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Abstract—Recent data-driven approaches to scene interpretation predominantly pose inference as an end-to-end black-box mapping,

commonly performed by a Convolutional Neural Network (CNN). However, decades of work on perceptual organization in both human

and machine vision suggest that there are often intermediate representations that are intrinsic to an inference task, and which provide

essential structure to improve generalization. In this work, we explore an approach for injecting prior domain structure into neural

network training by supervising hidden layers of a CNN with intermediate concepts that normally are not observed in practice. We

formulate a probabilistic framework which formalizes these notions and predicts improved generalization via this deep supervision

method. One advantage of this approach is that we are able to train only from synthetic CAD renderings of cluttered scenes, where

concept values can be extracted, but apply the results to real images. Our implementation achieves the state-of-the-art performance of

2D/3D keypoint localization and image classification on real image benchmarks including KITTI, PASCALVOC, PASCAL3D+, IKEA,

and CIFAR100. We provide additional evidence that our approach outperforms alternative forms of supervision, such as multi-task

networks.

Index Terms—Deep learning, multi-task learning, single image 3D structure prediction, object pose estimation
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1 INTRODUCTION

OUR visualworld is rich in structural regularity. Studies in
perception show that the human visual system imposes

structure to reason about stimuli [1]. Consequently, early
work in computer vision studied perceptual organization as a
fundamental precept for recognition and reconstruction [2],
[3]. However, algorithms designed on these principles relied
on hand-crafted features (e.g., corners or edges) and hard-
coded rules (e.g., junctions or parallelism) to hierarchically
reason about abstract concepts such as shape [4], [5]. Such
approaches suffered from limitations in the face of real-world
complexities. In contrast, convolutional neural networks
(CNNs), as end-to-end learning machines, ignore inherent
perceptual structures encoded by task-related intermediate
concepts and attempt to directly map from input to the
label space.

Abu-Mostafa [6] proposes “hints” as a middle ground,
where a task-related hint derived from prior domain knowl-
edge regularizes the training of neural networks by either con-
straining the parameter space or generating more training
data. In thiswork,we revisit and extend this idea by exploring

a specific type of hint, which we refer to as an “intermediate
concept”, that encodes a sub-goal to achieve the main task of
interest. For instance, knowing object orientation is a prereq-
uisite to correctly infer object part visibility which in turn con-
strains the 3D locations of semantic object parts. We present a
generic learning architecture where intermediate concepts
sequentially supervise hidden layers of a deep neural net-
work to learn a specific inference sequence for predicting a
final task.

We implement this deep supervision framework with a
novel CNNarchitecture for predicting 2Dand 3Dobject skele-
tons given a single test image. Our approach is in the spirit of
[2], [3] that exploit object pose as an auxiliary shape concept to
aid shape interpretation and mental rotation. We combine
this early intuition with the discriminative power of modern
CNNs by deeply supervising for multiple shape concepts
such as object pose. As such, deep supervision teaches the
CNN to sequentially model intermediate goals to parse 2D or
3D object skeletons across large intra-class appearance varia-
tions and occlusion.

An earlier version of thiswork has been presented in a con-
ference paper [7]. In this extended version, we formalize a
probabilistic notion of intermediate concepts that predicts
improved generalization performance by deeply supervising
intermediate concepts (Section 3). Further, we add new
experiments including a new object class (bed) (Section 5.2.4)
and image classification results on CIFAR100 [8] (Section 5.1).
This motivates our network architecture in which we super-
vise convolutional layers at different depthswith the available
intermediate shape concepts.

Due to the scarcity of 3D annotated images, we render 3D
CADmodels to create synthetic images with concept labels as
training data. In addition, we simulate challenging occlusion
configurations between objects to enable robust data-driven
occlusion reasoning (in contrast to earlier model-driven
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attempts [9], [10]). Fig. 1 introduces our framework and Fig. 4
illustrates an instance of a CNN deeply supervised by inter-
mediate shape concepts for 2D/3D keypoint localization. We
denote our network as “DISCO” short for Deep supervision
with Intermediate Shape COncepts.

Most existing approaches [10], [11], [12], [13], [14] esti-
mate 3D geometry by comparing projections of parameter-
ized shape models with separately predicted 2D patterns,
such as keypoint locations or heat maps. This makes prior
methods sensitive to partial view ambiguity [15] and incor-
rect 2D structure prediction. Moreover, scarce 3D annota-
tion of real image further limits their performance. In
contrast, our method is trained on synthetic data only and
generalizes well to real images. We find deep supervision
with intermediate concepts to be a critical element to bridge
the synthetic and real world. In particular, our deep super-
vision scheme empirically outperforms the single-task arch-
itecture, and multi-task networks which supervise all the
concepts at the final layer. Further, we quantitatively dem-
onstrate significant improvements over prior state-of-the-
art for 2D/3D keypoint prediction on PASCAL VOC, PAS-
CAL3D+ [16], IKEA [17] and KITTI-3D where we add 3D
annotation for part of KITTI [18] data. These observations
confirm that intermediate concepts regularize the learning
of 3D shape in the absence of photorealism in rendered
training data.

Additionally, we show another application of our generic
deep supervision framework for image classification on
CIFAR100 [8]. As such, coarse-grained class labels used as
intermediate concepts are able to improve fine-grained rec-
ognition performance, which further validates our deep
supervision strategy.

In summary, we make the following contributions in this
work:

� We present a CNN architecture where its hidden
layers are supervised by a sequence of intermediate
shape concepts for the main task of 2D and 3D object
geometry estimation.

� We formulate a probabilistic framework to explain
why deep supervision may be effective in certain
cases. Our proposed framework is a generalization

of conventional supervision schemes employed in
CNNs, including multi-task supervision and Deeply
Supervised Nets [19].

� We show the utility of rendered data with access to
intermediate shape concepts. We model occlusions
by rendering multiple object configurations, which
presents a novel route to exploiting 3D CAD data for
parsing cluttered scenes.

� We empirically demonstrate state-of-the-art perfor-
mance on 2D/3D semantic part localization and
object classification on several public benchmarks. In
some experiments, the proposed approach even out-
performs the state-of-the-art methods trained on real
images. We also demonstrate superior performance
to baselines including the conventional multi-task
supervision and different orders of intermediate
concepts.

In the following, we review the related work in Section 2
and introduce the probabilistic framework and algorithm of
deep supervision in Section 3. Details of network architec-
ture and data simulation are discussed in Section 4. We dis-
cuss experiment results in Section 5 and conclude the paper
in Section 6.

2 RELATED WORK

We present a deep supervision scheme with intermediate
concepts for deep neural networks. One application of our
deep supervision is 3D object structure inference which is
linked to recent advances including reconstruction, align-
ment and pose estimation. We review related work on these
problems in the following:

Multi-task Learning. In neural networks, multi-task learn-
ing architectures exploit multiple task-related concepts to
jointly supervise a network at the last layer. Caruana [20]
empirically demonstrates its advantage over a single-task
neural architecture on various learning problems. Recently,
multi-task learning has been applied to a number of vision
tasks including face landmark detection [21] and viewpoint
estimation [22]. Hierarchy and Exclusion (HEX) graph [23]
is proposed to capture hierarchical relationships among
object attributes for improved image classification. In addi-
tion, some theories [24], [25] attempt to investigate how
shared hidden layers reduce required training data by
jointly learning multiple tasks. However, to our knowledge,
no study has been conducted on quantifying the perfor-
mance boost to a main task. It is also unclear whether a
design choice meets the assumption of conducive task rela-
tionships used in these theories. This may explain that some
task combinations for multi-task networks yield worse per-
formance compared with single-task networks [20].

Deep Supervision. Deeply Supervised Nets (DSN) [19]
uses a single task label to supervise the hidden layers of a
CNN, speeding up convergence and addressing the van-
ishing gradient problem. However, DSN assumes that opti-
mal local filters at shallow layers are building blocks for
optimal global filters at deep layers, which is probably not
true for a complex task. Recently a two-level supervision is
proposed [26] for counting objects in binary images.
One hidden layer is hard-coded to output object detection
responses at fixed image locations. This work can be seen

Fig. 1. Overview of our approach. We use synthetic training images with
intermediate shape concepts to deeply supervise the hidden layers of a
CNN. At test time, given a single real image of an object, we demon-
strate accurate localization of semantic parts in 2D and 3D, while being
robust to intra-class appearance variations and occlusions.
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as a preliminary study to leverage task-related cues that
assist the final task by deep supervision. We advance this
idea further to a more general setting for deep learning
without hard-coded internal representations.

3D Skeleton Estimation. Many works model 3D shape as a
linear combination of shape bases and optimize basis coeffi-
cients to fit computed image evidence such as heat maps
[14] and object part detections [10]. A prominent recent
approach called single image 3D INterpreter Network (3D-
INN) [27] is a sophisticated CNN architecture to estimate a
3D skeleton based only on detected visible 2D joints. How-
ever, in contrast to our approach, the training of 3D-INN
does not jointly optimize for 2D and 3D keypoint localiza-
tion. This decoupling of 3D structure from object appear-
ance leads to partial view ambiguity and thus 3D prediction
error.

3D Reconstruction. A generative inverse graphics model is
formulated in [12] for 3D mesh reconstruction by matching
mesh proposals to extracted 2D contours. Recently, given a
single image, autoencoders have been exploited for 2D image
rendering [28], multi-view mesh reconstruction [29] and 3D
shape regression under occlusion [30]. The encoder network
learns to invert the rendering process to recognize 3D attrib-
utes such as object pose. However, methods such as [29], [30]
are quantitatively evaluated only on synthetic data and seem
to achieve limited generalization to real images. Other works
such as [11] formulate an energy-based optimization frame-
work involving appearance, keypoint and normal consistency
for dense 3D mesh reconstruction, but require both 2D key-
point and object segmentation annotations on real images for
training. Volumetric frameworks using either discriminative
[31] or generative [32] modeling infer a 3D shape distribution
on voxel grids given image(s) of an object, limited to low-
resolutions. Lastly, 3D voxel examplars [33] jointly recognize
3D shape and occlusion patterns by templatematching,which
is not scalable.

3D Model Retrieval and Alignment. This line of work esti-
mates 3D object structure by retrieving the closest object
CAD model and performing alignment, using 2D images
[16], [34], [35] and RGB-D data [36], [37]. Unfortunately, a
limited number of CAD models can not represent all instan-
ces in one object category. Further, the retrieval step is slow
for a large CAD dataset and alignment is sensitive to error
in estimated pose.

Pose Estimation and 2D Keypoint Detection. “Render for
CNN” [22] renders 3D CAD models as additional training
data besides real images for object viewpoint estimation.
We extend this rendering pipeline to support object key-
point prediction and cluttered scene rendering to learn
occlusions from data. Viewpoint prediction is utilized in
[38] to boost the performance of 2D landmark localization.
Recent work such as DDN [39] optimizes deformation coef-
ficients based on the PCA representation of 2D keypoints to
achieve state-of-the-art performance on face and human
body. Dense feature matching approaches which exploit
top-down object category knowledge [14], [40] are recent
successes, but our method yields superior results while
being able to transfer knowledge from rich CAD data.

Occlusion Modeling. Most work on occlusion invariant
recognition relies on explicit occluder modeling [10], [41].
However, as it is hard to explicitly model object appearance,

the variation in occluder appearance is also too broad to be
captured effectively by model-driven approaches. This is
why recent work has demonstrated gains by learning occlu-
sions patterns from data [33], [42]. Thanks to deep supervi-
sion, which enables effective generalization from CAD
renderings to real images, we are able to leverage a signifi-
cantly larger array of synthetic occlusion configurations.

3 DEEP SUPERVISION WITH INTERMEDIATE

CONCEPTS

In this section, we introduce a novel CNN architecture with
deep supervision. Our approach draws inspiration from
Deeply Supervised Nets [19]. DSN supervises each layer by
the main task label to accelerate training convergence. Our
method differs from DSN in that we sequentially apply
deep supervision on intermediate concepts intrinsic to the
ultimate task, in order to regularize the network for better
generalization. We employ this enhanced generalization
ability to transfer knowledge from richly annotated syn-
thetic data to the domain of real images.

Toy Example. To motivate the idea of supervising interme-
diate concepts, consider a very simple network with 2 layers:
y ¼ sðw2sðw1xþ b1Þ þ b2Þ where s is ReLU activation
sðxÞ ¼ maxðx; 0Þ. Provided that the true model for a phe-
nomenon is ðw1; w2; b1; b2Þ ¼ ð3; 1;�2;�7Þ and the training
data fðx; yÞg is fð1; 0Þ; ð2; 0Þ; ð3; 0Þg. A learning algorithm
may obtain a different model ðw1; w2; b1; b2Þ ¼ ð1; 3;�1;�10Þ
which still achieves zero loss over training data but fails to
generalize to the case when x ¼ 4 or 5. However, if we have
additional cues that tell us the value of intermediate layer
activations, sðw1xþ b1Þ for each ðx; yÞ, we can achieve better
generalization. For example, suppose we have training
examples with an additional intermediate cue fðx; y0; yÞg ¼
fð1; 0; 0Þ; ð2; 0; 0Þ; ð3; 1; 0Þg where y0 ¼ sðw1xþ b1Þ. We find
that the incorrect solution above that works for fx; yg is
removed because it does not agree with fx; y0; yg. While sim-
ple, this example illustrates that deep supervision with inter-
mediate concepts can regularize network training and
reduce overfitting.

In the following, we formalize the notion of intermediate
concept in Section 3.1, introduce our supervision approach
which exploits intermediate concepts in Section 3.2, and dis-
cuss the improved generalization of deep supervision in
Section 3.3.

3.1 Intermediate Concepts

We consider a supervised learning task to predict ym from x.
We have a training set S ¼ fðx; ðy1; . . . ; ymÞÞg sampled from
an unknown distribution D, where each training tuple con-
sists of multiple task labels: ðy1; . . . ; ymÞ. Without the loss of
generality, we analyze the ith concept yi in the following,
where 1 < i � m. Here, yi�k is regarded as an intermediate
concept to estimate yi, where k > 0 and i� k > 0. Intui-
tively, knowledge of yi�k constrains the solution space of yi,
as in our simple example above.

Formally, we define an intermediate concept yi�k of yi as a
strict necessary condition such that there exists a deterministic
function T which maps yi to yi�k: yi�k ¼ T ðyiÞ. In general,
there is no inverse function T 0 that maps yi�k to yi because
multiple yi may map to the same yi�k. In the context of multi-
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class classificationwhere task yi and yi�k both contain discrete
class labels, task yi induces a finer partition over the input
spaceX ¼ fxg than task yi�k by further partitioning each class
in yi�k. Fig. 2 illustrates a fictitious example of hierarchical
partitioning over 2D input space created by three intermedi-
ate concepts fy1; y2; y3g. As we can see in Fig. 2, a sequence of
intermediate concepts hierarchically decompose the input
space from coarse to fine granularity. Concretely, we denote a
concept hierarchy as Y ¼ ðy1; . . . ; ymÞ where yi�k is a strict
necessary condition of yi for all i > 1.

In many vision problems, we can find concepts that
approximate a concept hierarchy Y. As mentioned above,
non-overlapping coarse-grained class labels constitute strict
necessary conditions for a fine-grained classification task. In
addition, object pose and keypoint visibility are both strict
necessary conditions for 3D object keypoint location, because
the former can be unambiguously determined by the latter.

3.2 Algorithm

Given a concept hierarchy Y and the corresponding training
set S, we formulate a new deeply supervised architecture to
jointly learn the main task along with its intermediate con-
cepts. Consider a multi-layer convolutional neural network
with N hidden layers that receives input x and outputs m
predictions for y1; . . . ; ym. The ith concept yi is applied to
supervise the intermediate hidden layer at depth di by add-
ing a side output branch at dith hidden layer. We denote the
function represented by the kth hidden layer as hkðx;WkÞ,
with parameters Wk. The output branch at depth di con-
structs a function gdið�; VdiÞ with parameters Vdi . Further, we
denote fyi as the function for predicting concept yi such that
fyi ¼ gdi � hdi � � � � � h1. Fig. 3 shows a schematic diagram of
our deep supervision framework. In Section 4, we con-
cretely instantiate each hk as a convolutional layer followed
by batch normalization and ReLU layers and each gk as
global average pooling followed by fully connected layers.
However, we emphasize that our algorithm is not limited to
this particular layer configuration.

We formulate the following objective function to encap-
sulate these ideas:

W �; V � ¼ argmin
W;V

X
ðx;fyigÞ2S

Xm
i¼1

�iliðyi; fyiðx ;W1:di ; VdiÞÞ; (1)

where W1:di ¼ fW1; . . . ;Wdig, W ¼ W1:dm and V ¼ fVd1 ; . . . ; Vdmg.
In addition, li is the loss for task yi scaled by the loss weight
�i. We optimize Equation (1) over S by simultaneously
backpropagating the loss of each supervisory signal all the
way back to the first layer.

We note that Equation (1) is a generic supervision frame-
work which represents many existing supervision schemes.
For example, the standard CNN with a single task supervi-
sion is a special case when m ¼ 1. Additionally, the multi-
task learning [20] places all supervision on the last hidden
layer: di ¼ N for all i. DSN [19] framework is obtained
when m ¼ N and yi ¼ ym for all i. In this work, we propose
to apply m different concepts fyig in a concept hierarchy Y
at locations with growing depths: di�k < di where k > 0
and i� k > 0.

3.3 Generalization Analysis

In this section, we present a generalization metric and
subsequently show how deep supervision with intermedi-
ate concepts can improve the generalization of a deep
neural network with respect to this metric, compared to
other standard supervision methods. We also discuss the
limitations of this analysis. For clarity, we summarize our
notation in Table 1.

3.3.1 Generalization Metric

Deep neural networks are function approximators that learn
mappings from an input space x to an output space y. For a
network with a fixed structure, there usually exists a set of
functions H (equivalently a set of parameters) where each
element f 2 H achieves a low empirical loss on a training
set S. In the following, we define a generalization metric to
measure the probability that a function f 2 H is a “true”
solution for a supervised learning task.

Recall that fyi represents the function composed by the
first di hidden layers and an output branch for predicting
concept yi. The true risk RðfyiÞ is defined based on random
variables x and yi where ðx; yiÞ � D

Fig. 2. Illustration of a concept hierarchy with three concepts Y ¼
fy1; y2; y3g on 2D input space. Black arrows indicate the finer decompo-
sition within the previous concept in the hierarchy. Each color represents
one individual class defined by the concept.

Fig. 3. Schematic diagram of deep supervision framework.

TABLE 1
Notation Table

Notation Meaning

yi The ith concept
yi�k The intermediate concept of yi
di The supervision depth of yi
fyi A function that predicts yi given input x

Rðfyi Þ True risk of fyi
RSðfyi Þ Empirical risk of fyi given a training set S
Hyi A set of fyi with low empirical risk

F yi A set of fyi with low empirical and true risk
Pyi Generalization probability of yi
Hyi j yi�k

Subset ofHyi that achieves low empirical risk on yi�k

F yi j yi�k
Subset of F yi that achieves low empirical risk on yi�k

Pyi j yi�k
Generalization probability yi constrained by yi�k
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RðfyiÞ ¼ E ½liðfyiðxÞ; yiÞ 	: (2)

Given a training set S, the empirical risk RSðfyiÞ of fyi is

RSðfyiÞ ¼
1

jSj
X

ðx;yiÞ2S
liðfyiðxÞ; yiÞ: (3)

Given limited training data S, a deep neural network
is optimized to find a solution fyi with low empirical
loss. We consider empirical loss to be “low” when
RSðfyiÞ < d. d is the risk threshold which indicates
“good” performance for a task. Next, we define the func-
tion set Hyi in which each function achieves low empiri-
cal risk

Hyi ¼ ffyi jRSðfyiÞ < dg: (4)

Similarly, we also define the function set F yi where each
function achieves risks less than d for both RðfyiÞ and
RSðfyiÞ

F yi ¼ ffyi jRSðfyiÞ < d ^ RðfyiÞ < dg: (5)

By definition, we know F yi 
 Hyi . Given a training set and
network structure, the generalization capability of the out-
come of network training depends upon the likelihood that
fyi 2 Hyi is also a member of F yi .

We consider fyi to be a random variable as it is the out-
come of a stochastic optimization process such as stochastic
gradient descent. We assume that the optimization algo-
rithm is unbiased within Hyi , such that apriori probability
of converging to any fyi 2 Hyi is uniformly distributed. We
formalize a generalization metric for a CNN for predicting
yi by defining a probability measure Pyi based on the func-
tion sets F yi andHyi

Pyi ¼ PðRðfyiÞ < d jRSðfyiÞ < dÞ

¼
mðFyi Þ
mðHyi Þ : Hyi 6¼ ;
0 : Hyi ¼ ;;

(
(6)

where mðAÞ is the Lebesgue measure [43] of set A indicating
the “volume” or “size” of set A.1 Moreover, mðF yiÞ � mðHyiÞ
due to F yi 
 Hyi . The equality mðF yiÞ ¼ mðHyiÞ is achieved
when F yi ¼ Hyi . It follows that the higher the Pyi , the better
the generalization.

When an intermediate concept yi�k of yi is available, we
insert one output branch gdi�k

at depth di�k of CNN to pre-
dict yi�k. Then, our deep supervision algorithm in Section
3.2 aims to minimize empirical risk on both yi�k and yi.
Recall that fyi ¼ gdi � fdi � � � � � f1. As a consequence, fyi
does not contain any output branch gdi�k

for the intermedi-
ate concept yi�k. However, we note that fyi shares some hid-
den layers with fyi�k

. Similar to Pyi , we can define the
generalization probability Pyi j yi�k

of fyi given the supervi-
sion of its intermediate concept yi�k

Pyi j yi�k
¼ PðRðfyiÞ < d jRSðfyiÞ < d; RSðfyi�k

Þ < d0Þ

¼
mðFyi j yi�k

Þ
mðHyi j yi�k

Þ : Hyi j yi�k
6¼ ;

0 : Hyi j yi�k
¼ ;;

8<
: (7)

where the function setHyi j yi�k
is a subset ofHyi

Hyi j yi�k
¼ ffyi jRSðfyiÞ < d ^ RSðfyi�k

Þ < d0g; (8)

and the function set F yi j yi�k
is a subset of F yi

F yi j yi�k
¼ ffyi jRðfyiÞ < d ^RSðfyiÞ < d ^RSðfyi�k

Þ < d0g:
(9)

Note that we use a different threshold d0 for RSðfyi�k
Þ in

order to account for the difference between loss functions
li�k and li. We do not require the true risk of intermediate
concept Rðyi�kÞ to be lower than d0 because the objective is
to analyze the achievable generalization with respect to pre-
dicting yi.

3.3.2 Improved Generalization through

Deep Supervision

A machine learning model for predicting yi suffers from
overfitting when the solution fyi achieves low empirical risk
RSðfyiÞ over S but high true risk RðfyiÞ. In other words, the
higher the probability Pyi , the lower the chance that the
trained model fyi overfits S. One general strategy to reduce
the overfitting is to increase the diversity and size of
training set S. In this case, the denominator mðHyiÞ of
Equation (6) decreases because fewer functions achieve low
loss on more diverse data. In the following, we show that
supervising an intermediate concept yi�k of yi at some hid-
den layer is similarly capable of removing some incorrect
solutions in Hyi n F yi and thus improves the generalization
because Pyi j yi�k

� Pyi .
First, given an intermediate concept yi�k of yi where

yi�k ¼ T ðyiÞ, we specify the following assumptions for our
analysis.

(1) The neural network underlying our analysis is large
enough to satisfy the universal approximation theo-
rem [44] for the concepts of interest, that is, its hid-
den layers have sufficient learning capacity to
approximate arbitrary functions.

(2) For a concept hierarchy Y ¼ fy1; . . . ; ymg, if y0i is a
reasonable estimate of yi, then T ðy0iÞ should also be a
reasonable estimate of the corresponding intermedi-
ate concept yi�k. Formally, we assume

8yi; y0i 2 Qi : liðyi; y0iÞ � d ) li�kðT ðyiÞ; T ðy0iÞÞ � d0; (10)

where Qi is the value space of concept yi.
(3) Based on Assumption 1 and 2, it follows that if

fyi 2 F yi , there exists a di�k < di such that the first
di�k layers of fyi can be used to construct a fyi�k

2 F yi�k
.

In practice, one may identify many tasks and relevant
intermediate concepts satisfying Assumption 2 when using
common loss functions and d ¼ d0. We discuss this further
in Section 3.3.3. To obtain Assumption 3 above, we take the
following two steps. First, with k > 0, Assumption 1 allows

1. Each function fyi has a one-to-one mapping to a parameter W in
Rn where n is the dimension of the parameter. We know that any subset
of Rn is Lebesgue measurable.
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us to find a gdi�k
¼ T � gdi � hdi � � � � hdi�kþ1

. As a conse-
quence, we can always construct a fyi�k

from fyi through T
using the first di�k layers: T � fyi ¼ T � gdi �hdi � � � � � h1 ¼
gdi�k

�hdi�k
� � � � � h1 ¼ fyi�k

. Second, Assumption 2 further
extends that for any fyi 2 F yi , its first di�k layers can be
used to obtain a fyi�k

2 F yi�k
.

Given an intermediate concept yi�k that satisfies the
above assumptions, the following two propositions discuss
how di�k (the supervision depth of yi�k) affects the generali-
zation ability of yi in terms of Pyi j yi�k

. First, we show that
supervising intermediate concepts in the wrong order has
no effect on improving generalization.

Proposition 1. If di�k � di, the generalization performance of yi
is not guaranteed to improve

8di�k � di; Pyi j yi�k
¼ Pyi : (11)

Proof. We first consider the case when yi and yi�k both
supervise the same hidden layer: di ¼ di�k. Given a sam-
ple set ðx; yi�k; yiÞ � D and a function fyi which correctly
predicts yi for x: yi ¼ fyiðxÞ, we can construct
fyi�k

¼ T � fyi to yield the correct prediction for yi�k.
Based on Assumption 1, a multi-layer perceptron (i.e.,
fully connected layers) is able to represent any mapping
function T . Therefore, to approximate fyi�k

¼ T � fyi , we
can append fully connected layers which implement T to
gdi : gdi�k

¼ T � gdi . Based on Assumption 2, for any func-
tion fyi in F yi , there exists a corresponding function
fyi�k

¼ T � fyi which satisfies RSðfyi�k
Þ � d0. This indicates

that Hyi j yi�k
¼ Hyi which in turn implies F yi j yi�k

¼ F yi .
When di�k > di, hidden layers from di to di�k can be
implemented to achieve an identity mapping and then
follow the same analysis for the case di ¼ di�k. As a conse-
quence, Proposition 1 holds. tu

Proposition 2. There exists a di�k such that di�k < di and the
generalization performance of yi is improved

9di�k < di; Pyi j yi�k
� Pyi : (12)

Proof. From Equations (4) and (8), we observe that Hyi j yi�k� Hyi and mðHyi j yi�k
Þ < mðHyi�k

Þ. Thus, we obtain

mðHyi j yi�k
Þ � minðmðHyiÞ;mðHyi�k

ÞÞ: (13)

Given a training set S, Equation (13) essentially means
that the number of functions that simultaneously fit both
yi and yi�k is not more than the number of functions that
fit each of them individually. Intuitively, as the toy exam-
ple earlier, the hidden layers of some network solutions
for yi yield incorrect predictions of the intermediate
concept yi�k. This implies that mðHyi j yi�k

Þ  minðm
ðHyiÞ;mðHyi�k

ÞÞ in practice. Subsequently, Assumption 3
suggest that there exists one or multiple di�k’s such that
the first di�k layers of each solution fyi 2 F yi are con-
tained in fyi�k

2 F yi�k
. In other words, we can find a

supervision depth di�k for yi�k which satisfies

9 di�k < di; mðF yiÞ ¼ mðF yijyi�k
Þ: (14)

As a result, Proposition 2 is proved by Equations (13)
and (14). tu

To this end, we can improve the generalization of yi via
yi�k by inserting the supervision of yi�k before yi. As a con-
sequence, given a concept hierarchy Y0 ¼ ðy1; . . . ; ymÞ, the
supervision depths of concepts fd1; . . . ; dmg should be
monotonically increasing: 1 � d1 < � � � < dm. We then
extend Equation (13) to incorporate all available intermedi-
ate concepts of ym

mðHym j ym�1;...;y1Þ � min
yi

mðHyiÞ s:t: 8i < j; di < dj: (15)

As we report in Section 5, the empirical evidence shows that
more intermediate concepts often greatly improves the gen-
eralization performance of the main task, which implies a
large gap between two sides of Equation (15). Similar to
Equation (14), we still have

9 d1 < � � � < dm; mðF ymÞ ¼ mðF ymjym�1;...;y1Þ: (16)

As a consequence, the generalization performance of ym
given its necessary conditions y1; . . . ; ym�1 can be improved
if we supervise each of them at appropriate depths
d1; . . . ; dm�1 where d1 < � � � < dm�1 < dm

9d1 < � � � < dm; Pym j ym�1;...;y1 � Pym: (17)

Furthermore, Pym j ym�1;...;y1 is monotonically decreasing by
removing intermediate concepts: Pym j ym�1;...;y1 � Pym j ym�2;...;y1

� � � � � Pym j y1 � Pym . The more concepts applied, the better
chance that the generalization is improved. In conclusion,
deep supervision with intermediate concepts regularizes
the network training by decreasing the number of incorrect
solutions that generalize poorly to the test set.

3.3.3 Discussion

Generalization of Intermediate Concept. We generalize the
notion of intermediate concept, using conditional probabili-
ties, with yi�k being the �-error necessary condition of yi if
yi�k and yi for any sample ðx; ðyi�k; yiÞÞ � D satisfy

8c; max Pðyi�k j yi ¼ cÞ � 1� �; (18)

where 0 � � � 1. The strict necessary condition defined in
Section 3.1 holdswhen � ¼ 0. When � > 0, themonotonically
increasing supervision order indicated by Equation (17) is no
longer ensured. However, the architecture design suggested
by our generalization analysis in Section 3.3.2 achieves the
best performance in our empirical studies in Section 5. We
believe that the generalization analysis in Section 3.3.2 is a
good approximation for case with small � in real applica-
tions. We leave the analytic quantification of how � affects
deep supervision to future work.

Assumption 2. If Assumption 2 does not hold, both the
numerator and denominator in Equation (7) decrease by dif-
ferent amounts. As a consequence, we cannot obtain Proposi-
tion 1 for all cases. However, many commonly used loss
functions satisfy this assumption when d ¼ d0. One simple
example is when li and li�k are indicator functions (i.e.,
liðy; y0Þ ¼ 1ðy ¼ y0Þ) for all i.2 As such, liðy; y0Þ ¼ li�kðT ðyÞ;
T ðy0ÞÞwhen � ¼ 0 and thusAssumption 2 is satisfied.Another

2. Note that the indicator function can be applied to discrete and
continuous values of y and y0.
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example can be that li and li�k are both L2 loss (i.e., liðy; y0Þ ¼
ky ¼ y0k2) and T is a projection functionwhere T ðyÞ ¼ Py and
P is a projection (i.e., P 2 ¼ P ). In this case, liðy; y0Þ ¼
ky� y0k2 � kP ðy� y0Þk2 ¼ li�kðT ðyÞ; T ðy0ÞÞ.

Uniform Probability of fyi 2 Hyi . In practice, this assump-
tion may seem to contradict some empirical studies like [45]
where common CNNs generalize well after overfitting to
large-scale training data (e.g., Imagenet [46]). This phenom-
enon actually demonstrates another dimension of improv-
ing generalization: training models on a large training set S
so that Hyi is shrinking and converging to F yi . Our work
results shows that with deep supervision is an alternative
route to achieve generalization given limited training data
or data from a different domain, compared with standard
supervision methods.

DSN as a Special Case. Since a task is also a necessary con-
dition of itself, our deep supervision framework actually
contains DSN[19] as a special case where each intermediate
concept yi is the main task itself. To illustrate the distinction
enabled by our framework, we mimic DSN by setting the
first intermediate concept y1 ¼ ym. Thus, the first d1 hidden
layers are forced to directly predict ym. Each fd1 2 F y1 can
be trivially used to construct fdm 2 F ym by forcing an iden-
tity function for layers d1 to dm. This suggests that F ym is
mainly constrained by F y1 . Therefore, even though larger
spatial supports from deeper layers between d1 and dm
reduce empirical risk in DSN, the learning capacity is
restricted by supervision for ym at the first d1 layers.

4 IMPLEMENTATION AND DATA

We apply our method to both object classification and key
point localization. For object classification, we use the
semantic hierarchy of labels to define intermediate concepts.
For example, container is an intermediate concept (a gener-
alization) of cup. For key point localization, we specify a 3D
skeleton for each object class where nodes or keypoints rep-
resent semantic parts, and their connections define 3D
object geometry. Given a single real RGB image of an object,
our goal is to predict the keypoint locations in image coordi-
nates as well as normalized 3D coordinates while inferring
their visibility states. X and Y coordinates of 2D keypoint
locations are normalized to ½0; 1	 along the image width and

height, respectively. 3D keypoint coordinates are centered
at origin and scaled to set the longest dimension along
X;Y; Z to unit length. Note that 2D/3D keypoint locations
and their visibility all depend on the specific object pose
with respect to the camera viewpoint.

To set up the concept hierarchy for 2D/3D keypoint
localization, we have chosen in order, object orientation y1,
which is needed to predict keypoint visibility y2, which
roughly depicts the 3D structure prediction y3, which finally
leads to 2D keypoint locations y4 including ones that are not
visible in the current viewpoint. We impose the supervision
of the concept hierarchy Y ¼ fy1; y2; y3; y4g into a CNN as
shown in Fig. 4 and minimize Equation (1) to compute the
network parameters.

We emphasize that the above Y ¼ fy1; y2; y3; y4g is not a
0-error concept hierarchy because object pose (y1), and 3D
keypoint location (y3) are not strict necessary conditions for
visibility (y2), and 2D keypoint location (y4), respectively.
However, we posit that the corresponding residuals (�’s) of
Y are small. First, knowing object pose constrains keypoint
visibilities to such an extent, that prior work has chosen to
use ensembles of 2D templates for visual object parsing [42],
[47]. Second, there is a long and fruitful tradition in com-
puter vision, starting from Marr’s seminal ideas [3] to lever-
age 3D object representations as a tool for 2D recognition. In
sum, our present choice of Y is an approximate realization
of a 0-error concept hierarchy which nonetheless draws
inspiration from our analysis, and works well in practice.

4.1 Network Architecture

In this section, we detail the network structure for keypoint
localization. Our network resembles the VGG network [48]
and consists of deeply stacked 3� 3 convolutional layers.
Unlike VGG, we remove local spatial pooling between con-
volutional layers. This is motivated by the intuition that spa-
tial pooling leads to the loss of spatial information. Further,
we couple each convolutional layer with batch normaliza-
tion [49] and ReLU, which defines hdiðx;WdiÞ. The output
layer gdið�; VdiÞ at depth di for task yi is constructed with one
global average pooling (GAP) layer followed by one fully
connected (FC) layer with 512 neurons, which is different
from stacked FC layers in VGG. The GAP layer averages

Fig. 4. Visualization of our rendering pipeline (top-left), DISCO network (bottom-left), an example of rendered image and its annotations of 2D key-
points (top-right) as well as 3D skeleton (bottom-right).
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filter responses over all spatial locations within the feature
map. From Table 3 in Section 5.2.1, we empirically show
that these two changes are critical to significantly improve
the performance of VGG-like networks for 2D/3D land-
mark localization.

We follow the common practice of employing dropout
[50] layers between the convolutional layers, as an addi-
tional means of regularization. At layers 4,8,12, we perform
the downsampling using convolution layers with stride 2.
The bottom-left of Fig. 4 illustrates the details of our net-
work architecture. “(Conv-A)xB” means A stacked convolu-
tional layers with filters of size BxB. We deploy 25
convolutional layers in total.

We use L2 loss at all points of supervision. In practice, we
only consider the azimuth angle of the object viewpoint
with respect to a canonical pose. We further discretize the
azimuth angle into K bins and regress it to a one-hot encod-
ing (the entry corresponding to the predicted discretized
pose is set to 1 and all others to 0). Keypoint visibility is also
represented by a binary vector with 1 indicating occluded
state of a keypoint. During training, each loss is backpropa-
gated to train the network jointly.

4.2 Synthetic Data Generation

Our approach needs a large amount of training data
because it is based on deep CNNs. It also requests finer
grained labels than many visual tasks such as object detec-
tion. Furthermore, we aim for the method to work for
heavily cluttered scenes. Therefore, we generate synthetic
images that simulate realistic occlusion configurations
involving multiple objects in close proximity. To our knowl-
edge, rendering cluttered scenes that comprise of multiple
CAD models is a novelty of our approach, although earlier
work [33], [42] used real image cut-outs for bounding box
level localization.

An overview of the rendering process is shown in the
upper-left of Fig. 4. We pick a small subset of CAD mod-
els from ShapeNet [51] for a given object category and
manually annotate 3D keypoints on each CAD model.
Next, we render each CAD model via Blender with ran-
domly sampled graphics parameters including camera
viewpoint, number/strength of light sources, and surface
gloss reflection. Finally, we follow [22] to overlay the ren-
dered images on real backgrounds to avoid over-fitting.
We crop the object from each rendered image and extract

the object viewpoint, 2D/3D keypoint locations and their
visibility states from Blender as the training labels. In
Fig. 4 (right), we show an example of rendering and its
2D/3D annotations.

To model multi-object occlusion, we randomly select two
different object instances and place them close to each other
without overlapping in 3D space. During rendering, we
compute the occlusion ratio of each instance by calculating
the fraction of visible 2D area versus the complete 2D pro-
jection of CAD model. Keypoint visibility is computed by
ray-tracing. We select instances with occlusion ratios rang-
ing from 0.4 to 0.9. Fig. 5 shows two training examples
where cars are occluded by other nearby cars. For trunca-
tion, we randomly select two image boundaries (left, right,
top, or bottom) of the object and shift them by ½0; 0:3	 of the
image size along that dimension.

5 EXPERIMENTS

We first present an empirical study of image classification
problem on CIFAR100 [8] where a strict concept hierarchy
is applied to boost the fine-grained object classification per-
formance. Subsequently, we extensively demonstrate com-
petitive or superior performance for 2D/3D keypoint
localization over several state-of-the-art methods, on multi-
ple datasets: KITTI-3D, PASCAL VOC, PASCAL3D+ [16]
and IKEA [17].

5.1 CIFAR100

The image classification problem has a natural concept
hierarchy where object categories can be progressively par-
titioned from coarse to fine granularity. In this section,
we exploit coarse-grained class labels (20-classes) from
CIFAR100 [8] to assist fine-grained recognition into 100 clas-
ses. Most existing methods directly learn a model for fine-
grained classification task while ignoring coarse-grained
labels. In contrast, we leverage coarse-grained labels as an
intermediate concept in our formulation. We use the same
network architecture shown in Section 4.1 but with only 20
layers. The number of filters are 128, 256 and 512 for layers
of 1-5, 6-10 and 10-20 respectively. Downsampling is per-
formed at layer 6 and 11 and the coarse-grained label super-
vises layer 16.

Table 2 compares the error of DISCO with state-of-
the-art and variants of DISCO. We use plain-single
and plain-all to denote the networks with supervisions
of single fine-grained label, and both labels at last
layer, respectively. DISCO-random uses a (fixed) random
coarse-grained class label for each training image. We
observe that plain-all achieves roughly the same perfor-
mance as plain-single, which replicates our earlier finding
(Section 5.2.1) that intermediate supervision signal
applied at the same layer as the main task helps relatively
little in generalization. However, DISCO is able to reduce

TABLE 2
Classification Error of Different Methods

on CIFAR100

Methods Error(%)

DSN [19] 34.57
FitNet, LSUV [52] 27.66
ResNet-1001 [53] 27.82
pre-act ResNet-1001 [54] 22.71

plain-single 23.31
plain-all 23.26
DISCO-random 27.53
DISCO 22.46

The first four are previous methods and “pre-act
ResNet-1001” is the current state-of-the-art. The
remaining four are results of DISCO and its variants.

Fig. 5. Examples of synthesized training images for simulating the multi-
car occlusion.
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the error of plain-single by roughly 0.6 percent using the
intermediate supervision signal. These results support
our derivation of Proposition 1 and Proposition 2 in Sec-
tion 3.3. Further, DISCO-random is significantly inferior
to DISCO as a random intermediate concept makes the
training more difficult. Finally, DISCO slightly outper-
forms the current state-of-the-art “pre-act ResNet-1001
[54]” on image classification but with only half of the net-
work parameters compared with [54].

5.2 2D and 3D Keypoint Localization

In this Section, we demonstrate the performance of the deep
supervision network (Fig. 4) for predicting the locations of
object keypoints on 2D image and 3D space.

Dataset. For data synthesis, we sample CAD models of
472 cars, 100 sofas, 100 chairs and 62 beds from ShapeNet
[51]. Each car model is annotated with 36 keypoints [10] and
each furniture model (chair, sofa or bed) with 14 key-
points [16].3 We synthesize 600 k car images including
occluded instances and 300 k images of fully visible furni-
ture (chair+sofa+bed). We pick rendered images of 5 CAD
models from each object category as validation set.

We introduce KITTI-3D with annotations of 3D keypoint
and occlusion type on 2040 car images from [18]. We label
car images with one of four occlusion types: no occlusion
(or fully visible cars), truncation, multi-car occlusion (target
car is occluded by other cars) and occlusion cause by other
objects. The number of images for each type is 788, 436, 696
and 120, respectively.

To obtain 3D groundtruth for these car images, we fit a
PCA model trained on 3D keypoint annotation on CAD
data, by minimizing the 2D projection error for known 2D
landmarks provided by Zia et al. [10] and object pose from
KITTI [18]. First, we compute the mean shapeM and 5 prin-
cipal components P1; . . . ; P5 from 3D skeletons of our anno-
tated CAD models. M and Pi (1 � i � 5) are 3� 36 matrices
where each column contains 3D coordinates of a keypoint.
Thus, the 3D object structure X is represented as X ¼ MþP5

i¼1 aiPi, where ai is the weight for Pi. To avoid distorted
shapes caused by large ai, we constrain ai to lie within
�2:7si � ai � 2:7si where si is the standard deviation along
the ith principal component direction. Next, given the
groundtruth pose T , we compute 3D structure coefficients
a ¼ faig that minimize the projection error with respect to
2D ground truth Y

a� ¼ arg
a

min
s;b

ksPrðT ðM þ
XN
i¼1

aiPiÞÞ þ b� Y k22
s:t: � 2:7si � ai � 2:7si;

(19)

where the camera intrinsic matrix is K ¼ ½sx; 0;bx; 0; sy;
by; 0; 0; 1	with the scaling s ¼ ½sx; sy	 and shifting b ¼ ½bx;by	.
PrðxÞ computes the 2D image coordinate from 2D homoge-
neous coordinate x. In practice, to obtain the ground truth
with even higher quality, we densely sample object poses
fTjg in the neighborhood of T and solve (19) by optimizing
faig;b; s given a fixed Tj and then search for the lowest error
among all sampled Tj. We only provide 3D keypoint labels

for fully visible cars because we do not have enough visible
2D keypoints for most of the occluded or truncated cars and
thus obtain rather crude 3D estimates for such cases.

Evaluation Metric. We use PCK and APK metrics [56] to
evaluate the performance of 2D keypoint localization. A 2D
keypoint prediction is correct when it lies within the radius
aL of the ground truth, where L is the maximum of image
height and width and 0 < a < 1. PCK is the percentage of
correct keypoint predictions given the object location and key-
point visibility. APK is the mean average precision of key-
point detection computed by associating each estimated
keypoint with a confidence score. In our experiments, we use
the regressed values of keypoint visibility as confidence
scores.We extend 2D PCK andAPKmetrics to 3D by defining
a correct 3D keypoint prediction whose euclidean distance to
the ground truth is less than a in normalized coordinates.

Training Details. We set loss weights of visibility, 3D and
2D keypoint locations f�ig to 1 and object pose to 0.1. We
use stochastic gradient descent with momentum 0.9 to train
the proposed CNN from scratch. Our learning rate starts at
0.01 and decreases by one-tenth when the validation error
reaches a plateau. We set the weight decay to 0.0001, resize
all input images to 64 � 64 and use batch size of 100. We ini-
tialize all weights using Glorot and Bengio [57]. For car
model training, we form each batch using a mixture of fully
visible, truncated and occluded cars, numbering 50, 20 and
30, respectively. For the furniture, each batch consists of 70
fully visible and 30 truncated objects randomly sampled
from the joint synthetic image set of chair, sofa and bed.

5.2.1 KITTI-3D

We compare our method with DDN [39] and WarpNet [40]
for 2D keypoint localization and Zia et al. [10] for 3D struc-
ture prediction. We use the original source codes for these
methods. However, WarpNet is a siamese archtecture which
warps a reference image to a test image benefiting from
class-aware training. In order to use it for landmark transfer
task, we need a reference image to be warped. Thus, we
retrieve 30 labeled synthetic car images with the same pose
as test image for landmark transfer using the CNN architec-
ture proposed in [40] (WN-gt-yaw), and then compute the
median of predicted landmark locations as the final result.
The network is trained to warp pairs of synthetic car images
in similar poses. Additionally, we perform an ablative analy-
sis of DISCO. First, we replace all intermediate supervisions
with the final labels, as DSN [19] does, for 2D (DSN-2D) and
3D (DSN-3D) structure prediction. Next, we incrementally
remove the deep supervision used in DISCO one by one.
DISCO-vis-3D-2D, DISCO-3D-2D, plain-3D, and plain-2D
are networks without pose, pose+visibility, pose+visibility
+2D and pose+visibility+3D, respectively. Further, we chan-
ge the locations of the intermediate supervision signals.
plain-all shifts supervision signals to the final convolutional
layer. DISCO-(3D-vis) switches 3D and visibility in DISCO,
and DISCO-reverse reverses the entire order of supervisions
in DISCO. Finally, DISCO-VGG replaces stride-based down-
sampling and GAP in DISCO with non-overlapping spatial
pooling (2� 2) and a fully connected layer with 512 neurons,
respectively. All methods are trained on the same set of syn-
thetic training images and tested on real cropped cars on
ground truth locations in KITTI-3D.

3. We use 10 keypoints which are consistent with [27] to evaluate
chair and bed on IKEA.
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In Table 3, we report PCK accuracies for various meth-
ods4 and the mean error of estimated yaw angles “3D-yaw”
over all fully visible cars. This object-centric yaw angle is
computed by projecting all 3D keypoints onto the ground
plane and averaging the directions of lines connecting corre-
spondences between left and right sides of a car. In turn, the
3D-yaw error is the average of absolute error between the
estimated yaw and the ground truth.

We observe that DISCO outperforms competitors in both
2D and 3D keypoint localization across all occlusion types.
Moreover, we observe a monotonic increase in 2D and 3D
accuracy with increasing supervision: plain-2D or plain-3D
< DISCO-3D-2D < DISCO-vis-3D-2D < DISCO. Further,
plain-all is superior to plain-2d and plain-3d, while DISCO
exceeds plain-all by 4.4 percent on 2D-All and 2.4 percent
on 3D-Full. These experiments confirm that joint modeling
of 3D shape concepts is better than independent modeling.
Moreover, alternative supervision orders (DISCO-reverse,
DISCO-(3D-vis)) are found to be inferior to the proposed
order which captures underlying structure between shape
concepts. Last, DISCO-VGG performs significantly worse
than DISCO by 16.0 percent on 2D-All and 5.6 percent on
3D-Full, which validates our removal of local spatial pool-
ing and adopt global average pooling. In conclusion, the
proposed deep supervision architecture coupled with inter-
mediate shape concepts improves the generalization ability
of CNN. As more concepts are introduced in the “correct”
order, we observe improvement in performance.

We also conduct an ablative study of training data with
different occlusion types. Table 4 demonstrates 2D keypoint
localization accuracies over different occlusion categories
on KITTI-3D given various combination of training data.
“Occ.” stands for test examples with multi-object occlusions
where the occluder is either another car or a different object
such as a pedestrian. As we can see, DISCO trained on fully
visible cars alone achieves much worse performance on

truncated and occluded test data than when trained on data
with simulated truncation and multi-car occlusion. We
observe that multi-car occlusion data is also helpful in
modeling truncation cases, and the network trained by
multi-car data obtains the second best result on truncated
cars. The best overall performance is obtained by including
all three types of examples (no occlusion, multi-car occlu-
sion, truncation), emphasizing the efficacy of our data gen-
eration strategy.

Finally, we evaluate DISCO on detection bounding boxes
computed from RCNN[55] with IoU> 0:7 to the ground-
truth of KITTI-3D. “DISCO-Det” in the last row of Table 3
shows PCK accuracies of DISCO using detection results.
The 2D/3D keypoint localization accuracies even exceeds
the performance of DISCO using groundtruth bounding
boxes by 3.3 percent on 2D-All and 0.2 percent on 3D-All.

5.2.2 PASCAL VOC

We evaluate DISCO on the PASCAL VOC 2012 dataset for 2D
keypoint localization [56]. Unlike KITTI-3D where car images
are captured on real roads andmostly in low resolution, PAS-
CAL VOC contains car images with larger appearance varia-
tions and heavy occlusions. In Table 5, we compare our
results with the state-of-the-art [38], [58] on various sub-

TABLE 4
Ablative Study of Different Training Data Sources

Training Data Test Data

Full Trunc. Multi-Car Full Trunc. Occ.

@ 91.8 53.6 68.3
@ 89.9 73.8 61.7

@ 91.3 74.7 82.7
@ @ 92.9 71.3 63.4
@ @ 92.5 73.2 84.1

@ @ 90.5 70.4 81.2
@ @ @ 93.1 78.5 83.2

PCK[a ¼ 0:1] accuracies (%) of DISCO for 2D keypoint localization on
KITTI-3D dataset.

TABLE 3
PCK[a ¼ 0:1] Accuracies (%) of Different Methods for 2D and 3D Keypoint Localization on KITTI-3D Dataset

Method 2D 3D 3D-yaw

Full Truncation Multi-Car Occ Other Occ All Full Full

DDN [39] 67.6 27.2 40.7 45.0 45.1 NA
WN-gt-yaw* [40] 88.0 76.0 81.0 82.7 82.0 NA
Zia et al. [10] 73.6 NA 73.5 7.3

DSN-2D 45.2 48.4 31.7 24.8 37.5 NA
DSN-3D NA 68.3 12.5
plain-2D 88.4 62.6 72.4 71.3 73.7 NA
plain-3D NA 90.6 6.5
plain-all 90.8 72.6 78.9 80.2 80.6 92.9 3.9
DISCO-3D-2D 90.1 71.3 79.4 82.0 80.7 94.3 3.1
DISCO-vis-3D-2D 92.3 75.7 81.0 83.4 83.4 95.2 2.3
DISCO-(3D-vis) 91.9 77.6 82.2 86.1 84.5 94.2 2.3
DISCO-reverse 30.4 29.7 22.8 19.6 25.6 54.8 13.0
DISCO-Vgg 83.5 59.4 70.1 63.1 69.0 89.7 6.8
DISCO 93.1 78.5 82.9 85.3 85.0 95.3 2.2

DISCO(Det) 95.9 78.9 87.7 90.5 88.3 95.5 2.1

Last column represents angular error in degrees. WN-gt-yaw [40] uses groundtruth pose of the test car. The bold numbers indicates the best result on ground-
truth object bounding boxes. The last row presents the accuracies of DISCO on detection results from RCNN [55].

4. We cannot report Zia et al. [10] on occluded data because only a
subset of images has valid result in those classes.
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classes of the test set: fully visible cars (denoted as “Full”),
occluded cars, high-resolution (average size 420 � 240) and
low-resolution images (average size 55 � 30). Please refer to
[38] for details of the test setup. Note that these methods [38],
[58] are trained on real images, whereas DISCO training
exclusively leverages synthetic training data.

We observe that DISCO outperforms [38] by 0.6 and
5.1 percent on PCK at a ¼ 0:1 and a ¼ 0:2, respectively. In
addition, DISCO is robust to low-resolution images, improv-
ing 6.9 percent accuracy on low-resolution set comparedwith
[38]. This is critical in real perception scenarios where distant
objects are small in images of street scenes. However, DISCO
is inferior on the occluded car class and high-resolution
images, attributable to our use of small images (64 � 64) for
training and the fact that our occlusion simulation does not
capture the complex occlusions created by non-car objects
such as walls and trees. Finally, we compute APK accuracy at
a ¼ 0:1 for DISCO on the same detection candidates used in
[38].5 We can see that DISCO outperforms [38] by 5.1 percent
on the entire car dataset (Full+Occluded). This suggests
DISCO is more robust to noisy detection results and more
accurate on keypoint visibility inference than [38]. We attri-
bute this to global structure modeling of DISCO during train-
ing where the full set of 2D keypoints resolves the partial
view ambiguity whereas traditional methods like [38] only
are supervisedwith visible 2D keypoints.

Note that some definitions of our car keypoints [10] are
slightly different from [56]. For example, we annotate the bot-
tom corners of the front windshield whereas [56] labels the
side mirrors. In our experiments, we ignore this annotation
inconsistency and directly assess the prediction results. We
reemphasize that unlike [38], [58], we do not use the PASCAL
VOC train set. Thus, even better performance is expected
when real imageswith consistent labels are used for training.

5.2.3 PASCAL 3D+

PASCAL3D+ [16] provides object viewpoint annotations
for PASCAL VOC objects by manually aligning 3D object
CAD models onto the visible 2D keypoints. Because only a
few CAD models are used for each category, the 3D key-
point locations are only approximate. Thus, we use the eval-
uation metric proposed by [16] which measures 2D overlap
(IoU) against projected model mask. With a 3D skeleton of
an object, we are able to create a coarse object mesh based
on the geometry and compute segmentation masks by

projecting coarse mesh surfaces onto the 2D image based
on the estimated 2D keypoint locations.

Table 6 reports object segmentation accuracies on two types
of ground truth. The column “Manual GT” usesmanual pixel-
level annotation provided by PASCAL VOC 2012, whereas
“CAD alignment GT” uses 2D projections of aligned CAD
models as ground truth. Note that “CAD alignment GT” cov-
ers the entire object extent in the image including regions
occluded by other objects. DISCO significantly outperforms a
state-of-the-art method [33] by 4.6 and 6.6 percent despite
using only synthetic data for training. Moreover, on “Manual
GT” benchmark, we compare DISCO with “Random CAD”
and “GT CAD” which stand for the projected segmentation of
randomly selected and ground truth CAD models respec-
tively, given ground truth object pose. We find that DISCO
yields even superior performance to “GTCAD”. This provides
evidence that joint modeling of 3D geometry manifold and
viewpoint is better than the pipeline of object retrieval plus
alignment. Finally, we note that a forward pass of DISCO only
takes less than 10ms during testing, which is far more efficient
compared with sophisticated CAD alignment approaches [10]
that usually needsmore than 1s for one image input.

TABLE 5
PCK[a ¼ 0:1] Accuracies (%) of Different Methods for 2D Keypoint Localization on the Car Category of PASCALVOC

PCK[a ¼ 0:1] Full Full[a ¼ 0:2] Occluded Big Image Small Image All[APK a ¼ 0:1]

Long[58] 55.7 NA

VpsKps[38] 81.3 88.3 62.8 90.0 67.4 40.3

DSN-2D 75.4 87.8 54.5 85.5 63.3 NA
plain-2D 76.7 90.6 50.4 80.6 69.4 NA
plain-all 75.9 90.4 53.0 82.4 65.1 41.7
DISCO-reverse 64.5 84.5 41.2 55.5 67.0 24.9
DISCO-3D-2D 81.5 92.0 61.0 87.6 73.1 NA
DISCO 81.8 93.4 59.0 87.7 74.3 45.4

Bold numbers indicate the best results.

TABLE 6
Object Segmentation Accuracies (%) of

Different Methods on PASCAL3D+

Method CAD alignment GT Manual GT

VDPM-16 [16] NA 51.9
Xiang et al. [59] 64.4 64.3
Random CAD [16] NA 61.8
GT CAD [16] NA 67.3
DSN-2D 66.4 63.3
plain-2D 67.4 64.3
plain-all 66.8 64.2
DISCO-reverse 54.2 56.0
DISCO 71.2 67.6

Best results are shown in bold.

TABLE 7
Average Recall and PCK[a ¼ 0:1] Accuracy(%) for 3D Structure

Prediction on the Sofa and Chair Classes on IKEA Dataset

Method Sofa Chair Bed

Recall PCK Recall PCK Recall PCK

3D-INN 88.0 31.0 87.8 41.4 88.6 42.3
DISCO 84.4 37.9 90.0 65.5 87.1 55.0

5. We run the source code [38] to obtain the same object candidates.
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5.2.4 IKEA

In this section, we evaluate DISCO on the IKEA dataset [17]
with 3D keypoint annotations provided by [27]. One ques-
tion remaining for the DISCO network is whether it is capa-
ble of learning 3D object geometry for multiple object

classes simultaneously. Therefore, we train a single DISCO
network from scratch which jointly models three furniture
classes: sofa, chair and bed. At test time, we compare DISCO
with the state-of-the-art 3D-INN [27] on IKEA. Since 3D-
INN evaluates the error of 3D structure prediction in the

Fig. 6. 3D PCK (RMSE[27]) curves of DISCO and 3D-INN on sofa (Fig. 6a), chair (Fig. 6b) and bed (Fig. 6c) classes of IKEA dataset. In each figure, X
axis stands for a of PCK and Yaxis represents the accuracy.

Fig. 7. Visualization of 2D/3D prediction, visibility inference and instance segmentation on KITTI-3D (left column) and PASCALVOC (right column). Last
row shows failure cases. Circles and lines represent keypoints and their connections. Red and green indicate the left and right sides of a car, orange lines
connect two sides. Dashed lines connect keypoints if one of them is inferred to be occluded. Light bluemasks present segmentation results.
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object canonical pose, we align the PCA bases of both the
estimated 3D keypoints and their groundtruth. Table 7
reports the PCK[a ¼ 0:1] and average recall [27] (mean PCK
over densely sampled awithin ½0; 1	) of 3D-INN and DISCO
on all furniture classes. The corresponding PCK curves are
visualized in Fig. 6. We retrieve PCK accuracies of 3D-INN
on the IKEA dataset from its publicly released results.

DISCO significantly outperforms 3D-INN on PCK by
6.6, 24.1, 12.7 percent on sofa, chair and bed respectively,
which means that DISCO obtains more correct predictions
of keypoint locations than 3D-INN. This substantiates that
direct exploitation of the rich visual details from images
adopted by DISCO is critical to infer more accurate and
fine-grained 3D structure than lifting sparse 2D keypoints

Fig. 8. Qualitative comparison between 3D-INN and DISCO for 3D stricture prediction on IKEA dataset.
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to 3D shapes like 3D-INN. However, DISCO is inferior to
3D-INN in terms of average recall on the sofa and bed class.
As shown in Fig. 6a, the incorrect predictions by DISCO
deviate more from the groundtruth than 3D-INN. This is
mainly because 3D predicted shapes from 3D-INN are con-
strained by shape bases so even incorrect estimates have
realistic object shapes when recognition fails. Moreover, our
3D keypoint labeling for the sofa CAD models is slightly
different from [27]. We annotate the corners of reachable
seating areas of a sofa while IKEA labels the corners of the
outer volume parallel to the seating area We conclude that
DISCO is able to learn 3D patterns of object classes other
than the car category and shows potential as a general-pur-
pose approach to jointly model 3D geometric structure of
multiple objects in a single model.

5.2.5 Qualitative Results

In Fig. 7, we visualize example predictions from DISCO on
KITTI-3D (left column) and PASCAL VOC (right column).
From left to right, each column shows the original object
image, the predicted 2Dobject skeletonwith instance segmen-
tation and the predicted 3D object skeleton with visibility.
From top to bottom, we show the results under no occlusion
(row 1-2), truncation (row 3-4), multi-car occlusion (row 5-6),
other occluders (row 7-8) and failure cases (row 9). We
observe that DISCO is able to localize 2D and 3D keypoints on
real images with complex occlusion scenarios and diverse car
models such as sedan, SUV and pickup.Moreover, the visibil-
ity inference is mostly correct. These capabilities highlight the
potential of DISCO as a building block for holistic scene
understanding in cluttered scenes. In failure cases, the left car
is mostly occluded by another object and the right one is
severely truncated and distorted in projection. We may
improve the performance of DISCO on these challenging
cases by exploiting more sophisticated data simulated with
complex occlusions [60] and finetuningDISCO on real data.

In addition, we qualitatively compare 3D-INN and
DISCO on three categories in IKEA dataset in Fig. 8. For the
chair, 3D-INN fails to delineate the inclined seatbacks in the
example images while DISCO being able to capture this
structural nuance. For the sofa, DISCO correctly infers the
location of sofa armrest whereas 3D-INN merges armrests
to the seating area or predicts an incorrect size of the seat-
back. Finally, DISCO yields better estimates of the scale of
bed legs than 3D-INN. We attribute this relative success of
DISCO to direct mapping from image evidence to 3D struc-
ture, as opposed to lifting 2D keypoint predictions to 3D.

6 CONCLUSION

Visual perception often involves sequential inference over a
series of intermediate goals of growing complexity towards
the final objective. In this paper, we have employed a proba-
bilistic framework to formalize the notion of intermediate
concepts which points to better generalization through deep
supervision, compared to the standard end-to-end training.
This inspires a CNN architecture where hidden layers are
supervised with an intuitive sequence of intermediate con-
cepts, in order to incrementally regularize the learning to fol-
low the prescribed inference sequence. We practically
leveraged this superior generalization capability to address

the scarcity of 3D annotation: learning shape patterns from
synthetic training images with complex multiple object con-
figurations. Our experiments demonstrate that our approach
outperforms current state-of-the-art methods on 2D and 3D
landmark prediction on public datasets, even with occlusion
and truncation. We applied deep supervision to fine-grained
image classification and showed significant improvement
over single-task aswell asmulti-task networks onCIFAR100.
Finally, we have presented preliminary results on jointly
learning 3D geometry of multiple object classes within a sin-
gle CNN. Our future work will extend this direction by
learning shared representations for diverse object classes.
We also see wide applicability of deep supervision, even
beyond computer vision, in domains such as robotic plan-
ning, scene physics inference and generally wherever deep
neural networks are being applied. Another future direction
is to extract label relationship graphs from the CNN super-
vised with intermediate concepts, as opposed to explicitly
constructedHierarchy and Exclusion graphs [23].
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" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.
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