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Abstract—Accurate medical image segmentation is essential for diagnosis, surgical planning and many other applications.

Convolutional Neural Networks (CNNs) have become the state-of-the-art automatic segmentation methods. However, fully automatic

results may still need to be refined to become accurate and robust enough for clinical use. We propose a deep learning-based

interactive segmentationmethod to improve the results obtained by an automatic CNN and to reduce user interactions during refinement

for higher accuracy.We use one CNN to obtain an initial automatic segmentation, on which user interactions are added to indicate

mis-segmentations. Another CNN takes as input the user interactions with the initial segmentation and gives a refined result. We propose

to combine user interactions with CNNs through geodesic distance transforms, and propose a resolution-preserving network that gives a

better dense prediction. In addition, we integrate user interactions as hard constraints into a back-propagatable Conditional Random

Field. We validated the proposed framework in the context of 2D placenta segmentation from fetal MRI and 3D brain tumor segmentation

from FLAIR images. Experimental results show ourmethod achieves a large improvement from automatic CNNs, and obtains

comparable and even higher accuracy with fewer user interventions and less time compared with traditional interactivemethods.

Index Terms—Interactive image segmentation, convolutional neural network, geodesic distance, conditional random fields

Ç

1 INTRODUCTION

SEGMENTATION of anatomical structures is an essential
task for a range of medical image processing applica-

tions such as image-based diagnosis, anatomical structure
modeling, surgical planning and guidance. During the
past decades, researchers have developed many automatic
segmentation approaches [1]. However, fully automatic
segmentation methods rarely achieve sufficiently accurate
and robust results to be clinically useful [2]. This is typically
due to poor image quality (with noise, partial volume effect,
artifacts and low contrast), large variations among patients,
inhomogeneous appearances brought by pathology, and

variability of protocols among clinicians leading to different
definitions of a given structure boundary. To address the
limitations of automatic segmentation approaches, interac-
tive segmentationmethods are desirable as they allowhigher
accuracy and robustness in many applications [3], such as
planning of radiotherapy treatment of brain tumors [4].
As providing manual annotations for segmentation is time-
consuming and labor-intensive, an efficient interactive
segmentation tool is of great importance for practical use.

A good interactive segmentation method should obtain
accurate results efficiently with as few user interactions
as possible, leading to interaction efficiency. For such a
method, there are mainly two factors that have a critical
impact on its performance and usefulness. The first is the
type of user interactions used as input to the method, and
the second is the algorithm’s underpinning model. Despite
the large number of existing interactive segmentation meth-
ods [3], most of them are confronted by requiring a large
amount of user interactions and long user time, or limited
learning ability with their underpinning models.

For example, the widely used ITK-SNAP [5] takes user-
provided seed pixels or blobs as a starting point and
employs an active contour model for segmentation. It
requires most of the user interactions to be given at the
beginning and the underpinning model can hardly be
refined with additional user interactions once an initial seg-
mentation is obtained. SlicSeg [6] accepts user-provided
scribbles in a single start slice to train an Online Random
Forest for 3D segmentation, but lacks in flexibility to allow
further user-editing. Random Walks [7] and Graph Cuts [8]
learn from scribbles and allow the user to provide addi-
tional scribbles for refinement. They use Random Walker
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and Gaussian Mixture Model (GMM) as the underpinning
model. However, they need a large number of scribbles to
get satisfactory segmentation. GrabCut [9] works with a
user-provided bounding box to start the segmentation and
requires fewer interactions compared with Graph Cuts [8],
but the performance is still limited by the representativity of
the underpinning GMM. Therefore, a more efficient way for
user interactions and a better underpinningmodel are highly
demanded for interactivemedical image segmentation.

Recently, deep learning with convolutional neural net-
works (CNNs) has achieved the state-of-the-art perfor-
mance in many image analysis applications [10]. With the
high-quality automatic segmentation results achieved by
Fully Convolutional Network (FCN) [11], U-Net [12],
V-Net [13], HighRes3DNet [14] and DeepMedic [15], etc.,
CNNs have been shown to be powerful learning models for
segmentation tasks. However, they have not yet been
adapted to interactive medical image segmentation.

In this paper, we propose a novel interactive method for
2D and 3D medical image segmentation that leverages deep
learning. We propose a two-stage pipeline, where a first
CNN automatically obtains an initial segmentation and a
second CNN refines the initial segmentation by taking
advantages of a small number of user interactions that we
encode as geodesic distance maps. We refer to the proposed
interactive segmentation method as Deep Interactive Geo-
desic Framework (DeepIGeoS).

Compared with existing interactive segmentation meth-
ods, DeepIGeoS has several appealing properties. First, it
uses a more powerful underpinning learning model, i.e.,
CNN with automatic feature learning to take advantages of
knowledge from a large training set. Second, it requires far
fewer user interactions, as the method starts with a high-
quality automatic segmentation and only needs user-
provided clicks or short scribbles in the refinement stage.
Third, it is efficient and can respond to user interactions in
real time, which leads to very short user time.

The contributions of this work are four-fold: 1) We pro-
pose a deep CNN-based interactive framework for 2D and
3D medical image segmentation; 2) to make CNNs suitable
for interactive segmentation with high efficiency and accu-
racy, we propose two new networks for 2D and 3D images
respectively; 3) we propose to integrate user interactions
with CNNs by converting them into geodesic distance
maps as part of the input for CNNs, and use them as con-
straints for a trainable Conditional Random Field (CRF); 4)
we demonstrate that CNNs lead to state-of-the-art perfor-
mance for interactive medical image segmentation, with far
less user efforts and user time than existing methods.

2 RELATED WORKS

2.1 Image Segmentation Based on CNNs

Typical CNNs [16], [17], [18] were originally designed for
image classification tasks. Some early works adapted such
networks for pixel labeling with patch or region-based
methods [19], [20]. Such methods achieved higher accuracy
than traditional methods that relied on hand-crafted fea-
tures. However, they suffered from inefficiency for testing.
FCNs [11] take an entire image as input and give a dense
segmentation. In order to overcome the problem of loss of

spatial resolution due to multi-stage max-pooling and
downsampling, it uses a stack of deconvolution (a.k.a.
upsampling) layers and activation functions to upsample
the feature maps. Inspired by the convolution and deconvo-
lution framework of FCNs, a U-shape network (U-Net) [12]
and its 3D version [21] were proposed for biomedical image
segmentation. A similar network (V-Net) [13] was proposed
to segment the prostate from 3DMRI volumes.

To overcome the drawbacks of successive max-pooling
and downsampling that lead to a loss of feature map resolu-
tion, dilated convolution [22], [23] was proposed to preserve
the resolution of feature maps and enlarge the receptive
field to incorporate larger contextual information. In [24], a
stack of dilated convolutions was used for object tracking
and semantic segmentation. Dilated convolution has also
been used for instance-sensitive segmentation [25] and
action detection from video frames [26].

Multi-scale features extracted from CNNs have been
shown to be effective for improving segmentation accu-
racy [11], [22], [23]. One way of obtaining multi-scale fea-
tures is to pass several scaled versions of the input image
through the same network. The features from all the scales
can be fused for pixel classification [27]. In [15], [19], the fea-
tures of each pixel were extracted from two concentric
patches with different sizes. In [28], multi-scale images at
different stages were fed into a recurrent convolutional neu-
ral network. Another widely used way to obtain multi-scale
features is exploiting the feature maps from different levels
of a CNN. For example, in [29], features from intermediate
layers are concatenated for segmentation and localization.
In [11], [22], predictions from the final layer are combined
with those from previous layers.

2.2 Interactive Image Segmentation

Interactive image segmentation has been widely used in
various applications [30], [31], [32]. There are many kinds
of user interactions, such as click-based [33], contour-
based [34] and bounding box-based methods [9]. Drawing
scribbles is user-friendly and particularly popular, e.g., in
Graph Cuts [8], GeoS [35], [36], and Random Walks [7].
However, most of these methods rely on low-level features
and require a relatively large amount of user interactions to
deal with images with low contrast and ambiguous bound-
aries. Machine learning methods [6], [37], [38] have been
proposed to learn from user interactions. They can achieve
higher segmentation accuracy with fewer user interactions.
However, they are limited by hand-crafted features that
depend on the user’s experience.

Recently, using deep CNNs to improve interactive seg-
mentation has attracted increasing attention due to CNNs’
automatic feature learning and high performance. For
instance, 3D U-Net [21] learns from sparsely annotated
images and can be used for semi-automatic segmentation.
ScribbleSup [39] also trains CNNs for semantic segmenta-
tion supervised by scribbles. DeepCut [32] employs user-
provided bounding boxes as annotations to train CNNs for
the segmentation of fetal MRI. However, these methods are
not fully interactive for testing since they do not accept fur-
ther interactions for refinement. In [40], a deep interactive
object selection method was proposed where user-provided
clicks are transformed into euclidean distance maps and
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then concatenated with the input of FCNs. However, the
euclidean distance does not take advantage of image con-
text information. In contrast, the geodesic distance trans-
form [35], [36], [41] encodes spatial regularization and
contrast-sensitivity but it has not been used for CNNs.

2.3 CRFs for Spatial Regularization

Graphical models such as CRFs [22], [42], [43] have been
widely used to enhance segmentation accuracy by introduc-
ing spatial consistency. In [42], spatial regularization was
obtained by minimizing the Potts energy with a min-cut/
max-flow algorithm. In [43], the discrete max-flow problem
was mapped to its continuous optimization formulation.
Such methods encourage segmentation consistency between
adjacent pixel pairs with high similarity. In order to better
model long-range connections within the image, a fully con-
nected CRF was used in [44] to establish pairwise potentials
on all pairs of pixels in the image. To make the inference of
this CRF efficient, the pairwise edge potentials were defined
by a linear combination of Gaussian kernels in [45]. The
parameters of CRFs in these works were manually tuned or
inefficiently learned by grid search. In [46], a maximum mar-
gin learningmethodwas proposed to learn CRFs usingGraph
Cuts. Other methods including structured output Support
Vector Machines [47], approximate marginal inference [48]
and gradient-based optimization [49] were also proposed to
learn parameters in CRFs. They treat the learning of CRFs as
an independent step after the training of classifiers.

The CRF-RNN network [50] formulated dense CRFs as
RNNs so that the CNNs and CRFs can be jointly trained in
an end-to-end system for segmentation. However, the pair-
wise potentials in [50] are limited to weighted Gaussians
and not all the parameters are trainable due to the Permuto-
hedral lattice implementation [51]. In [52], a Gaussian Mean
Field (GMF) network was proposed and combined with
CNNs where all the parameters are trainable. More free-
form pairwise potentials for a pair of super-pixels or image
patches were proposed in [27], [53], but such CRFs have a
low resolution. In [54], a generic CNN-CRF model was pro-
posed to handle arbitrary potentials for labeling body parts
in depth images. However, it has not yet been validated
with other segmentation applications.

3 METHOD

The proposed DeepIGeoS for deep interactive segmentation
is depicted in Fig. 1. To minimize the number of user inter-
actions, we propose a two-stage framework: In Stage 1,
which is an automatic segmentation problem and requires
fast inference, one CNN (P-Net) automatically proposes an
initial segmentation. In Stage 2, the user checks the initial
segmentation and gives some interactions (clicks and short
scribbles) to indicate mis-segmented regions, and a second
CNN (R-Net) refines the segmentation by taking as input
the original image, the initial segmentation and the user
interactions. The user is allowed to give clicks/scribbles to
refine the result more than one time through R-Net. P-Net
and R-Net use a resolution-preserving structure that cap-
tures high-level features from a large receptive field without
loss of resolution. They share the same structure except
the difference in the input dimensions. Differently from

previous works [55] that re-train the learning model each
time when new user interactions are given, the proposed
R-Net is only trained with user interactions once since it
takes a considerable time to re-train a CNN model with a
large training set.

To make the segmentation result more spatially consis-
tent and to use scribbles as hard constraints, both P-Net and
R-Net are connected with a CRF, which is modeled as an
RNN (CRF-Net) so that it can be trained jointly with P-Net/
R-Net by back-propagation. We use freeform pairwise
potentials in the CRF-Net. The way user interactions are
used is presented in Section 3.1. The structures of 2D/3D
P-Net and R-Net are detailed in Section 3.2. In Section 3.3,
we describe the implementation of our CRF-Net. Training
details are described in Section 3.4.

3.1 User Interaction-Based Geodesic Distance Maps

In Stage 2 of our method, scribbles are provided by the user
to refine the initial automatic segmentation obtained by
P-Net in Stage 1. A scribble labels a set of pixels as the fore-
ground or background. Interactions with the same label are
converted into a distance map. In [40], the euclidean dis-
tance was used due to its simplicity. However, the euclid-
ean distance treats each direction equally and does not take
the image context into account. In contrast, the geodesic dis-
tance helps to better differentiate neighboring pixels with
different appearances, and improves label consistency in
homogeneous regions [36]. GeoF [41] uses the geodesic dis-
tance to encode variable dependencies in the feature space
and it is combined with Random Forests for semantic seg-
mentation. However, it is not designed to deal with user
interactions. We propose to encode user interactions via
geodesic distance transforms for CNN-based segmentation.

Suppose Sf and Sb represent the set of pixels belong-
ing to foreground scribbles and background scribbles,
respectively. Let i be a pixel in an image I, then the

Fig. 1. Overview of the proposed interactive segmentation framework
with two stages. Stage 1: P-Net automatically proposes an initial seg-
mentation. Stage 2: R-Net refines the segmentation with user interac-
tions indicating mis-segmentations. CRF-Net(f) is our proposed back-
propagatable CRF that uses freeform pairwise potentials. It is extended
to be CRF-Net(fu) that employs user interactions as hard constraints.
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unsigned geodesic distance from i to the scribble set
SðS 2 fSf ;SbgÞ is:

Gði;S; IÞ ¼ min
j2S

Dgeoði; j; IÞ (1)

Dgeoði; j; IÞ ¼ min
p2Pi;j

Z 1

0

krIðpðsÞÞ � uðsÞkds; (2)

where Pi;j is the set of all paths between pixel i and j. p is
one feasible path and it is parameterized by s 2 [0, 1].
uðsÞ ¼ p0ðsÞ=kp0ðsÞk is a unit vector that is tangent to the
direction of the path. If no scribbles are drawn for either the
foreground or background, the corresponding geodesic dis-
tance map is filled with random numbers.

Fig. 2 shows an example of geodesic distance transforms
of user interactions. The geodesic distance maps of user
interactions and the initial automatic segmentation have the
same size as I. They are concatenated with the raw channels
of I so that a concatenated image with CI+3 channels is
obtained, which is used as the input of the refinement net-
work R-Net.

3.2 Resolution-Preserving CNNs using
Dilated Convolution

CNNs in our method are designed to capture high-level
features from a large receptive field without the loss of

resolution of the feature maps. They are adapted from
VGG-16 [17] and made resolution-preserving. Fig. 3 shows
the structure of 2D and 3D P-Net. In 2D P-Net, the first 13
convolution layers are grouped into five blocks. The first
and second blocks have two convolution layers respec-
tively, and each of the remaining blocks has three convolu-
tion layers. The size of the convolution kernel is fixed as
3�3 in all these convolution layers. 2D R-Net uses the same
structure as 2D P-Net except that its number of input chan-
nels is CI+3 and it employs user interactions in the CRF-
Net. To obtain an exponential increase of the receptive field,
VGG-16 uses a max-pooling and downsampling layer after
each block. However, this implementation would decrease
the resolution of feature maps exponentially. Therefore, to
preserve resolution through the network, we remove the
max-pooling and downsampling layers and use dilated con-
volution in each block.

Let I be a 2D image of sizeW �H, and letKrq be a square
dilated convolution kernel with a size of (2r + 1)�(2r + 1)
and a dilation parameter q, where r 2 Z and q 2 Z. The
dilated convolution of IwithKrq is defined as:

Icðx; yÞ ¼
Xr
i¼�r

Xr
j¼�r

Iðx� qi; y� qjÞKrqðiþ r; jþ rÞ (3)

For 2D P-Net/R-Net, we set r to 1 for block 1 to block 5, so
the size of a convolution kernel becomes 3 � 3. The dilation
parameter in block i is set to:

qi ¼ d� 2i�1; i ¼ 1; 2; . . . ; 5; (4)

where d 2 Z is a system parameter controlling the base dila-
tion parameter of the network. We set d=1 in experiments.

The receptive field of a dilated convolution kernel Krq is
(2rq+1)�(2rq+1). Let Ri �Ri denote the receptive field of
block i. Ri can be computed as:

Ri ¼ 2
�Xi

j¼1

tj � ðrqjÞ
�
þ 1; i ¼ 1; 2; . . . ; 5; (5)

where tj is the number of convolution layers in block j, with
a value of 2, 2, 3, 3, 3 for the five blocks respectively. When
r = 1, the receptive field size of each block isR1 = 4d + 1,R2 =

Fig. 2. Input of R-Net in Stage 2. (a) The user provides clicks/scribbles
to correct foreground (red) and background (cyan) on the initial auto-
matic segmentation. (d) and (e) are geodesic distance maps based on
foreground and background interactions, respectively. The original
image (b) is combined with the initial automatic segmentation (c) and the
geodesic distance maps (d), (e) by channel-concatenation and used as
the input of R-Net.

Fig. 3. The CNN structure of 2D/3D P-Net with CRF-Net(f). The parameters of convolution layers are (kernel size, output channels, dilation) in dark
blue rectangles. Block 1 to block 6 are resolution-preserving. 2D/3D R-Net uses the same structure as 2D/3D P-Net except its input has three
additional channels shown in Fig. 2 and the CRF-Net(f) is replaced by the CRF-Net(fu) (Section 3.3).
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12d + 1,R3 = 36d + 1,R4 = 84d + 1,R5 = 180d + 1, respectively.
Thus, these blocks capture features at different scales.

The stride of each convolution layer is set to 1. The num-
ber of output channels of convolution in each block is set to
a fixed number C. In order to use multi-scale features, we
concatenate the features from different blocks to get a com-
posed feature of length 5C. This feature is fed into a classi-
fier that is implemented by two additional layers as shown
in block 6 in Fig. 3a. These two layers use convolution ker-
nels with size of 1 � 1 and dilation parameter of 0. Block 6
gives each pixel an initial score of belonging to the fore-
ground or background class. In order to get a more spatially
consistent segmentation and add hard constraints when
scribbles are given, we apply a CRF on the basis of the out-
put from block 6. The CRF is implemented by a recurrent
neural network (CRF-Net, detailed in Section 3.3), which
can be jointly trained with P-Net or R-Net. The CRF-Net
gives a regularized prediction for each pixel, which is fed
into a cross entropy loss function layer.

Similar network structures are used by 3D P-Net/R-Net
for 3D segmentation, as shown in Fig. 3b. To reduce the
memory consumption for 3D images, we use one downsam-
pling layer before the resolution-preserving layers and com-
press the output features of block 1 to 5 by a factor four via
1 � 1 � 1 convolutions before the concatenation layer.

3.3 Back-Propagatable CRF-Net with Freeform
Pairwise Potentials and User Constraints

In [50], a CRF based on RNN was proposed and it can be
trained by back-propagation. Rather than using Gaussian
functions, we extend this CRF so that the pairwise poten-
tials can be freeform functions and we refer to it as CRF-Net
(f). In addition, we integrate user interactions in our CRF-
Net(f) in the interactive refinement context, which is
referred to as CRF-Net(fu). The CRF-Net(f) is connected to
P-Net and the CRF-Net(fu) is connected to R-Net.

Let X be the label map assigned to an image I with a
label set L = {0, 1, . . . , L � 1}. The Gibbs distribution
P ðX ¼ xjIÞ ¼ 1

ZðIÞ expð�EðxjIÞÞ models the probability of X
given I in a CRF, where ZðIÞ is the normalization factor
known as the partition function, andEðxÞ is the Gibbs energy:

EðxÞ ¼
X
i

cuðxiÞ þ
X

ði;jÞ2N
cpðxi; xjÞ; (6)

where the unary potential cuðxiÞ measures the cost of
assigning label xi to pixel i, and the pairwise potential
cpðxi; xjÞ is the cost of assigning labels xi; xj to a pixel pair
i; j. N is the set of all pixel pairs. In our method, the unary
potential is obtained from P-Net or R-Net that gives classifi-
cation scores for each pixel. The pairwise potential is:

cpðxi; xjÞ ¼ mðxi; xjÞfð~fij; dijÞ; (7)

where dij is the euclidean distance between pixels i and j.
mðxi; xjÞ is the compatibility between the label of i and that
of j represented by a matrix of size L� L. ~fij ¼ fi � fj,
where fi and fj represent the feature vectors of i and j,
respectively. The feature vectors can either be learned by a
network or be derived from image features such as spatial
location with intensity values. For experiments, we used the

latter one, as in [8], [45], [50] for simplicity and efficiency.
f(�) is a function in terms of ~fij and dij. Instead of defining
f(�) as a single Gaussian function [8] or a combination of
several Gaussian functions [45], [50], we set it as a freeform
function represented by a fully connected neural network
(Pairwise-Net) which can be learned during training. The
structure of Pairwise-Net is shown in Fig. 4. The input is a
vector composed of ~fij and dij. There are two hidden layers
and one output layer.

Graph Cuts [8], [46] can be used to minimize Eq. (6)
when cp(�) is submodular [56] such as when the segmenta-
tion is binary with m(�) being the delta function and f(�)
being positive. However, this is not the case for our method
since we learn m(�) and f(�) where m(�) may not be the delta
function and f(�) could be negative. Continuous max-
flow [43] can also be used for the minimization, but its
parameters are manually designed. Alternatively, mean-
field approximation [45], [50], [52] is often used for efficient
inference of the CRF while allowing learning parameters by
back-propagation. Instead of computing P ðXjIÞ directly, an
approximate distribution QðXjIÞ ¼Qi QiðxijIÞ is computed
so that the KL-divergenceDðQjjP Þ is minimized. This yields
an iterative update of QiðxijIÞ [45], [50], [52].

QiðxijIÞ ¼ 1

Zi
e�EðxiÞ ¼ 1

Zi
e�cuðxiÞ�fpðxiÞ (8)

fpðxi ¼ ljIÞ ¼
X
l02L

mðl; l0Þ
X

ði;jÞ2N
fð~fij; dijÞQjðl0jIÞ; (9)

where L is the label set. i and j are a pixel pair. For the pro-
posed CRF-Net(fu), with the set of user-provided scribbles
Sfb ¼ Sf [ Sb, we force the probability of pixels in the scrib-
ble set to be 1 or 0. The following equation is used as the
update rule for each iteration:

QiðxijIÞ ¼
1 if i 2 Sfb and xi ¼ si
0 if i 2 Sfb and xi 6¼ si
1
Zi
e�EðxiÞ otherwise;

8<: (10)

where si denotes the user-provided label of a pixel i that is
in the scribble set Sfb. We follow the implementation in [50]
to update Q through a multi-stage mean-field method in an
RNN. Each mean-field layer splits Eq. (8) into four steps
including message passing, compatibility transform, adding
unary potentials and normalizing [50].

3.4 Implementation Details

The raster-scan algorithm [36] was used to compute geodesic
distance transforms by applying a forward pass scanning
and a backward pass scanningwith a 3� 3 kernel for 2D and

Fig. 4. The Pairwise-Net for pairwise potential function fð~fij; dijÞ. ~fij is
the difference of features between a pixel pair i and j. dij is the euclidean
distance between them.
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a 3� 3 � 3 kernel for 3D. It is fast due to accessing the image
memory in contiguous blocks. For the proposed CRF-Net
with freeform pairwise potentials, two observations moti-
vate us to use pixel connections based on local patches
instead of full connections within the entire image. First, the
permutohedral lattice implementation [45], [50] allows effi-
cient computation of fully connected CRFs only when pair-
wise potentials are Gaussian functions. However, a method
that relaxes the requirement of pairwise potentials as free-
form functions represented by a network (Fig. 4) cannot use
that implementation and therefore would be inefficient for
fully connected CRFs. Suppose an image with sizeM �N , a
fully connected CRF has MN(MN-1) pixel pairs. For a small
image withM =N = 100, the number of pixel pairs would be
almost 108, which requires not only a huge amount of mem-
ory but also long computational time. Second, though long-
distance dependency helps to improve segmentation inmost
RGB images [22], [45], [50], this would be very challenging
for medical images since the contrast between the target and
background is often low [57]. In such cases, long-distance
dependency may lead the label of a target pixel to be cor-
rupted by the large number of background pixels with simi-
lar appearances. Therefore, to maintain a good efficiency
and avoid long-distance corruptions, we define the pairwise
connections for one pixel within a local patch centered on
that. In our experiments, the patch size is set to 7 � 7 for 2D
images and 5� 5 � 3 for 3D images.

We initialize m(�) as m(xi, xj) = [xi 6¼ xj], where [�] is the
Iverson Bracket [50]. A fully connected neural network
(Pairwise-Net) with two hidden layers is used to learn the
freeform pairwise potential function (Fig. 4). The first and
second hidden layers have 32 and 16 neurons, respectively.
In practice, this network is implemented by an equivalent
fully convolutional neural network with 1 � 1 kernels for
2D or 1 � 1 � 1 kernels for 3D. We use a pre-training step to
initialize the Pairwise-Net with an approximation of a con-
trast sensitive function [8]:

f0ð~fij; dijÞ ¼ exp � jj~fijjj2
2s2 � F

 !
� v
dij

; (11)

where F is the dimension of the feature vectors fi and fj,
and v and s are two parameters controlling the magnitude
and shape of the initial pairwise function respectively. In
this initialization step, we set s to 0.08 and v to 0.5 based on
experience. Similar to [45], [50], [58], we set fi and fj as val-
ues in input channels (i.e, image intensity in our case) of P-
Net for simplicity of implementation and for obtaining con-
trast-sensitive pairwise potentials. To pre-train the Pair-
wise-Net we generate a training set T 0 ¼ fX0; Y 0g with 100k
samples, where X0 is the set of features simulating the
concatenated ~fij and dij, and Y 0 is the set of prediction val-
ues simulating f0ð~fij; dijÞ. For each sample s in T 0, the fea-
ture vector x0

s has a dimension of F + 1 where the first F
dimensions represent the value of ~fij and the last dimension
denotes dij. The cth channel of x0s is filled with a random
number k0, where k0 � Norm(0, 2) for c � F and k0 � U(0, 8)
for c ¼ F + 1. The ground truth of prediction value y0s for x

0
s

is obtained by Eq. (11). After generating X0 and Y 0, we use a
Stochastic Gradient Descent (SGD) algorithm with a qua-
dratic loss function to pre-train the Pairwise-Net.

For pre-processing, all the images are normalized by the
mean value and standard deviation of the training set. We
apply data augmentation by vertical or horizontal flipping,
random rotation with angle range [-p/8, p/8] and random
zoom with scaling factor range [0.8, 1.25]. We use the cross
entropy loss function and SGD algorithm for optimization
with minibatch size 1, momentum 0.99 and weight decay
5 � 10�4. The learning rate is halved every 5k iterations.
Since a proper initialization of P-Net and CRF-Net(f) is help-
ful for a faster convergence of the joint training, we train the
P-Net with CRF-Net(f) in three steps. First, the P-Net is pre-
trained with initial learning rate 10�3 and maximal number
of iterations 100k. Second, the Pairwise-Net in the CRF-Net
(f) is pre-trained as described above. Third, the P-Net and
CRF-Net(f) are jointly trained with initial learning rate 10�6

and maximal number of iterations 50k.
After the training of P-Net with CRF-Net(f), we automati-

cally simulate user interactions to train R-Net with CRF-Net
(fu). First, P-Net with CRF-Net(f) is used to obtain an auto-
matic segmentation for each training image. It is compared
with the ground truth to find mis-segmented regions. Then
the user interactions on each mis-segmented region are
simulated by randomly sampling n pixels in that region.
Suppose the size of one connected under-segmented or
over-segmented region is Nm, we set n for that region to 0
if Nm < 30 and dNm/100 e otherwise based on experi-
ence. Examples of simulated user interactions on training
images are shown in Fig. 5. With these simulated user
interactions on the initial segmentation of training data,
the training of R-Net with CRF-Net(fu) is implemented
through SGD, which is similar to the training of P-Net
with CRF-Net(f).

We implemented our 2D networks by Caffe1 [59] and 3D
networks by Tensorflow2 [60] using NiftyNet3 [14]. Our
training process was done via two 8-core E5-2623v3 Intel
Haswells and two K80 NVIDIA GPUs and 128 GB memory.
The testing process with user interactions was performed on
a MacBook Pro (OS X 10.9.5) with 16 GB RAM and an Intel
Core i7 CPU running at 2.5 GHz and anNVIDIAGeForce GT
750M GPU. A Matlab and PyQt GUI were developed for 2D
and 3D interactive segmentation tasks, respectively.(See sup-
plementary videos, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2018.2840695)

Fig. 5. Simulated user interactions on training images for placenta
(a) and brain tumor (b, c). Green: automatic segmentation given by
P-Net with CRF-Net(f). Yellow: ground truth. Red (cyan): simulated
clicks on under-segmentation (over-segmentation).

1. http://caffe.berkeleyvision.org
2. https://www.tensorflow.org
3. http://niftynet.io
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4 EXPERIMENTS

4.1 Comparison Methods and Evaluation Metrics

We first present the results obtained in Stage 1 of our
method, then present the results obtained in Stage 2. For
Stage 1, we compared our P-Net with FCN [11] and Deep-
Lab [58] for 2D segmentation and DeepMedic [15] and
HighRes3DNet [14] for 3D segmentation. Pre-trained mod-
els of FCN4 and DeepLab5 based on ImageNet were fine-
tuned for 2D placenta segmentation. Since the input of FCN
and DeepLab should have three channels, we duplicated
each of the gray-level images twice and concatenated them
into a three-channel image as the input. DeepMedic and
HighRes3DNet were originally designed for multi-modality
or multi-class 3D segmentation. We adapted them for single
modality binary segmentation. We also compared 2D/3D
P-Net with 2D/3D P-Net(b5) that only uses the features
from block 5 (Fig. 3) instead of the concatenated multi-scale
features. The proposed CRF-Net(f) with freeform pairwise
potentials was compared with: 1). Dense CRF as an inde-
pendent post-processing step for the output of P-Net. We
followed the implementation in [15], [45], [58]. The parame-
ters of this CRF were manually tuned based on a coarse-to-
fine search scheme as suggested by [58], and 2). CRF-Net(g)
which refers to the CRF that can be trained jointly with
CNNs by using Gaussian pairwise potentials [50].

For Stage 2, which is the interactive refinement part,
we compared three methods to deal with user interac-
tions. 1). Min-cut user-editing [9], where the initial proba-
bility map (output of P-Net in our case) is combined with
user interactions to solve an energy minimization prob-
lem with min-cut [8]; 2). Using the euclidean distance of
user interactions in R-Net, which is referred to as R-Net
(Euc), and 3). The proposed R-Net with the geodesic dis-
tance of user interactions.

We also compared DeepIGeoS with several other interac-
tive segmentation methods. For 2D slices, DeepIGeoS was
compared with: 1). Geodesic Framework [35] that computes
a probability based on the geodesic distance from user-pro-
vided scribbles for pixel classification; 2). Graph Cuts [8]
that models segmentation as a min-cut problem based on
user interactions; 3). Random Walks [7] that assigns a pixel
with a label based on the probability that a random walker
reaches a foreground or background seed first, and 4). Slic-
Seg [6] that uses Online Random Forests to learn from the
scribbles and predict the remaining pixels. For 3D images,
DeepIGeoS was compared with GeoS [36] and ITK-
SNAP [5]. Two users (an Obstetrician and a Radiologist)
respectively used these interactive methods to segment
every test image until the result was visually acceptable.

For quantitative evaluation, we measured the Dice score
and the average symmetric surface distance (ASSD).

Dice ¼ 2jRa \Rbj
jRaj þ jRbj ; (12)

where Ra and Rb represent the region segmented by the
algorithm and the ground truth, respectively.

ASSD ¼ 1

jSaj þ jSbj
X
i2Sa

dði;SbÞ þ
X
i2Sb

dði;SaÞ
 !

; (13)

where Sa and Sb represent the set of surface points of the
target segmented by the algorithm and the ground truth,
respectively. dði;SbÞ is the shortest euclidean distance
between i and Sb. We used the Student’s t-test to compute
the p-value in order to see whether the results of two algo-
rithms significantly differ from each other.

4.2 2D Placenta Segmentation from Fetal MRI

4.2.1 Clinical Background and Experiments Setting

Fetal MRI is an emerging diagnostic tool complementary to
ultrasound due to its large field of view and good soft tissue
contrast. Segmenting the placenta from fetal MRI is important
for fetal surgical planning such as in the case of twin-to-twin
transfusion syndrome [61]. Clinical fetal MRI data are often
acquired with a large slice thickness for good contrast-to-
noise ratio.Movement of the fetus can lead to inhomogeneous
appearances between slices. In addition, the location and ori-
entation of the placenta vary largely between individuals.
These factorsmake automatic and 3D segmentation of the pla-
centa a challenging task [62]. Interactive 2D slice-based seg-
mentation is expected to achieve more robust results [6], [55].
The 2D segmentation results can also be used for motion cor-
rection and high-resolution volume reconstruction [63].

We collected clinical T2-weighted MRI scans of 25 preg-
nant women in the second trimester with Single-shot Fast
Spin-echo (SSFSE). The data were acquired in axial view
with pixel size between 0.7422 mm � 0.7422 mm and
1.582 mm� 1.582 mm and slice thickness 3-4 mm. Each slice
was resampled with a uniform pixel size of 1 mm � 1 mm

Fig. 6. Visual comparison of different networks in Stage 1 of 2D placenta
segmentation. The last row shows interactively refined results by
DeepIGeoS.

4. https://github.com/shelhamer/fcn.berkeleyvision.org
5. https://bitbucket.org/deeplab/deeplab-public
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and cropped by a box of size 172 � 128 containing the pla-
centa. We used 17 volumes with 624 slices for training, three
volumes with 122 slices for validation and five volumes
with 179 slices for testing. The ground truth was manually
delineated by an experienced Radiologist.

4.2.2 Stage 1: Automatic Segmentation by 2D P-Net

with CRF-Net(f)

Fig. 6 shows the automatic segmentation results obtained by
different networks in Stage 1. It shows that FCN is able to
capture the main region of the placenta. However, the seg-
mentation results are blob-like with smooth boundaries.
DeepLab is better than FCN, but its blob-like results are sim-
ilar to those of FCN. This is mainly due to the downsam-
pling and upsampling procedure employed by these
methods. In contrast, 2D P-Net(b5) and 2D P-Net obtain
more detailed results. It can be observed that 2D P-Net
achieves better results than the other three networks. How-
ever, there are still some obvious mis-segmented regions by
2D P-Net. Table 1 presents a quantitative comparison of
these networks based on all the testing data. 2D P-Net
achieves a Dice score of 84.78 � 11.74 percent and an ASSD
of 2.09 � 1.53 pixels, and it performs better than the other
three networks.

Based on 2DP-Net,we compareddifferent CRFs in Stage 1.
A visual comparison between Dense CRF, CRF-Net(g) with
Gaussian pairwise potentials and CRF-Net(f) with freeform

pairwise potentials is shown in Fig. 7. In the first column, the
placenta is under-segmented by 2D P-Net. Dense CRF leads
to very small improvements on the result. CRF-Net(g) and
CRF-Net(f) improve the result by preserving more placenta
regions, and the later shows a better segmentation. In the sec-
ond column, 2D P-Net obtains an over-segmentation of adja-
cent fetal brain and maternal tissues. Dense CRF does not
improve the segmentation noticeably, but CRF-Net(g) and
CRF-Net(f) removemore over-segmentated areas. CRF-Net(f)
shows a better performance than the other two CRFs. The
quantitative evaluation of these three CRFs is presented in
Table 1, which shows Dense CRF leads to a result that is very
close to that of 2D P-Net (p-value > 0.05), while the last two
CRFs significantly improve the segmentation (p-value <

TABLE 1
Quantitative Comparison of Different Networks and

CRFs in Stage 1 of 2D Placenta Segmentation

Method Dice(%) ASSD(pixels)

FCN [11] 81.47 � 11.40 2.66 � 1.39
DeepLab [58] 83.38 � 9.53 2.20 � 0.84
2D P-Net(b5) 83.16 � 13.01 2.36 � 1.66
2D P-Net 84.78 � 11.74 2.09 � 1.53
2D P-Net + Dense CRF 84.90 � 12.05 2.05 � 1.59
2D P-Net + CRF-Net(g) 85.44 � 12.50 1.98 � 1.46
2D P-Net + CRF-Net(f) 85.86 � 11.67 1.85 � 1.30

CRF-Net(g) [50] constrains pairwise potential as Gaussian functions. CRF-
Net(f) is our proposed CRF that learns freeform pairwise potential functions.
Significant improvement from 2D P-Net (p-value < 0.05) is shown in bold
font.

Fig. 7. Visual comparison of different CRFs in Stage 1 of 2D placenta seg-
mentation. The last row shows interactively refined results byDeepIGeoS.

Fig. 8. Visual comparison of different refinement methods in Stage 2 of 2D placenta segmentation. The first column shows the initial automatic
segmentation obtained by 2D P-Net + CRF-Net(f), on which user interactions are added for refinement. The remaining columns show refined results.
2D R-Net(Euc) is a counterpart of the proposed 2D R-Net and it uses euclidean distance. White arrows show the difference in local details.
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0.05). In addition, CRF-Net(f) is better than CRF-Net(g). Fig. 7
and Table 1 indicate that large mis-segmentation exists in
some images, therefore we use 2D R-Net with CRF-Net(fu) to
refine the segmentation interactively in the following section.

4.2.3 Stage 2: Interactive Refinement by 2D R-Net

with CRF-Net(fu)

Fig. 8 shows examples of interactive refinement based on 2D
R-Net with CRF-Net(fu) in Stage 2. The first column in Fig. 8
shows initial segmentation results obtained by 2D P-Net +
CRF-Net(f). The user provides clicks/scribbles to indicate
the foreground (red) or the background (cyan). The second
to last column in Fig. 8 show the results for five variations
of refinement. These refinement methods correct most of
the mis-segmented areas but perform at different levels in
dealing with local details, as indicated by white arrows.
Fig. 8 shows 2D R-Net with geodesic distance performs bet-
ter than min-cut user-editing and 2D R-Net(Euc) that uses
euclidean distance. CRF-Net(fu) can further improve the seg-
mentation. For quantitative comparison, we measured the
segmentation accuracy after the first iteration of user refine-
ment (giving user interactions to mark all the main mis-seg-
mented regions and applying refinement once), in which the
same initial segmentation and the same set of user interac-
tions were used by the five refinement methods. The results
are presented in Table 2, which shows the combination of the
proposed 2D R-Net using geodesic distance and CRF-Net
(fu) leads to more accurate segmentations than the other
refinement methods with the same set of user interactions.

The Dice score and ASSD of 2D R-Net + CRF-Net(fu) are
89.31� 5.33 percent and 1.22� 0.55 pixels, respectively.

4.2.4 Comparison with Other 2D Interactive Methods

Fig. 9 shows a visual comparison between DeepIGeoS
and Geodesic Framework [35], Graph Cuts [8], Random
Walks [7] and SlicSeg [6] for 2D placenta segmentation. The
first row shows the initial scribbles and the resulting
segmentation. Notice no initial scribbles are needed for
DeepIGeoS. The second row shows refined results, where
DeepIGeoS only needs two short strokes to get an accurate
segmentation, while the other methods require far more
scribbles to get similar results. Quantitative comparison of
these methods based on the final segmentation given by the
two users is presented in Fig. 10. It shows these methods
achieve similar accuracy, but DeepIGeoS requires far fewer
user interactions and less user time. (See supplementary
video 1, available online.)

4.3 3D Brain Tumor Segmentation from FLAIR
Images

4.3.1 Clinical Background and Experiments Setting

Gliomas are the most common brain tumors in adults
with little improvement in treatment effectiveness despite

TABLE 2
Quantitative Evaluation of Different Refinement
Methods in Stage 2 of 2D Placenta Segmentation

Method Dice(%) ASSD(pixels)

Before refinement 85.86 � 11.67 1.85 � 1.30
Min-cut user-editing 87.04 � 9.79 1.63 � 1.15
2D R-Net(Euc) 88.26 � 10.61 1.54 � 1.18
2D R-Net 88.76 � 5.56 1.31 � 0.60
2D R-Net(Euc) + CRF-Net(fu) 88.71 � 8.42 1.26 � 0.59
2D R-Net + CRF-Net(fu) 89.31 � 5.33 1.22 � 0.55

The initial segmentation is obtained by 2D P-Net + CRF-Net(f). 2D R-Net
(Euc) uses euclidean distance instead of geodesic distance. Significant improve-
ment from 2D R-Net (p-value < 0.05) is shown in bold font.

Fig. 9. Visual comparison of DeepIGeoS and other interactive methods for 2D placenta segmentation. The first row shows initial scribbles (except for
DeepIGeoS) and the resulting segmentation. The second row shows final refined results with the entire set of scribbles. The user decided on the level
of interaction required to achieve a visually acceptable result.

Fig. 10. Quantitative comparison of 2D placenta segmentation by differ-
ent interactive methods in terms of Dice, ASSD, total interactions (scrib-
ble length) and user time.
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considerable research works [64]. With the development of
medical imaging, brain tumors can be imaged by different
MR protocols with different contrasts. For example, T1-
weighted images highlight enhancing part of the tumor and
FLAIR acquisitions highlight the peritumoral edema. Seg-
mentation of brain tumors can provide better volumetric
measurements and therefore has enormous potential value
for improved diagnosis, treatment planning, and follow-up
of individual patients. However, automatic brain tumor
segmentation remains technically challenging because 1)
the size, shape, and localization of brain tumors have con-
siderable variations among patients; 2) the boundaries
between adjacent structures are often ambiguous.

In this experiment, we investigate interactive segmenta-
tion of the whole tumor from FLAIR images. We used the
2015 Brain Tumor Segmentation Challenge (BraTS) [64]
training set with images of 274 cases. The ground truth were
manually delineated by several experts. Differently from
previous works using this dataset for multi-label and multi-
modality segmentation [15], [65], as a first demonstration of
deep interactive segmentation in 3D, we only use FLAIR
images in the dataset and only segment the whole tumor.We
randomly selected 234 cases for training and used the
remaining 40 cases for testing. All these images had been

skull-stripped and resampled to size of 240� 240 � 155 with
isotropic resolution 1 mm3. We cropped each image based
on the bounding box of its non-zero region. The feature chan-
nel number of 3D P-Net and R-Net wasC ¼ 16.

4.3.2 Stage 1: Automatic Segmentation by 3D P-Net

with CRF-Net(f)

Fig. 11 shows examples of automatic segmentation by dif-
ferent networks in Stage 1, where 3D P-Net is compared
with DeepMedic [15], HighRes3DNet [14] and 3D P-Net
(b5). In the first column, DeepMedic segments the tumor
roughly, with some missed regions near the boundary.
HighRes3DNet reduces the missed regions but leads to
some over-segmentation. 3D P-Net(b5) obtains a similar
result to that of HighRes3DNet. In contrast, 3D P-Net
achieves a more accurate segmentation, which is closer to
the ground truth. More examples in the second and third
column in Fig. 11 also show 3D P-Net outperforms the other
networks. Quantitative evaluation of these four networks is
presented in Table 3. DeepMedic achieves an average dice
score of 83.87 percent. HighRes3DNet and 3D P-Net(b5)
achieve similar performance, and they are better than Deep-
Medic. 3D P-Net outperforms these three counterparts with
86.68 � 7.67 percent in terms of Dice and 2.14 � 2.17 pixels
in terms of ASSD. Note that the proposed 3D P-Net has far
fewer parameters compared with HighRes3DNet. It is more
memory efficient and therefore can perform inference on a
3D volume in interactive time.

Fig. 11. Visual comparison of different networks in Stage 1 of 3D brain
tumor segmentation. The last row shows interactively refined results by
DeepIGeoS.

TABLE 3
Quantitative Comparison of Different Networks and
CRFs in Stage 1 of 3D Brain Tumor Segmentation

Method Dice (%) ASSD (pixels)

DeepMedic [15] 83.87 � 8.72 2.38 � 1.52
HighRes3DNet [14] 85.47 � 8.66 2.20 � 2.24
3D P-Net(b5) 85.36 � 7.34 2.21 � 2.13
3D P-Net 86.68 � 7.67 2.14 � 2.17
3D P-Net + Dense CRF 87.06 � 7.23 2.10 � 2.02
3D P-Net + CRF-Net(f) 87.55 � 6.72 2.04 � 1.70

Significant improvement from 3D P-Net (p-value < 0.05) is shown in
bold font.

Fig. 12. Visual comparison of different CRFs in Stage 1 of 3D brain
tumor segmentation. The last column shows interactively refined results
by DeepIGeoS.
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Since CRF-RNN [50] was only implemented for 2D, in
the context of 3D segmentation we only compared 3D CRF-
Net(f) with 3D Dense CRF [15] that uses manually tuned
parameters. Visual comparison between these two types
of CRFs working with 3D P-Net in Stage 1 is shown in
Fig. 12. It can be observed that CRF-Net(f) achieves more
noticeable improvement compared with Dense CRF that
is used as post-processing without end-to-end learning.
Quantitative measurement of Dense CRF and CRF-Net(f)
is listed in Table 3. It shows that only CRF-Net(f) obtains
significantly better segmentation than 3D P-Net with
p-value < 0.05.

4.3.3 Stage 2: Interactive Refinement by 3D R-Net with

CRF-Net(fu)

Fig. 13 shows examples of interactive refinement results in
Stage 2 of 3D brain tumor segmentation. The initial segmen-
tation is obtained by 3D P-Net + CRF-Net(f) in Stage 1. With
the same set of user interactions, we compared the refined
results of min-cut user-editing and four variations of 3D R-
Net: using geodesic or euclidean distance transforms with
or without CRF-Net(fu). Fig. 13 shows that min-cut user-
editing achieves a small improvement. It can be found that
more accurate results are obtained by using geodesic dis-
tance than using euclidean distance, and CRF-Net(fu) can
further help to improve the segmentation. For quantitative

comparison, we measured the segmentation accuracy after
the first iteration of refinement, in which the same set of
scribbles were used for different refinement methods.
The quantitative evaluation is listed in Table 4, showing
that the proposed 3D R-Net with geodesic distance and
CRF-Net(fu) achieves higher accuracy than the other var-
iations with a Dice score of 89.93 � 6.49 percent and
ASSD of 1.43 � 1.16 pixels.

4.3.4 Comparison with Other 3D Interactive Methods

Fig. 14 shows a visual comparison between GeoS [36], ITK-
SNAP [5] and DeepIGeoS. In the first row, the tumor has a
good contrast with the background. All the compared meth-
ods achieve very accurate segmentations. In the second row,
a lower contrast makes it difficult for the user to identify the
tumor boundary. Benefited from the initial tumor boundary
that is automatically identified by 3D P-Net, DeepIGeoS
outperforms GeoS and ITK-SNAP. Quantitative comparison
is presented in Fig. 15. It shows DeepIGeoS achieves higher
accuracy compared with GeoS and ITK-SNAP. In addition,
the user time for DeepIGeoS is about one third of that for
the other two methods. Supplementary video 2, available

Fig. 13. Visual comparison of different refinement methods in Stage 2 of 3D brain tumor segmentation. The initial segmentation is obtained by 3D P-
Net + CRF-Net(f), on which user interactions are given. 3D R-Net(Euc) is a counterpart of the proposed 3D R-Net and it uses euclidean distance.

TABLE 4
Quantitative Comparison of Different Refinement

Methods in Stage 2 of 3D Brain Tumor Segmentation

Method Dice(%) ASSD(pixels)

Before refinement 87.55 � 6.72 2.04 � 1.70
Min-cut user-editing 88.41 � 7.05 1.74 � 1.53
3D R-Net(Euc) 88.82 � 7.68 1.60 � 1.56
3D R-Net 89.30 � 6.82 1.52 � 1.37
3D R-Net(Euc) + CRF-Net(fu) 89.27 � 7.32 1.48 � 1.22
3D R-Net + CRF-Net(fu) 89.93 � 6.49 1.43 � 1.16

The segmentation before refinement is obtained by 3D P-Net + CRF-Net(f). 3D
R-Net(Euc) uses euclidean distance instead of geodesic distance. Significant
improvement from 3D R-Net (p-value < 0.05) is shown in bold font.

Fig. 14. Visual comparison of 3D brain tumor segmentation using GeoS,
ITK-SNAP, and DeepIGeoS that is based on 3D P-Net.
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online, shows more examples of DeepIGeoS for 3D brain
tumor segmentation.

5 CONCLUSION

In this work, we presented a deep learning-based interac-
tive framework for 2D and 3D medical image segmentation.
We proposed a two-stage framework with a P-Net to obtain
an initial automatic segmentation and an R-Net to refine the
result based on user interactions that are transformed into
geodesic distance maps and then integrated into the input
of R-Net. We also proposed a resolution-preserving net-
work structure with dilated convolution for dense predic-
tion, and extended the existing RNN-based CRF so that it
can learn freeform pairwise potentials and take advantage
of user interactions as hard constraints. Segmentation
results of the placenta from 2D fetal MRI and brain tumors
from 3D FLAIR images show that our proposed method
achieves better results than automatic CNNs. It requires far
less user time compared with traditional interactive meth-
ods and achieves higher accuracy for 3D brain tumor seg-
mentation. The framework can be extended to deal with
multiple organs in the future.
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