

R0
zðg0Þ ¼

cos g0 � sin g0 0
sin g0 cos g0 0

0 0 1

2
4

3
5; (10)

and a 3D rotation matrix is generated as

R0 ¼ R0
zR

0
yR

0
x: (11)

The last three elements in pose imu directly correspond
to a translation vector T 0 ¼ ½x0; y0; z0�>. Together with the
3D rotation matrix R0, we finally form a 4 x 4 homogeneous
transformation matrix û0 as

û0 ¼ R0 T 0

0; 0; 0 1

� �
: (12)

5.1.3 Online Error Correction and Pose Refinement

For each H
sx

W
s x2 Jacobian matrix @Ei

@Gi
at all scales s 2 S, three

convolutional layers of 128 filters are applied with kernel
sizes 7 x 7, 5 x 5, and 3 x 3 and strides of 1, 2, and 2, respec-
tively. Then, an additional 2 to 5 convolutional layers are
applied depending on the downsampling factor of the cur-
rent level with the number of additional layers increasing as
the downsampling factor decreases (the final level using 5
additional convolutional layers). For each level, the final
layer generates a pose estimate pose refinementi using a
single-strided convolution with a kernel size of 1.

The outputs pose refinementi are split similarly to
pose imu into rotations ½@ai; @bi; @gi� and translation T i ¼
½@xi; @yi; @zi�>. The new rotations and translations for level i
are then computed as

½ai;bi; gi� ¼ ½ai�1;bi�1; gi�1� þ ½@ai; @bi; @gi� (13)

½xi; yi; zi�> ¼ ½xi�1; yi�1; zi�1�> þ ½@xi; @yi; @zi�>: (14)
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This repeats for each level until the final level where ûn is
output as the final estimate of the change in camera pose.

5.1.4 Multi-Hypothesis Generation

We experimented with using between 1� 8 hypothesis
pathways in the final level of VIOLearner as described
above in Section 4.4.

5.2 Training Procedures

VIOLearner was trained for 100,000 iterations using a batch
size of 16. As the network was trained, we calculated error
on the validation set at intervals of 1000 iterations. We used
the Adam solver with momentum1=0.9, momentum2=0.99,
gamma=0.5, learning rate=2e�4, and an exponential learn-
ing rate policy. Additional parameters for the VIOLearner
network architecture are shown in Table 1. The network
was trained using single-point precision (FP32) on a desk-
top computer with a 3.00 GHz Intel i7-6950X processor and
Nvidia Titan X GPUs.

5.3 KITTI Odometry Dataset

We evaluate VIOLearner on the KITTI Odometry dataset [1]
and used sequences 00� 08 for training excluding sequence
03 because the corresponding raw file 2011 09 26 drive 0067
was not online at the time of publication. Sequences 09 and 10
were withheld for the test set as was done in [33]. Addition-
ally, 5 percent of KITTI sequences 00� 08 was withheld as a

validation set. This left a total of 18,422 training images, 2,791
testing images, and 969 validation images.

In all experiments, we randomly selected an image for the
source and used the successive image for the target. Corre-
sponding 100 Hz IMU data was collected from the KITTI raw
datasets and for each source image, the preceding 100ms and
the following 100 ms of IMU data was combined yielding a
length 20 x 6 vector (100 ms prior to the source image and the
approximately 100 ms between source and target image). We
chose to include IMU data in this way so that the network
could learn how to implicitly estimate a temporal offset
between camera and IMU data as well as glean an estimate of
the initial velocity V0 at the time of source image capture by
looking to previous data.

5.3.1 RGB-D Generation

KITTI includes pointclouds capturedusing aVelodyne LIDAR
as well as calibration extrinsics between LIDAR and cameras.
However, depth is not available for the full resolution of KITTI
images so we cropped each image in KITTI from 376 x 1241 to
224 x 1241 (and first resized each image to 376 x 1241 if the res-
olution was different as is the case for certain sequences) and
then scaled the cropped images to size 128 x 480.

To generate RGB-D imagery, we interpolated the sparse
Velodyne point clouds and projected them onto the camera
imaging plane using the provided KITTI extrinsic and cam-
era calibration matrices.

5.4 AirSim MAV Simulation Environment

An experimental environment (Fig. 3) was built within
Unreal Engine, a game development platform which ena-
bles realistic, high-fidelity visualizations and physics simu-
lations. Drone flight and control leverage the Microsoft
AirSim plugin [45] for simulated flight dynamics as well as
a suite of sensors including inertial (GPS, barometer, gyro-
scope, accelerometer) and imaging (RGB, depth, segmenta-
tion). For this work, 128x480 resolution RGB-D imagery is
captured at 10 Hz with IMUmeasurements taken at 100 Hz.

The environment utilized simulates a maze-like block
arena, denoted Blocks. A total of 20 trajectories were

Fig. 3. The virtual Blocks environment exhibits visually unique imagery
through use of an array of object materials and textures.

TABLE 1
Network Architectures of VIOLearner

Sub-network Layer 1 2 3 4 5 6 7 8 9

IMU (Angular Velocity and Linear Acceleration)
No. Filters 64 64 128 128 256 256 256
Kernel Size 3 x 5 3 x 5 3 x 5 3 x 5 3 x 5 3 x 3 3 x 1
Stride 1 1 2 2 2 1 1

OECModule (#8)
No. Filters 128 128 128 64 32 6
Kernel Size 7 x 7 5 x 5 3 x 3 3 x 3 1 x 6 1 x 1
Stride 1 2 2 2 1 1

OECModule (#4)
No. Filters 128 128 128 64 32 32 6
Kernel Size 7 x 7 5 x 5 3 x 3 3 x 3 3 x 3 1 x 6 1x1
Stride 1 2 2 2 2 1 1

OECModule (#2)
No. Filters 128 128 128 64 64 32 32 6
Kernel Size 7 x 7 5 x 5 3 x 3 3 x 3 3 x 3 3 x 3 1 x 6 1 x 1
Stride 1 2 2 2 2 2 1 1

OECModule (#1)
No. Filters 128 128 128 256 256 128 64 32 6
Kernel Size 7 x 7 5 x 5 3 x 3 3 x 3 3 x 3 3 x 3 3 x 3 1 x 6 1 x 1
Stride 1 2 2 2 2 2 2 1 1
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captured within the Blocks environment, with each trajec-
tory containing 2 minutes of flight time. The dataset was
split with 70 percent of trajectories in the training set, 15 per-
cent in the validation set, and 15 percent in the test set.

5.4.1 Trajectory Characteristics

Manual flight control through the environments provided
turn and velocity inputs for each trajectory, withAirSimman-
aging drone dynamics such that turns and changes in velocity
apply realistic effects to roll, pitch, and yaw motion. Velocity
was kept between 2m/s and 4m/swhile vertical positioning
of the aerial vehicle remained fixed throughout all flights.

5.4.2 Generating IMU-Camera Configurations

Post-processing of AirSim generated ground truth vehicle
kinematics facilitates analysis of network performance on
trajectories that differ in IMU sensor configurations. Addi-
tionally, vehicle linear accelerations and angular velocities
for any IMU position and orientation configuration can be
calculated without the need for flight playback.

Linear acceleration observed at any desired point on the
rigid body vehicle can be calculated using the linear accelera-
tion a, angular velocity v, and angular acceleration a vectors
of a knownpoint on the vehicle, in addition to the transforma-
tionmatrix u, containing the rotationmatrixR and translation
vector T between the two points [49]. Linear acceleration of
the desired point is calculated by â ¼ aT þ aR, where the tan-
gential component aT is the linear acceleration of the known
point, and the radial component aR is found from the deriva-
tive of linear velocitywith respect to time.

v ¼ v� T

aR ¼ dv

dt
¼ dw

dt
� T þ w� dT

dt
; (15)

where

dw

dt
¼ a;

dT

dt
¼ v;

giving

aR ¼ a� T þ w� v: (16)

Angular velocity, the other IMU measurement of interest
here, is shared among all points on a rigid body, so v̂ ¼ v.

Noise is added to both generated measurements to
increase similarity to real world sensor performance. The
noise model injects two types of sensor errors: white noise
n, and sensor bias b. A noised linear acceleration measure-
ment, for instance, is generated by

~aðtÞ ¼ aðtÞ þ bðtÞ þ nðtÞ; (17)

with both sensor error types sampled at each time t.
Lastly, generated linear accelerations and angular veloci-

ties undergo rotations according to R to account for changes
in orientation between the known and desired IMU poses.

6 EVALUATION

We compare our approach to a collection of recent VO, VIO,
and VSLAM approaches described earlier in Section 3:

� OKVIS (Stereo) [3]
� SFMLearner [33]
� Mahjourian et al. [34] (results reproduced from [34])
� Zhan et al. [30] (results reproduced from [30])
� VINet [2] (results reproduced from [2])
� UnDeepVO [35] (results reproduced from [35])
� VISO2 (Mono) [50] (results reproduced from [35])
� ORB-SLAM (Mono) [15] (results reproduced from [34])
� ORB-SLAM2 (Stereo) [20]
� EKF+VISO2 (results reproduced from [2])
Aswas affirmed in the recent work of Delmerico et al. [22],

optimization based approaches to VIO (e.g., OKVIS [3]) typi-
cally outperform stochastic filtering based approaches (e.g.,
MSCKF [21]). We have thus chosen OKVIS [3] as the primary
comparator to SoAVIO approaches.

We include stereo versions of competing algorithms
where available to provide scale information to more
accurately compare to our RGB-D approach. In the litera-
ture, there is no readily comparable approach with the
exact input and output domains as our network (namely
RGB-D + inertial inputs and scaled output odometry; see
Section 3 for approaches with our input domain that do
not publicly provide their code or evaluation results on
KITTI 09 and KITTI 10). To overcome this limitation, we
also include approaches that use far more data to compute
camera transforms than ours (i.e., SFMLearner, Mahjour-
ian et al., Zhan et al., and VINet optimize over multiple
consecutive monocular images or stereo image-pairs;
OKVIS, ORB-SLAM, and ORB-SLAM2 perform bundle
adjustment; and ORB-SLAM2 performs full bundle adjust-
ment and loop closure).

We perform 6-DOF least-squares Umeyama alignment
[51] for trajectory alignment on SFMLearner, OKVIS, and
ORB-SLAM2. For SFMLearner, we follow [33] to estimate
scale from ground truth for each estimate. It should be noted
that OKVIS and ORB-SLAM2 were evaluated at images
scaled down to size 128 x 480 to match the image resolution
used byVIOLearner.

It should be noted that we trained separate networks for
KITTI and AirSim. VIOLearner implicitly learns to estimate
camera-IMU extrinsics and IMU instrinsics directly from
the data which means that VIOLearner does not currently
translate from one dataset (with a given camera-IMU
configuration) to another (with a different camera-IMU
configuration).

6.1 Ablations

6.1.1 RGB vs. RGB-D

We perform ablation studies where instead of providing
RGB-D images, we provide only RGB imagery and use the
monocular depth generation sub-network from SFMLearner
to learn to estimate monocular depth (see Section 7.7.1 for
more information). These different networks are referred to
as VIOLearner RGB-D, and VIOLearner RGB.

6.1.2 Visual vs. Visual-Inertial

Additionally, we perform ablation studies where a version
of our network is not provided IMU data to estimate the ini-
tial warp estimate and instead uses a vision-only CNN simi-
lar to [33] to estimate this initial warp (see Section 7.7.2 for
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more information). This version of the network is referred to
as VIOLearner (no IMU) and results are only included to
provide additional perspective on the vision-only perfor-
mance of our architecture (and specifically the OEC mod-
ules) compared to other vision-only approaches.

6.2 Online Error Correction

The OECmodules were designed to perform error correction
at runtime, and thus, be able to correct mistakes stemming
from either uncertain/degraded sensory information, or
from novel (unseen) sensory information. But as is the case
with any deep network, overfitting is always a concern: how
do we know that the OEC modules are actually learning to
perform a dynamic function and not simply overfitting to the
domain? To evaluate the OECmodules, we leveraged AirSim
simulations where we could systematically vary the camera-
IMU extrinsics. We train networks on data with a given cam-
era-IMU extrinsic calibration and then manipulated the
extrinsic calibration for data onwhich the networkwas tested
(as described in Section. 5.4.2). By varying these extrinsics,
we are able to generate camera-IMU misalignments which
result in increased error in the Level 0 prediction of û0 (the
first estimate of pose change generated by the network that
comes entirely from IMUdata).

6.3 Evaluation Metrics

We evaluate our trajectories primarily using the standard
KITTI relative error metric (reproduced below from [1])

ErotðF Þ ¼ 1

F

X
ði;jÞ2F

ff½ðp̂j 	 p̂iÞ 	 ðpj 	 piÞ� (18)

EtransðF Þ ¼ 1

F

X
ði;jÞ2F

kðp̂j 	 p̂iÞ 	 ðpj 	 piÞk2; (19)

where F is a set of frames ði; jÞ, p̂ 2 SEð3Þ and p 2 SEð3Þ are
estimated and true camera poses, respectively, 	 is the
inverse compositional operator, and ff½�� is the rotation angle.

For KITTI, we use lengths of 100, 200, 300, 400, 500, 600,
700, and 800 m. For AirSim, which has far shorter trajecto-
ries, we evaluate on lengths of 25, 50, 75, and 100 m.

Additionally, we compute the root mean squared error
(RMSE) for trajectory estimates on three or five frame snip-
pets as has been done recently in [33] and [34].

7 RESULTS AND DISCUSSION

7.1 Visual Odometry

7.1.1 KITTI

VIOLearner RGB outperforms the VO approaches listed
above as seen in Table 2. It should be noted that the results in
Table 2 for VIOLearner, UnDeepVO, and SFMLearner are for
networks that were tested on data on which they were also
trained which is in accordance with the results presented in
[35]. We were thus unable to properly evaluate UnDeepVO
against VIOLearner RGB or VIOLearner RGB-D on test data
that was not also used for training as such results were not
provided for UnDeepVO nor is their model available online
at the time of writing. Regardless, VIOLearner RGB-D out-
performs UnDeepVO with superior translation and rotation
error for all sequences. Surprisingly, VIOLearner RGB out-
performs VIOLearner RGB-D on the sequences in Table 2.
This may be due to known motion artefacts that contaminate
3D LIDAR data which was used to generate the depth chan-
nel of inputs for VIOLearner RGB-D which does not affect
depth learned by VIOLearner RGB.

We did however also evaluate VIOLearner more conven-
tionally by training on sequences 00� 08 and testing on
sequences 09 and 10 as was the case for [30], [33]. These
results are shown in Table 4 (see Fig. 4 for VIOLearner RGB-
D, VIOLearner RGB, SFMLearner, ORB-SLAM2, and OKVIS
trajectories on KITTI sequences 09 and 10). VIOLearner
RGB-D significantly outperforms SFMLearner on both
KITTI sequences 09 and 10. Similarly, VIOLearner RGB-D
outperforms the deep VO approach of Zhan et al. [30] and
the traditional VISO2 on both sequences. As expected, VIO-
Learner RGB-D outperforms VIOLearner RGB.

7.1.2 AirSim

Results on the AirSim sequences are shown in Table 5 and
plots of the AirSim trajectories are shown in Fig. 5. VIO-
Learner RGB-D outperforms SFMLearner, the only VO
approach with which we compare on AirSim, on all sequen-
ces (see Sections 7.2 and 7.3 below for a discussion of VIO
and VSLAM results, respectively).

7.2 Visual Inertial Odometry

7.2.1 KITTI

The authors of VINet [2] provide box plots of their meth-
od’s error compared to several SoA approaches for 100 m -

TABLE 2
Comparisons to VO Approaches on KITTI Sequences 00, 02, 05, 07, and 08

VIOLearner
(RGB-D)

VIOLearner
(RGB)

VIOLearner (no
IMU)

UnDeepVO SFMLearner VISO2-M ORB-SLAM2-S

Seq

trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ
0 2.79 1.09 1.5 0.61 2.47 1.05 4.14 1.92 65.27 6.23 18.24 2.69 2.96 1.21
2 2.4 0.88 1.2 0.43 3.33 1.33 5.58 2.44 57.59 4.09 4.37 1.18 4.78 1.61
5 2.3 1.11 0.97 0.51 2.53 1.28 3.4 1.5 16.76 4.06 19.22 3.54 1.72 0.64
7 2.44 1.54 0.84 0.66 1.92 1.68 3.15 2.48 17.52 5.38 23.61 4.11 1.61 0.93
8 2.93 1.32 1.56 0.61 2.78 1.35 4.08 1.79 24.02 3.05 24.18 2.47 1.84 0.77

Mean 2.57 1.19 1.22 0.56 2.61 1.34 4.07 2.03 36.23 4.56 17.92 2.8 2.58 1.03

Results reproduced from [35]. trelð%Þ is the average translational error percentage on lengths 100 m - 800 m and rrelð
Þ is the rotational error ð
=100mÞ on lengths
100 m - 800 m. [35] only reported results on KITTI Odometry sequences 00, 02, 05, 07, and 08 so in this table so we only report identical results for VIOLearner.
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500 m on sequences in the KITTI Odometry dataset. We
have extracted the median, first quartile, and third quartile
from their results plots to the best of our ability and
included them in Table 3. For longer trajectories (300, 400,
and 500 m), VIOLearner RGB-D outperforms VINet on
KITTI sequence 10. It should also again be noted that while
VINet requires camera-IMU extrinsic calibrations, our net-
work is able to implicitly learn this transform from the data
itself. The authors of [2] reported OKVIS failing to run on
the KITTI Odometry dataset and instead used a custom
EKF with VISO2 as a comparison to traditional SoA VIO

approaches. VIOLearner RGB-D outperforms their EKF
with VISO2.

We were able to successfully run KITTI Odometry on
sequences 09 and 10 and have included the results in
Table 4. VIOLearner RGB-D outperforms OKVIS on KITTI
sequences 09 and 10. OKVIS requires tight synchronization
between IMU measurements and images which KITTI does
not provide, which is most likely the reason for its much
lower performance on KITTI despite its use of saved key-
frames and a local map. This also highlights a strength of
VIOLearner RGB-D in that it is able to compensate for

Fig. 4. Trajectories for KITTI sequences 09 and 10. Ground truth (GT) and results from VIOLearner, SFMLearner, ORB-SLAM2, and OKVIS
are shown.

Fig. 5. Trajectories for AirSim sequences 0, 1, and 2. Ground truth (GT) and results from VIOLearner, SFMLearner, ORB-SLAM2, and OKVIS
are shown.

TABLE 3
Comparisons to VIO Approaches on KITTI Odometry Sequence 10

VIOLearner (RGB-D) VIOLearner (RGB) VIOLearner (no IMU) VINet EKF+VISO2

Length

Med. 1st Quar. 3rd Quar. Med. 1st Quar. 3rd Quar. Med. 1st Quar. 3rd Quar. Med. 1st Quar. 3rd Quar. Med. 1st Quar. 3rd Quar.

100 1.75 0.85 2.37 1.42 1.01 2.01 2.4 1.52 2.92 � 0 � 0 � 2.18 � 2.7 � 0.54 � 9.2
200 3.1 2.23 4.28 3.37 2.27 5.71 4.48 3.09 6.05 � 2.5 � 1.01 � 5.43 � 11.9 � 4.89 � 32.6
300 4.92 2.96 6.74 5.7 3.24 8.31 7.1 5.35 9.63 � 6.0 � 3.26 � 17.9 � 26.6 � 9.23 � 58.1
400 6.78 4.91 8.9 8.83 5.99 10.86 11.52 9.28 12.78 � 10.3 � 5.43 � 39.6 � 40.7 � 13.0 � 83.6
500 7.49 6.58 9.82 10.34 6.67 12.92 15.44 13.81 17.09 � 16.8 � 8.6 � 70.1 � 57.0 � 19.5 � 98.9

Results reproduced from box plots in [2] and medians, first quartiles, and third quartiles were estimated from figures. [2] only reported errors on distances of 100,
200, 300, 400, and 500 m from KITTI Odometry sequence 10 so we only report identical results for VIOLearner in this table. Full results for VIOLearner on
sequence 10 can be found in Table 4.
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loosely temporally synchronized sensors without explicitly
estimating their temporal offsets.

7.2.2 AirSim

On AirSim sequences, which have perfect temporal syn-
chronization, VIOLearner RGB-D outperforms OKVIS Ste-
reo on all sequence in translation error. However, OKVIS
outperforms VIOLearner RGB-D in mean rotation error and
rotation error on two of the three individual sequences.

7.3 Visual Simultaneous Localization and Mapping

Additionally, we have included benchmark results from
ORB-SLAM2 Stereo. ORB-SLAM2 performs SLAM, unlike
our pure odometry-based solution, and is included as a
example of SoA localization to provide additional perspec-
tive on our results.

7.3.1 KITTI

VIOLearner RGB-D outperforms ORB-SLAM2 Stereo on
mean translation error and translation error for KITTI sequen-
ces 09 and 10. This was surprising as ORB-SLAM2 uses bun-
dle adjustment, loop closure, maintains a SLAM map, and
generally uses far more data for each pose estimate compared
to our VIOLearner architecture. However, ORB-SLAM2 Ste-
reo outperforms VIOLearner RGB-D in mean rotation error
and rotation errors for bothKITTI sequences 09 and 10.

7.3.2 AirSim

Similarly for the AirSim sequences, VIOLearner RGB-D and
VIOLearner RGB outperforms ORB-SLAM2 Stereo on mean
translation error as well as translation error on each

individual AirSim sequence. Again, however, ORB-SLAM2
produced a lower mean rotational error and lower rotational
error on each individual AirSim sequence.

7.4 Multi-Hypothesis Error Reduction

For the ûs generated by each of the four hypothesis path-
ways in the final level for KITTI sequence 09, the average
variance of pose error between the four hypotheses was
2:7e�5 in the x-dimension, 3e�6 in the y-dimension,
4:69e�4 in the z-dimension, and 4:06e�4 was the euclidean
error between the computed translation and the true trans-
lation. The z-dimension shows 1-2 orders of magnitude
more variance compared to the x- and y- dimensions and is
the main contributor to hypothesis variance. For the camera
frame in KITTI, the z-direction corresponds to the forward
direction which is the predominant direction of motion in
KITTI and also where we would expect to see the largest
influence from uncertainty in initial velocities. These results
are consistent with the network learning to model this
uncertainty in initial velocity as intended.

7.5 Online Error Correction

Results in Fig. 7 show the pose root mean squared error
(RMSE) between the actual u and the û generated at each level
and suggest that our online error correction mechanism is
able to reduce pose error. It should however be noted that û
for Levels 0 to 2 are computed using downsampled images
and thus their Jacobian inputs both have access to less infor-
mation and use one less convolutional layer each. The extent
to which this affects the plots in Fig. 7 is as of yet not fully
clear. However, Level 3 operates on full-size inputs and there

TABLE 5
AirSim Trajectory Estimation from VIOLearner RGB-D, VIOLearner RGB, SFMLearner, OKVIS, and ORB-SLAM2

VIOLearner
(RGB-D)

VIOLearner
(RGB)

VIOLearner (no
IMU)

SFMLearner OKVIS-S ORB-SLAM2-S

Seq

trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ
1 3.19 6.61 7.1 18.0 4.89 11.12 21.97 17.61 4.87 5.9 12.4 1.93
2 6.6 13.45 10.13 23.0 6.84 12.01 20.39 14.03 7.08 6.89 13.25 2.3
3 5.04 10.67 9.52 19.0 8.01 14.38 17.6 19.06 10.59 14.31 14.64 5.5

Mean 4.94 10.24 8.92 20.0 6.58 12.5 19.99 16.9 7.51 9.03 13.43 3.24

VIOLearner RGB-D uses RGB-D imagery and produces scaled trajectories. VIOLearner RGB is augmented with SFMLearner’s monocular depth estimation
pipeline learns to generate depth estimates from monocular imagery and produces unscaled trajectory estimates. Results for VIOLearner RGB were scaled using
the same method of [33] to compare to ground truth.

TABLE 4
Comparisons to VO and VIO Approaches on KITTI Sequences 09 and 10

VIOLearner
(RGB-D)

VIOLearner
(RGB)

VIOLearner (no
IMU)

SFMLearner Zhan et. al OKVIS-S ORB-SLAM2-S

Seq

trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ
9 1.82 1.08 2.27 1.52 2.71 1.4 21.63 3.57 11.92 3.6 6.35 2.43 2.21 0.96
10 1.74 1.38 2.74 1.35 2.93 1.88 20.54 10.93 12.62 3.43 5.86 2.44 1.9 1.1

Mean 1.78 1.23 2.53 1.31 2.82 1.64 21.09 7.25 12.27 3.52 6.11 2.44 2.06 1.03

trelð%Þ is the average translational error percentage on lengths 100 m - 800 m and rrelð
Þ is the rotational error ð
=100 mÞ on lengths 100 m - 800 m calculated
using the standard KITTI benchmark [1]. All results are on imagery of size 128 x 480.

2488 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 10, OCTOBER 2020



is still a reduction in error between Level 3 and Level 4.While
this reduction in the final layer can be partially attributed to
the multi-hypothesis mechanism in Level 4, the mean RMSE
for Level 3 is 0.042 while the mean RMSE from each individ-
ual hypothesis pathway is 0.0375, 0.0555, 0.0262, 0.0303,
0.0332 (0.0261when the lowest error hypothesis is chosen) for
KITTI 09 and 0.029, 0.058, 0.034, and 0.037 (0.027 when the
lowest error hypothesis is chosen) for KITTI 10. The lower
mean RMSE from individual Level 4 hypotheses (with the
exception of the second hypothesis pathway) suggests that
the observed error reduction is indeed an effect of our online
error correction mechanism rather than simply an artefact of
image resolution.

7.5.1 Spatial Misalignments

The AirSim simulated spatial misalignments between dif-
ferent camera and IMU configurations (as described in
Section 5.4.2) provide a method for evaluating the effective-
ness of VIOLearner’s OEC modules.

As seen in Fig. 6, orientation offsets within a realistic range
of less than 10 degrees shows low amounts of error and great
applicability to real world implementation. Further, offsets
within a range of less than 80 degrees display a mode-
stly sloped plateau that suggests successful online error

correction. Error measures appear to drastically increase
around the 90 degree mark, and this is plausibly expected
since rotations of this magnitude result in complete dimen-
sion shift, and, unsurprisingly, the network appears unable to
compensate.

Contrastingly, OKVIS showed surprising robustness to
rotation errors under 20 degrees but is unable to handle ori-
entation offsets greater than 30 degrees.

7.6 Generalizability

To evaluate the ability of the VIOLearner architecture and
its OEC modules to generalize, we performed additional
experiments with regard to generalizability to motion and
image perturbations/domain shifts.

7.6.1 Motion

While the AirSim datasets exhibited greater motion variabil-
ity than the KITTI datasets (in particular rotational variabil-
ity), the training trajectories and evaluation trajectories
presented thus far were predominantly forwardmovingwith
slow, car-like turns (see Fig. 5). To evaluate the ability of VIO-
Learner to generate to previously unseen trajectories very dif-
ferent from those that the network was trained on, we
collected two additional evaluation trajectories. In the first
trajectory, referred to as figure-eight, the simulated quadcop-
ter flew in a figure-eight pattern in AirSim in the same Blocks
environment. In the second trajectory, referred to as rotation-
only, the simulated quadcopter yawed in-placewithout trans-
lating. Results for these two trajectories are shown in Table 9.
VIOLearner still outperformed OKVIS-S and ORB-SLAM2-S
on the figure-eight trajectory in translation error but was out-
performed byOKVIS-S on the rotation-only trajectory.

7.6.2 Imagery

As mentioned earlier, VIOLearner implicitly learns the
extrinsic parameters of the camera-IMU system as well as
IMU intrinsics. As such, we were unable to evaluate a

Fig. 7. Pose root mean squared error (RMSE) from poses computed by
VIOLearner compared to ground truth after each level for KITTI sequen-
ces 09 and 10. We see a substantial decrease in error after repeated
applications of our error correction module.

Fig. 6. Results on VIOLearner and OKVIS trajectory estimation on the Blocks environment given induced IMU orientation offset in the x-dimension.
Measurement errors are shown for each sequence with translational error percentage (top row) on lengths 25 m - 100 m and rotational error in
degrees per 100 m (bottom row) on lengths 25 m - 100 m. In contrast to VIOLearner, after 20-30
 (depending on the sequence), OKVIS exhibits cata-
stropic failure in translation estimation.
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VIOLearner network trained in one domain (e.g., KITTI) on
a different domain (e.g., AirSim). To evaluate the ability of
VIOLearner to generalize to previously unseen imagery and
handle domain shifts, we performed additional experiments
where we re-collected the three AirSim evaluation trajecto-
ries from Table 5 using identical motion profiles but varying
the weather-conditions (see Fig. 8). Results for these two tra-
jectories are shown in Table 8. In the lightest fog condition,
VIOLearner outperformed OKVIS-S and ORB-SLAM-S in
translation error. For the medium fog condition, VIO-
Learner was outperformed on two of the three trajectories.
For the highest fog condition, ORB-SLAM2-S failed to run
on any of the trajectories while VIOLearner outperformed
OKVIS-S in translation error.

7.7 Ablation Studies

7.7.1 Depth Ablation

As mentioned earlier, VIOLearner does not precisely com-
pare to many of the other deep approaches to vision-aided
odometry in that it is provided with RGB-D imagery in
order to produce trajectories that are correctly scaled. To
confirm that our results are not due solely to our inclusion
of depth data in the form of a depth image, we performed
ablation studies where rather than providing RGB-D imag-
ery, we used RGB imagery and implemented the monocular
depth generation architecture of [33] to train VIOLearner to
not only learn odometry, but also to learn unscaled depth.

Tables 4 and 5 show results from VIOLearner RGB-D
(which was provided RGB-D data and IMU data), and VIO-
Learner RGB (which was instead only provided monocular
RGB imagery and IMU data) on KITTI and AirSim, respec-
tively. For KITTI, VIOLearner RGB outperforms approaches
SFMLearner [33] and the network of Zhan et al. [30].

In addition to evaluating with relative error over the entire
trajectory, we also evaluated VIOLearner RGB using RMSE
over five-frame snippets as was done in [33] and [34] for their
similarmonocular approaches. As shown in Table 6, onKITTI
trajectories 09 and 10, VIOLearner RGB surpasses RMSE per-
formance of both SFMLearner andMahjourian et al.

7.7.2 IMU Ablation

Similar to the previous section, we performed additional abla-
tion studies where rather than using IMU data to generate the
initial warp estimate, we use a vision-only CNN similar to the
pose network from SFMLearner [33] (this network is referred
to as VIOLearner (no IMU)). Results for this network configu-
ration are shown in Tables 2, 3, and 4 for KITTI and Table 5
for AirSim. Compared to other vision-only approaches, for
KITTI, VIOLearner (no IMU) outperforms approaches
SFMLearner [33] and the network of Zhan et al. [30] and yet is
outperformed by ORB-SLAM-2 which uses full bundle
adjustment. For AirSim, VIOLearner (no IMU) outperforms
approaches SFMLearner [33] and ORB-SLAM2-S in transla-
tion error.

7.7.3 Hypothesis Ablations

To validate and evaluate the benefits of our multi-hypothe-
sis approach, we performed experiments on KITTI and Air-
Sim using between 1� 8 hypothesis pathways.

Fig. 8. Sample images from the three fog conditions.

TABLE 6
Absolute Trajectory Error (ATE) on KITTI 09 and KITTI
10 Averaged over Three or Five Multi-Frame Snippets

(Reproduced from [34])

Method Seq. 09 Seq. 10 Mean

ORB-SLAM (full) 0.014 0.012 0.013

ORB-SLAM (short) 0.064 0.064 0.063
Mean Odom. 0.032 0.028 0.030
SFMLearner (5-Frame) 0.021 0.032 0.027
Mahjourian et al. with ICP (3-Frame) 0.013 0.012 0.0125
VIOLearner RGB (5-Frame) 0.012 0.012 0.012

Note that while SFMLearner [33] and Mahjourian et al. [34] use three or five
frame batches of data as training/testing input, VIOLearner is provided with
far less visual data as it only uses a single source and target image pair and
IMU data between the pair.

TABLE 7
Results from Networks Trained with 1-8 Hypothesis Pathways on KITTI and AirSim

KITTI AirSim

# 09 10 Mean 1 2 3 Mean

trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ
1 2.32 1.15 2.99 1.5 2.66 1.33 3.81 7.5 7.08 14.01 5.63 11.22 5.51 10.91
2 1.63 0.74 2.37 1.15 2.0 0.95 3.85 7.61 6.09 11.71 5.29 9.99 5.08 9.77
4 1.82 1.08 1.74 1.38 1.78 1.23 3.19 6.61 6.6 13.45 5.04 10.67 5.82 10.24
8 1.35 0.74 2.39 1.24 1.87 0.99 3.33 6.68 5.74 11.26 4.53 8.3 4.53 8.75
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As shown in Table 7, for both KITTI and AirSim, VIO-
Learner shows increased performance in two hypothesis
configurations compared to one hypothesis configurations.
Similarly, four or eight hypothesis configurations outper-
form two hypothesis configurations. With the exception of
AirSim sequence 2, all four hypothesis configurations were
superior to two hypothesis configurations in translation
error. However, eight hypothesis networks did not always
outperform the four hypothesis networks. This suggests a
possible diminishing return on adding additional hypothe-
ses that eventually introduces a performance decrease (see
Section 8.1 for further discussion).

7.8 Runtimes

VIOLearner runs in real-time and is faster than ORB-SLAM2-
S and OKVIS-S. VIOLearner has a mean runtime of 27 ms on
AirSim evaluation sequences 1, 2, 3 and KITTI 09 and 10 (as
to be expected of a deep approach of a fixed size, there was
no statistically significant difference between runtimes on the
various datasets for VIOLearner). ORB-SLAM2-S had amean
runtime of 67 ms per image on AirSim evaluation trajectories
1, 2, and 3 and OKVIS-S has a mean runtime of 122 ms. On
KITTI, ORB-SLAM2-S had a mean runtime of 89 ms on
sequences 09 and 10 while OKVIS-S had a mean runtime of
143ms.1

8 CONCLUSION AND FUTURE WORK

Despite using only single source-target image pairs, VIO-
Learner outperforms recent deep VO approaches in transla-
tion error as well as traditional VIO and VSLAM approaches
that use sequences of images, key-frame based bundle adjust-
ment, and full bundle adjustment and loop closure, respec-
tively. This is enabled by novel OEC modules embedded in
our end-to-end trainable deep visual-inertial architecture
which allow the network to correct intermediate output errors.

In this work, we have presented our VIOLearner archi-
tecture and demonstrated superior performance against
SoA VO, VIO, and even VSLAM approaches that use far
more data. VIOLearner’s novel multi-step trajectory estima-
tion via convolutional processing of Jacobians at multiple
spatial scales yields a trajectory estimator that learns how
to correct errors online. We show how including RGB-D
data produces higher accuracy trajectory estimates with
absolute scale. Even when RGB-D data is not provided,
VIOLearner with RGB data outperforms similar deep mon-
ocular approaches.

The main contributions of VIOLearner are its unsuper-
vised learning of scaled trajectory, online error correction
based on the use of intermediate gradients, and ability to com-
bine uncalibrated, loosely temporally synchronized, multi-
modal data from different reference frames into improved
estimates of odometry.

8.1 Multi-Hypothesis Outputs

In AirSim, the eight hypothesis networks generally outper-
formed the four hypothesis networks (as seen in Table 7)
but on KITTI, the opposite was true. Previous results from
[48] suggest a positive correlation between noise in the
input data and benefits of additional hypotheses which may
also translate to variance in the input data. As the MAV Air-
Sim trajectories typically exhibited more varied motion
compared to KITTI trajectories, this may explain why the
eight-hypothesis networks seem to have been better utilized
on AirSim compared to KITTI. Future work will be needed
to address and clarify the efficacy of additional hypotheses.

8.2 Rotational Error

The disparity between translational performance and rota-
tional performance may be due to VIOLearner’s Euler rota-
tion formulation (as opposed to a quaternion formulation), or
may be due to VIOLearner only receiving a single source and
target image and being unable to perform any type of bundle
adjustment. This question will need to be investigated in
future work, both by extending VIOLearner to use a non-
Euler orientation formulation and to perform some type of
bundle adjustment (as is done for traditional approaches
such as [3], [5], [20]) or surrogate bundle adjustment (as is
done for other deep approaches [2], [30], [34], [52]).
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TABLE 9
Robustness Evaluation of VIOLearner to Novel Trajectories/

Motions Not Seen During Training

VIOLearner
(RGB-D)

OKVIS-S ORB-SLAM2-S

Seq

trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ
Figure-Eight 4.7 11.88 5.2 5.14 13.38 1.84
Rotation-Only 9.08 21.57 5.18 4.51 13.5 2.66

Trajectory estimation from VIOLearner RGB-D, OKVIS, and ORB-SLAM2
on a figure-eight trajectory and a rotation-only trajectory in AirSim.

TABLE 8
Robustness Evaluation of VIOLearner to Shifts

in the Visual Domain

VIOLearner
(RGB-D)

OKVIS-S ORB-SLAM2-S

Seq

trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ trelð%Þ rrelð
Þ
1 (Light Fog) 6.45 11.11 7.1 7.69 12.14 2.03
2 (Light Fog) 11.07 21.45 11.38 11.35 13.47 1.44
3 (Light Fog) 9.38 19.04 16.2 18.6 15.03 6.59

1 (Med. Fog) 8.86 16.42 6.78 5.79 X X
2 (Med. Fog) 13.82 26.9 18.78 26.95 13.43 2.8
3 (Med. Fog) 12.2 23.65 14.17 15.24 13.02 4.77

1 (Heavy Fog) 15.65 28.82 15.7 16.91 X X
2 (Heavy Fog) 20.01 39.96 21.16 47.34 X X
3 (Heavy Fog) 18.11 33.65 33.95 21.22 X X

Trajectory estimation from VIOLearner RGB-D, OKVIS, and ORB-SLAM2
on AirSim sequences 1, 2, and 3 with light fog (foglevel ¼ 0:05), medium
fog (foglevel ¼ 0:1), and heavy fog (foglevel ¼ 0:3). An X indicates that the
algorithm failed to successfully complete the sequence.

1. Both KITTI and AirSim imagery were captured at 10 Hz so real-
time performance in this case is 100 ms per image or less.
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