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1 INTRODUCTION

CAMERAS are finite; yet, we commonly assume Gaussian noise mod-
els with infinite tails. Clearly, this disparity, which appears across all
of science, is offset by the approximation accuracy and mathematical
convenience of the Gaussian distribution. However, by replacing cost
functions based on the ‘2-norm with their ‘1-counterparts, the com-
puter vision community has begun to investigate the feasibility of
bounded noisemodels [3], [4], [5], [6].

In this paper, we continue this trend by formalizing some of the
benefits of bounded noise models in triangulation problems;
i.e., problems which aim to estimate the three-dimensional (3-D)
positions of feature points from their two-dimensional (2-D)
projections.

For example, consider triangulating from a set of calibrated cam-
eras. In the noise-free, infinite-resolution case, the exact location of
the world point can be reconstructed by intersecting rays originat-
ing from each camera. However, in practice, various sources of
uncertainty mean that the rays do not necessarily intersect. Error
minimization techniques are thus employedwith the goal of finding
the most probable world point [4], [7]. The degree to which we
achieve this goal depends on two factors of the cost function: its cor-
rect modelling of the uncertainty and how accurately we can find its
global minimum.

The simplest approach is to construct an over-complete set of lin-
ear equations, each corresponding to one of the rays, and take the
pseudo-inverse to find the least-squares solution. Although we find
the global minimum, the cost function is not particularly meaning-
ful and it is unlikely that it provides the best model of the underly-
ing uncertainty. However, this technique performs reasonably well,

particularly if the coordinates are correctly normalized [7], [8], and
it is a good choicewhen time complexity is the principal concern.

Alternatively, we can attempt to minimize the ‘2-norm of the
reprojection error between the prospective 3-D points and the
known image locations, which results in the maximum-likelihood
estimator if we assume that the projected points are subjected to
i.i.d. zero-mean Gaussian noise in the image plane. Although this
assumption is very likely a much better approximation of the
underlying uncertainty, the resulting cost function is non-convex
and extremely difficult to solve.

Although for a small number of views the global minimum
can be found by polynomial root finding [7], [9], [10], [11], [12],
[13], [14], the degree of the resulting polynomial grows quadrati-
cally with the number of views [11] and thus this is, in general,
not practical. Therefore, often, we have to resort to iterative
approaches that only converge to a local minimum, or more
time-consuming branch and bound techniques [15]. On a posi-
tive note, it is possible to verify whether a solution is globally
optimal in the ‘2-sense [16].

Inspired by these difficulties, the ‘1-norm has recently been
considered as a measure of the reprojection error [3], [4], [17].
Although this may not correspond to the best model of the under-
lying uncertainty, the resulting cost is a quasi-convex function and
efficient algorithms can find the global optimum [5]. However,
since the ‘1-norm implicitly assumes a bounded noise model, care
must be taken to limit the potential catastrophic effect of out-
liers [18], [19].

In this paper, we analyze the performance of multi-camera sys-
tems and triangulation algorithms under the assumption of bounded
noise and pixelization. We provide two main contributions. First, we
prove that, under certain conditions, the highest achievable point
localization accuracy of a multi-camera system is quadratically
related to the number of cameras in the system. Second, we introduce
the notion of consistency and show that consistent triangulation
algorithms achieve the optimal quadratic decay rate.

In the stereo case, there have been a number of excellent studies
thoroughly analyzing triangulation accuracy with relation to multi-
ple parameters [20], [21]. Furthermore, the error of depth estima-
tion in linear camera arrays, has been analyzed [22].

However, to the best of our knowledge, there is no work analyz-
ing arbitrary camera setups and certainly no work deriving funda-
mental scaling laws for the accuracy of triangulation, with respect
to the number of cameras. Given the rapid increase in popularity
of multi-camera systems, we hope this analysis provides a signifi-
cant contribution.

Our work is inspired by results derived from frame quantization.
In particular, similar error decay rates have been derived for signal
reconstruction from over-complete quantized projections [23], [24],
[25]. In imaging terms, this corresponds to circular arrays of 2-D pix-
elised orthographic cameras. Furthermore, these results have recently
been generalized to uniform bounded noise and any consistent esti-
mate [26], [27]. We extend these results to more general arrays of 3-D
cameras using central projections,which ismore typical in the context
of imaging.

In what follows, we give a very brief overview of the prob-
lem setup and formally define the triangulation problem. After
introducing major state-of-the-art techniques, we present our
main results on the error decay rate of consistent triangulation
algorithms and the best possible performance of multi-camera
systems. Finally, simulations are provided to support our
findings.
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2 BACKGROUND

2.1 Pinhole Camera Model

As is typical, we assume the pinhole camera model, which we will
now briefly summarize. For a more thorough introduction, we
refer the reader to [28].

As depicted in Fig. 1, a pinhole camera projects a point in 3-D
space, called the world point, to a point on the camera’s 2-D image
plane via a central projection. In homogeneous coordinates, pin-
hole projection can be expressed as a linear matrix multiplication:

�uh ¼ PUh; (1)

where �uh and Uh are the homogeneous representation of the pro-
jected point and world point, respectively. The 3� 4 matrix, P, is
the camera matrix, which can be decomposed as

P ¼ KR½Ij � C�: (2)

Here C denotes the camera centre, R the camera orientation, and j
the column-wise concatenation operator. Together, the camera cen-
tre and the camera orientation form the extrinsic, or pose parame-
ters. Finally, the matrix K contains the intrinsic camera parameters:
namely, the focal length f and the coordinates of the principal
point p ¼ ðcx; cyÞ.

In this paper, it will generally be more convenient to work with
the Cartesian coordinates of euclidean geometry. In this case, we
will write the non-linear pinhole projection as

�u ¼ PðUÞ ¼ 1

�uh½3�
�uh½1�
�uh½2�

� �
; (3)

where �u and U are the Cartesian coordinate representations of the
projected point and world point, respectively, and �uh is the homo-
geneous representation of the projected point.

2.2 Sources of Uncertainty

Due to various sources of uncertainty, the true image location �u is
perturbed to yield the measurement u. The error term incorporates
both deterministic (e.g., pixelization) and random (e.g., measure-
ment noise) perturbation.

2.2.1 Pixelization

Even when we are in a hypothetical noiseless scenario, we still
have to deal with the uncertainty caused by the finite resolution of
the camera sensors.

This source of uncertainty, whichwe call pixelization, is determin-
istic and, when projected back to the world space, leads to semi-infi-
nite regions in the world space instead of rays. These regions,
originating from the boundaries of the pixels, partition the world
space into a finite number of regions. Each region consists of all world

points whose projections map to the same pixel. Fig. 2 depicts a sim-
ple example of such a partitioning for a camerawith sixteen pixels.

When multiple cameras view the same region of interest, these
regions intersect producing a finite number of regions, each corre-
sponding to a particular combination of pixels in the cameras.
Clearly, smaller regions lead to a smaller uncertainty.

2.2.2 Non-Deterministic Sources of Uncertainty

In reality, pixelization is not the only source of uncertainty, with
additionally noises arising from image sensor noise, as well as the
error of corner localization algorithms.

These perturbation sources, combined with pixelization, even-
tually lead to ambiguity in measuring the exact location of an
image point. This can be modelled as an additive noise, yielding

u ¼ �uþ �� ¼ PðUÞ þ ��: (4)

2.2.3 Bounded Noise Models

In this paper, we will be interested in bounded noise models:

k��kq � d; (5)

where q specifies the shape of the bounded noise and d is referred
to as the bandwidth of the noise.

The main advantage of bounded noise is that it allows us to
completely dismiss regions of the solution space as impossible
and, as we will show, the size of the remaining feasible region
decays in such a way that the squared reconstruction error decays
quadratically with the number of measurements.

One may question the applicability of bounded noise. Clearly,
in the presence of outliers, additional work must be done to pre-
vent these methods breaking down. However, if outlier techniques
are applied, bounded approaches can be useful. It would be inter-
esting to fully investigate this comparison, for practical problems;
however, this is beyond the scope of this theoretical study.

2.3 The Triangulation Problem

This paper focuses on triangulation—a fundamental problem inmul-
tiple-view geometry, which, as well as being interesting in its own
right, provides a basic building block formany higher-level computer
vision tasks, such as visual metrology, Simulataneous Localization
AndMapping (SLAM), and Structure fromMotion (SfM).

The aim is to recover the location of an unknown 3-D point U
from its projections in M calibrated cameras; i.e., the camera matri-
ces P1 through PM are known and we estimate U from the mea-
sured projections u1; � � � ;uM . To be able to prove things about
triangulation, we formally define it as follows.

Fig. 1. An example of central projection in a pinhole camera.
Fig. 2. Pixelization in a digital camera.
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Definition 1. A triangulation problem takes as input

T ¼ fðui;PiÞ j 1 � i � Mg; (6)

and estimates the underlying unknown 3-D world point U as follows:

Û ¼ argmin
U

XM
i¼1

ui � PiðUÞk kpp0 : (7)

Here, Pið�Þ denotes the projection operator corresponding to the cam-
era matrix Pi and the ðui;PiÞ pairs denote the camera matrices of the
M cameras along with the projections of the unknown 3-D world
point U on their image planes.

In the previous definition, p0 and p, are known as the image-
space and residual-space norms, respectively. When we talk about
algorithms that minimize the ð‘p0 ; ‘pÞ-norm of the reprojection
error, for some particular p0 and p, we are referring to the image-
space and residual-space norms in this order.

When p ¼ 1, we assume that (7) becomes

Û ¼ argmin
U

max
i¼1::M

ui � PiðUÞk kp0 : (8)

2.4 Equivalence with Camera Localization

As an aside, we briefly mention the connection between triangulation
and a restricted version of camera localization. In particular, by replac-
ing theM cameras and single feature point of the triangulation prob-
lem with M feature points and a single camera, one can easily show
that the triangulation problem, as just defined, is mathematically
equivalent to localizing a single camera from the image points of M
feature points at known locations. The catch is that the equivalence is
only valid if one assumes that the orientation of the camera is known.

Of course, inmost practical problems, the camera orientation is not
knownandheuristicsmust be applied if onewishes to adapt triangula-
tion techniques to camera localization. Therefore, for clarity,we restrict
our analysis to triangulation and present the details of this equivalence
in the supplementarymaterial, available online. However, we empha-
size that the scaling lawswe derive also apply to this restricted version
of camera localization. Deriving scaling laws for the full camera locali-
zation problem is an interesting open research problem.

3 RECONSTRUCTION ALGORITHMS

In this section, we briefly review the main techniques used to solve
triangulation and other geometric reconstruction problems.

3.1 Linear Triangulation

The simplest approach to triangulation is to construct a linear system
of equations. Let plpl

T be the l-th rowof a a cameramatrixP. Then,

�u½1� ¼ �uh½1�
�uh½3� ¼

p1p1
TUh

p3p3TUh
; (9)

and similarly for �u½2�. Therefore, for a single camera, we have

�u½1�p3p3T � p1p1
T

�u½2�p3p3T � p2p2
T

� �
Uh ¼ 00: (10)

For M cameras, we can stack the 2M equations into a matrix
AA 2 R2M�4, with AAUh ¼ 00.

This equation can be solved efficiently with standard techni-
ques, such as the Singular Value Decomposition (SVD). However,
due to the conversion to homogeneous coordinates, this does not
minimize the desired cost; i.e., a norm of the residual vector.

The advantages of linear triangulation are its speed and sim-
plicity and it performs particularly well when the cameras are at
almost the same depth to the point of interest. Its robustness can
also be further improved by normalizing the focal length and other
metric distances in the problem instance [7], [8].

3.2 Reprojection Error Minimization

If increased computational resources are available, one can directly
attempt to minimize (7) for different values of p0 and p.

The most common choice is the ð‘2; ‘2Þ-norm, but, as explained
in the introduction, the resulting cost function is non-convex and
often difficult to solve exactly. Therefore, often, linear triangulation
is used to initialize a gradient descent approach thus accepting
convergence to a local minimum [16], [28].

Alternatively, more computationally intensive branch and
bound techniques can be used, which guarantee convergence to
the global minimum. In particular, in [29], the authors present a
branch and bound technique for minimizing the ð‘2; ‘2Þ, ð‘2; ‘1Þ and
ð‘1; ‘1Þ-norms.

The ‘1-norm corresponds to a bounded noise assumption. In
the case of the ð‘2; ‘1Þ-norm, the image points are bounded to
circles on the image plane, which back project as cones in the 3-D
world space. Consequently, Second Order Cone Programming
(SOCP) can be applied [4].

As with all approaches based on bounded noise, ‘1-based
methods suffer from being extremely sensitive to even a single out-
lier. Therefore, it is critical that these techniques are either com-
bined with standard outlier removal techniques or, as has been
recently proposed, relaxations applied [18], [19], [30].

4 CONSISTENT RECONSTRUCTION AND THE ACCURACY

OF MULTI-CAMERA SYSTEMS

In this section, we present two results concerning the triangulation
accuracy of multi-camera systems as more cameras are added to
the system.

In the first, we prove a lower bound for the average reconstruction
error of any triangulation algorithm using any multi-camera system,
over a region of interest. This lower bound decreases quadratically as
more cameras are added to the system.

Next, we introduce the concepts of consistency and consistent tri-
angulation and thenprove that the reconstruction error of a consistent
triangulation algorithm is upper bounded by a term that decreases
quadratically as more cameras are added to the system. Therefore,
consistent triangulation algorithms achieve the optimal error decay
rate.

This is not necessarily the case for other algorithms: linear trian-
gulation, for example, can be shown to yield a linear error decay
rate with respect to the number of cameras.

4.1 Lower Bound for the Accuracy of a Multi-Camera
System

We would like to lower-bound the best possible reconstruction
error achievable by a multi-camera system, using any possible tri-
angulation algorithm. To do this, we first formally define what we
mean by a triangulation algorithm.

Definition 2. A triangulation algorithm is any mapping from
T ¼ fðui;PiÞ : 1 � i � Mg to Û 2 R3.

Since we are seeking a lower-bound, it makes sense to limit the
uncertainties in the system. Therefore, in the following theorem,
we assume that pixelization is the only source or uncertainty; how-
ever, note that the size of pixels is arbitrary and thus this is a mild
assumption that is interesting even if an image point can be local-
ized with subpixel precision.

Theorem 1. Consider a multi-camera system of M cameras, each with
an N �N pixel image sensor and define a fixed region of interest, R,
with a finite non-zero volume.

If we assume that the only source of uncertainty is pixelization, the
expected ‘2 reconstruction error of any triangulation algorithm is
lower-bounded by a term that is inverse-quadratically dependent on
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the number of cameras; i.e.,

E Û�U
�� ��2

2

� �
¼ V

1

M2

� �
; (11)

where U 2 R is any point in the region of interest, and Û is the result
of reconstructing U, from its images in the multi-camera system,
using any triangulation algorithm. Here, the expectation is taken over
the location of the point U in the region of interest.

Proof. For the proof, please refer to the supplementary material,
available online. tu
The above theorem states that, under certain assumptions, no

triangulation algorithm can do better than a quadratic decay with
respect to the number of cameras, regardless of the camera setup.
In what follows, we show that, if the camera array is properly con-
structed, the expected reconstruction error of certain triangulation
algorithms can be upper-bound by a term that decays quadratically
with the number of cameras. Therefore, in doing so, we show that
these triangulation algorithms reach the best possible decay rate.
So which triangulation algorithms achieve this optimal decay? It
turns out that the key property is consistency.

4.2 Consistency and Consistent Reconstruction

A key advantage of bounded noise models is that, given a noisy
image point, we can restrict the true image point to a finite 2-D
region, which we call an image-space q-consistency region:

Iu;d;q ¼ fu 2 R2 : ku� ukq � dg: (12)

The shape of these regions depends on the type of bounded noise: a
circle when q ¼ 2, a diamond when q ¼ 1 and a square when q ¼ 1.
Note that, we assume that q � 1 so the norm is properly defined. In
this case, the image-space q-consistency region is convex.

If we back-project an image-space q-consistency region into the
world space, we obtain a convex 3-D region, which we call a world-
space q-consistency region:

Wu;d;P;q ¼ fU 2 R3 : ku� PðUÞkq � dg: (13)

Again, depending on the type of bounded noise, these 3-D regions
can be either a cone (q ¼ 2), a diamond-based pyramid (q ¼ 1), or a
square-based pyramid (q ¼ 1).

We know that the true 3-D point must lie in the intersection of
all world-space q-consistency regions:

Vu;d;P;q ¼ fU 2 R3 : ^M
i¼1kui � PiðUÞkq � dg; (14)

where P ¼ fPi : i 2 ½1;M�g. For a particular triangulation problem,
we call this region the q-consistent region and any estimate that lies
within it a q-consistent estimate. In addition, if a triangulation algo-
rithm always returns a q-consistent estimate, we call it a q-consistent
triangulation algorithm. This is stated more formally in the following
definition.

Definition 3. A triangulation algorithm is q-consistent, over the region
of interestR, if

ui 2 IPiðUÞ;d;q 8i 2 ½1;M� ) Û 2 Vu;d;P;q; (15)

for any U 2 R and valid projection matrices P ¼ fPi : 1 � i � Mg.
Note that a q-consistent triangulation algorithm returns no estimate
when Vu;d;P ¼ ? .

4.3 Finding Consistent Estimates

As stated in the following proposition, ð‘q; ‘1Þ-based triangulation
is q-consistent.

Proposition 1. Consider a multi-camera system viewing a point and
assume that the image points are subjected to ‘q-norm bounded noise:

kui � PiðUÞkq � d for i ¼ 1:::M:

Then, any algorithm that minimizes the ð‘q; ‘1Þ-norm of the reprojec-
tion error is a q-consistent triangulation algorithm.

Proof. For the proof, please refer to the supplementary material,
available online. tu
For ‘2-bounded noise, the 2-consistent regions are cones and the

SOCP technique outlined by Kahl et.al. [4] returns a 2-consistent
estimate.

For ‘1-bounded noise, the following simple linear program (LP)
can be used to find a1-consistent estimate. Recall that, for the linear
triangulation algorithm, we used plpl

T to denote the l-th row of a cam-
era matrix P. To avoid homogeneous coordinates, let’s separate the
first three elements from the last: plpl

T ¼ �pl�pl
T pl4

	 

. Then,

�u½1� ¼ �uh½1�
�uh½3� ¼

�p1�p1
TUþ p14

�p3�p3TUþ p34
; (16)

and similarly for �u½2�. For ‘1-bounded noise, with bandwidth d,

u½i� � d � �u½i� � u½i� þ d; i ¼ 1; 2:

Therefore, for a single camera, we have

ðu½1� � dÞ�p3�p3T � �p1�p1
T

ðu½2� � dÞ�p3�p3T � �p2�p2
T

�p1�p1
T � ðu½1� þ dÞ�p3�p3T

�p2�p2
T � ðu½2� þ dÞ�p3�p3T

2
664

3
775U �

p14 � ðu½1� � dÞp34
p24 � ðu½2� � dÞp34
ðu½1� þ dÞp34 � p14
ðu½2� þ dÞp34 � p24

2
664

3
775:

Note that, here, we have assumed that the point is in front of the
camera so that �p3�p3

TUþ p34 > 0.
For M cameras, we can stack the 4M inequalities producing a

matrix AA 2 R4M�3 and vector bb 2 R4M , such that AAU � bb. Any point
satisfying these constraints is 1-consistent and thus the following
LP will return a1-consistent estimate:

Û ¼ argmin
U

ccTU; s.t. AAU � bb: (17)

Here, the vector cc 2 R3 dictates which point in the 1-consistent
region is the optimum. As we show in the next section, for many
cameras, any1-consistent estimate is good and thus in our simula-
tions we use a standard LP solver with cc ¼ 00.

As an aside, we note that more complex LPs can be used to
select a more desirable point in the 1-consistent region. As just
stated, this will only be beneficial for smallM , since asymptotically
they will achieve the same performance.

For example, one can take the previous linear program and
remove all redundant constraints. Assume this produces �M equiv-
alent non-redundant constraints: �A�AU � �b�b. Then, a LP that finds the
point in the 1-consistent region that minimizes the average dis-
tance to the �M planes at the limit of the constraints can be designed
as follows. Let �al�al

T be the l-th row of �A�A. Then, the minimum dis-
tance from any point VV 2 R3 to the l-th plane, is

dlðVV Þ :¼ �al�al
T VV � �bl
k�al�alk2

: (18)

We thus wish to solve

argmin
U

X
l

jdlðUUÞj; s.t. �A�AU � �b�b: (19)

It is a standard exercise in linear programming to convert this
problem into standard form using �M auxiliary variables, one for
each distance.
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4.4 Error Decay in Consistent Reconstruction

We will shortly present a theorem stating that, for circular camera
arrays, the expected reconstruction error of q-consistent triangula-
tion algorithms is upper bounded by a term that decays quadrati-
cally with the number of cameras. However, since simulations
suggest that the result holds in many more cases, including linear
camera arrays and even quite general random setups, we present
the following more general conjecture, which is numerically tested
in the following section.

Conjecture 1. Define the region of interest, R, to be a sphere of finite
radius r and place a point anywhere in this region. Place M cameras
inside a larger finite radius sphere, with the same centre as R, i.i.d.
uniformly at random such that they all see the whole region of interest.

Furthermore, assume that the images of the world point in the cam-
eras are perturbed with uniform bounded noise; i.e., for the world point
U, the image ui in the i-th camera is computed as

ui ¼ PiðUÞ þ ��i; (20)

where ��i is zero-mean uniform bounded random satisfying k��ikq � d.
In this situation, the expected ‘2 reconstruction error of any

q-consistent triangulation algorithm is upper-bounded by a term
which decreases quadratically with the number of cameras; i.e.,

E Û�U
�� ��2

2

� �
¼ O 1

M2

� �
; (21)

where U 2 R is any point in the region of interest, and Û is the result
of reconstructing U, from its images in the multi-camera system,
using a q-consistent triangulation algorithm. Here, the expectation is
taken over both the noise vector � and the camera locations.

Now, the theorem for circular camera arrays. Once again, simu-
lation results are presented in the following section to support this
theorem.

Theorem 2. PlaceM cameras in a plane, i.i.d. uniformly at random on a
finite radius circle oriented towards the centre of the circle. Define the
region of interest, R, to be the intersection of the field of view of all
cameras asM ! 1 and place a point anywhere in this region.

Furthermore, assume that the images of the world point in the cam-
eras are perturbed with ‘1 uniform bounded noise; i.e., for the world
point U, the image ui in the i-th camera is

ui ¼ PiðUÞ þ ��i; (22)

where ��i is zero-mean uniform bounded random satisfying k��ik1 � d.
In this situation, the expected ‘2 reconstruction error of any

1-consistent triangulation algorithm is upper-bounded by a term
which decreases quadratically with the number of cameras; i.e.,

E Û�U
�� ��2

2

� �
¼ O 1

M2

� �
; (23)

where U 2 R is any point in the region of interest, and Û is the result
of reconstructing U, from its images in the multi-camera system,
using a 1-consistent triangulation algorithm. Here, the expectation
is taken over both the noise and the camera locations.

Proof. The proof makes use of [27, Corollary 6.2] and appears in
the supplementary material, available online. tu

5 SIMULATIONS

We now present simulations to verify our theoretical results. To
approximate the expected reconstruction error, we take the average
of many realizations. This means that any algorithm we use is run
many times and thus has to be extremely robust. Unfortunately, this
prevented us from using the branch and bound technique proposed
in [29], since we were unable to prevent their implementation from
crashing for certain realizations. Therefore, for the (‘2; ‘2)-norm we
used the non-linear approach from Hartley and Zisserman [28]. The
technique is based onNewton iterations andwe initialized it with the
solution of linear triangulation. For the linear triangulation, we used
the normalized implementation by the same authors [28]. For the
(‘2; ‘1)-norm, we used the SOCP implementation provided by
Kahl [4] and, finally, for the (‘1; ‘1)-normminimization, we used the
linear program defined in (17) with cc ¼ 00. Of course, this just returns
a1-consistent estimate and does not fullyminimize the norm.

Fig. 3. Verification of Conjecture 1. Expected squared error (E) as a function of the number of cameras (M).
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5.1 Numerical Simulation of Conjecture 1

We simulated the setup explained in Conjecture 1. In order to gener-
ate cameras uniformly at random that see thewhole region of interest,
we use rejection sampling; i.e., we repeatedly generate a camera cen-
tre and rotation matrix uniformly at random and reject ones that do
not see thewhole region of interest. To generate rotationmatrices uni-
formly at randomweuse the technique outlined in [32].

The results are shown in Fig. 3, for ‘1-norm and ‘2-normbounded
noise. As expected, q-consistent algorithms, where q matches the
norm of the noise, have a quadratic decay; i.e., the LP has a quadratic
decay for ‘1-norm bounded noise and the minimum (‘2; ‘1)-norm
has a quadratic decay for ‘2-norm bounded noise.

Non-consistent techniques, such as the (‘2; ‘2)-norm minimiza-
tion, can perform well for smallM , but, asM increases, fail to reach
the quadratic decay.

5.2 Numerical Simulation of Theorem 2

Finally, we present a simulation to experimentally test Theorem 2.
The algorithms are the same as for the simulation of Conjecture 1
and the results are shown in Fig. 4. As can be seen in the figure, all
algorithms behave as expected.

6 CONCLUSION

We presented an analysis of the accuracy of multi-camera systems
and their error decay rate with respect to the number of cameras.
In doing so, we derived fundamental scaling laws stating that,
under certain conditions, the accuracy of a multi-camera imaging
system in triangulating 3-D points increases quadratically with
respect to the number of cameras.

We also analyzed the performance of state-of-the-art algorithms
with respect to their error decay rate. To do this, we introduced the
notion of q-consistency and showed that q-consistent reconstruction
algorithms achieve the optimal quadratic error decay. Furthermore,
we showed that (‘q; ‘1)-norm basedminimization is q-consistent and
presented two simple linear programs that are1-consistent.

ACKNOWLEDGMENTS

The authors would like to thank Richard Hartley, Fredrik Kahl, and
Pascal Frossard for their advice and fruitful discussions, which
have greatly improved the manuscript. This work was in part pre-
sented in [1] and [2]. This work was supported by the Commission
for Technology and Innovation (CTI) project no. 14842.1 PFES-ES

and ERC Advanced Grant—Support for Frontier Research—SPAR-
SAM Nr: 247006. A. Ghasemi was additionally supported by a
Qualcomm Innovation Fellowship.

REFERENCES

[1] A. Ghasemi, A. Scholefield, and M. Vetterli, “On the accuracy of point
localisation in a circular camera-array,” in Proc. IEEE Int. Conf. Image Pro-
cess., 2015, pp. 981–985.

[2] A. Ghasemi, A. Scholefield, and M. Vetterli, “SHAPE: Linear-time camera
pose estimation with quadratic error-decay,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., 2016, pp. 1776–1780.

[3] R. Hartley and F. Kahl, “Optimal algorithms in multiview geometry,” in
Proc. Asian Conf. Comput. Vis., 2007, pp. 13–34.

[4] F. Kahl and R. Hartley, “Multiple-view geometry under the ‘1-norm,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 30, no. 9, pp. 1603–1617, Sep. 2008.

[5] S. Donn�e, B. Goossens, and W. Philips, “Point triangulation through poly-
hedron collapse using the ‘1 norm,” in Proc. IEEE Int. Conf. Comput. Vis.,
pp. 792–800, 2015.

[6] C. Freundlich, M. Zavlanos, and P. Mordohai, “Exact bias correction and
covariance estimation for stereo vision,” in Proc. IEEE Comput. Vis. Pattern
Recognit. Conf., 2015, vol. 1, pp. 3296–3304.

[7] R. Hartley and P. Sturm, “Triangulation,” Comput. Vis. Image Understanding,
vol. 68, no. 2, pp. 146–157, 1997.

[8] R. I. Hartley, “In defense of the eight-point algorithm,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 19, no. 6, pp. 580–593, Jun. 1997.

[9] K. Kanatani and H. Niitsuma, “Optimal two-view planar scene triangu-
lation,” in Proc. Asian Conf. Comput. Vis., 2010, pp. 242–253.

[10] K. Kanatani, Y. Sugaya, and H. Niitsuma, “Triangulation from two views
revisited: Hartley-Sturm versus optimal correction,” in Proc. British Mach.
Vis. Conf., 2008, pp. 173–182.

[11] H. Stewenius, F. Schaffalitzky, and D. Nister, “How hard is 3-view triangu-
lation really?,” in Proc. IEEE Int. Conf. Comput. Vis., 2005, pp. 686–693.

[12] J. Hedborg, A. Robinson, and M. Felsberg, “Robust three-view triangula-
tion done fast,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops,
2014, pp. 152–157.

[13] M. Byr€od, K. Josephson, and K. A
	
str€om, “Fast optimal three view triangu-

lation,” in Proc. Asian Conf. Comput. Vis., 2007, pp. 549–559.
[14] K. Nordberg, “Efficient three-view triangulation based on 3-D optimization,”

inProc. BritishMach. Vis. Conf., 2008, pp. 1–10.
[15] S. Agarwal, M. K. Chandraker, F. Kahl, D. Kriegman, and S. Belongie,

“Practical global optimization for multiview geometry,” in Proc. Eur. Conf.
Comput. Vis., 2006, pp. 592–605.

[16] R. Hartley, F. Kahl, C. Olsson, and Y. Seo, “Verifying global minima for ‘2
minimization problems in multiple view geometry,” Int. J. Comput. Vis.,
vol. 101, no. 2, pp. 288–304, 2013.

[17] H. D. Mittelmann, “An independent benchmarking of SDP and SOCP solv-
ers,”Math. Program., vol. 95, no. 2, pp. 407–430, 2003.

[18] H. Li, “A practical algorithm for ‘1 triangulation with outliers,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2007, pp. 1–8.

[19] B. Micusikc and R. Pflugfelder, “Localizing non-overlapping surveillance
cameras under the ‘1 norm,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2010, pp. 2895–2901.

[20] S. Blostein and T. S. Huang, “Error analysis in stereo determination of 3-D
point positions,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-9, no. 6,
pp. 752–765, Jun. 1987.

[21] J. Rodriguez and J. Aggarwal, “Stochastic analysis of stereo quantization
error,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 5, pp. 467–470,
May 1990.

[22] R. Raynor and K. Walli, “Plenoptic camera range finding,” in Proc. AIPR
Workshops, 2013, vol. 1, pp. 1–11.

[23] V. K. Goyal, M. Vetterli, and N. T. Nguyen, “Quantized overcomplete
expansions in Rn: analysis, synthesis, and algorithms,” IEEE Trans. Inf.
Theory, vol. 44, no. 1, pp. 16–31, Jan. 1998.

[24] Z. Cvetkovic, “Source codingwith quantized redundant expansions:Accuracy
and reconstruction,” inProc. Data Compression Conf., 1999, vol. 1, pp. 344–353.

[25] B. Beferull-Lozano and A. Ortega, “Efficient quantization for overcomplete
expansions inRn,” IEEE Trans. Inf. Theory, vol. 49, no. 1, pp. 129–150, Jan. 2003.

[26] S. Rangan and V. K. Goyal, “Recursive consistent estimation with bounded
noise,” IEEE Trans. Inf. Theory, vol. 47, no. 1, pp. 457–464, Jan. 2001.

[27] A. M. Powell and J. T. Whitehouse, “Error bounds for consistent recon-
struction: Random polytopes and coverage processes,” Found. Comput.
Math., vol. 16, no. 2, pp. 395–423, 2016.

[28] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
Cambridge, U.K.: Cambridge Univ. Press, 2003.

[29] F. Kahl, S. Agarwal, M. Chandraker, D. Kriegman, and S. Belongie,
“Practical global optimization for multiview geometry,” Int. J. Comput. Vis.,
vol. 79, no. 3, pp. 271–284, 2008.

[30] Y. Seo, H. Lee, and S. Lee, “Outlier removal by convex optimization for ‘1
approaches,” inProc. Pacific-Rim Symp. ImageVideo Technol., 2009, pp. 203–214.

[31] J. E. Goodman and R. Pollack, “Upper bounds for configurations and poly-
topes in Rd,” Discrete & Comput. Geometry, vol. 1, no. 3, pp. 219–227, 1986.

[32] J. Arvo, “Fast random rotation matrices,” in Graphics Gems III, D. Kirk, Ed.
San Diego, CA, USA: Academic Press Professional, Inc., 1992, p. 117–120.

Fig. 4. Verification of Theorem 2. Expected squared error (E) as a function of the
number of cameras (M).

2326 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 9, SEPTEMBER 2020



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


