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Abstract—Many modern unsupervised or semi-supervised machine learning algorithms rely on Bayesian probabilistic models. These

models are usually intractable and thus require approximate inference. Variational inference (VI) lets us approximate a high-

dimensional Bayesian posterior with a simpler variational distribution by solving an optimization problem. This approach has been

successfully applied to various models and large-scale applications. In this review, we give an overview of recent trends in variational

inference. We first introduce standard mean field variational inference, then review recent advances focusing on the following aspects:

(a) scalable VI, which includes stochastic approximations, (b) generic VI, which extends the applicability of VI to a large class of

otherwise intractable models, such as non-conjugate models, (c) accurate VI, which includes variational models beyond the mean field

approximation or with atypical divergences, and (d) amortized VI, which implements the inference over local latent variables with

inference networks. Finally, we provide a summary of promising future research directions.

Index Terms—Variational inference, approximate Bayesian inference, reparameterization gradients, structured variational approximations,

scalable inference, inference networks
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1 INTRODUCTION

BAYESIAN inference has become a crucial component of
machine learning. It allows us to systematically reason

about parameter uncertainty. The central object of interest
in Bayesian inference is the posterior distribution of model
parameters given observations. This review focuses on vari-
ational inference (VI): a methodology that makes Bayesian
inference computationally efficient and scalable to large
data sets.

Bayesian machine learning frequently relies on
probabilistic latent variable models, such as Gaussian
mixture models, Hidden Markov models, Latent Dirichlet
Allocation, stochastic block models, and Bayesian deep
learning architectures. Computing the exact Bayesian pos-
terior requires to sum or integrate over all latent varia-
bles, which can be in the millions or billions for complex
models and large-scale applications. Exact inference is
therefore typically intractable in these models, and
approximations are needed.

The central idea of VI is to approximate the model poste-
rior by a simpler distribution. To this end, one minimizes
the Kullback-Leibler divergence between the posterior and
the approximating distribution. This approach circumvents

computing intractable normalization constants. It only
requires knowledge of the joint distribution of the observa-
tions and the latent variables. This methodology along with
its recent refinements will be reviewed in this paper.

Within the field of approximate Bayesian inference, VI
falls into the class of optimization-based approaches [14],
[62]. This class also contains methods such as loopy belief
propagation [131] and expectation propagation (EP) [127].
On the contrary, Markov Chain Monte Carlo (MCMC)
approaches rely on sampling [22], [61], [151]. By construc-
tion, MCMC is often unbiased, and thus converges to the
true posterior in the limit, but it can be slow to converge.
Optimization-based methods, on the other hand, are often
faster but may suffer from oversimplified posterior
approximations [14], [205]. In recent years, there has been
considerable progress in both fields [7], [15], and in par-
ticular on bridging the gap between these methods [1],
[90], [113], [154], [169]. In fact, recent progress in scalable
VI partly relies on fusing optimization-based and sam-
pling-based methods. While this review focuses on VI,
readers interested in EP and MCMC are referred to, e.g.,
[7] and [174].

The origins of VI date back to the 1980s. Mean field meth-
ods, for instance, have their origins in statistical physics,
where they played a prominent role in the statistical
mechanics of spin glasses [120], [147]. Early applications of
variational methods also include the study of neural net-
works [144], [149]. The latter work inspired the computer
science community of the 1990s to adopt variational meth-
ods in the context of probabilistic graphical models [73],
[79], [143], [172] .

In recent years, several factors have driven a renewed
interest in variational methods. The modern versions of VI
differ significantly from earlier formulations. First, the avail-
ability of large datasets triggered the interest in scalable
approaches, e.g., based on stochastic gradient descent [18],
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[67]. Second, classical VI is limited to conditionally conju-
gate exponential family models, a restricted class of models
described in [67], [205]. In contrast, black box VI algorithms
[74], [79], [154] and probabilistic programs facilitate generic
VI, making it applicable to a range of complicated models.
Third, this generalization has spurred research on more
accurate variational approximations, such as alternative
divergence measures [103], [128], [221] and structured vari-
ational families [156]. Finally, amortized inference employs
complex functions such as neural networks to predict varia-
tional distributions conditioned on data points, rendering
VI an important component of modern Bayesian deep learn-
ing architectures such as variational autoencoders. In this
work, we discuss important papers concerned with each of
these four aspects.

While several excellent reviews of VI exist, we believe
that our focus on recent developments in scalable, generic,
accurate and amortized VI goes beyond those efforts. Both
[79] and [143] date back to the early 2000s and do not
cover the developments of recent years. Similarly, [205] is
an excellent resource, especially regarding structured
approximations and the information geometrical aspects
of VI. However, it was published prior to the widespread
use of stochastic methods in VI. Among recent introduc-
tions, [15] contains many examples, empirical compari-
sons, and explicit model calculations but focuses less on
recent developments while [7] mainly focuses on scalable
MCMC. Our review concentrates on the advances of the
last 10 years prior to the publication of this paper. Com-
plementing previous reviews, we skip example calcula-
tions to focus on a more exhaustive survey of the recent
literature. For readers who are new to the field, we rec-
ommend to read Chapter 10 on approximate inference in
[14] as a preparation.

We survey the trends and developments in VI in a self-
contained manner. Section 2 covers basic concepts, such as
variational distributions and the evidence lower bound. In
the succeeding sections, we concentrate on recent advances
and identify four main research directions: scalable VI
(Section 3), generic VI (Section 4), accurate VI (Section 5),
and amortized VI (Section 6). We finalize the review with a
discussion (Section 7) and concluding remarks (Section 8).

2 VARIATIONAL INFERENCE

We begin this review with a brief tutorial on variatio-
nal inference, presenting the mathematical foundations
of this procedure and explaining the basic mean-field
approximation.

The generative process is specified by observations xx, as
well as latent variables zz and a joint distribution pðxx; zzÞ. We
use bold font to explicitly indicate sets of variables, i.e.,
zz ¼ fz1; z2; . . . ; zNg, where N is the total number of latent
variables and xx ¼ fx1; x2; . . . ; xMg, where M is the total
number of observations in the dataset. The variational dis-
tribution qðzz;��Þ is defined over the latent variables zz and
has variational parameters �� ¼ f�1; �2; . . . ; �Ng.1

2.1 Inference as Optimization

The central object of interest in Bayesian statistics is
the posterior distribution of latent variables given
observations:

pðzzjxxÞ ¼ pðxx; zzÞR
pðxx; zzÞdzz : (1)

For most models, this integral is high dimensional, thus
computing the normalization term is intractable.

Instead of computing the posterior normalization, the
basic idea of VI is to approximate the posterior with a
simpler distribution. This involves a variational distribu-
tion qðzz;��Þ, characterized by a set of variational parame-
ters ��. These parameters are tuned to obtain the best
matching. Finally, the optimized variational distribution
is taken as a proxy for the posterior. In this way, VI turns
Bayesian inference into an optimization problem over
variational parameters.

For two distributions pðzÞ and qðzÞ, a divergence
DðqðzÞjjpðzÞÞ measures the difference between the distribu-
tions, such that DðqðzÞjjpðzÞÞ � 0 and DðqðzÞjjpðzÞÞ ¼ 0 only
for qðzÞ ¼ pðzÞ. VI amounts to minimizing a divergence
between the variational distribution and the posterior. We
show below that this does not require knowing the posterior
normalization.

While various divergence measures exist [4], [6], [128],
[181], the most commonly used divergence is the Kullback-
Leibler (KL) divergence [14], [93], which is also referred to
as relative entropy or information gain

DKLðqðzÞjjpðzÞÞ ¼ �
Z

qðzÞlog pðzÞ
qðzÞ dz: (2)

As seen in Eq. (2), the KL divergence is asymmetric;
DKLðqðzÞjjpðzÞÞ 6¼ DKLðpðzÞjjqðzÞÞ. Depending on the
ordering, we obtain two different approximate
inference methods. As we show below, VI employs

DKLðqðzz;��ÞjjpðzzjxxÞÞ ¼ � Eqðzz;��Þ log pðzzjxxÞ
qðzz;��Þ

h i
. In contrast and

as an aside, expectation propagation [127] optimizes

DKLðpðzzjxxÞjjqðzzÞÞ for local moment matching, which is not

reviewed in this paper.2

2.2 Variational Objective

Classical VI aims at determining a variational distribution
qðzz;��Þ that is as close as possible to the posterior pðzzjxxÞ,
measured in terms of the KL divergence. Minimizing the
KL divergence to zero would guarantee that the varia-
tional distribution matches the exact posterior. However,
in practice this is rarely possible: the variational distribu-
tion is usually under-parameterized and thus not suffi-
ciently flexible to capture the full complexity of the true
posterior.

As follows, we will show that minimizing the KL
divergence is equivalent to maximizing a related quan-
tity, the Evidence Lower BOund (ELBO) L. The ELBO is a
lower bound on the log marginal probability of the data

1. Note that the number variational parameter is not necessary the
same as the number of latent variables. Latent variables can be shared
among multiple data points, and individual data points can have
multiple latent variables.

2. We refer the readers to the EP roadmap for more information
about advancements of EP. https://tminka.github.io/papers/ep/
roadmap.html
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and can be derived from log pðxxÞ using Jensen’s inequal-
ity as follows:

log pðxxÞ ¼ log

Z
pðxx; zzÞdzz ¼ log

Z
pðxx; zzÞqðzz;��Þ

qðzz;��Þ dzz

¼ logEqðzz;��Þ
pðxx; zzÞ
qðzz;��Þ
� �

� Eqðzz;��Þ log
pðxx; zzÞ
qðzz;��Þ

� �
� Lð��Þ:

(3)

It can be shown (see Appendix A.1, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2018.2889774)
that the difference between the true log marginal proba-
bility of the data and the ELBO is the KL divergence
between the variational distribution and the posterior

log pðxxÞ ¼ Lð��Þ þDKLðqjjpÞ: (4)

Thus, maximizing the ELBO is equivalent to minimizing
the KL divergence between q and p, where q and p
replace qðzz;��Þ and pðzzjxxÞ for the sake of brevity. Since
the ELBO is a conservative estimate of this marginal, it
is sometimes taken as an estimate of how well the model
fits the data. The ELBO can also be used for model
selection.

In traditional VI, computing the ELBO amounts to ana-
lytically solving the expectations over q. This restricts the
class of tractable models to the so-called conditionally con-
jugate exponential family (see Appendix A.2, available
online, and [205]). For an example calculation to derive the
ELBO analytically for a mixture of Gaussians, we refer to
[15]. Section 4 introduces modern alternatives to computing
these expectations.

2.3 Mean Field Variational Inference

There is a tradeoff in choosing qðz;�Þ expressive enough to
approximate the posterior well, and simple enough to lead
to a tractable approximation [14]. A common choice is a
fully factorized distribution, also called mean field distribu-
tion. A mean field approximation assumes that all latent
variables are independent, which simplifies derivations.
However, this independence assumption also leads to less
accurate results especially when the true posterior variables
are highly dependent. Section 5 discusses a more expressive
class of variational distributions.

Mean Field Variational Inference (MFVI) has its origins
in the mean field theory of physics [143]. In this approxima-
tion, the variational distribution factorizes, and each factor
is governed by its own variational parameter:

qðzz;�Þ ¼
YN
i¼1

qðzi;�iÞ: (5)

For notational simplicity, we omit the variational parame-
ters � for the remainder of this section. We now review how
to maximize the ELBO L, defined in Eq. (3), under a mean
field assumption.

A fully factorized variational distribution allows one to
optimize L via simple iterative updates. To see this, we
focus on updating the variational parameter �j associated

with latent variable zj. Inserting the mean field distribution
into Eq. (3) allows us to express the ELBO as follows:

L ¼
Z

qðzjÞEqðzz:jÞ log pðzj; xx j zz:jÞ
� �

dzj

�
Z

qðzjÞlog qðzjÞdzj þ cj:

(6)

Above, z:j indicates the set z excluding zj. The constant
cj contains all terms that are constant with respect to zj,
such as the entropy term associated with z:j. We have thus
separated the full expectation into an inner expectation over
z:j, and an outer expectation over zj.

Eq. (6) assumes the form of a negative KL divergence,
which is maximized for variable j by

log q�ðzjÞ ¼ Eqðzz:jÞ½log pðzj j zz:j; xxÞ� þ const: (7)

Exponentiating and normalizing this result yields:

q�ðzjÞ / expðEqðzz:jÞ½log pðzj j zz:j; xxÞ�Þ
/ expðEqðzz:jÞ½log pðz; xxÞ�Þ

(8)

Using Eq. (8), the variational distribution can be
updated iteratively for each latent variable until conver-
gence. Similar updates also form the basis for the varia-
tional message passing algorithm [216] (Appendix A.3,
available online).

For more details on the mean field approximation and its
geometrical interpretation we refer the reader to [14] and
[205].

2.4 Beyond Vanilla Variational Inference

Classical MFVI has historically played an important role,
however, it is limited in multiple ways when it comes to
modern applications. One of the challenges is to scale VI to
big datasets. This will be addressed in Section 3, where we
show that VI can be combined with stochastic optimization
and distributed computing to achieve this goal. Big datasets
and fast algorithms allow for more sophisticated models. In
order to make VI tractable for this modern class of models
(in particular for so-called non-conjugate ones), Section 4
describes methods that make VI both easier to use and more
generic. Furthermore, certain models and applications
require more accurate inference techniques, such as
improved variational approximations and tighter bounds.
A popular stream of research is concerned with alternative
divergence measures beyond the KL divergence, and will
be reviewed in Section 5, where we also review non-mean
field variational approximations. Finally, we describe in
Section 6 how neural networks can be used to amortize the
estimiation of certain local latent variables. This leads to a
significant speedup for many models and bridges the gap
between Bayesian inference and modern representation
learning.

3 SCALABLE VARIATIONAL INFERENCE

In this section, we survey scalable VI. Big datasets raise new
challenges for the computational feasibility of Bayesian
algorithms, making scalable inference techniques essential.
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We begin by reviewing stochastic variational inference (SVI)
in Section 3.1, which uses stochastic gradient descent (SGD)
to scale VI to large datasets. Section 3.2 discusses practical
aspects of SVI, such as adaptive learning rates and variance
reduction. Further approaches to improve on the scalability
of VI are discussed in Section 3.3; these include sparse infer-
ence, collapsed inference, and distributed inference.

This section follows the general model structure of global
and local hidden variables, assumed in [67]. Fig. 1 depicts
the corresponding graphical model where the latent vari-
able zz ¼ fu; ��g includes local (per data point) variables
�� ¼ f�1; . . . ; �Mg and global variable u. Similarly, the varia-
tional parameters are given by �� ¼ fg;ffg, where the varia-
tional parameter g corresponds to the global latent variable,
and ff denotes the set of local variational parameters. Fur-
thermore, the model depends on hyperparameters a. The
mini-batch size is denoted by S.

3.1 Stochastic Variational Inference

We showed that VI frames Bayesian inference as an optimi-
zation problem. For many models of interest, the variational
objective has a special structure, namely, it is the sum over
contributions from all M individual data points. Problems
of this type can be solved efficiently using stochastic optimi-
zation [18], [161]. Stochastic Variational Inference amounts
to applying stochastic optimization to the objective function
encountered in VI [65], [67], [71], [209], thereby scaling VI to
very large datasets. Using stochastic optimization in the
context of VI was proposed in [67], [71], [171]. We follow
the conventions of [67] which presents SVI for models of the
conditionally conjugate exponential family class.

The ELBO of the general graphical model shown in Fig. 1
has the following form:

L ¼ Eq½log pðujaÞ � log qðujgÞ� þ
XM
i¼1

Eq

�
log pð�ijuÞ þ log pðxij�i; uÞ � log qð�ijfiÞ

�
:

(9)

We assume that the variational distribution is given by
qð��; uÞ ¼ qðujgÞQM

i¼1 qð�ijfiÞ. Here, we also assume that the
expectations in Eq. (9) are analytically tractable, yielding a
closed-form objective.

Eq. (9) could be optimized by coordinate descent
(Section 2), or gradient descent on the ELBO. In both cases,
every iteration or gradient step scales with M, and is there-
fore expensive for large data. In contrast, SVI solves this
problem in the spirit of stochastic gradient descent [18]. In

every iteration, one randomly selects mini-batches of size S
to obtain a stochastic estimate of the ELBO L̂,

L̂ ¼ Eq½log pðujaÞ � log qðujgÞ� þ
M

S

XS
s¼1

Eq

�
log pð�is juÞ þ log pðxis j�is ; uÞ � log qð�is jfisÞ

�
;

(10)

where is is the variable index from the mini-batch. Then, the
gradient of Eq. (10) is computed, which gives a noisy esti-
mator of the direction of steepest ascent of the true ELBO.

An important result of [67] is that using natural gradients
instead of standard gradients in SVI simplifies the variational
updates formodels in the conditionally conjugate exponential
family. Natural gradients, first studied in [5] and introduced
to VI in [69], [70], [171], take the information geometry of the
model into account. They are obtained by pre-multiplying the
gradient with the inverse Fisher information matrix. While
we skip further discussions for brevity, interested readers are
referred to Appendix A.4, available online, and [67]. Recent
advances in this direction include [64], [106], [121].

SVI requires the same conditions for convergence as reg-
ular SGD. The minibatch indices is must be drawn uni-
formly at random. The size S of the minibatch satisfies
1 � S 	 M. Larger values of S reduce the variance of the
stochastic natural gradient. When S ¼ M, SVI reduces to
traditional batch VI when the learning rate is set to 1. How-
ever, computational savings are only obtained for S 	 M.
The optimal choice of S emerges from a trade-off between
the computational overhead associated with processing a
mini-batch, such as performing inference over global
parameters (favoring larger mini-batches which have lower
gradient noise, allowing larger learning rates), and the cost
of iterating over local parameters in the mini-batch (favor-
ing small mini-batches). Additionally, this tradeoff is also
affected by memory structures in modern hardware such as
GPUs. The learning rate rt needs to decrease with iterations
t, satisfying the Robbins-Monro conditions

P1
t¼1 rt ¼ 1

and
P1

t¼1 r
2
t < 1. This guarantees that every point in the

parameter space can be reached, while the gradient noise
decreases quickly enough to ensure convergence [161].

Sometimes SVI is referred to as online VI [65], [209]. These
methods are equivalent under the assumptions that the vol-
ume of the data M is known. In streaming applications, the
mini-batches arrive sequentially from a data source, but the
SVI updates are the same. However, whenM is unknown, it
is unclear how to set the scale parameter M=S in Eq. (10). To
this end, [117] introduces the concept of the population poste-
rior which depends on the unknown size of the dataset. This
concept allows one to apply online VI with respect to the
expected ELBO over the population.

Stochastic gradient methods have been adapted to various
settings, such as gammaprocesses [89] andvariational autoen-
coders [86]. In recent years, most advancements in VI have
been developed relying on a SVI scheme. In the following, we
detail how to further adapt SVI to accelerate convergence.

3.2 Tricks of the Trade for SVI

The convergence speed of SGD, forming the basis of SVI,
depends on the variance of the gradient estimates. Smaller
gradient noise allows for larger learning rates and leads to

Fig. 1. A graphical model of the observations xx that depend on underly-
ing local hidden factors �� and global parameters u. We use zz ¼ fu; ��g to
represent all latent variables. M is the number of the data points. N is
the number of the latent variables.
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faster convergence. This section covers tricks of the trade in
the context of SVI, such as adaptive learning rates and vari-
ance reduction. Some of these approaches are generally
applicable in SGD.

Adaptive Learning Rate and Mini-batch Size. The
speed of convergence is influenced by the choice of the
learning rate and the mini-batch size [10], [46]. Due to
the law of large numbers, increasing the mini-batch size
reduces the stochastic gradient noise [46], allowing larger
learning rates. To accelerate the learning procedure, one
can either optimally adapt the mini-batch size for a
given learning rate, or optimally adjust the learning rate
to a fixed mini-batch size.

We begin by discussing learning rate adaptation. In each
iteration, the empirical gradient variance can guide the
adaptation of the learning rate which is inversely propor-
tional to the gradient noise. Popular optimization methods
that make use of this idea include RMSProp [191], AdaGrad
[42], AdaDelta [218] and Adam [87]. These methods are not
specific to SVI but are frequently used in this context; for
more details we refer interested readers to [53].

Ranganath et al. [157] first introduced adaptive learning
rates for the global variational parameter g in SVI, where
the optimal learning rate was shown to satisfy:

r�t ¼
ðg�

t � gtÞT ðg�
t � gtÞ

ðg�t � gtÞT ðg�
t � gtÞ þ trðSÞ : (11)

Above, g�
t denotes the optimal global variational parameter,

and gt the current estimate. S is the covariance matrix of the
variational parameter in this mini-batch. Since g�

t is
unknown, [157] showed how to estimate the optimal learn-
ing rate in an online fashion.

Instead of adapting the learning rate, the mini-batch size
can be adapted while keeping the learning rate fixed. This
achieves similar effects [10], [26], [37], [184]. In order to
decrease the SGD variance, [10] proposed to choose the
mini-batch size proportionally to the value of the objective
function relative to its optimum. In practice, the estimated
gradient noise covariance and the magnitude of the gradient
are used to estimate the optimal mini-batch size.

Variance Reduction. In addition to controlling the opti-
mization path through the learning rate and mini-batch
size, we can reduce the variance, thereby enabling larger
gradient steps. Variance reduction is often employed in SVI
to achieve faster convergence. As follows, we summarize
the literature on how to accomplish this goal via control vari-
ates, non-uniform sampling, and other approaches.

Control Variates. A control variate is a stochastic term
that can be added to the stochastic gradient such that its
expectation remains the same, but its variance is reduced
[20]. A control variate needs to be correlated with the sto-
chastic gradient, and easy to compute. Using control vari-
ates for variance reduction is common in Monte Carlo
simulation and stochastic optimization [165], [208]. Several
authors have suggested the use of control variates in the
context of SVI [78], [146], [154], [208].

As a prominent example, we discuss the stochastic vari-
ance reduced gradient (SVRG) method [78]. In SVRG, one
constructs a control variate which takes advantage of previ-
ous gradients from all data points, and one exploits that

gradients along the optimization path are correlated. The
standard stochastic gradient update gtþ1 ¼ gt � rtðrL̂ðgtÞÞ
is replaced by:

gtþ1 ¼ gt � rtðrL̂ðgtÞ � rL̂ð~gÞ þ ~mÞ: (12)

L̂ indicates the estimated objective (here the negative ELBO)
based on the current set of mini-batch indices, ~g is a snapshot
of g after everym iterations, and ~m is the batch gradient com-
puted over all the data points, ~m ¼ rLð~gÞ. Since �rL̂ð~gÞþ ~m
has expectation zero, it is a control variate.

SVRG requires a full pass through the dataset every mth
iteration to compute the full gradients, even though a full
pass can be relaxed to a very large mini-batch for large data
sets. For smooth but not strongly convex objectives, SVRG
was shown to achieve the asymptotic convergence rate
Oð1=T Þ, compared to Oð1= ffiffiffiffi

T
p Þ of SGD. Many other control

variates are used in practice [140], [146], [203]. We present
another popular type of a control variate, the score function
control variate, in Section 4.2.

Non-Uniform Sampling. Instead of subsampling data
points with equal probability, non-uniform sampling can be
used to select mini-batches with a lower gradient variance.
Several authors suggested variants of importance sampling
in the context of mini-batch selection [32], [55], [148], [226].
Although effective, these methods are not always practical,
as the computational complexity of the sampling mechanism
relates to the dimensionality of model parameters [47]. Alter-
native methods aim at de-correlating similar points and sam-
pling diversified mini-batches. These methods include
stratified sampling [225], where one samples data from pre-
defined subgroups based on meta-data or labels, clustering-
based sampling [47], which amounts to clustering the data
using k-means and then sampling data from every cluster
with adjusted probabilities, and diversified mini-batch sam-
pling [223], [224] using repulsive point processes to suppress
the probability of data points with similar features in the
same mini-batch. All of these methods have been shown to
reduce variance and can also be used for learning on imbal-
anced data.

Other Methods. A number of alternative methods have
been developed that contribute to variance reduction for
SVI. A popular approach relies on Rao-Blackwellization,
which is used in [154]. The Rao-Blackwellization theorem
(see Appendix A.5, available online), generally states that a
conditional estimation has lower variance if there exists a
valid statistic that it can be conditioned on. Inspired by Rao-
Blackwellization, the local expectation gradients method
[194] has been proposed. This method splits the computa-
tion of the gradient of the ELBO into a Monte Carlo estima-
tion and an exact expectation so that the contribution of
each latent dimension to the gradient variance is optimally
taken into account. Another related approach has been
developed for SVI, which averages expected sufficient sta-
tistics over a sliding window of mini-batches to obtain a nat-
ural gradient with smaller mean squared error [112].

3.3 Collapsed, Sparse, and Distributed VI

In contrast to using stochastic optimization for faster conver-
gence, this section presents methods that leverage the struc-
ture of certain models to achieve the same goal. In particular,
we focus on collapsed, sparse, parallel, and distributed inference.
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Collapsed Inference. Collapsed variational inference
(CVI) relies on the idea of analytically integrating out certain
model parameters [64], [83], [94], [97], [182], [188], [197]. Due
to the reduced number of parameters to be estimated, infer-
ence is typically faster. Collapsed inference is commonly con-
strained in the traditional conjugate exponential families,
where the ELBO assumes an analytical formduringmarginal-
ization. For thesemodels, one can eithermarginalize out these
latent variables before the ELBO is derived, or eliminate them
afterwards [64], [83].

Several authors have proposed CVI for topic models [94],
[188] where one can either collapse the topic proportions
[188] or the topic assignments [64]. In addition to thesemodel
specific derivations, [64] unifies existing model-specific CVI
approaches and presents a general collapsed inference
method formodels in the conjugate exponential family class.

The computational benefit of CVI depends strongly on the
statistics of the collapsed variables. Additionally, collapsing
latent random variables can make other inference techniques
tractable. For models such as topic models, we can collapse
the discrete variables and only infer the continuous ones. This
allows the usage of inference networks (Section 6) [122], [180].

More generally, CVIdoesnot solve all problems.On the one
side, integrating out certain model variables makes the ELBO
tighter, since the marginal likelihood does not have to get
lower-bounded in these variables. On the other hand, besides
mathematical challenges, marginalizing variables can intro-
duce additional dependencies betweenvariables. For example,
collapsing the global variables in Latent Dirichlet Allocation
introduces non-local dependencies between the assignment
variables, making distributed inference harder.

Sparse Inference. Sparse inference introduces additional
low-rank approximations into the variational approach,
enabling more scalable inference [63], [177], [195]. Sparse
inference can be either interpreted as a modeling choice or
as an inference scheme [24].

Sparse inference methods are often encountered in the
Gaussian Process (GPs) literature. The computational cost
of learning GPs is OðM3Þ, where M is the number of data
points. This cost is caused by the inversion of the kernel
matrix KMM of size M 
M, which hinders the application
of GPs to big data sets. The idea of sparse inference in GPs
[177] is to introduce T inducing points. Inducing points can
be interpreted as pseudo-inputs that reflect the original
data, but yield a more sparse representation since T 	 M.
With inducing points, only a T 
 T sized matrix needs to be
inverted, and consequently the computational complexity
of this method is OðMT 2Þ. [195] collapses the distribution of
inducing points, and [63] further extends this work to a sto-
chastic version with a computational complexity of OðT 3Þ.
Additionally, sparse inducing points make inference in
Deep GPs tractable [35].

Parallel and Distributed Inference. Variational inference
can be adjusted to distributed computing scenarios, where
subsets of the data or parameters are distributed among sev-
eral machines. [21], [49], [135], [138], [219]. Distributed infer-
ence schemes are often required in large scale scenarios,
where data and computations are distributed across several
machines. Independent latent variable models are trivially
parallelizable. However, model specific designs such as
reparametrizations might be required to enable efficient

distributed inference [49]. Current computing resources
make VI applicable to web-scale data analysis [219].

4 GENERIC VI: BEYOND THE CONJUGATE

EXPONENTIAL FAMILY

In this section, we review techniques which aim at making
VI more generic. This includes making VI applicable to a
broader class of models, and also to make VI more auto-
matic, eliminating the need for model-specific calculations.
This makes VI more accessible and easier to use.

Variational inference was originally limited to condition-
ally conjugate models, for which the ELBO could be com-
puted analytically before it was optimized [67], [220]. In this
section, we introduce methods that relax this requirement
and simplify inference. Central to this section are stochastic
gradient estimators of the ELBO that can be computed for a
broader class of models.

We start with the Laplace approximation in Section 4.1
and illustrate its limitations. We will then introduce black
box variational inference (BBVI) which removes the need for
analytic solutions. We discuss BBVI methods that rely on the
REINFORCE or score function gradient in Section 4.2 and a
different form of BBVI, which uses reparameterization gra-
dients, in Section 4.3. Other approaches for non-conjugate VI
are discussed in Section 4.4.

4.1 Laplace’s Method and Its Limitations

While not being the main focus of this survey, we briefly
review the Laplace approximation as an alternative to non-
conjugate inference. The Laplace (or Gaussian) approxima-
tion approximates the posterior by a Gaussian distribution
[96]. To this end, one seeks the maximum of the posterior
and computes the inverse of its Hessian. These two entities
are taken as the mean and covariance of the Gaussian poste-
rior approximation. To make this approach feasible, the log
posterior needs to be twice-differentiable. According to
the Bernstein von Mises theorem (a.k.a. Bayesian central
limit theorem) [27], the posterior approaches a Gaussian
asymptotically in the limit of large data, and the Laplace
approximation becomes exact (provided that the model is
under-parameterized). The approach can be applied to
approximate the maximum a posteriori (MAP) mean and
covariance, predictive densities, and marginal posterior
densities [192]. The Laplace method has also been extended
to more complex models such as belief networks with con-
tinuous variables [9].

This approximation suffers mainly from being purely
local and depending only on the curvature of the posterior
around the optimum; KL minimization typically approxi-
mates the posterior covariance more accurately. Addition-
ally, the Laplace approximation is limited to the Gaussian
variational family and does not apply to discrete variables
[207]. Computationally, the method requires the inversion
of a potentially large Hessian, which can be costly in high
dimensions. This makes this approach intractable in setups
with a large number of parameters.

4.2 REINFORCE Gradients

In classical VI, the ELBO is first derived analytically, and
then optimized. This procedure is usually restricted to
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models in the conditionally conjugate exponential family
[67]. For many models, including Bayesian deep learning
architectures or complex hierarchical models, the ELBO
contains intractable expectations with no known or simple
analytical solution. Even if an analytic solution is available,
the analytical derivation of the ELBO often requires time
and mathematical expertise. In contrast, BBVI proposes a
generic inference algorithm for which only the generative
process of the data has to be specified. The main idea is to
represent the gradient as an expectation, and to use Monte
Carlo techniques to estimate this expectation.

As discussed in Section 2, in general VI aims at maximiz-
ing the ELBO, which is equivalent to minimizing the KL
divergence between the variational posterior and target dis-
tribution. To maximize the ELBO, one needs to follow the
gradient or stochastic gradient of the variational parame-
ters. The key insight of BBVI is that one can obtain an unbi-
ased gradient estimator by sampling from the variational
distribution without having to compute the ELBO analyti-
cally [146], [154].

For a broad class of models, the gradient of the ELBO can
be expressed as an expectation with respect to the varia-
tional distribution [154]:

r��L ¼ Eq½r��log qðzzj��Þðlog pðxx; zzÞ � log qðzzj��ÞÞ�: (13)

The full gradient r��L, involving the expectation over q, can
now be approximated by a stochastic gradient estimator
r��L̂s by sampling from q

r��L̂s ¼ 1

K

XK
k¼1

r��log qðzkj��Þðlog pðxx; zkÞ � log qðzkj��ÞÞ; (14)

where zk � qðzzj��Þ. Thus, BBVI provides black box gradient
estimators for VI. Moreover, it only requires the practitioner
to provide the joint distribution of observations and latent var-
iables without the need to derive the gradient of the ELBO
explicitly. The quantity r��log qðzkj��Þ is also known as the

score function and is part of the REINFORCE algorithm [215].

The derivation of Eq. (13) requires the log derivative trick
which can be applied to any bound. While the ELBO in
combination with the KL results in Eq. (13), other diver-
gence measures lead to additional terms in the REINFORCE
gradients (B.3 in [100]).

A direct implementation of stochastic gradient ascent
based on Eq. (14) suffers from high variances of the estimated
gradients. Much of the success of BBVI can be attributed to
variance reduction through Rao-Blackwellization and control
variates [154]. As one of the most important advancements of
modern approximate inference, BBVI as been extended and
made amortized inference feasible, see Section 6.1.

Variance Reduction for BBVI. BBVI requires a different
set of techniques for variance reduction than those reviewed
for SVI in Section 3.2. In contrast to SVI where the noise
resulted from subsampling from a finite set of data points,
the BBVI noise originates from random variables with possi-
bly infinite support. In this case, techniques such as SVRG
are not applicable, since the full gradient is not a sum over
finitely many terms and cannot be kept in memory. Hence,
BBVI involves a different set of control variates and other
methods which shall briefly be reviewed here.

The arguably most important control variate in BBVI is
the score function control variate [154], where one subtracts
a Monte Carlo expectation of the score function from the
gradient estimator:

r��L̂control ¼ r��L̂ � w

K

XK
k¼1

r��log qðzkj��Þ: (15)

As required, the score function control variate has
expectation zero under the variational distribution. The
weight w is selected such that it minimizes the variance of
the gradient.

While the original BBVI paper introduces both
Rao-Blackwellization and control variates, [194] points out
that good choices for control variates might be model-
dependent. They further elaborate on local expectation gra-
dients, which take only the Markov blanket of each variable
into account. A different approach is presented by [167],
which introduces overdispersed importance sampling. By
sampling from a proposal distribution that belongs to an
overdispersed exponential family and that places high mass
on the tails of the variational distribution, the variance of
the gradient is reduced.

4.3 Reparameterization Gradient VI

An alternative to the REINFORCE gradients introduced in
Section 4.2 are the so-called reparameterization gradients.
These gradients are obtained by representing the variational
distribution as a deterministic parametric transformation of
a noise distribution. Empirically, reparameterization gra-
dients are often found to have lower variance than REIN-
FORCE gradients.

Reparameterization Gradients. The reparameterization
trick allows to estimate the gradient of the ELBO by Monte
Carlo samples by representing random variables as deter-
ministic functions of noise distributions. This gives low-var-
iance stochastic gradients for a large class of models
without having to compute analytic expectations.

In more detail, the trick states that a random variable z
with a distribution qðz;��Þ can be expressed as a transfor-
mation of a random variable � � rð�Þ that comes from a
noise distribution, such as uniform or Gaussian. For exam-
ple, if z � Nðz;m; s2Þ, then z ¼ mþ s� where � � Nð�; 0; 1Þ
[85], [160].

More generally, the random variable z is given by a
parameterized, deterministic function of random noise,
z ¼ gð�; ��Þ; � � rð�Þ. Importantly, the noise distribution pð�Þ
is considered independent of the parameters of qðz;��Þ, and
therefore qðz;��Þ and gð�; ��Þ share the same parameters ��.
This allows to compute any expectation over z as an expecta-
tion over � by the theory behind the change of variables in
integrals. We can now build a stochastic gradient estimator
of the ELBO by pulling the gradient into the expectation, and
approximating it by samples from the noise distribution:

r��
^Lrep ¼ 1

K

XK
k¼1

r��

�
log pðxi; gð�k; ��ÞÞ

� log qðgð�k; ��Þj��Þ
�
; �k � rð�Þ:

(16)
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Often, the entropy term can be computed analytically,
which can lead to a lower gradient variance [85].

Note that the gradient of the log joint distribution enters
the expectation. This is in contrast to the REINFORCE gra-
dient, where the gradient of the variational distribution is
taken (Eq. (14)). The advantage of taking the gradient of
the log joint is that this term is more informed about the
direction of the maximum posterior mode. The lower vari-
ance of the reparameterization gradient may be attributed
to this property.

While the variance of this estimator (Eq. (16)) is often
lower than the variance of the score function gradient
(Eq. (14)), a theoretical analysis shows that this is not
guaranteed, see Chapter 3 in [48]. [162] shows that the rep-
arameterization gradient can be divided into a path deriva-
tive and the score function. Omitting the score function in
the vicinity of the optimum can result in an unbiased gradi-
ent estimator with lower variance. Reparameterization gra-
dients are also the key to variational autoencoders [85],
[160] which we discuss in detail in Section 6.2.

The reparameterization trick does not trivially extend to
many distributions, in particular to discrete ones. Even if a
reparameterization function exists, it may not be differentia-
ble. In order for the reparameterization trick to apply to dis-
crete distributions, the variational distributions require
further approximations. Several groups have addressed this
problem. In [75], [111], the categorical distribution is
approximated with the help of the Gumbel-Max trick and
by replacing the argmax operation with a softmax operator.
A temperature parameter controls the degree to which the
softmax can approximate the categorical distribution. The
closer it resembles a categorical distribution, the higher the
variance of the gradient. The authors propose annealing
strategies to improve convergence. Similarly, a stick-break-
ing process is used in [134] to approximate the Beta distribu-
tion with the Kumaraswamy distribution.

As many of these approaches rely on approximations of
individual distributions, there is growing interest in more
general methods that are applicable without specialized
approximations. The generalized reparameterization gradi-
ent [166] achieves this by finding an invertible transforma-
tion between the noise and the latent variable of interest. The
authors derive the gradient of the ELBO which decomposes
the expected likelihood into the standard reparameterization
gradient and a correction term. The correction term is only
neededwhen the transformationweakly depends on the var-
iational parameters. A similar division is derived by [132]
which proposes an accept-reject sampling algorithm for rep-
arameterization gradients that allows one to sample from
expressive posteriors. While reparameterization gradients
often demonstrate lower variance than the score function,
the use of Monte Carlo estimates still suffers from the
injected noise. The variance can be further reduced with con-
trol variates [123], [162] or Quasi-Monte Carlomethods [23].

4.4 Other Generalizations

Finally, we survey a number of approaches that consider VI
in non-conjugate models but do not follow the BBVI princi-
ple. Since the ELBO for non-conjugate models contains
intractable integrals, these integrals have to be approximated
somehow, either using some form of Taylor approximations

(including Laplace approximations), lower-bounding the
ELBO further such that the resulting integrals are tractable,
or using some form of Monte Carlo estimators. Approxima-
tion methods which involve inner optimization routines [16],
[206], [222] often become prohibitively slow for practical
inference tasks. In contrast, approaches based on additional
lower bounds with closed-form updates [82], [88], [207] can
be computationally more efficient. Examples include exten-
sions of the variational message passing algorithm [216] to
non-conjugate models [88], [207]. Furthermore, [170] pro-
posed a technique based on stochastic linear regression to
estimate the parameters of a fixed variational distribution
based on Monte Carlo approximations of certain sufficient
statistics. Recently, [82] proposed a hybrid approach, where
inference is split into a conjugate and a non-conjugate part.

5 ACCURATE VI: BEYOND KL AND MEAN FIELD

In this section, we present various methods that aim at
improving the accuracy of standard VI. Previous sections
dealtwithmakingVI scalable and applicable to non-conjugate
exponential family models. Most of the work in those areas,
however, still addresses the standard setup of MFVI and
employs the KL divergence as a measure of distance between
distributions. Here we review recent developments that go
beyond this setup,with the goal of avoiding poor local optima
and increasing the accuracy of VI. Inference networks, nor-
malizing flows, and related methods may also be considered
as non-standard VI, but are discussed in Section 6.

We start by reviewing the origins of MFVI in statistical
physics and describe its limitations (Section 5.1).We then dis-
cuss alternative divergence measures in Section 5.2. Struc-
tured variational approximations beyond mean field are
discussed in Section 5.3, followed by alternative methods
that do not fall into the previous two classes (Section 5.4).

5.1 Origins and Limitations of Mean Field VI

Variational methods have a long tradition in statistical
physics. The mean field method was originally applied to
model spin glasses, which are certain types of disordered
magnets where the magnetic spins of the atoms are not
aligned in a regular pattern [143]. A simple example for
such a spin glass model is the Ising model, a model of
binary variables on a lattice with pairwise couplings. To
estimate the resulting statistical distribution of spin states, a
simpler, factorized distribution is used as a proxy. This is
done with the goal of approximating the marginal probabili-
ties of the spins pointing up or down (also called
’magnetization’) as well as possible, while ignoring all cor-
relations between the spins. The many interactions of a
given spin with its neighbors are replaced by a single inter-
action between a spin and the effective magnetic field (a.k.a.
mean field) of all other spins. This explains the name origin.
Physicists typically denote the negative log posterior as an
energy or Hamiltonian function. This language has been
adopted by the machine learning community for approxi-
mate inference in both directed and undirected models,
summarized in Appendix A.6, available online, for the read-
er’s reference.

Mean field methods were first adopted in neural net-
works by Anderson and Peterson in 1987 [149], and later

ZHANG ET AL.: ADVANCES IN VARIATIONAL INFERENCE 2015



gained popularity in the machine learning community [79],
[143], [172]. The main limitation of mean field approxima-
tions is that they explicitly ignore correlations between dif-
ferent variables e.g., between the spins in the Ising model.
Furthermore, [205] showed that the more possible depen-
dencies are broken by the variational distribution, the more
non-convex the optimization problem becomes. Conversely,
if the variational distribution contains more structure, cer-
tain local optima do not exist. A number of initiatives to
improve mean field VI have been proposed by the physics
community and further developed by the machine learning
community [143], [150], [190].

An early example of going beyond the mean field theory
in a spin glass system is the Thouless-Anderson-Palmer
(TAP) equation approach [190], which introduces perturba-
tive corrections to the variational free energy. A related idea
relies on power expansions [150], which has been extended
and applied to machine learning models by various authors
[80], [142], [145], [158], [185]. Additionally, information
geometry provides an insight into the relation between
MFVI and TAP equations [186], [187]. [221] further connects
TAP equations with divergence measures. We refer the
readers to [143] for more information. Next, we review the
recent advances beyond MFVI based on divergence meas-
ures other than the KL divergence.

5.2 VI with Alternative Divergences

The KL divergence often provides a computationally con-
venient method to measure the distance between two dis-
tributions. It leads to analytically tractable expectations
for certain model classes. However, traditional Kullback-
Leibler variational inference (KLVI) suffers from prob-
lems such as underestimating posterior variances [128].
In other cases, it is unable to break symmetry when multi-
ple modes are close [141], and is a comparably loose
bound [221]. Due to these shortcomings, a number of
other divergence measures have been proposed which we
survey here.

New divergence measures beyond the KL divergence do
not only play a role in VI, but also in related approximate
inference methods such as EP. Some recent extensions of EP
[101], [125], [204], [228] can be viewed as classical EP with
alternative divergence measures [128]. While these methods
are sophisticated, a practitioner will find them difficult to use
due to complex derivations and limited scalability. Recent
developments of VI focusmainly on a unified framework in a
black box fashion to allow for scalability and accessibility.
BBVI rendered the application of other divergence measures,
such as the x divergence [39], possible while maintaining the
efficiency and simplicity of themethod.

In this section, we introduce relevant divergence meas-
ures and show how to use them in the context of VI. The KL
divergence, as discussed in Section 2.1, is a special form of
the a-divergence, while the a-divergence is a special form of
the f-divergence. All above divergences can be written in
the form of the Stein discrepancy.

a-Divergence. The a-divergence is a family of divergence
measures with interesting properties from an information
geometrical and computational perspective [4], [6]. Both the
KL divergence and the Hellinger distance are special cases
of the a-divergence.

Different formulations of the a-divergence exist [6], [229],
and various VI methods use different definitions [104],
[128]. We focus on Renyi’s formulation,

DR
a ðpjjqÞ ¼

1

a� 1
log

Z
pðxÞaqðxÞ1�adx; (17)

where a > 0;a 6¼ 1. With this definition of a-divergences, a
smaller a leads to more mass-covering effects, while a larger
a results in zero-forcing effects, meaning that the variational
distribution avoids areas of low posterior probability. For
a ! 1, we recover standard VI (involving the KL divergence).

a-divergences have recently been used in variational
inference [103], [104]. Similar as in the derivation of the
ELBO in Eq. (4), the a-divergence implies a bound on the
marginal likelihood:

La ¼ log pðxxÞ �DR
a ðqðzzÞjjpðzzjxxÞÞ

¼ 1

a� 1
logEq

pðzz; xxÞ
qðzzÞ

	 
1�a
" #

: (18)

For a � 0;a 6¼ 1, La is a lower bound on the log marginal
likelihood. Interestingly, Eq. (18) also admits negative val-
ues of a, in which case it becomes an upper bound. Note that
in this case,DR

a is not a divergence. Among various possible
definitions of the a-divergence, only Renyi’s formulation
leads to a bound (Eq. (18)) in which the marginal likelihood
pðxÞ cancels.

f-Divergence and Generalized VI. a-divergences are a
subset of the more general family of f-divergences [3], [33],
which take the form:

DfðpjjqÞ ¼
Z

qðxÞf pðxÞ
qðxÞ
	 


dx:

f is a convex function with fð1Þ ¼ 0. For example, the KL
divergence KLðpjjqÞ is represented by the f-divergence
with fðrÞ ¼ rlog ðrÞ, and the Pearson x2 distance is an
f-divergence with fðrÞ ¼ ðr� 1Þ2.

In general, only specific choices of f result in a bound
that does only trivially depend on the marginal likelihood,
and which is therefore useful for VI.

Zhang et al. [221] lower-bounded the marginal likelihood
using Jensen’s inequality:

pðxxÞ � ~fðpðxxÞÞ � EqðzzÞ ~f
pðxx; zzÞ
qðzzÞ

	 
� �
� L~f : (19)

Above, ~f is an arbitrary concave function with ~fðxÞ < x.
This formulation recovers the true marginal likelihood for
~f ¼ id, the standard ELBO for ~f ¼ log , and a-VI for
~fðxÞ / xð1�aÞ. For V � log qðzzÞ � log pðxx; zzÞ, the authors pro-

pose the following function:

~f
ðV0Þðe�V Þ
¼ e�V0

�
1þ ðV0 � V Þ þ 1

2
ðV0 � V Þ2 þ 1

6
ðV0 � V Þ3

�
:

Above, V0 is a free parameter that can be optimized, and
which absorbs the bound’s dependence on the marginal
likelihood. The authors show that the terms up to linear

2016 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. 8, AUGUST 2019



order in V correspond to the KL divergence, whereas higher
order polynomials are correction terms which make the
bound tighter. This connects to earlier work on TAP equa-
tions [150], [190] (see Section 5.1), which generally did not
result in a bound.

Stein Discrepancy and VI. Stein’s method [181] was first
proposed as an error bound to measure howwell an approxi-
mate distribution fits a distribution of interest. The Stein dis-
crepancy has been adapted to modern VI [59], [108], [109],
[110]. Here, we introduce the Stein discrepancy and two VI
methods that use it: Stein Variational Gradient Descent
(SVDG) [109] and operator VI [155]. These twomethods share
the same objective but are optimized in differentmanners.

The Stein discrepancy is an integral probability metric
[119], [130], [179]. In particular, [109], [155] used the Stein
discrepancy as a divergence measure:

Dsteinðp; qÞ ¼ supf2F jEqðzzÞ½fðzzÞ� � EpðzzjxxÞ½fðzzÞ�j2: (20)

F indicates a set of smooth, real-valued functions. When
qðzzÞ and pðzzjxxÞ are identical, the divergence is zero. More
generally, the more similar p and q are, the smaller is the
discrepancy.

The second term in Eq. (20) involves an expectation
under the intractable posterior. Therefore, the Stein discrep-
ancy can only be used in VI for classes of functions F for
which the second term is equal to zero. We can find a suit-
able class with this property as follows. We define f by
applying a differential operator A on another function f,
where f is only restricted to be smooth:

fðzzÞ ¼ ApfðzzÞ;
where zz � pðzzÞ. The operator A is constructed in such a way
that the second expectation in Eq. (20) is zero for arbitrary
f; all operators with this property are valid operators [155].
A popular operator that fulfills this requirement is the Stein
operator:

ApfðzzÞ ¼ fðzzÞrzzlog pðzz; xxÞ þ rzzfðzzÞ:
Both operator VI [155] and SVGD [109] use the Stein dis-
crepancy with the Stein operator to construct the variational
objective. The main difference between these two methods
lies in the optimization of the variational objective using the
Stein discrepancy. Operator VI [155] uses a minimax (GAN-
style) formulation and BBVI to optimize the variational
objective directly; while Stein Variational Gradient Descent
(SVGD) [109] uses a kernelized Stein discrepancy. With a
particular choice of the kernel and q, it can be shown that
SVGD determines the optimal perturbation in the direction
of the steepest gradient of the KL divergence [109]. SVGD
leads to a scheme where samples in the latent space are
sequentially transformed to approximate the posterior. As
such, the method is reminiscent of, though formally distinct
from, a normalizing flow approach [159] (see Section 6.3).

5.3 Structured Variational Inference

MFVI assumes a fully-factorized variational distribution; as
such, it is unable to capture posterior correlations. Fully fac-
torized variational models have limited accuracy, especially
when the latent variables are highly dependent such as in
models with hierarchical structure. This section examines

variational distributions which are not fully factorized, but
contain dependencies between the latent variables. These
structured variational distributions are more expressive,
but often come at higher computational costs.

Allowing a structured variational distribution to capture
dependencies between latent variables is a modeling choice;
different dependencies may be more or less relevant and
depend on the model under consideration. For example,
structured variational inference for LDA [66] shows that
maintaining global structure is vital, while structured varia-
tional inference for the Beta Bernoulli Process [175] shows
that maintaining local structure is more important. As fol-
lows, we review structured inference for hierarchical mod-
els, and discuss VI for time series.

Hierarchical VI. For many models, the variational
approximation can be made more expressive by maintaining
dependencies between latent variables, but these dependen-
cies make it harder to estimate the gradient of the variational
bound. Hierarchical variational models (HVM) [156] are a
black box VI framework for structured variational distribu-
tions which applies to a broad class of models. In order to
capture dependencies between latent variables, one starts
with a mean-field variational distribution

Q
i qðzi;�iÞ, but

instead of estimating the variational parameters ��, one places
a prior qð��; uuÞ over them and marginalizes them out :

qðzz; uuÞ ¼
Z Y

i

qðzi;�iÞ
 !

qð��; uuÞd��: (21)

The new variational distribution qðzz; uuÞ thus captures
dependencies through the marginalization procedure. Sam-
pling from this distribution is also possible by simulating
the hierarchical process. The resulting ELBO can be made
tractable by further lower-bounding the resulting entropy
and sampling from the hierarchical model. Notably, this
approach is used in the development of the variational
Gaussian Process (VGP) [201], a particular HVM. The VGP
applies a Gaussian Process to generate variational estimates,
thus forming a Bayesian non-parametric prior. Since GPs
can model a rich class of functions, the VGP is able to confi-
dently approximate diverse posterior distributions [201].

Another method that established dependencies between
latent variables is copula VI [60], [199]. Instead of using a
fully factorized variational distribution, copula VI assumes
the variational family form :

qðzzÞ ¼
Y
i

qðzi;�iÞ
 !

c Qðz1Þ; . . . ; QðzNÞð Þ; (22)

where c is the copula distribution, which is a joint distribu-
tion over the marginal cumulative distribution functions
Qðz1Þ; . . . ; QðzNÞ. This copula distribution restores the
dependencies among the latent variables.

VI for Time Series. One of the most important model
classes in need of structured variational approximations are
time series models. Significant examples include Hidden
Markov Models (HMM) [44] and Dynamic Topic Models
[17]. These models have strong dependencies between time
steps, which are not reflected in fully-factorized variational
distributions. When using VI for time series, one typically
employs a structured variational distribution that explicitly
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captures dependencies between time points, while remain-
ing fully-factorized in the remaining variables [12], [17],
[45], [76]. This commonly requires model specific approxi-
mations. [45], [76] derive SVI for popular time series models
including HMMs, hidden semi-Markov models (HSMM),
and hierarchical Dirichlet process-HMMs. Moreover, [76]
derive an accelerated SVI for HSMMs. [11], [12] derive a
structured BBVI algorithm for non-conjugate latent diffu-
sion models. These structured approximations strongly
improve the performance of the variational approach.

5.4 Other Non-Standard VI Methods

In this section, we cover a number of miscellaneous
approaches which fall under the broad umbrella of improv-
ing the accuracy of VI, but would not be categorized as
alternative divergence measures or structured models.

VI With Mixture Distributions. Mixture distributions
form a class of very flexible distributions, and have been
used in VI since the 1990s [74], [79]. Due to their flexibility
as well as computational difficulties, advancing VI for mix-
ture models has been of continuous interest [8], [51], [58],
[124], [170]. To fit a mixture model, we can make use of aux-
iliary bounds [156], a fixed point update [170], or enforce
additional assumptions such as using uniform weights [51].
Inspired by boosting methods, recently proposed methods
fit mixture components in a successive manner [58], [124].
Here, Boosting VI and variational boosting [58], [124] refine
the approximate posterior iteratively by adding one compo-
nent at a time while keeping previously fitted components
fixed. In a different approach, [8] utilizes stochastic policy
search methods found in the Reinforcement Learning litera-
ture for fitting Gaussian mixture models.

VI by Stochastic Gradient Descent. Stochastic gradient
descent on the negative log posterior of a probabilistic model
can, under certain circumstances, be seen as an implicit VI
algorithm. Here we consider SGD with constant learning
rates (constant SGD) [113], [114], and early stopping [43].

Constant SGD can be viewed as a Markov chain that con-
verges to a stationary distribution; as such, it resembles Lan-
gevin dynamics [214]. The variance of the stationary
distribution is controlled by the learning rate. [113] shows
that the learning rate can be tuned to minimize the KL
divergence between the resulting stationary distribution
and the Bayesian posterior. Additionally, [113] derive for-
mulas for this optimal learning rate which resemble Ada-
Grad [42] and its relatives. A generalization of SGD that
includes momentum and iterative averaging is presented in

[114]. In contrast, [43] interprets SGD as a non-parametric
VI scheme. The paper proposes a way to track entropy
changes in the implicit variational objective based on esti-
mates of the Hessian. As such, the authors consider sam-
pling from distributions that are not stationary.

Robustness to Outliers and Local Optima. Since the
ELBO is a non-convex objective, VI benefits from advanced
optimization algorithms that help to escape from poor local
optima. Variational tempering [115] adapts deterministic
annealing [136], [164] to VI, making the cooling schedule
adaptive and data-dependent. Temperature can be defined
globally or locally, where local temperatures are specific to
individual data points. Data points with associated small
likelihoods under the model (such as outliers) are automati-
cally assigned a high temperature. This reduces their influ-
ence on the global variational parameters, making the
inference algorithm more robust to local optima. Variational
tempering can also be interpreted as data re-weighting [212],
the weight being the inverse temperature. In this context,
lower weights are assigned to outliers. Other means of mak-
ing VI more robust include the trust-region method [189],
which uses the KL divergence to tune the learning progress
and avoids poor local optima, and population VI [92], which
averages the variational posterior over bootstrapped data
samples for more robustmodeling performance.

6 AMORTIZED VARIATIONAL INFERENCE AND DEEP

LEARNING

Finally, we review amoritzed variational inference. Consider
the setup of Section 3, where each data point xi is goverend by
its latent variable zi with variational parameter �i. Traditional
VI makes it necessary to optimize a �i for each data point xi,
which is computationally expensive, in particular when this
optimization is embedded a global parameter update loop.
The basic idea behind amortized inference is to use a powerful
predictor to predict the posterior over zi based on the features
of xi, i.e., zi ¼ fðxiÞ, where f is a stochastic function. This
way, the local variational parameters are replaced by a func-
tion of the data whose parameters are shared across all data
points, i.e., inference is amortized.

Wedetail themain ideas behind this approach in Section 6.1,
and show how it is applied in form of variational autoencoders
in Sections 6.2 and 6.3.

6.1 Amortized Variational Inference

The term amortized inference refers to utilizing inferences
from past computations to support future computations
[36], [50]. For VI, amortized inference usually refers to infer-
ence over local variables. Instead of approximating separate
variables for each data point, as shown in Fig. 2a, amortized
VI assumes that the local variational parameters can be pre-
dicted by a parameterized function of the data. Thus, once
this function is estimated, the latent variables can be
acquired by passing new data points through the function,
as shown in Fig. 2b. Deep neural networks used in this con-
text are also called inference networks. Amortized VI with
inference networks thus combines probabilistic modeling
with the representational power of deep learning.

As an example, amortized inference has been applied to
Deep Gaussian Processes (DGPs) [35]. Inference in these

Fig. 2. The graphical model class compatible with stochastic variational
inference (a), and a graphical visualization of the variational autoencoder
(b). Dashed lines indicate a variational model that conditions on input
data x.
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models is intractable, which is why the authors apply MFVI
with inducing points (see Section 3.3) [35]. Instead of esti-
mating these latent variables separately, however, [34] pro-
poses to estimate these latent variables as functions of
inference networks, allowing DGPs to scale to bigger data-
sets and speeding up convergence. Amortization can be
also made iterative by feeding back the amortization error
into the inference model [116].

6.2 Variational Autoencoders

Amortized VI has become a popular tool for inference in
deep latent Gaussian models (DLGM). This leads to the con-
cept of variational autoencoders (VAEs), which have been
proposed independently by two groups [85], [160], and
which are discussed in detail below. VAEs apply more gen-
erally than to DLGMs, but for simplicity we will restrict our
discussion to this model class.

The Generative Model. In this paragraph we introduce
the class of deep latent Gaussian models. The correspond-
ing graphical model is depicted in Fig. 2b. The model
employs a multivariate normal prior from which we draw a
latent variable z,

pðzzÞ ¼ N ð0; IÞ:
More generally, this could be an arbitrary prior puðzÞ that
depends on additional parameters u. The likelihood of the
model is:

puðxxjzzÞ ¼
YN
i¼1

Nðxi;mðziÞ; s2ðziÞIÞ:

Most importantly, the likelihood depends on zz through two
non-linear functions mð�Þ and sð�Þ. These are typically neural
networks, which take the latent variables as an input and
transform them in a non-linear way. The data are then
drawn from a normal distribution centered around the
transformed latent variables mðziÞ. The parameter u entails
the parameters of the networks mð�Þ and sð�Þ.

Deep latent Gaussian models are highly flexible density
estimators. There exist many modified versions specific to
other types of data. For example, for binary data, the Gaussian
likelihood can be replaced by a Bernoulli likelihood. Next, we
review how amortized inference is applied to this model class.

Variational Autoencoders. Most commonly, VAEs refer
to deep latent Gaussian models which are trained using
inference networks.

VAEs employ two deep sets of neural networks: a top-
down generative model as described above, mapping from
the latent variables zz to the data xx, and a bottom-up infer-
ence model which approximates the posterior pðzzjxxÞ. Com-
monly, the corresponding neural networks are referred to
as the generative network and the recognition network, or
sometimes as decoder and encoder networks.

In order to approximate the posterior, VAEs employ an
amortized mean-field variational distribution:

qfðzzjxxÞ ¼
YN
i¼1

qfðzijxiÞ:

The conditioning on xi indicates that the local variational
parameters associated with each data point are replaced by

a function of the data. This amortized variational distribu-
tion is typically chosen as:

qfðzijxiÞ ¼ N ðzijmðxiÞ; s2ðxiÞIÞ: (23)

Similar to the generative model, the variational distribution
employs non-linear mappings mðxiÞ and sðxiÞ of the data in
order to predict the approximate posterior distribution of
xi. The parameter f summarizes the corresponding neural
network parameters.

The main contribution of [85], [160] was to derive a scal-
able and efficient training scheme for deep latent variable
models. During optimization, both the inference network
and the generative network are trained jointly to optimize
the ELBO.

The key to training these models is the reparameteriza-
tion trick (Section 4.3). We focus on the ELBO contribution
form a single data point xi. First, we draw L samples
�ðl;iÞ � pð�Þ from a noise distribution. We also employ a rep-
arameterization function gf, such that zði;lÞ ¼ gfð�ðl;iÞ; xiÞ
realize samples from the approximate posterior qfðzijxiÞ.
For Eq. (23), the most common reparametrization function
takes the form zði;lÞ ¼ mðxiÞ þ sðxiÞ � �ði;lÞ, where mð�Þ and
sð�Þ are parameterized by f. One obtains an unbiased Monte
Carlo estimator of the VAE’s ELBO by

L̂ðu; f; xiÞ ¼ �DKLðqfðzijxiÞjjpuðziÞÞ

þ 1

L

XL
l¼1

log puðxijmðxiÞ þ sðxiÞ � �ði;lÞÞ:
(24)

This stochastic estimate of the ELBO can subsequently be
differentiated with respect to u and f to obtain an estimate
of the gradient.

The reparameterization trick also implies that the gradi-
ent variance is bounded by a constant [160]. The drawback
of this approach however is that we require the approxi-
mate posterior to be reparameterizable.

A Probabilistic Encoder-Decoder Perspective. The term
variational autoencoder arises from the fact that the joint train-
ing of the generative and recognition network resembles the
structure of autoencoders, a class of unsupervised, deter-
ministic models. Autoencoders are deep neural networks
that are trained to reconstruct their inputs as closely as pos-
sible. Importantly, the neural networks involved in autoen-
coders have an hourglass structure, meaning that there is a
small number of units in the inner layers that prevent the
neural network from learning the trivial identity mapping.
This ’bottleneck’ forces the network to learn a useful and
compact representation of the data.

In contrast, VAEs are probabilistic models, but they have
a close correspondence to classical autoencoders. It turns
out that the hidden variables of the VAE can be thought of
as the intermediate representations of the data in the bottle-
neck of an autoencoder. During VAE training, one injects
noise into this intermediate layer, which has a regularizing
effect. In addition, the KL divergence term between the
prior and the approximate posterior forces the latent repre-
sentation of the VAE to be close to the prior, leading to a
more homogeneous distribution in latent space that general-
izes better to unseen data. When the variance of the noise is
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reduced to zero and the prior term is omitted, the VAE
becomes a classical autoencoder.

6.3 Advancements in VAEs

Since the proposal of VAEs, an ever-growing number of
extensions have been proposed. While exhaustive coverage
of the topic would require a review article in its own right,
we summarize a few important extensions. While several
model extensions of the VAE have been proposed, this re-
view puts a bigger emphasis on inference procedures. We
will report on extensions that modify the variational app-
roximation qf, the model pu, and finally discuss the dying
units problem when the posterior of some latent units
remains close to the prior during the optimization.

Flexible Variational Distributions qf. Traditional VI,
including VAE training, relies on parametric inference mod-
els. The approximate posterior qf can be an explicit paramet-
ric distribution, such as a Gaussian or discrete distribution
[163]. We can use more flexible distributions, for example by
transforming a simple parametric distribution. Here, we
review VAE with implicit distributions, normalizing flow,
and importance weighted VAE. Using more flexible varia-
tional distributions reduces not only the approximation error
but also the amortization error, i.e., the error introduced by
replacing the local variational parameters by a parametric
function [30].

Implicit distributions can be used in VI since a closed-
form density function is not a strict requirement for the
inference model; all we need is to be able to sample from it.
As detailed below, their reparameterization gradients can
still be computed. In addition to the standard reparameteri-
zation approach, the entropy contribution to the gradient
has to be estimated. Implicit distributions for VI is an active
area of research [72], [81], [102], [105], [107], [118], [129],
[196], [210].

VI requires the computation of the log density ratio
log pðzzÞ � log qfðzzjxxÞ. When q is implicit, the standard train-
ing procedure faces the problem that log density ratio is
intractable. In this case, one can employ a Generative
Adversarial Networks (GAN) [54] style discriminator T that
discriminates the prior from the variational distribution,
T ðxx; zzÞ ¼ log qfðzzjxxÞ � log pðzzÞ [102], [118]. This formulation
is very general and can be combined with other ideas, for
example a hierarchical structure [202], [217] .

Normalizing flow [29], [40], [41], [84], [159] presents
another way to utilize flexible variational distributions. The
main idea behind normalizing flow is to transform a simple
(e.g., mean field) approximate posterior qðzzÞ into a more
expressive distribution by a series of successive invertible
transformations.

To this end, we first draw a random variable z � qðzzÞ,
and transform it using an invertible, smooth function f . Let
z0 ¼ fðzÞ. Then, the new distribution is

qðz0Þ ¼ qðzÞj @f
�1

@z0
j ¼ qðzÞj @f

@z0
j�1: (25)

It is necessary that we can compute the determinant, since
the variational approach requires us to also estimate the
entropy of the transformed distribution. By choosing the
transformation function f such that j @f

@z0 j is easily

computable, this normalizing flow constitutes an efficient
method to generate multimodal distributions from a simple
distribution. As variants, linear time-transformations, Lan-
gevin and Hamiltonian flow [159], as well as inverse
autoregressive flow [84] and autoregressive flow [29] have
been proposed.

Normalizing flow and the previously mentioned implicit
distribution share the common idea of using transforma-
tions to transform simple distributions into more compli-
cated ones. A key difference is that for normalizing flows,
the density of qðzÞ can be estimated due to an invertible
transformation function.

One final approach that utilizes flexible variational dis-
tributions is the importance weighted variational auto-
encoder (IWAE) which was originally proposed to tighten
the variational bound [25] and can be reinterpreted to sam-
ple from a more flexible distribution [31]. IWAEs require
L samples from the approximate posterior which are
weighted by the ratio

ŵl ¼ wlPL
l¼1 wl

;where wl ¼
puðxi; zði;lÞÞ
qfðzði;lÞjxiÞ : (26)

The authors show that the more samples L are evaluated,
the tighter the variational bound becomes, implying that
the true log likelihood is approached in the limit L ! 1. A
reinterpretation of IWAEs, suggests that they are identical
to VAEs but sample from a more expressive distribution
which converges pointwise to the true posterior as L ! 1
[31]. As IWAEs introduce a biased estimator, additional
steps to obtain potentially better variance-bias trade-offs
can be taken, such as in [139], [152], [153] .

Modeling Choices of pu. Modeling choices affect the per-
formance of deep latent Gaussian models. In particular
improving the prior model in VAEs can lead to more inter-
pretable fits and better model performance. [77] proposed a
method to utilize a structured prior for VAEs, combining
the advantages of traditional graphical models and infer-
ence networks. These hybrid models overcome the intracta-
bility of non-conjugate priors and likelihoods by learning
variational parameters of conjugate distributions with a rec-
ognition model. This allows one to approximate the poste-
rior conditioned on the observations while maintaining
conjugacy. As the encoder outputs an estimate of natural
parameters, message passing, which relies on conjugacy, is
applied to carry out the remaining inference.

Other approaches tackle the drawback of the standard
VAE which is the assumption that the likelihood factorizes
over dimensions. This can be a poor approximation, e.g., for
images, for which a structured output model works better.
The Deep Recurrent Attentive Writer [56] relies on a rec-
urrent structure that gradually constructs the observations
while automatically focusing on regions of interest. In
comparison, PixelVAE [57] tackles this problem by
modeling dependencies between pixels within an image,
using a conditional model that factorizes as puðxijziÞ ¼Q

j puðxj
i jx1

i ; . . .x
j�1
i ; ziÞ, where xj

i denotes the jth dimension

of observation i. The dimensions are generated in a sequen-
tial fashion, which accounts for local dependencies within
the pixels of an image. The expressiveness of the modeling
choice comes at a cost. If the decoder is too strong, the
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inference procedure can fail to learn an informative poste-
rior [29]. This problem, known as the dying units problem,
will be discussed in the paragraph below.

The Dying Units Problem. Certain modeling choices
and parameter configurations impose problems in VAE
training, such that learning a good low-dimensional repre-
sentation of the data fails. A prominent such problem is
known as the dying units problem. As detailed below, two
main effects are responsible for this phenomenon: a too
powerful decoder, and the KL divergence term.

In some cases, the expressiveness of the decoder can be
so strong, that some dimensions of the zz variables are
ignored, i.e., it might model puðxjzÞ independently of z. In
this case the true posterior is the prior [29], and thus the var-
iational posterior tries to match the prior in order to satisfy
the KL divergence in Eq. (24). Lossy variational autoen-
coders [29] circumvent this problem by conditioning the
decoding distribution for each output dimension on partial
input information. For example, in the case of images, the
likelihood of a given pixel is only conditioned on the values
of the immediate surrounding pixels and the global latent
state. This forces the distribution to encode global informa-
tion in the latent variables.

The KL divergence contribution to the VAE loss may
exacerbate this problem. To see why, we can rewrite the
ELBO as a sum of two KL divergences L̂ðu;f; xiÞ ¼ �
DKLðqfðzjxiÞjjpuðzÞÞ �DKLðpðxiÞjjpuðxijzÞÞ þ C. If the model
is expressive enough, the model is able to render the second
term zero (independent of the value of zz). In this case, in
order to also satisfy the first term, the inference model places
its probability mass to match the prior [227], failing to learn a
useful representation of the data. Even if the decoder is not
strong, the problem of dying units may arise in the early
stages of the optimization where the approximate posterior
does not yet carry relevant information about the data [19].
This problem is more severe when the dimension of z is
high. In this situation, units are regularized towards the prior
and might not be reactivated in the later stages of the optimi-
zation [178]. To counteract the early influence of the KL con-
straint, an annealing scheme can be applied to the KL
divergence term during training [178].

7 DISCUSSION

We have summarized recent advancements in variational
inference. Here we outline some selected active research
directions and open questions, including, but not limited to:
theory of VI, VI and policy gradients, VI for deep learning,
and automatic VI.

Theory of VI. Despite progress in modeling and inference,
few authors address theoretical aspects of VI [95], [133], [213].
One important direction is quantifying the approximation
errors involvedwhen replacing a true posterior with a simpli-
fied variational distribution [133]. A related problem is the
predictive error, e.g., when approximating the marginaliza-
tion involved in a Bayesian predictive distribution using VI.

We also conjecture that VI theory could profit from a
deeper connection with information theory. This was
already exemplified in [186], [187]. Information theory also
inspires the development of new models and inference
schemes [2], [13], [193]. For example, the information

bottleneck [193] has recently led to the deep variational
information bottleneck [2]. We expect more interesting
results to come from fusing these two lines of research.

VI and Deep Learning. Despite its recent successes in
various areas, deep learning still suffers from a lack of prin-
cipled uncertainty estimation, a lack in interpretability of its
feature representations, and difficulties in including prior
knowledge. Bayesian approaches, such as Bayesian neural
networks [137] and variational autoencoders (as reviewed
in Section 6), are improving all these aspects. Recent work
aims at using interpretable probabilistic models as priors
for VAEs [38], [77], [91], [168]. In such models, VI is an
essential component. Making VI computationally efficient
and easy to implement in Bayesian deep architectures is
becoming an important research direction [48].

VI and Policy Gradients. Policy gradient estimation is
important for reinforcement learning (RL) [183] and stochas-
tic control. The technical challenges in these applications are
similar to VI [98], [99], [110], [173], [211] (See Appendix A.7,
available online). As an example, SVGD has been applied in
the RL setting as the Stein policy gradient [110]. The applica-
tion of VI in RL is currently an active area of research.

Automatic VI. Probabilistic programming allows practi-
tioners to quickly implement and revise models without
having to worry about inference. The user is only required
to specify the model, and the inference engine will automat-
ically perform the inference. Popular probabilistic program-
ming tools include but are not limited to: Stan [28], which
covers a large range of advanced VI and MCMC methods,
Infer.Net [126], which is based on variational message pass-
ing and EP, Automatic Statistician [52] and Anglican [198],
which mainly rely on sampling methods, Edward [200],
which supports BBVI as well as Monte Carlo sampling, and
Zhusuan [176], which features VI for Bayesian Deep learn-
ing. The longstanding goal of these tools is to change the
research methodology in probabilistic modeling, allowing
users to quickly revise and improve models and to make
them accessible to a broader audience.

Despite current efforts to make VI more accessible to
practitioners, its usage is still not straightforward for non-
experts. For example, manually identifying posterior sym-
metries and breaking these symmetries is necessary to
work with Infer.Net. Furthermore, variance reduction
methods such as control variates can drastically accelerate
convergence, but a model specific design of control
variates is needed to obtain the best performance. At the
time of writing, these problems are not yet addressed in
current probabilistic programming toolboxes. We believe
these and other directions are important to advance
the impact of probabilistic modeling in science and
technology.

8 CONCLUSIONS

In this paper, we review the recent major advances in varia-
tional inference from four perspectives: scalability, generality,
accuracy, and amortized inference. The advancement of vari-
ational inference theory and the adoption of approximate
inference in new machine learning models are developing
rapidly. Although this field has grown in recent years, it
remains an open question how to make VI more efficient,
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more accurate, and easier to use for non-experts. Further
development, as discussed in the previous section, is needed.
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