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Abstract—We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects

few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited

computational and communication capabilities and to gatherM noisy measurements in total on input locations independently drawn

from a known common probability density. The optimal solution would require agents to exchange all theM input locations and

measurements and then invert anM �M matrix, a non-scalable task. Differently, we propose two suboptimal approaches using the

first E orthonormal eigenfunctions obtained from the Karhunen-Lo�eve (KL) expansion of the chosen kernel, where typically E � M.

The benefits are that the computation and communication complexities scale with E and not withM, and computing the required

statistics can be performed via standard average consensus algorithms. We obtain probabilistic non-asymptotic bounds that determine

a priori the desired level of estimation accuracy, and new distributed strategies relying on Stein’s unbiased risk estimate (SURE)

paradigms for tuning the regularization parameters and applicable to generic basis functions (thus not necessarily kernel

eigenfunctions) and that can again be implemented via average consensus. The proposed estimators and bounds are finally tested on

both synthetic and real field data.

Index Terms—Gaussian processes, sensor networks, distributed estimation, kernel-based regularization, nonparametric estimation,

average consensus

Ç

1 INTRODUCTION

MANY modern engineering problems involve networks
containing a large number of agents which have to

cooperate to obtain a common goal. Several of these tasks
can be seen as problems of function estimation from sparse
and noisy data, a central issue in the machine learning
field [1], [2]. Examples include the determination of the
wind speed and direction field in a wind farm from local
measurements of the turbines [3], the reconstruction of the
temperature field in a datacenter from local measurements
at each server [4], and weather forecasts [5], [6]. Traditional
centralized machine-learning estimation approaches are
computationally non-scalable when the network is large.
Moreover parallelization of computation using client-server
architectures, which can alleviate this problem, might not
be feasible. This happens, e.g., in applications where com-
munication is peer-to-peer, as in wireless sensor networks
or multi-agent robotics, and where each agent is expected to
have a common copy of the global estimate. In these cases,
fully distributed cooperation approaches are ought [7].

1.1 State-of-the-Art

This paper considers a distributed nonparametric Gaussian
regression approach. In this context, the unknown map is
modeled as a zero-mean Gaussian process whose covariance
(also called kernel in the machine learning literature) has to
embed expected properties like smoothness [8], [9]. Other
approaches to function estimation could be also adopted,
e.g., sparse regression based on the ‘1 norm, automatic rele-
vance determination or the elastic net [10], [11], [12], [13],
[14]. However, in our framework the implementation of
these approaches is not trivial and would require sophisti-
cated distributed optimization algorithms like ADMM [15].
In fact, we consider a scenario where N agents first collect a
total of M direct and noisy measurements of the unknown
map on input locations drawn from a common and known
probability density. The aim is then to obtain a shared func-
tion estimate. To simplify the exposition, we assume w.l.o.g.
N ¼ M, i.e., each agent collects a single measurement. We
also assume that computational and data storage capabilities
are limited, and that the communication network is peer-to-
peer, i.e., agents are able only to communicate with a
restricted number of neighbors. As described below, this
makes the problem difficult also under Gaussian process
assumptions, but we will see that function estimation can be
performed using simple average operations.

Assuming that f and the measurements noise are jointly
Gaussian, achieving the minimum variance estimate
requires knowing all theM measurements and related input
locations, plus invert an M �M matrix with OðM3Þ opera-
tions, a difficult task in a distributed fashion. When the data
set size M is large, the complexity is high also in centralized
contexts. Therefore, many alternative approaches have been
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developed relying, e.g., on the notion of pseudo input loca-
tions [16], [17], [18], the use of matrix factorizations [19] and
approximations of the kernel function [20], [21] through the
Nystr€ommethod or greedy techniques [22], [23], [24]. Along
this way, KL expansions [25] have been also used to decom-
pose the kernel in terms of eigenfunctions that are orthogo-
nal w.r.t. the input locations probability density. One can
then approximate the Gaussian process via the E kernel
eigenfunctions associated to the largest eigenvalues, an
approximation that corresponds to perform the best process
approximation before seeing the data [25] (see Section 3.1 for
more details). A posteriori, i.e., after seeing the measure-
ments and their input locations, the situation is instead more
subtle since there exist E-dimensional subspaces that allow
to come closer to theminimumvariance estimator [26]. How-
ever, the a priori basis given by the KL expansion has impor-
tant advantages. In fact, as proved in [27], the first E kernel
eigenfunctions are asymptotically optimal, i.e., they provide
the bestE-dimensional approximation of the minimum vari-
ance estimator as the data set size M grows to infinity. In
addition, differently from the a posteriori basis described
in [26], the a priori basis can be computed off-line. Moreover,
as detailed in Section 3.2, computing the final estimates
requires computing sufficient statistics that have the struc-
ture of averages of M local matrices and local vectors of
dimension respectively E �E and E. This implies that the
basic building block of the estimators involves computing
averages over networks which can be more efficient from a
memory, computation and communication perspective
when E � M. Such averages can be computed via the so
called average consensus algorithms [28], [29] which require
only mild assumption on network connectivity and commu-
nication. In particular, these algorithms require no global
topological information, only minimal local coordination
and can be implemented also in the context of asynchronous
updates and lossy communication [30].

1.2 Contribution

Our stream of research pairs the ones of other authors focus-
ing on distributed kernel regression. An example is [31],
that proposes a distributed regularized kernel Least Squares
(LS) regression algorithm that exploits successive orthogo-
nal projections, or [32] that extends [31] by designing strate-
gies to reduce the communication and synchronization
needs. Estimators with reduced order model complexity
have been proposed in [33], while nonparametric schemes
using Nearest-Neighbors interpolation strategies have been
studied also in [34]. Another Gaussian estimation approach
is considered in [35], with focus on the problem of sequen-
tially predicting the most informative future input locations
to minimize simultaneously the prediction error and the
uncertainty in the regularization parameters. Other distrib-
uted regression algorithms are proposed in [36] with the
aim of estimating a dynamic Gaussian process and its gradi-
ent, while in [37] authors develop a distributed learning and
cooperative control algorithm where agents estimate a static
field modeled as a network of radial basis functions whose
centers locations are known in advance.

Despite the many research efforts, none of the aforemen-
tioned works on distributed regression have addressed the
following fundamental issue: assigned a Gaussian prior (the

kernel) and the input locations distribution, how much information
does the network need to exchange to obtain, with a probability
1� a, the desired level of estimation accuracy? In this paper we
will answer this question adopting KL-based strategies which
exploit E kernel eigenfunctions. In particular, we will study
two different estimators denoted by bfA and bfB which have
computational and communication complexities of order
OðE2Þ and OðEÞ, respectively, originally proposed in [38].
Differently from [38] which focused on finding Monte Carlo
based strategies for assessing the a posteriori statistical per-
formance of the estimators, in thiswork the focus is on charac-
terizing their a priori prediction capability on future data by
first assigning the kernel and the input locations statistics,
and then deriving non-asymptotic error bounds that are func-
tions of E, M and a. This analysis can be also seen as the
extension to the Bayesian context of the concept of effective
dimension developed in deterministic frameworks, e.g.,
in [39]. There it has been shown that, in the worst case, sub-
spaces of dimension

ffiffiffiffiffi
M

p
, i.e., sub-polynomial in the data set

size, capture the estimate. Parallel to this, our bound returns
information on theBayesian effective dimension revealingwhich
subspace can be really influenced by themeasurements.

Another major contribution provided in this work is to
show that both bfA and bfB are asymptotically optimal, i.e., for
fixed E, as M grows to infinity there is no other estimator
which can perform better in the mean squared error sense.
We will also see that, while bfA is always consistent, i.e., con-
vergent in probability to the true function asE;M ! 1, con-
sistency of bfB requires E to grow slower than M. In some
sense, such result clarifies the price to pay when adopting a
estimator parsimonious in the information exchange.

Finally, in many applications the kernel scale factor is
unknown and its tuning is critical since it strongly affects the
performance of the Bayesian estimator. In addition, the ker-
nel expansion could be hard to be obtained and one would
rather use a different set of basis functions. In the terminal
part of the paper, we address these problems by proposing a
novel distributed tuning strategy based on the SURE crite-
rion [40]. Standard approaches proposed in the literature in
the context of a centralized framework (like cross-validation
and maximum likelihood [41], [42], [43], [44], MAP estima-
tion [45], expected improvement [46] and Markov chain
Monte Carlo [47], [48]) require high computation and com-
munication overhead, and are therefore not suited for dis-
tributed implementations. Instead, our strategy allows for
simultaneous hyperparameter tuning and function estima-
tion via a single average consensus algorithm over a vector
of size OðE2Þ when bfA is employed, and via only two aver-
ages of size OðEÞ when bfB is employed. Very importantly,
the SURE criterion be used also for generic basis functions,
such as kernel sections or Nystr€om bases, thus not necessar-
ily restricted to be kernel eigenfunctions and defined.

1.3 Paper Outline

The paper is organized as follows. Section 2 formulates the
Bayesian estimation problem while Section 3 describes the
KL expansion of the Gaussian process and the distributed
estimators. Section 4 provides the statistical characterization
of our distributed estimators, also deriving error bounds
which are then tested via some numerical experiments. Sec-
tion 5 proposes distributed strategies to tune the possibly
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unknown regularization parameter entering our estimators
for generic basis functions and discusses practical imple-
mentation issues. These strategies are also tested on both
synthetic and real data. Section 6 collects conclusions and
future research directions while proofs are collected in the
Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2018.2836422.

2 BAYESIAN ESTIMATION

2.1 The Measurements Model

We consider the measurements model

ym ¼ f xmð Þ þ nm; m ¼ 1; . . . ;M (1)

with the input locations xm following the stochastic genera-
tion scheme

xm � mðXÞ i.i.d.; m ¼ 1; . . . ;M; (2)

withm a non-degenerate probabilitymeasure on the compact
X . The unknown function f : X ! R is a zero-mean Gauss-
ian processwith continuous covarianceK : X � X ! R, i.e.,

f � N 0; Kð Þ: (3)

The measurement noise is also Gaussian of known vari-
ance s2

n:

nm � N 0; s2
n

� �
:

Finally, fnmgMm¼1, fxmgMm¼1 and f are all assumed mutually
independent.

2.2 The Bayesian Estimator

The Gaussian assumptions of Section 2.1 imply that the pos-
terior of f given the dataset xm; ymf gMm¼1 is still Gaussian.
Also, the Maximum A Posteriori (MAP) estimator coincides
with the minimum variance estimator and is given by

bfMAPðxÞ ¼ Kðx; x1Þ . . . Kðx; xMÞ½ �HMAP

y1

..

.

yM

264
375

with

HMAP :¼
Kðx1; x1Þ 	 	 	 Kðx1; xMÞ

..

. ..
.

KðxM; x1Þ 	 	 	 KðxM; xMÞ

264
375þ s2

nI

0B@
1CA

�1

:

The storage and computational requirements needed to
compute bfMAP are thus O M2ð Þ and O M3ð Þ, respectively.
The communication complexity is either O dimðXÞMð Þ if
agents share the input locations xm or O M2ð Þ if they share
the covariances Kðxm; xm0 Þ. Thus, storage, computational
and communication complexities do not scale favorably
with the dataset size M. Our aim is thus to find good
approximators of bfMAP that are suitable for distributed
implementations.

3 FINITE-DIMENSIONAL APPROXIMATIONS OF THE

BAYESIAN ESTIMATOR

3.1 KL Expansion: Kernel

The kernel (3) can be expanded in terms of eigenfunctions
fe orthonormal w.r.t. the measure m in (2) and related eigen-
functions �e [25]. They are defined by

�efeðxÞ ¼
Z
X
Kðx; x0Þfeðx0Þdmðx0Þ; (4)

Kðx; x0Þ ¼
Xþ1

e¼1

�efeðxÞfeðx0Þ �1 
 �2 . . . > 0; (5)

and, using dij for the Kronecker delta,Z
X
fiðxÞfjðxÞdmðxÞ ¼ dij: (6)

Let E be a positive integer. Then (4), (5) and (6) allow us
to reformulate the process f via the following KL expansion

fðxÞ ¼
XE
e¼1

aefeðxÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼: faðxÞ

þ
Xþ1

e¼1

befEþeðxÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼: fbðxÞ

: (7)

The expansion coefficients have been thus divided into two
sets: a finite one composed by the E random variables ae,
and an infinite one given by the remaining variables be. The
elements in these two sets are all mutually independent,
and satisfy

ae � N 0; �eð Þ; e ¼ 1; . . . ; E (8a)

be � N 0; �Eþeð Þ; e ¼ 1; 2; . . . (8b)

It is well known that

S :¼ span f1ð	Þ; . . . ;fEð	Þh i (9)

is that E-dimensional subspace that captures the biggest
part of the statistical energy of f as measured by E

R
f2dm

� �
.

In other words, fa is the best E-dimensional approximation
of f in the mean square sense [27].

In what follows, it is always assumed that all the kernel
eigenfunctions are contained in a ball of finite radius in the
space of continuous functions, i.e.,

Assumption 1. There exists a k < þ1 s.t.

sup
x2X

feðxÞj j �
ffiffiffi
k

p
< þ1 e ¼ 1; 2; . . . : (10)

Assumption 1 is satisfied by all the finite-dimensional ker-
nels and also by classical covariances like the spline kernels,
e.g., see [49] for the case of uniform m. In practice, if the KL
expansion is not available in closed form, it can be obtained
numericallywith arbitrary accuracy, as for example described
in [50], also permitting to compute the constant k.

3.2 KL Expansion: Measurement Model

Our next step is to search for finite-dimensional estimators
of f suitable for distributed implementations. Below, we
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introduce two different estimators, denoted by bfA and bfB,
which assume values in the finite-dimensional subspace S
defined in (9). First, it is useful to rewrite model (1) in a
more compact form.

Let

xx :¼ x1; . . . ; xM½ �T

yy :¼ y1; . . . ; yM½ �T nn :¼ n1; . . . ; nM½ �T (11)

aa :¼ a1; . . . ; aE½ �T bb :¼ b1; b2; . . .½ �T

G :¼
G11 . . . G1E

..

. ..
.

GM1 . . . GME

264
375 Z :¼

Z11 Z12 . . .

..

. ..
.

ZM1 ZM2 . . .

264
375 (12)

Gme :¼ feðxmÞ; m ¼ 1; . . . ;M; e ¼ 1; . . . ; E;

Zme :¼ fEþeðxmÞ; m ¼ 1; . . . ;M; e ¼ 1; 2; . . . (13)

Considering decomposition (7), definitions (11), (26), (27),
(28), (29), (30), (13) and using classical algebraic notation to
handle infinite-dimensional objects, the measurements
model (1) becomes

yy ¼ Gaaþ Zbbþ nn:

With this novel notation Gaa accounts for the contribution
from fa while Zbb accounts for the contribution from fb.

3.3 The E-Dimensional Estimator bfA
Let bfAðxÞ :¼ f1ðxÞ 	 	 	 fEðxÞ½ �HAyy; (14)

where

HA :¼ GTG

M
þ s2

n

M
L�1

E

� 	�1
GT

M

and LE :¼ diag �1; . . . ; �Eð Þ. The estimator bfA is suitable for
distributed computations. In fact, defining

Gm :¼ f1ðxmÞ; . . . ;fEðxmÞ½ �
one has

GTG

M
¼ 1

M

XM
m¼1

GT
mGm;

GTyy

M
¼ 1

M

XM
m¼1

GT
mym: (15)

Since GT
mGm 2 RE�E and GT

mym 2 RE are local quantities,
(15) points out that bfA can be distributedly computed
through the parallelization of two average consensus strate-
gies: one on the GT

mGm’s and one on the GT
mym’s, for a total

of E2 þ E scalars. This estimator would correspond to the
Minimum Variance Unbiased Estimator (MVUE) estimator
if the process f in (7) were truncated just to fa.

3.4 The E-Dimensional Estimator bfB
As stated in (6), one has

E
GTG

M


 �
e;e0

" #
¼
Z
X
feðxÞfe0 ðxÞ dmðxÞ ¼ de;e0 :

and, given the assumptions in Section 2.1 and Assumption 1,
the following convergence in probability holds

GTG

M
¼ 1

M

XM
m¼1

GT
mGm

M ! þ1�������!E
GTG

M


 �
¼ I:

Thus, it is tempting to use the approximation

GTG

M
� I (16)

and use, in place ofHA in (14), the matrix

HB :¼ I þ s2
n

M
L�1

E

� 	�1
GT

M
:

In turn, this approach approximates bfA with

bfBðxÞ :¼ f1ðxÞ 	 	 	 fEðxÞ½ �HByy:

The estimator bfB is more advantageous than bfA for distrib-
uted computations. In fact, it requires an average consensus
on just the column vectors GT

mym’s, for a total of E scalars
(differently from the E2 þE ones required by bfA), and does

not require any expensive matrix inversion since I þ s2n
M L�1

E

is diagonal.

4 STATISTICAL ANALYSIS OF bfA AND bfB
Ideally one would like to compute E½kf � bfAk2� and
E½kf � bfBk2�, or at least some bounds that quantify the per-
formance of the estimator for any specified E and M a pri-
ori. However, the computation of such quantities is
intractable or, at least, requires an expensive Monte Carlo
analysis, possibly to be repeated for many different design
variables like, e.g., M;E; s2

n. To circumvent this challenge,
we will exploit the assumption that the input locations are
randomly drawn from a known distribution m and the
orthonormality of the eigenfunctions to find bounds on
E½kf � bfAk2� that hold with arbitrarily high probability.
More specifically, the key idea is to find an event E that
occurs with arbitrarily high probability such that informa-
tive bounds on E½kf � bfAk2 Ej � can be computed. This is
formally described in the next sections.

4.1 Performance Indexes and Lower Bound

Two important performance indexes we consider for bfA andbfB are the errors defined by the conditional expectations

ErrAðxxÞ :¼ E f � bfA 2 xxj

 �

ErrBðxxÞ :¼ E f � bfB 2 xxj

 �

;

where

kgk2 :¼
Z
X
g2ðxÞdmðxÞ:

The variables ErrAðxxÞ and ErrBðxxÞ are stochastic, since they
are functions of the random input locations xx that in our set-
tings are assumed random as described in (2). Hence,
the crux of our analysis will be how to account for the
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randomness coming from xx. Note also that k 	 k depends on
m so that ErrA and ErrB quantify the prediction errors on
future data independently drawn from the same training
set distribution.

Exploiting the KL expansion introduced in Section 3.1 a
lower bound on the errors ErrAðxxÞ and ErrBðxxÞ can be also
easily obtained. More generally, the following result bounds
the performance achievable by any generic E-dimensional
estimator of f .

Theorem 1. Let bf? be any generic estimator of f , function of xx
and yy and assuming values in any generic E-dimensional space
fixed a priori. Then

minbf? E kf � bf?k2 xxj
h i



Xþ1

e¼Eþ1

�e: (17)

The following definition will be especially important for
our future developments.

Definition 1. We say that ErrA � q or ErrB � q with probabil-
ity 1� a if there exists an event E in the s-algebra induced by
xx of probability at least 1� a such that, respectively,

E ErrAðxxÞ Ej½ � � q (18)

or

E ErrBðxxÞ Ej½ � � q: (19)

Thus, if a is close to zero saying that ErrA � qwith proba-
bility 1� a is equivalent to saying that the average error
associated to bfA is smaller than q with high probability.
Finally, note that setting E to the entire sample space, the
conditional expectations in the Left Hand Side (LHS) of (18)
and (19) become unconditional ones, and actually corre-

spond to the Mean Square Errors (MSEs) of bfA and bfB, i.e.,
MSEbfA ¼

Z
X

ErrAðxÞdmðxÞ; (20)

MSEbfB ¼
Z
X

ErrBðxÞdmðxÞ: (21)

4.2 Non Asymptotic Error Bounds

The key issue is to bound the performance indexes ErrA and
ErrB for any finite number of measurements M and eigen-
functions E. The following theorem provides the desired
bounds. It depends on the input locations distribution m,
the kernel eigenvalues �e and constant k defined in (4) and
(10), the number of eigenfunctions E and measurements M.
In addition the bound is also function of a parameter
" 2 ð0; 1� connected to maximal and minimal (stochastic)

eigenvalue of GTG
M , as detailed in the proof contained in the

Appendix, available in the online supplemental material.

Theorem 2. Let the assumptions in Section 2.1 and Assump-
tion 1 hold, a 2 ð0; 1Þ be a desired confidence level (e.g., 0.01 or
0.05), and " 2 ð0; 1� be given. If E;M and k satisfy

1� "þ " log ð"Þ 
 Ek

M
log

E

a

� 	
(22)

then with probability at least 1� a it holds that

ErrA � BndA

with

BndA : ¼ kM

1� a

XE
e¼1

�2
e

ð"M�e þ s2
nÞ2

 ! Xþ1

e¼Eþ1

�e

 !

þ s2
n

1� a

XE
e¼1

�e

"M�e þ s2
n

 !
þ

Xþ1

e¼Eþ1

�e

 !
:

Under the same assumption but with E;M and k now sat-
isfying

1� "þ " log ð"Þ 
 Ek

M
log

2E

a

� 	
; (23)

then with probability at least 1� a it holds that

ErrB � BndB

with

BndB : ¼ kM

1� a

XE
e¼1

�2
e

M�e þ s2
n

� �2
 ! Xþ1

e¼Eþ1

�e

 !

þ s2
n

1� a

XE
e¼1

�e

"M�e þ s2
n

 !
þ

Xþ1

e¼Eþ1

�e

 !

þ k
E

M
s2
n þ

XE
e¼1

�e

 !
;

where

k ¼ 1

1� a
"þ ��1

1 s2
n

M

� 	�4

ð1� "Þ2ð2� "Þ2:

The obtained bounds are now tested via a numerical
example.

4.3 Numerical Study

Consider the first-order spline kernel [51] which corre-
sponds to the Brownian motion covariance, i.e.,

Kðx; x0Þ ¼ minðx; x0Þ ¼
X1
e¼1

�efeðxÞfeðx0Þ

with the input locations probability measure m in (2) set to
the uniform distribution on ½0; 1�. With these settings

feðxÞ ¼
ffiffiffi
2

p
sin xðep� p=2Þð Þ; �e ¼ 1

ðep� p=2Þ2

and k ¼ 2. To make the bounds only depend on E we set
M ¼ 10000, 1� a ¼ 0:95, the noise variance s2

n ¼ 0:12, and
" 2 ð0; 1� that minimizes the bound while satisfying (22)
or (23) accordingly.

The thick lines in the two top panels of Fig. 1 show how
BndA (left) and BndB (right) vary with E (bounds are nor-
malized using the prior process variance

P1
e¼1 �e). For the

sake of comparison we also display the true (normalized)
MSEs (dashed line) as defined in (20) and (21), calculated
via a Monte Carlo of 1000 runs, and its lower bound (thin
line), i.e.,

P1
e¼Eþ1 �e=

P1
e¼1 �e as illustrated in Theorem 1.
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As for BndA, it is interesting to notice that just 20 eigen-
functions are needed to obtain an high estimation accuracy
in both the cases. In addition, the curve is very close to the
true error profile (which in turn is close to the lower bound)
and is monotonically decreasing. Indeed, as discussed in the
proof of Theorem 5 contained in the next subsection, when
one adopts bfA one should setE as large as possible (compati-
bly with communication capabilities) since, at the limit, con-
vergence to theminimum variance estimator holds.

The profile of BndB is instead different and exhibit a clear
minimum at E ¼ 7. The reason is that bfB relies on the
asymptotic matrix approximation (16). The bound BndB
then points out that if E is too large then the quality of this
approximation can worsen, hence leading to an increment
of the corresponding MSE. One can see that also the true
error profile is not monotonically decreasing (indeed, we
will see in the next subsection that for M fixed and E going
to infinity bfB is not guaranteed to converge to the minimum
variance estimator). Note that, in this case, BndB is close to
truth only for low values of E and that the Monte Carlo
analysis suggests the best E to be around 50. Overall, this
indicates that the eigenfunctions number has to be seen as
an important design parameter for bfB to optimize the per-
formance. This point will be the focus of Section 5.

Finally, the two bottom panels of Fig. 1 display the same
bounds except that the kernel eigenvalues now decay expo-
nentially to zero as �e ¼ expð�0:1eÞ. Exponentially decaying
eigenvalues are typical for Gaussian kernels, and therefore
of practical relevance. The shapes of the curves change but
the same comments hold true.

4.4 Asymptotic Behaviors of the Estimators and of
the Bounds

Now, we start investigating the asymptotic properties of our
estimators considering a situation where their dimension E

is fixedwhile the number ofmeasurementsM grows to infin-
ity. The next result then shows that bfA and bfB asymptotically
reach the lower bound (17).

Theorem 3. Given the assumptions in Section 2.1 and Assump-
tion 1,

lim
M!þ1

ErrA ¼
Xþ1

e¼Eþ1

�e in probability

lim
M!þ1

ErrB ¼
Xþ1

e¼Eþ1

�e in probability:

We now discuss the statistical consistency of our estima-
tors. In this case, the conditions under which bfA and bfB con-
verge to f as both E and M grow to infinity are different, as
illustrated in the following two results.

Theorem 4. Given the assumptions in Section 2.1 and Assump-
tion 1,

lim
M!þ1

lim
E!þ1

ErrA ¼ 0 in probability:

Theorem 5. Let E ¼ EðMÞ such that

EðMÞlogEdðMÞ � Md; lim
M!þ1

EðMÞ ¼ þ1

for some d 2 ð0; 1Þ. Given the assumptions in Section 2.1 and
Assumption 1, then

lim
M ! þ1
E ¼ EðMÞ:

ErrB ¼ 0 in probability

Remark 1. The sufficient condition required in the theorem
in terms of the growth rate of EðMÞ as a function of M is

Fig. 1. BndA and BndB (normalized by the a priori function variance) as a function of E, with a ¼ 0:05;M ¼ 10000 and for different eigenvalues decay
rates.
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tight according to the Chernoff’s bound. In fact, our
requirement is that M grows up a bit more slowly w.r.t.
the relationship ElogE ¼ M. Now, assume instead that
ElogE ¼ M, i.e., d ¼ 1 and fix any rule such that " ! 1
and a ! 0. Recall that

1� "þ " log ð"Þ 
 Ek

M
log

2E

a

� 	
must be satisfied. Asymptotically, the lhs tends to 0þ

while the second term becomes k� Ek
M log ða=2Þ and is

larger than k when a is sufficiently close to zero. One
would thus need 0 
 k but this is not possible. Also note
that the previous theorem implies that any sublinear
power growth of EðMÞ ¼ Ma, for any a 2 ð0; 1Þ, satisfies
the consistency condition, which can be readily verified
by choosing d ¼ 1þa

2 .

The consistency properties of bfA and bfB are thus remark-
ably different. For what regards bfA, as M goes to infinity its
consistency is guaranteed without any control on the
growth rate of the dimension E. Indeed, as E increases such
estimator can approximate arbitrarily well the optimalbfMAP. This agrees with what already discussed in the previ-
ous subsection: when using bfA it is convenient for the net-
work to use a dimension E as large as possible, just
compatible with its communication constraints. Differently,
the estimator bfB is instead consistent only if M augments
sufficiently faster than E.

5 DISTRIBUTED TUNING OF THE REGULARIZATION

PARAMETER

The statistical bounds obtained in the previous section
quantify the performance of bfA and bfB assuming that the
prior function model is correct. Beyond their theoretical
interest, in real applications these bounds can give useful
guidelines to select the amount of information that agents
need to exchange. However, the covariance K is often
defined only except for a scalar factor g. In addition, the
prior is never perfect and the tuning of g could also hinder
possible undermodeling. So, in place of (3), in practical
applications it is beneficial to consider

f � N 0; g�1K
� �

with g to be estimated from the observed noisy outputs and
related input locations. Furthermore, when bfB is considered,
it has been shown that also the parameter E plays an impor-
tant role since, for a fixed number of samples M, its perfor-
mance degrades if E is too small or too large. Hence, it
could be desirable to adjust also the number of eigenfunc-
tions forming the estimate after seeing the data.

In the following we will follow the SURE approach for
tuning the free parameters. Although alternative approaches
are possible, such as cross validation and marginal likeli-
hood optimization, we will see that SURE has the advantage
to require less communication and computation processing,
and also to be suitable for distributed implementations. We
start by reporting a result obtained through a simple general-
ization of the arguments in [44] [Section 7.4].

Theorem 6. Let hh be a deterministic unknown parameter vector.
Assume that the measurements model is

zz ¼ hhþ ee

and consider also future measurements

zz ¼ hhþ ee;

where the noises ee and ee are uncorrelated, zero mean with
covariance S. Then, given the linear estimator bzz ¼ Szz, an
unbiased estimator of the risk E½kzz � bzzk2� is given by:

zz� bzzk k2þ2tr SSð Þ: (24)

The quantity tr SSð Þ entering the second part of the objec-
tive (24) is connected to the concept of equivalent degrees of
freedom [52], [53].

Inwhat follows, we assume that g is unknown but belongs
to the finite set Gwhich is known in advance to the network.
In addition, let us assume that the estimation step has been

performed adopting a certain value E. Hence, if bfA has been

used, each agent has stored GTG
M and GT

M y so that, letting

HAðgÞ :¼ GTG

M
þ gs2

n

M
L�1

E

� 	�1
GT

M
;

it can computeHAy for any g 2 G.
If bfB has been adopted, then also the optimal number of

eigenbases E0 has to be found within the set E0 2 V. In this
case, each agent knows only GT

M y and, letting

HBðg; E0Þ :¼ IE0 I þ gs2
n

M
L�1

E

� 	�1
GT

M
; (25)

where

IE0 :¼ IE0
00E�E0


 �
; (26)

it can computeHBy for any g 2 G and integer E0 2 V.

5.1 Distributed SURE for bfA: Tuning of g

The first strategy is suited for bfA. Surprisingly, we will see
that the tuning of g can be performed by the network using
only local operations, without the need of performing any
additional consensus operation. Now, let us reconsider our
measurements model

yy ¼ Gaaþ Zbbþ nn;

where aa is E-dimensional. Hereby, we break away from the
assumptions on prior correctness by thinking ofGaaþ Zbb as a
deterministic vector. It thus corresponds to the deterministic
function f sampled on the realizations of the input locations.

We then create a (projected) measurement model via pre-
multiplication by GT=M, i.e.,

GTyy

M|ffl{zffl}
zz

¼ GTG

M
aaþGTZ

M
bb|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

hh

þ GTnn

M|ffl{zffl}
ee

; (27)

where the correspondences with the key quantities defining
the risk estimator (24) have been pointed out. From such
definitions, we also obtain bzz ¼ GTG

M HAyy ¼ Szzwhere
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S :¼ GTG

M

GTG

M
þ gs2

n

M
L�1

E

� 	�1

and
S ¼ s2

n

GTG

M2
:

Recall that the matrix V ¼ GTG
M ¼ 1

M

PM
m¼1 G

T
mGm and the vec-

tor zz ¼ 1
M

PM
m¼1 G

T
mym have been already computed by each

agent via a distributed consensus algorithm [29] to implementbfA. Then, since the network cardinality M is known, each
agent can tune g by optimizing the SURE score (24) connected

with the prediction risk on the future data zz ¼ GT yy
M , i.e.,

bgA ¼ argmin
g2G

JA gð Þ (28)

with

JA gð Þ :¼ ðI � SÞzzk k2þ2tr SSð Þ

¼ gs2
n

M
VLE þ gs2

n

M
I

� 	�1

zz



2

þ

þ 2s2
n

M
tr V 2 V þ gs2

n

M
L�1

E

� 	�1
 !

:

To understand the rationale underlying this strategy we
have just to consider that the novel process (27) is formed
by E measurements, each corresponding to the projection
of the original ones on the space of the sampled eigenfunc-
tions feðx1Þ 	 	 	 feðxMÞ½ �. For large M, the quantity GTZbb
vanishes so that hh � aa. This means that the SURE score
becomes an unbiased estimator of those signal components
which are expected to capture the most part of the energy.

Remark 2. Based on the previous analysis, it is straightfor-
ward to observe that the SURE strategy described above
is not suited for bfB. In fact, it requires each agent to know
GTG
M . But if this quantity were known, each agent could
implement bfA, an estimator that has more favorable fea-
tures than bfB.

5.2 Distributed SURE for bfB: Tuning of E and g

The second strategy is designed for bfB. It tunes g 2 G and
E0 2 V just using an additional average consensus on a vec-
tor of size E dimðVÞ dimðGÞ. Our starting point is still (27),
i.e., the E-dimensional projected measurement space, where

zz ¼ GT yy
M ¼ 1

M

PM
m¼1 G

T
myi 2 RE has been computed to imple-

ment bfB via a standard distributed consensus algorithm
and is therefore known to each agent. Let us definebaðg; E0Þ ¼ HBðg; E0Þyy 2 RE . Clearly baðg; E0Þ for E0 < E is
simply the truncated version of baðg; EÞ where the last
E � E0 components are set to zero. Moreover, the vectorsbaðg; E0Þ can be independently computed by each agent for
each value of g 2 G; E0 2 V once zz is available. The output
prediction can be written as

bzzðg; E0Þ ¼ GTG

M
baðg; E0Þ ¼ 1

M

XM
m¼1

GT
mGmbaðg; E0Þ 2 RE:

Hence, each agent can compute the vectors bzzðg; E0Þ for each
g 2 G and E0 2 V by running an additional consensus of

size OðdimðVÞ dimðGÞEÞ. As so, the first part of the SURE
score zz� bzzðg; E0Þk k2 can be readily computed by each agent.

As for the second part of SURE related to the equivalent
degrees of freedom,we need to compute tr Sðg; E0ÞSð Þwhere

Sðg; E0Þ ¼ GTG

M
IE0 I þ gs2

n

M
L�1

E

� 	�1

; S ¼ s2
n

M

GTG

M
:

Obviously, this would not make too much sense in the con-
text of bfB since the computation of V ¼ GTG

M would allow us
to compute bfA which has better performance anyways.
Therefore we will approximate such matrix V (similarly to
what we did to obtain bfB) by replacing it with an identity
matrix. This corresponds to use a sort of expected equivalent
degrees of freedom:

tr Sðg; E0ÞSð Þ � s2
n

M
tr IE0 I þ gs2

n

M
L�1

E

� 	�1
 !

¼ s2
n

M

XE0

e¼1

�e

�e þ gs2
n=M

:

The optimal tuning of the parameter is then obtained as

bgB; bEB

� �
¼ argmin

g2G;E02V
JB g; E0ð Þ (29)

with

JB g; E0ð Þ :¼ zz� bzzðg; E0Þk k2 þ 2
s2
n

M

XE0

e¼1

�e

�e þ gs2
n=M

:

Note that this strategy for tuning bfB is more efficient from a
communication and computational point of view than bfA
only if dimðVÞ dimðGÞ < E.

5.3 Practical Implementation Issues

We now illustrate how to implement the proposed distrib-
uted estimators, also in connection with the properties of
the SURE tuning strategies described above. We discuss
first the use and the derivation of the KL expansion and
then how f can be estimated in a distributed way also
adopting basis functions different from the kernel eigen-
functions. All the code developed for implementing the
algorithms below is publicly available in the repository
github.com/damianovar/Gaussian-regression-via-finite-
dimensional-approximations.

5.3.1 Computing the KL Expansions

Assume that the prior on f is correct and that the input
locations distribution m is known. Then, according to Theo-
rem 5, at least for large data set size M, the use of the
eigenfunctions in (5) is statistically optimal. Obtaining the
kernel expansion in closed form is in general difficult but
important exceptions are the popular spline and Gaussian
kernel. In particular, for uniform m the expansion of the
linear and cubic smoothing spline kernel is reported
in [49]. For Gaussian m on the real line, the Gaussian kernel
expansion is given via Hermite polynomials, as reported
in [27] [Section 4]. Such result then immediately general-
izes to multi-dimensional domains: if mð	Þ and Kð	; 	Þ are
tensor products of one-dimensional distributions and
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kernels, respectively, the expansion involves tensor prod-
ucts of the one-dimensional eigenfunctions.

Assume then that the kernel expansion is not available in
closed form. It is worth pointing out that in many relevant
distributed problems the dimension of the function domain
X is limited to 2 or 3, and this makes the numerical determi-
nation of the eigenfunctions and eigenvalues viable. More
specifically, let fexegqe¼1 be independent samples from m, and
letKK be the q � q kernel matrix whose ði; jÞ-entry is

½KK�ij ¼ K exi; exj

� �
; i ¼ 1; . . . ; q; j ¼ 1; . . . ; q: (30)

Then, according to [50] [Lemma 9 and Corollary 10], the
eigenvalues and (normalized) eigenvectors from the Singu-
lar Values Decomposition (SVD) ofKK converge to the eigen-
values and eigenfunctions of Kð	; 	Þ as q ! þ1. Hence, the
agents can be equipped with arbitrarily accurate approxi-
mations of the KL expansion.

5.3.2 Generic Basis Functions: Kernel Sections

As discussed above, in some circumstances the kernel
eigenfunctions could be not available in closed form, or
have a complex functional form that makes storing them in
the agents’ memory unpractical. In such cases, one would
rather use basis functions which admit simple closed-form
expressions, possibly also non orthonormal. Even if the
bounds developed in Section 4 cannot be used anymore, we
will see that the SURE strategies for hyperparameters tun-
ing generalize well also to this situation.

We limit our discussion to the use of the kernel sections
as basis (an important case also in view of their connections
with the representer theorem [54], [55]). This basis is associ-
ated to a set fexegEe¼1 of input locations1 which could be
drawn from m or selected in a deterministic way to cover
sufficiently well X . We then define our E basis functions as

f1ð	Þ ¼ K ex1; 	ð Þ . . . fEð	Þ ¼ K exE; 	ð Þ:
Using the kernel sections in the decomposition (7), we can
think of fa as

faðxÞ ¼
XE
e¼1

aeK exe; xð Þ;

where the vector aa :¼ a1; . . . ; aE½ �T is now zero-mean
Gaussian with covariance proportional to the inverse of the
kernel matrix

½KK�ij ¼ K exi; exj

� �
; i ¼ 1; . . . ; E; j ¼ 1; . . . ; E

i.e.,

aa � N 0; g�1KK�1
� �

:

In fact, if the prior were correct, this would indeed corre-
spond to see fa sampled on fexegEe¼1 as zero-mean Gaussian
with covariance g�1KK�1.

Since the kernel sections are generally not orthonormal w.

r.t. m, even ifM ! 1 the projectedmeasurements GT yy
M do not

converge to the expansion coefficients ae. However, these

can be still used to tune the regularization parameters. In
particular, for what concerns bfA, the distributed SURE esti-
mator introduced in Section 5.1 can estimate f and g with a
single consensus just replacing L�1

E with KK. Thus, this esti-
mator does not even need the knowledge of m and the agents
can implement it once they know the functionK 	; 	ð Þ and the
expansion grid fexegEe¼1. The estimator bfA is thus given by:

baaðgÞ :¼ GTG

M
þ s2

n

M
KK

� 	�1
GTyy

M

SðgÞ :¼ GTG

M

GTG

M
þ gs2

n

M
KK

� 	�1

:

Consider now the implementation of bfB through the ker-
nel sections with the estimator defined by the set of poten-
tial E0 2 V. In particular, for the sake of simplicity, assume
that each E0 is associated to the kernel sections induced by
the first E0 input locations in the (ordered) set fexegEe¼1.
Given a generic matrix A, the submatrix obtained by retain-
ing its first E0 rows and columns is denoted by ½A�E0 .
Assume moreover that the same notation applies to vectors
to retain only their first E0 elements. Then, the same SURE
strategy developed in Section 5.2 can be adopted by setting

baa g; E0ð Þ ¼ IE0
00


 �
E
GTG

M


 �
E0
þ gs2

n

M
½KK�E0

� 	�1
GTyy

M


 �
E0

and

Sðg; E0Þ ¼ E
GTG

M


 �
E0

IE0
00


 �
E
GTG

M


 �
E0
þ gs2

n

M
½KK�E0

� 	�1

;

where, instead of using IE0 defined in (26), we use IE0 and
00 2 RðE�E0Þ�E0

to account for the non-diagonal nature of the
matrices now at stake, with the trace of S given by the sum

of the its ði; iÞ entries with i ¼ 1; . . . ; E0, and where E GTG
M

h i
substitutes I in (25), since the kernel sections are generally

not orthonormal. The exact expectation of E GTG
M

h i
can be

explicitly computed in some special cases as in the example

below, or can be approximated via its sampled version, i.e.,

E½GTG
M � ¼ E½PM

m¼1
GT
mGm

M � � 1
E

PE
e¼1

eGT
e
eGe

E where eGe are com-

puted on the input locations fexegEe¼1 that shall be used for
computing this empirical expectation, not to be confused

with the set of a-posteriori input locations fxmgMm¼1 used in
the actual coefficients estimation step.

Example 1. An interesting case, relevant for many applica-
tions, arises when one wants to use the Gaussian kernel
and its kernel sections as basis with m a mixture of Gaus-

sians. In this case E½GTG
M � can be obtained in closed form.

In fact, consider first a scalar scenario, i.e., x 2 R, with a

mixture of Gaussians made of a single component:

Kðx; x0Þ ¼ exp �ðx� x0Þ2
h

 !
; m � Nðm0; a

2Þ:

After simple computations, one finds that the ðe; e0Þ-entry
of E½GTG

M � is
1. As in (30), the set fexegqe¼1 is available a priori and has not to be

confused with the input locations fxmgMm¼1 then visited by the agents.
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Z þ1

�1

exp � ðx�xeÞ2
h

� ðx�xe0 Þ2
h

� ðx�m0Þ2
2a2

� �
ffiffiffiffiffiffi
2p

p
a

dx ¼

¼
ffiffiffi
h

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hþ 4a2

p exp � ?

h2 þ 4ha2

� 	
with ? ¼ h x2

e � 2m0xe þ x2
e0 � 2m0xe0 þ 2m2

� �þ 2a2 xe � xe0ð Þ2.
In the multivariate case, assume that Kðx; x0Þ ¼ e�

kx�x0k2
h

while m is given by tensor products of one-dimensional

Gaussian densities. Then, the result is still available in

closed form: E½GTG
M � corresponds to convex combinations

of Hadamard products of the matrices obtained in the

scalar case.

5.3.3 Generic Basis Functions: Nystr€om Method

The analysis provided in the previous section can also be
applied to the popular Nystr€om method [56], [57]. The idea
is to find a basis for f of dimension E which has almost the
same performance of the basis composed of q � E kernel
sections with q an arbitrary number as in Section 5.3.1. More
specifically, let fexngqn¼1 be q input location defined a-priori2

from m, and consider both the corresponding kernel matrix
KK 2 Rq�q defined in (30) and its SVD decomposition
KK ¼ VDqV

T with V :¼ ½v1; . . . ; vq� the orthonormal eigen-
vectors of KK and Dq the diagonal matrix formed by the cor-
responding eigenvalues of KK sorted in non-increasing
order. If VE :¼ ½v1; . . . ; vE� and DE 2 RE�E is the diagonal
matrix with the first E sorted eigenvalues of KK, then
KKE ¼ VEDEV

T
E is the best rank-E approximation of KK. The

a priori basis

feðxÞ :¼
Xq
n¼1

veðnÞKðexn; xÞ; e ¼ 1; . . . ; E

with veðnÞ the n-th element of the vector ve, can then be used
to define

faðxÞ ¼
XE
e¼1

aefeðxÞ

where aa :¼ a1; . . . ; aE½ �T is a zero-mean Gaussian vector with

aa � N 0; g�1 V T
E KKVE

� ��1
� �

¼ N 0; g�1D�1
E

� �
:

We can then use once again (12) to build G using the fe’s
above, and exploit the same strategies considered in Section
5.3.2 just replacingKK withDE .

5.4 Numerical Study on Synthetic Data

Let us consider the same data generators based on the spline
and the exponentially decaying kernels described in Section
4.3. The unknown function has to be reconstructed from
M ¼ 10000 measurements by bfA and bfB. The errors are still
theMSEs defined in (20) and (21) normalized by the prior var-
iance (the same definition was used to build Fig. 1). The

difference however is that our estimators now depend on
unknown hyperparameters that need to be inferred from
data. More specifically, when bfA is adopted we fix E ¼ 400
and the regularization parameter is searched over a grid G
containing 50 logarithmically spaced values between 10�3

and 103. When using bfB the grid G contains only the three val-
ues f10�3; 0; 103g while E is estimated from data over
V ¼ f1; 5; 10; 20; 50; 100; 200; 300; 400g. We still consider a
Monte Carlo study of 1000 runs where at any run indepen-
dent realizations of f , of theM input locations and of themea-
surement noises are generated. Hyperparameters tuning is
then performed by:

� “bfAþ oracle” and “bfBþ oracle”, where “oracle” indi-
cates that these approaches know at any run the real-
ization of f (which is the object to estimate) and
select exactly those hyperparameters that minimize
the MSE achievable by those two estimators. For
instance, assume that f ¼P1

e¼1 aefe is the realiza-
tion of the function at a certain run. Let also baðg; E0Þ
denote the vector with the estimates of the first E0

coefficients ae returned by bfB. Then bfBþ oracle deter-
mines the hyperparameters as

bg; bE� �
:¼ arg min

g2G;E02V

X1
e¼1

�
ae � baeðg; E0Þ�2;

where baeðg; E0Þ :¼ 0 for e > E0. Thus, this estimator
is not implementable in practice and provides the
lower bound on the MSEs (20) and (21) achievable
by the two estimators;

� “bfAþ SURE” and “bfBþ SURE”, where the hyperpara-
meters tuning step is performed following the SURE
approaches described in the previous subsection.
Recall that “bfAþ SURE” requires only a single con-
sensus on a vector of size OðE2Þ to obtain simulta-
neously both the hyperparameters and function
estimates, while “bfBþ SURE” requires two consen-
sus operations of size OðEÞ.

Fig. 2 compares with a scatter-plot the various (normal-
ized) MSEs obtained by the oracle- and SURE-based
approaches as a function of the Monte Carlo run. Remark-
ably, SURE’s performance (dashed lines) is very close to

that of the oracle (solid lines). When using “bfBþ SURE”
(right panels) the curves are in practice indistinguishable.

The set of four Monte Carlo experiments have been also
repeated adopting different data set sizes M. To synthesize
SURE’s performance with an index function only of M, let
Sp 2 ½0; 1� denote the ratio between themean of the 400 errors
obtained by the oracle and the SURE strategies respectively
for a certain value ofM. Note that a value of Sp ¼ 1 indicates
that SURE is performing as well as the oracle and that, for
M ¼ 10000, Sp becomes the distillate of Fig. 2. Table 1 reports
Sp for M ¼ 100; 1000; 10000: one can see that the proposed
hyperparameter estimation procedure behaves very nicely.

5.5 Numerical Study on Field Data – Colorado Rain

Let us now consider the reconstruction of monthly precipita-
tions using data collected in Colorado in the years 1995-
1997 [58]. Many alternative solutions are available in the con-
text of weather forecasts, but they are limited to centralized

2. The Nystr€ommethod closely resembles the eigenfunctions/eigen-
values numerical computation method presented in Section 5.3.1, the
difference being that in Nystr€om the parameter q is in general not
extremely large and the input locations fexngqn¼1 are not generated by m
but are randomly extracted from the training set.
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solutions, such as [5], [6], for example, thus not suitable in
our distributed framework. Measurements ym are a series of
monthly average precipitations measured at 367 stations
within the rectangular longitude/latitude region ½�109:5;
�101� � ½36:5; 41:5� remapped for convenience into the uni-
tary square so that xm 2 ½0; 1�2 for everym.

We test the SURE strategies (28) and (29). When using bfA
we set E ¼ 20 and G to the grid containing 50 values loga-
rithmically spaced between 10�5 and 105. When adoptingbfB we use G ¼ 0 and V ¼ 2; 4; . . . ; 20f g, i.e., consider only E0

as a regularization parameter. In both cases, we consider
the Gaussian kernel

Kðx; x0Þ ¼ exp �10kx� x0k2
� �

:

The eigenfunctions are computed by assuming that the input
locations are not know a-priori and extracted uniformly
from the monitored region, i.e., mðxÞ is a uniform distribu-
tion. We design a Monte Carlo study of 1000 runs where, at
any run, we select randomly two months within the 1995-
1997 dataset obtaining three different sets. The first one is a
training set Dtrain of average precipitations obtained by
selecting randomly and uniformly 2/3 of the measurements
from the first selected month. The second is a test set Dtest

corresponding to the remaining 1/3 measurements from the
first selected month. The last one is Ds2n

and contains meas-
urements in the second selected month which are used to
estimate the noise variance via least squares based on E
eigenfunctions. This corresponds to using bfA with g ¼ 0
obtaining as estimate of the noise variance

bs2
n ¼

1

dimðDs2n
Þ � E

XdimðD
s2n

Þ

m¼1

bfA xm; 0ð Þ � ym

� �2
;

where dimðDs2n
Þ is the cardinality of Ds2n

. Overall, this repre-
sents a situation where noise levels are determined by a cen-
tralized approach before running the estimators bfA and bfB.

The following tuning strategies are used:

(1) “bfAþ oracle” and “bfBþ oracle”, where “oracle” now
indicates that these approaches can select those
hyperparameters minimizing the following predic-
tion errors on the test set

RSSA gð Þ :¼ 1

dimðDtestÞ
XdimðDtestÞ

m¼1

bfA xm; gð Þ � ym

� �2
(31)

RSSB g; E0ð Þ :¼ 1

dimðDtestÞ
XdimðDtestÞ

m¼1

bfB xm; g; E
0ð Þ � ym

� �2
;

(32)

where xm; ymð Þ are all elements of Dtest. Note that
RSSA and RSSB can be seen as approximations of
the MSEs (20) and (21) and that the oracle provides a
lower bound on their values;

(2) “bfAþ SURE” and “bfBþ SURE”, where the hyperpara-
meters tuning step is performed minimizing the
estimated risks JA gð Þ and JB g; E0ð Þ defined in (28)
and (29).

Fig. 3 compares with a scatter-plot the prediction errors
(31) and (32) achieved by the estimators after the 1000
Monte Carlo runs. The situation is not dissimilar from the
case of synthetic data: as for the estimators “bfAþ SURE”
and “bfBþ SURE”, the performance of the SURE strategies is
close to that of the oracles.

TABLE 1
SURE’s Performance Index Sp Summarizing Four Monte

Carlo Studies as a Function of the NumberM of
Available Measurements

Data set size M = 100 M = 1000 M = 10000

Sp 0.93 0.987 0.99

A value of Sp close to 1 indicates that SURE’s performance is close to that of
the oracle. ForM ¼ 10000, Sp represents a resume of the entire Fig. 2.

Fig. 2. Comparison of the MSE indexes obtained by the SURE- and oracle-based strategies. Each circle corresponds to the result of a certain Monte
Carlo run (the x-axis being associated to oracle-based estimators, and the y-axis to SURE-based ones). The fact that the circles groups are close to
the bisector of the first quadrant indicates that the performance of SURE is almost equivalent to that of the oracle.

Fig. 3. Comparison of the Residual sum of squares (RSS) prediction
error indexes obtained by the oracle- and SURE-based strategies. Each
opaque circle corresponds to the result of one of the 1000 Monte Carlo
runs. The closer the circles are to the bisector of the first quadrant per-
formance means that the closer the performance of that SURE-based or
Nystr€om-SURE estimator is to the ones of the oracle-based estimator.
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Specifically considering the SURE-based strategies, Fig. 4
also compares the estimated risks JA gð Þ and JB g; E0ð Þ
against the indexes RSSA gð Þ and RSSB g; E0ð Þ in (31)
and (32) in the first Monte Carlo run. The curves show that
hyperparameters values have a major effect on the estima-
tion performance and that our SURE approach leads to a
good regularization tuning. The related function estimates
are visible in Fig. 5.

5.6 Numerical Study on Field Data – UCI Datasets

The second study is performed on two datasets from the
public UCI repository, and is executed using the Nystr€om-
based strategy described in Section 5.3.3 to compute the
basis functions for the estimators using all the input loca-
tions that define the training set. Our purpose is here to
compare the proposed SURE-based strategy for tuning the
regularization parameters against an oracle that selects as
the best regularization parameters that ones that give the
best fit performance in the test set. As for the kernel, we con-
sider a Gaussian kernel with an unitary variance (not accu-
rately tuned, since the purpose of this section is more
checking that the proposed SURE strategy chooses the regu-
larization parameters accurately rather than actually maxi-
mizing the generalization capabilities of the regression

Fig. 4. Comparison of the predictive performance of the estimators bfA (left
panel) and bfB (right panel) over the test set in Fig. 5 for g 2 G and E0 2 V
against the SURE scores JA gð Þ and JB gð Þ in the first Monte Carlo run.

Fig. 5. Visualization of the training and test sets (top panel, respectively
173 and 87 samples), and of the estimates returned by “bfAþSURE”,
“bfAþoracle”, “bfBþSURE”, and “bfBþ oracle” in the first Monte Carlo run.

TABLE 2
Summary of the Performance of the Proposed Parameters

Calibration Strategies Against Oracles for Different
Publicly Available Datasets

CCPP CPUbfA bfB bfA bfB
fit oracle 99.3 73.3 75.7 76.1
fit SURE 99.3 73.3 71.2 66.5
g oracle 10�3 - 10�4 -
g SURE 10�3 - 10�5 -
E0 oracle - 2.00 - 10.00
E0 SURE - 2.00 - 27.00

“CCPP” indicates the UCI Combined Cycle Power Plant regression
dataset, with 9568 instances and a 4-dimensional input domain X . “CPU”
indicates the UCI Computer hardware regression dataset, with 209
instances and a 6-dimensional input domain X (corresponding to the quantita-
tive features available in the dataset). For each dataset 1/3 of the data has been
used for test purposes.
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algorithms). As for the grid for tuning g, we then consider
the set G ¼ f0; 10�5; 10�4; . . . ; 102g; as for E0, we consider
V ¼ f1; 2; . . . ; 30g. Table 2 summarizes then the obtained
results, and numerically confirms the efficacy of the pro-
posed parameters tuning strategies.

6 CONCLUSIONS

Distributed function estimation is an important problem
where agents with limited computational, data storage and
communication capabilities collect noisy measurements and
have to reconstruct an unknownmap in a collaborative way.
In this context, we have studied Gaussian regression provid-
ing rigorous statistical bounds on the performance of two
distributed estimators, also characterizing their asymptotic
behavior. On the practical side, our study indicates how the
dimension E of the adopted estimator has to depend on the
number of measurementsM collected by the agents to guar-
antee the desired statistical performance. The analysis clari-
fies merits and limitations of the two approaches also in
function of the different amount of information exchange
required to the network (linear or quadratic in E). We have
also introduced novel distributed strategies which learn
from data possibly unknown hyperparameters entering
the estimators, and that do not necessarily require solving
potentially numerically intensive eigenfunctions-eigenval-
ues decompositions of kernel functions. For the first time, to
our knowledge, this paper has shown how it is possible to
estimate the regularization parameter and the unknown
function via a single average consensus operation.

Overall, the theoretical achievements and the numerical
strategies here described provide sound tools to reconstruct
static functions in distributed networks. An important
future direction is to extend all the analysis to an even more
challenging situation where the unknown map may change
in time and has to be tracked in an on-line manner.
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