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Abstract—Automatic detection of anomalies in space- and time-varying measurements is an important tool in several fields, e.g., fraud

detection, climate analysis, or healthcare monitoring. We present an algorithm for detecting anomalous regions in multivariate spatio-

temporal time-series, which allows for spotting the interesting parts in large amounts of data, including video and text data. In

opposition to existing techniques for detecting isolated anomalous data points, we propose the “Maximally Divergent Intervals” (MDI)

framework for unsupervised detection of coherent spatial regions and time intervals characterized by a high Kullback-Leibler

divergence compared with all other data given. In this regard, we define an unbiased Kullback-Leibler divergence that allows for ranking

regions of different size and show how to enable the algorithm to run on large-scale data sets in reasonable time using an interval

proposal technique. Experiments on both synthetic and real data from various domains, such as climate analysis, video surveillance,

and text forensics, demonstrate that our method is widely applicable and a valuable tool for finding interesting events in different

types of data.

Index Terms—Anomaly detection, time series analysis, spatio-temporal data, data mining, unsupervised machine learning

Ç

1 INTRODUCTION

MANY pattern recognition methods strive towards deriv-
ing models from complex and noisy data. Such models

try to describe the prototypical normal behavior of the system
being observed, which is hard to model manually and whose
state is often not even directly observable, but only reflected
by the data. They allow reasoning about the properties of
the system, predicting unseen data, and assessing the
“normality” of new data. In such a scenario, any deviation
from the normal behavior present in the data is distracting
and may impair the accuracy of the model. An entire arsenal
of techniques has therefore been developed to eliminate
abnormal observations prior to learning or to learn models in
a robust way not affected by a few anomalies.

Such practices may easily lead to the perception of anom-
alies as being intrinsically bad and worthless. Though that is
true for random noise and erroneous measurements, there
may also be anomalies caused by rare events and complex
processes. Embracing the anomalies in the data and study-
ing the information buried in them can therefore lead to a
deeper understanding of the system being analyzed and to
the insight that the models hitherto employed were incom-
plete or—in the case of non-stationary processes—outdated.

A well-known example for this is the discovery of the corre-
lation between the El Ni~no weather phenomenon and
extreme surface pressures over the equator by Gilbert
Walker [1] during the early 20th century through the analy-
sis of extreme events in time-series of climate data.

Thus, the use of anomaly detection techniques is not lim-
ited to outlier removal as a pre-processing step. In contrast,
anomaly detection also is an important task per se, since only
the deviations from normal behavior are the actual object
of interest in many applications. Besides the scenario of
knowledge discovery mentioned above, fraud detection (e.g.,
credit card fraud or identity theft), intrusion detection in
cyber-security, fault detection in industrial processes, anom-
aly detection in healthcare (e.g., monitoring patient condition
or detecting disease outbreaks), and early detection of envi-
ronmental disasters are other important examples. Auto-
mated methods for anomaly detection are especially crucial
nowadays, where huge amounts of data are available that
cannot be analyzed by humans.

In this article, we introduce a novel unsupervised method
called “Maximally Divergent Intervals” (MDI), which can be
employed to point the expert analysts to the interesting parts
of the data, i.e., the anomalies. In contrast to most existing
anomaly detection techniques (e.g., [2], [3], [4], [5]), we do not
analyze the data on a point-wise basis, but search for contigu-
ous intervals of time and regions in space that contain the
anomalous event. This is motivated by the fact that anomalies
driven by natural processes rather occur over a space of time
and, in the case of spatio-temporal data, in a spatial region
rather than at a single location at a single time. Moreover, the
individual samples making up such a so-called collective
anomaly do not have to be anomalous when considered in iso-
lation, but may be an anomaly only as a whole. Thus, analysts
will intuitively be searching for anomalous regions in the data
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instead of anomalous points and the algorithm assisting them
should do so aswell.

We achieve this by searching for anomalous blocks inmulti-
variate spatio-temporal data tensors, i.e., regions and time
frames whose data distribution deviates most from the distri-
bution of the remaining time-series. To this end, we compare
several existing measures for the divergence of distributions
and derive a new one that is invariant against varying length
of the intervals being compared. A fast novel interval pro-
posal technique allows us to reduce the computational cost of
this procedure by just analyzing a small portion of particu-
larly interesting parts of the data. Experiments on climate
data, videos, and text corpora will demonstrate that our
method can be applied to a variety of applications without
major adaptations.

Despite the importance of this task across domains, there
has been very limited research on the detection of anoma-
lous intervals in multivariate time-series data, though this
problem has been known for a couple of years: Keogh et al.
[6] have already tackled this task in 2005 with a method
they called “HOT SAX”. They try to find anomalous sub-
sequences (“discords”) of time-series by representing all
possible sub-sequences of length d as a d-dimensional vector
and using the euclidean distance to the nearest neighbor in
that space as anomaly score. More recently, Ren et al. [7]
use hand-crafted interval features based on the frequency of
extreme values and search for intervals whose features are
maximally different from all other intervals. However, both
methods are limited to univariate data and a fixed length of
the intervals must be specified in advance.

The latter is also true for a multivariate approach pro-
posed by Liu et al. [8] who compare two consecutive inter-
vals of fixed size in a time-series using the Kullback-Leibler
or the Pearson divergence for detecting change-point anoma-
lies, i.e., points where a permanent change of the distribu-
tion of the data occurs. This is a different task than finding
intervals that are anomalous with regard to all the remain-
ing data. In addition, their method does not scale well for
detecting anomalous intervals of dynamic size and is hence
not applicable for detecting other types of anomalies, for
which a broader context has to be taken into account.

The task of detecting anomalous intervals of dynamic
size has recently been tackled by Senin et al. [9], who search
for typical and anomalous patterns in time-series by induc-
ing a grammar on a symbolic discretization of the data. As
opposed to our approach, their method cannot handle mul-
tivariate or spatio-temporal data.

Similar to our approach, Jiang et al. [10] search for anom-
alous blocks in higher-order tensors using the Kullback-
Leibler divergence, but apply their method to discrete data
only (e.g., relations in social networks) and use a Poisson
distribution for modeling the data. Since their search strat-
egy is very specific to applications dealing with graph data,
it is not applicable in the general case for multivariate con-
tinuous data dealt with in our work.

Regarding spatio-temporal data, Wu et al. [11] follow a
sequential approach for detecting anomalies first spatially,
then temporally and apply a merge-strategy afterwards.
However, the time needed for merging grows exponentially
with the length of the time-series and their divergence mea-
sure is limited to binary-valued data. In contrast to this, our

approach is able to deal with multivariate real-valued data
efficiently and treats time and space jointly.

The remainder of this article is organized as follows:
Section 2 will introduce our novel “Maximally Divergent
Intervals” algorithm for off-line detection of collective anoma-
lies in multivariate spatio-temporal data. Its performance will
be evaluated quantitatively on artificial data in Section 3 and
its suitability for practical applications will be demonstrated
by means of experiments on real data from various different
domains in Section 4. Section 5 will summarize the progress
made so far andmention directions for future research.

2 MAXIMALLY DIVERGENT INTERVALS

This section formally introduces our MDI algorithm for off-
line detection of anomalous intervals in spatio-temporal
data. After a set of definitions that we are going to make use
of, we start by giving a very rough overview of the basic
idea behind the algorithm, which is also illustrated schemat-
ically in Fig. 1. The subsequent sub-sections will go into
more detail on the individual aspects and components of
our approach.

Our implementation of the MDI algorithm is available as
open source at: https://cvjena.github.io/libmaxdiv/

2.1 Definitions

Let X 2 RT�X�Y�Z�D be a multivariate spatio-temporal
time-series given as 5th-order tensor with 4 contextual
attributes (point of time and spatial location) and D behav-
ioral attributes for all N :¼ T �X � Y � Z samples. We will
index individual samples using 4-tuples i 2 N4 like in
Xi 2 RD.

The usual interval notation ½‘; rÞ will be used in the fol-
lowing for discrete intervals t 2 Nj‘ � t < rf g. Further-
more, the set of all intervals with size between a and b along
an axis of size n is denoted by

Ina;b :¼ f½‘; rÞ j 1 � ‘ < r � nþ 1 ^ a � r� ‘ � bg : (1)

The set of all sub-blocks of a data tensor X complying
with given size constraints A ¼ ðat; ax; by; bzÞ; B ¼ ðbt; bx; by; bzÞ
can then be defined as

IA;B :¼ fIt � Ix � Iy � Iz j It 2 ITat;bt ^ Ix 2 IXax;bx^
Iy 2 IYay;by ^ Iz 2 IZaz;bzg:

(2)

In the following, we will often omit the indices for simplic-
ity and just refer to it as I.

Given any sub-block I 2 IA;B, the remaining part of the
time-series excluding that specific range can be defined as

VðIÞ :¼ ½1; T � � ½1; X� � ½1; Y � � ½1; Z�ð Þ n I; (3)

and we will often simply refer to it asV if the corresponding
range I is obvious from the context.

Fig. 1. Schematic illustration of the principle of the MDI algorithm: The
distribution of the data in the inner interval I is compared with the distri-
bution of the remaining time-series in the outer interval V.
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2.2 Idea and Algorithm Overview

The approach pursued by the MDI algorithm to compute
anomaly scores for all intervals I 2 I can be motivated by a
long-standing definition of anomalies given by Douglas
Hawkins [12] in 1980, who defines an anomaly as “an obser-
vation which deviates so much from other observations as
to arouse suspicions that it was generated by a different
mechanism”. In analogy to this definition, the MDI algo-
rithm assumes that there is a sub-block I 2 I of the given
time-series that has been generated according to “a different
mechanism” than the rest of the time-series in V (cf. the
schematic illustration in Fig. 1). The algorithm tries to cap-
ture these mechanisms by modelling the probability density
pI of the data in the inner interval I and the distribution pV
in the outer interval V. We investigate two different models
for these distributions: Kernel Density Estimation (KDE)
and multivariate normal distributions (Gaussians), which
will be explained in detail in Section 2.3.

Moreover, a measure DðpI ; pVÞ for the degree of
“deviation” of pI from pV has to be defined. Like some other
works on collective anomaly detection [8], [10], we use—
among others—the Kullback-Leiber (KL) divergence for this
purpose. However, Section 2.5 will show that this is a sub-
optimal choice when used without a slight modification
and discuss alternative divergence measures.

Given these ingredients, the underlying optimization
problem for finding the most anomalous interval can be
described as

Î ¼ argmax
I2IA;B

D pI; pVðIÞ
� �

: (4)

Various possible choices for the divergence measure D
will be discussed in Section 2.5.

In order to actually locate this “maximally divergent
interval” Î, the MDI algorithm scans over all intervals
I 2 IA;B, estimates the distributions pI and pV and computes
the divergence between them, which becomes the anomaly
score of the interval I. The parameters A and B, which
define the minimum and the maximum size of the intervals
in question, have to be specified by the user in advance.
This is not a severe restriction, since extreme values may be
chosen for these parameters in exchange for increased com-
putation time. But depending on the application and the
focus of the analysis, there is often prior knowledge about
reasonable limits for the size of possible intervals.

After the anomaly scores have been obtained for all inter-
vals, they are sorted in descending order and non-maximum
suppression is applied to obtain non-overlapping intervals
only. For large time-series with more than 10k samples, we
apply an approximative non-maximum suppression that
avoids storing all interval scores by maintaining a fixed-size
list of currently best-scoring non-overlapping intervals.

Finally, the algorithm returns a ranking of intervals, so
that a user-specified number of top k intervals can be
selected as output.

2.3 Probability Density Estimation

The divergence measure used in (4) requires the notion of the
distribution of the data in the intervals I andV. Wewill hence
discuss in the following, whichmodelswe employ to estimate
these distributions and how this can be done efficiently.

2.3.1 Models

The choice of a specific model for the distributions pI and pV
imposes some assumptions about the data which may not
conform to reality. However, since the MDI algorithm esti-
mates the parameters of those distributions for all possible
intervals in the time-series, the use of models that can be
updated efficiently is crucial. One such model is Kernel
Density Estimation (KDE) with

pSðXiÞ ¼ 1

Sj j
X
j2S

kðXi;XjÞ; S 2 I;Vf g; (5)

using a Gaussian kernel

kðx; yÞ ¼ 2ps2
� ��D

2 � exp � x� yk k2
2s2

 !
: (6)

On the one hand, KDE is a very flexible model, but on the
other hand, it does not scale well to long time-series and
does not take correlations between attributes into account.
The second proposed model does not expose these prob-
lems: It assumes that both the data in the anomalous inter-
val I and in the remaining time-series V are distributed
according to multivariate normal distributions (Gaussians)
N mI ; SIð Þ andN mV; SVð Þ, respectively.

2.3.2 Efficient Estimation with Cumulative Sums

Both distribution models described above involve a summa-
tion over all samples in the respective interval. Performing
this summation for multiple intervals is redundant, because
some of them overlap with each other. Such a na€ıve
approach of finding the maximally divergent interval
has a time complexity of O N2 � L2ð Þ with KDE and
O N � L � N þ Lð Þð Þ � O N2 � Lð Þ with Gaussian distributions.
This is due to the number of O N � Lð Þ intervals (with
L ¼ ðbt � at þ 1Þ � ðbx � ax þ 1Þ � ðby � ay þ 1Þ � ðbz � az þ 1Þ
being the maximum volume of an interval), each of them
requiring a summation over O Lð Þ samples for the evalua-
tion of one of the divergence measures described later in
Section 2.5. For KDE, OðNÞ distance computations are nec-
essary for the evaluation of the probability density function
for each sample, while for Gaussian distributions a summa-
tion over all OðNÞ samples has to be performed for each
interval to estimate the parameters of the distributions.

This would be clearly infeasible for large-scale data.
However, these computations can be sped up significantly
by using cumulative sums [13]. For the sake of clarity, we
first consider the special case of a non-spatial time-series
ðxtÞnt¼1; xt 2 RD. With regard to KDE, a matrix C 2 Rn�n of
cumulative sums of kernelized distances can be used:

Ct;t0 ¼
Xt0
t00¼1

kðxt; xt00 Þ : (7)

This matrix has to be computed only once, which
requires O n2ð Þ distance calculations, and can then be used
to estimate the probability density functions of the data in
the intervals I ¼ a; b½ Þ and V ¼ 1; n½ � n I in constant time:
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pIðxtÞ ¼ Ct;b�1 � Ct;a�1

Ij j ;

pVðxtÞ ¼ Ct;n � Ct;b�1 þ Ct;a�1

n� Ij j :

(8)

In analogy, a matrix Cm 2 RD�n of cumulative sums over
the samples and a tensor CS 2 RD�D�n of cumulative sums
over the outer products of the samples can be used to speed
up the estimation of the parameters of Gaussian distributions:

Cm
t ¼

Xt
t0¼1

xt0 ; CS
t ¼

Xt
t0¼1

xt0 � x>
t0 ; (9)

where Cm
t and CS

t are the tth column of Cm and the tth D�D
matrix of CS , respectively. Using these matrices, the mean
vectors and covariance matrices can be estimated in con-
stant time.

This technique can be generalized to the spatio-tempo-
ral scenario using higher order tensors for storing the
cumulative sums. The reconstruction of a sum over a given
range from such a cumulative tensor follows the Inclusion-
Exclusion Principle and the number of summands involved
in the computation grows, thus, exponentially with the
order of the tensor, being 16 for a 4th-order tensor, com-
pared to only 2 summands in the non-spatial case. The
exact equation describing the reconstruction in the general
case of an M th-order tensor is given in the supplemental
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2018.2823766.

Thanks to the use of cumulative sums, the computa-
tional complexity of the MDI algorithm is reduced to
O N2 þN � L2ð Þ for the case of KDE and to O N � L2ð Þ for
Gaussian distributions.

2.4 Incorporation of Context

The models used for probability density estimation described
in the previous section are based on the assumption of inde-
pendent samples. However, this assumption is almost never
true for real data, since the value at a specific point of time
and spatial location is likely to be strongly correlated with the
values at previous times and nearby locations. To mitigate
this issue,we apply two kinds of embeddings that incorporate
context into each sample as pre-processing step.

2.4.1 Time-Delay Embedding

Aiming tomake combinations of observed valuesmore repre-
sentative of the hidden state of the system being observed,

time-delay embedding [14] incorporates context from previous
time-steps into each sample by transforming a given time-
series xtð Þnt¼1; xt 2 RD, into another time-series x0

t

� �n
t¼1þðk�1Þt;

x0t 2 RkD, given by

x0
t ¼ x>

t x>
t�t x>

t�2t � � � x>
t�ðk�1Þ�t

� �>
; (10)

where the embedding dimension k specifies the number of
samples to stack together and the time lag t specifies the gap
between two consecutive time-steps to be included as con-
text. An illustrative example is given in Fig. 2.

This method is often motivated by Takens’ theorem [15],
which, roughly, states that for a certain embedding dimen-
sion �k the hidden state of the system can be reconstructed
given the observations of the last �k time-steps.

2.4.2 Spatial-Neighbor Embedding

Correlations between nearby spatial locations are handled
similarly: In addition to time-delay embedding, each sam-
ple of a spatio-temporal time-series can be augmented by
the features of its spatial neighbors (cf. Fig. 3) to enable
the detection of spatial or spatio-temporal anomalies. This
pre-processing step, which we refer to as spatial-neighbor
embedding, is parametrized with 3 parameters kx; ky; kz for
the embedding dimension along each spatial axis and 3
parameters tx; ty; tz for the lag along each axis.

Note that, in contrast to time-delay embedding, neigh-
bors from both directions are aggregated, since spatial con-
text is bilinear. For example, kx ¼ 3 would mean to consider
4 neighbors along the x-axis, 2 in each direction.

Spatial-neighbor embedding can either be applied
before or after time-delay embedding. As opposed to
many spatio-temporal anomaly detection approaches that
perform temporal and spatial anomaly detection sequen-
tially (e.g., [11], [16], [17]), the MDI algorithm in combina-
tion with the two embeddings allows for a joint
optimization. However, it implies a much more drastic
multiplication of the data size.

2.5 Divergences

A suitable measure for the deviation of the distribution pI
from pV is an essential part of the MDI algorithm. The fol-
lowing sub-sections introduce several divergence measures
we have investigated and propose a modification to the
well-known Kullback-Leibler (KL) divergence that is neces-
sary for being able to compare divergences of distributions
estimated from intervals of different size.

Fig. 2. Illustration of time-delay embedding with k ¼ 3; t ¼ 4. The attribute vector of each sample is augmented with the attributes of the samples 4
and 8 time steps earlier.
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2.5.1 Cross Entropy

Numerous divergence measures, including those described
in the following, have been derived from the domain of
information theory. Being one of the most basic information
theoretic concepts, the cross entropy between two distribu-
tions given by their probability density functions p and q
may already be used as a divergence measure:

DCEðp; qÞ :¼ Hðp; qÞ :¼ Ep �log q½ � : (11)

Cross entropy measures how surprising a sample drawn
from p is, assuming that it would have been drawn from q,
and is hence already eligible as a divergence measure, since
the unexpectedness grows when p and q are very different.

Since the MDI algorithm assumes, that the data in the
intervals I 2 I and V have been sampled from the distribu-
tions corresponding to pI and pV, respectively, the cross
entropy of the two distributions can be approximated
empirically from the data:

gDCEðI;VÞ ¼ 1

Ij j
X
i2I

log pVðXiÞ: (12)

This approximation has the advantage of having to esti-
mate only one probability density, pVðxtÞ, explicitly. This is
particularly beneficial, since the possibly anomalous inter-
vals I often contain only few samples, so that an accurate
estimation of the probability density pI is difficult.

2.5.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence is a popular divergence
measure that builds upon the fundamental concept of cross
entropy. Given two distributions p and q, the KL divergence
can be defined as follows:

DKLðp; qÞ :¼ Hðp; qÞ �Hðp; pÞ ¼ Ep �log
p

q

� �
: (13)

As opposed to the pure cross entropy of p and q, the
KL divergence does not only take into account how
well p is explained by q, but also the intrinsic entropy
Hðp; pÞ ¼: HðpÞ of p, so that an interval with a stable dis-
tribution would get a higher score than an oscillating
one if they had the same cross entropy with the rest of
the time-series.

Like cross entropy, the KL divergence can be approxi-
mated empirically from the data, but in contrast to cross
entropy, this requires estimating the probability densities of
both distributions, pI and pV:

gDKLðI;VÞ ¼ 1

Ij j �
X
i2I

log
pIðXiÞ
pVðXiÞ
� 	

¼ 1

Ij j �
X
i2I

log pIðXiÞð Þ � log pVðXiÞð Þ:
(14)

When used in combination with the Gaussian distribu-
tion model, the KL divergence comes with an additional
advantage from a computational point of view, since there
is a known closed-form solution for the KL divergence of
two Gaussians [18]:

DKL pI; pVð Þ ¼ 1

2

�
mV � mIð Þ>S�1

V mV � mIð Þ

þ trace S�1
V SI

� �þ log
SVj j
SIj j �D

	
:

(15)

This allows evaluating the KL divergence in constant
time for a given interval, which reduces the computational
complexity of the MDI algorithm using the KL divergence
in combination with Gaussian models to the number of pos-
sible intervals: O N � Lð Þ.

Given this explicit solution for the KL divergence and the
closed-form solution for the entropy of a Gaussian distribu-
tion [19] with mean vector m and covariance matrix S,
which is given by

HðN ðm; SÞÞ ¼ 1

2
log Sj j þ dþ d � log 2pð Þð Þ; (16)

one can easily derive a closed-form solution for the cross
entropy of those two distributions as well:

HðpI; pVÞ
¼ DKLðpI; pVÞ þHðpIÞ

¼ 1

2

�
trace S�1

V SI

� �þ log SVj j þ d � log ð2pÞ

þ ðmV � mIÞ>S�1
V ðmV � mIÞ

	
:

(17)

Compared with the KL divergence, this does not assign
extremely high scores to small intervals I with a low vari-
ance, due to the subtraction of log SIj j. This may be an expla-
nation for the evaluation results in Section 3, where cross
entropy in combination with Gaussian models is often supe-
rior to the KL divergence, although it does not account for
intervals of varying entropy.

However, in contrast to the empirical approximation of
cross entropy in (12), this requires the estimation of pI .

Fig. 3. Exemplary illustration of spatial-neighbor embedding with different parameters. The attribute vector of the sample with a solid fill color is aug-
mented with the attributes of the samples with a striped pattern.
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2.5.3 Polarity of the KL Divergence and Its Effect

on MDI

It is worth noting that the KL divergence is not a metric and,
in particular, not symmetric: DKLðp; qÞ 6¼ DKLðq; pÞ. Some
authors use, thus, a symmetric variant [8]:

DKL�SYMðp; qÞ ¼ 1

2
DKLðp; qÞ þ 1

2
DKLðq; pÞ: (18)

This raises the question whetherDKLðpI; pVÞ,DKLðpV; pIÞ,
or the symmetric version DKL�SYM should be used for the
detection of anomalous intervals. Quantitative experiments
with an early prototype of our method [20] have shown that
neitherDKLðpV; pIÞ norDKL�SYM provide good performance,
as opposed toDKLðpI; pVÞ.

A visual inspection of the detections resulting from the
use of DKLðpV; pIÞ with the assumption of Gaussian distri-
butions shows that all the intervals with the highest anom-
aly scores have the minimum possible size specified by the
user and a very low variance. An example is given in Fig. 4.
The scores of the top detections in that example are around
100 times higher than those yielded byDKLðpI; pVÞ.

This bias of DKLðpV; pIÞ towards small low-variance
intervals can also be explained theoretically. For the sake of
simplicity, consider the special case of a univariate time-
series. In this case, the closed-form solution for DKLðpV; pIÞ
assuming Gaussian distributions given in (15) reduces to

1

2

s2
V

s2
I

þ ðmI � mVÞ2
s2
I

þ log s2
I � log s2

V � 1

 !
; (19)

where mI , mV are the mean values and s2
I , s

2
V are the varian-

ces of the distributions in the inner and in the outer interval,
respectively. It can be seen from (19) that, due to the divi-
sion by s2

I , the KL divergence will approach infinity when
the variance in the inner interval converges towards 0. And
since the algorithm has to estimate the variance empirically
from the given data, it assigns high detection scores to inter-
vals as small as possible, because smaller intervals have a
higher chance of having a low empirical variance. The term
log s2

I cannot counterbalance this effect, though it is negative
for sI < 1, since its absolute value grows much more
slowly than that of s�2

I , as can be seen from the fact that

8sI < 1 �log s2
I ¼ log s�2

I < s�2
I

� �
, since 8sI < 1 s�2

I > 1
� �

.

In contrast, DKLðpI; pVÞ, where the roles of I and V are

swapped, does not possess this deficiency, since s2
V is

estimated from a much larger portion of data and, thus, is a
more robust estimate.

The symmetric version DKL�SYMðpI ; pVÞ is useless as

well, since the scores obtained from DKLðpI; pVÞ will just be

absorbed by the much higher scores ofDKLðpV; pIÞ.

2.5.4 Statistical Analysis and Unbiased KL Divergence

Though DKLðpI; pVÞ does not overestimate the anomalous-
ness of low-variance intervals as extremely as DKLðpV; pIÞ
does, the following theoretical analysis will show that it is
not unbiased either. In contrast to the previous section, this
bias is not related to the data itself, but to the length of the
intervals: smaller intervals systematically get higher scores
than longer ones. This harms the quality of interval detec-
tions, because anomalies will be split up into multiple con-
tiguous small detections (see Fig. 5a for an example).

Recall that Inm;m denotes the set of all intervals of length
m in a time-series with n time-steps. Furthermore, let
~0d; d 2 N; denote a d-dimensional vector with all coefficients
being 0 and Id the identity matrix of dimensionality d.

When applying the MDI algorithm to a time-series

ðxtÞnt¼1; xt 	 Nð~0d; IdÞ, sampled independently and identi-

cally from plain white noise, an ideal divergence is sup-
posed to yield constant average scores for all Im;m;m ¼
a; . . . ; b (for some user-defined limits a; b), i.e., scores inde-
pendent from the length of the intervals.

For simplicity, we will first analyze the distribution of
those scores using the MDI algorithm with Gaussian dis-
tributions with the simple, but for this data perfectly
valid assumption of identity covariance matrices. In this
case, the KL divergence DKLðpI; pVÞ of two Gaussian dis-

tributions with the mean vectors mI ;mV 2 Rd in some

intervals I 2 Im;V ¼ ½1; n� n I for some arbitrary m is

given by 1
2 mV � mIk k2. Moreover, since all samples in the

Fig. 4. Example for the bias of DKLðpV; pIÞ detections towards small
intervalswith low empirical variance on a synthetic time-series. The inten-
sity of the fill color of the detected intervals corresponds to the detection
scores. The ground-truth anomalous interval is indicated by a red box.

Fig. 5. (a) Top 10 detections obtained from the KL divergence on a real time-series and (b) top 3 detections obtained from the unbiased KL divergence
on the same time-series. This example illustrates the phenomenon of several contiguous minimum-size detections when using the original KL diver-
gence (note the thin lines between the single detections in the left plot). The MDI algorithm has been applied with a time-delay embedding of
k ¼ 3; t ¼ 1 and the size of the intervals to analyze has been limited to be between 25 and 250 samples.
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time-series are normally distributed, so are their empiri-
cal means:

mI ¼
1

m

X
t2I

xt 	 Nð~0d; m�1 � IdÞ ;

mV ¼ 1

n�m

X
t =2 I

xt 	 Nð~0d; ðn�mÞ�1 � IdÞ:

Thus, all dimensions of the mean vectors are indepen-
dent and identically normally distributed variables. Their
difference is, hence, normally distributed too:

mV � mI 	 N ~0d;
1

m
þ 1

n�m

� 	
� Id

� 	
:

Thus, ðmV � mIÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m þ 1

n�m

q
	 Nð~0d; IdÞ is a vector of

independent standard normal random variables and

DKLðpI; pVÞ

¼ 1

2

1

m
þ 1

n�m

� 	Xd
i¼1

ðmV � mIÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m þ 1

n�m

q
0
B@

1
CA

2

	 1

2

1

m
þ 1

n�m

� 	
� x2

d

(20)

is the sum of the squares of d independent normal variables
and, hence, distributed according to the chi-squared distri-
bution with d degrees of freedom, scaled by half the vari-
ance of the variables. The mean of a x2

d-distributed random
variable is d and the mean of the DKLðpI; pVÞ scores for all

intervals in Im is, accordingly, d
2

1
m þ 1

n�m

� �
, which is

inversely proportional to the length of the interval m. Thus,
the KL divergence is systematically biased towards smaller
intervals.

When the length n of the time-series is very large, the
asymptotic scale of the chi-squared distribution is

limn!1 1
2

1
m þ 1

n�m

� � ¼ 1
2m and the estimated parameters

mV; SV of the outer distribution converge towards the
parameters of the true distribution of the data. Thus, if the
restriction of the Gaussian model to identity covariance
matrices is weakened to a global, shared covariance matrix
S, the above findings also apply to the case of long time-
series with correlated variables and, hence, also when time-
delay embedding is applied. Because in this case, the KL
divergence reduces to 1

2 ðmI � mVÞ>S�1ðmI � mVÞ and the
subtraction of the true mean mV followed by the multiplica-
tion with the inverse covariance matrix can be considered
as a normalization of the time-series, transforming it to stan-
dard normal variables with uncorrelated dimensions.

For the general case of two unrestricted Gaussian distri-
butions, the test statistic

� :¼ dmðlog ðmÞ � 1Þ þmðmI � mVÞ>S�1
V ðmI � mVÞ

þ trace mSIS
�1
V

� ��m � log mSIS
�1
V

�� �� (21)

has been shown to be asymptotically distributed according
to a chi-squared distribution with dþ dðdþ1Þ

2 degrees of free-
dom [21]. This test statistic is often used for testing the
hypothesis that a given set of samples has been drawn from

a Gaussian distribution with known parameters [22]. In the
scenario of the MDI algorithm, the set of samples is the data
in the inner interval I and the parameters of the distribution
to test that data against are those estimated from the data in
the outer interval V. The null hypothesis of the test would
be that the data in I has been sampled from the same distri-
bution as the data in V. The test statistic may then be used
as a measure for how well the data in the interval I fit the
model established based on the data in the remainder of the
time-series.

After some elementary reformulations, the relationship
between this test statistic � and the KL divergence becomes
obvious: � ¼ 2m �DKLðpI; pVÞ. This is exactly the normaliza-
tion of the KL divergence by the scale factor identified in
(20). Thus, we define an unbiased KL divergence as follows:

DU�KLðpI; pVÞ :¼ 2 � Ij j �DKLðpI; pVÞ: (22)

The distribution of this divergence applied to asymptoti-
cally long time-series depends only on the number d of
attributes and not on the length m of the interval any more.
However, this correction may also be useful for time-series
of finite length. An example of actual detections resulting
from the use of the unbiased KL divergence compared with
the original one can be seen in Fig. 5.

A further advantage of knowing the distribution of the
scores is that this knowledge can also be used for normaliz-
ing the scores with respect to the number of attributes, in
order to make them comparable across time-series of vary-
ing dimensionality. Moreover, it allows the selection of a
threshold for distinguishing between anomalous and nomi-
nal intervals based on a chosen significance level. This may
be preferred in some applications over searching for a fixed
number of top k detections.

Interestingly, Jiang et al. [10] have derived an equivalent
unbiased KL divergence (m �DKLðpI; pVÞ) from a different
starting point based on the assumption of a Poisson distri-
bution and the inverse log-likelihood of the interval as
anomaly score.

2.5.5 Jensen-Shannon Divergence

A divergence measure that does not expose the problem of
being asymmetric is the Jensen-Shannon (JS) divergence,
which builds upon the KL divergence:

DJSðp; qÞ ¼ 1

2
DKL p;

pþ q

2

� �
þ 1

2
DKL q;

pþ q

2

� �
: (23)

where p and q are probability density functions. pþq
2 is a mix-

ture distribution, so that a sample is drawn either from p or
from q with equal probability (though a parametrized ver-
sion of the JS divergence accounting for unequal prior prob-
abilities exists as well, but will not be covered here).

The JS divergence possesses some desirable properties,
which the KL divergence does not have: most notably, it is
symmetric and bounded between 0 and log 2 [23], so that
anomaly scores cannot get infinitely high.

Like the KL divergence, the JS divergence can be approx-
imated empirically from the data in the intervals I and V.
However, there is no closed-form solution for the JS
divergence under the assumption of a Gaussian distribution
(as opposed to the KL divergence), since pIþpV

2 would then
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be a Gaussian Mixture Model (GMM). Though several
approximations of the KL divergence of GMMs have
been proposed, they are either computationally expensive
or abandon essential properties such as positivity [24]. This
lack of a closed-form solution is likely to be the reason
why the JS divergence was clearly outperformed by the KL
divergence in our quantitative experiments in Section 3
when the Gaussian model is used, despite its desirable theo-
retic properties.

2.6 Interval Proposals for Large-Scale Data

Exploiting cumulative sums and a closed-form solution for
the KL divergence, the asymptotic time complexity of the
MDI algorithm with a Gaussian distribution model could
already be reduced to be linear in the number of intervals
(see Section 2.3.2). If the maximum length of an anomalous
interval is independent from the number of samples N , the
run-time is also linear in N . However, due to high constant-
time requirements for estimating probability densities and
computing the divergence, the algorithm is still too slow for
processing large-scale data sets with millions of samples.

Since anomalies are rare by definition, many of the inter-
vals analyzed by a full scan will be uninteresting and irrele-
vant for the list of the top anomalies detected by the
algorithm. In order to focus on the analysis of non-trivial
intervals, we employ a simple proposal technique that
selects interesting intervals based on point-wise anomaly
scores.

Simply grouping contiguous detections of point-wise
anomaly detection methods in order to retrieve anomalous
intervals is insufficient, because it will most likely lead to
split-up detections. However, it is not unreasonable to
assume that many samples inside of an anomalous interval
will also have a high point-wise score, especially after
applying contextual embedding. Fig. 6, for example, shows
two exemplary time-series from the synthetic data set intro-
duced in Section 3.1 along with the point-wise scores
retrieved by applying the Hotelling’s T 2 method [4], after
time-delay embedding has been applied to the time-series.
Note that even in the case of the very subtle amplitude-
change anomaly, the two highest Hotelling’s T 2 scores are

at the beginning and the end of the anomaly. The idea is to
apply a simple threshold operation on the point-wise scores
to extract interesting points and then propose all those inter-
vals for detailed scoring by a divergence measure whose
first and last samples are among these points if the interval
conforms to the size constraints.

This way, the probability density estimation and the
computation of the divergence have to be performed for a
comparatively small set of interesting intervals only and not
for all possible intervals in the time-series. The interval pro-
posal method is not required to have a low false-positive
rate, though, because the divergence measure is responsible
for the actual scoring. Instead, it has to act as a high-recall
system so that truly anomalous intervals are not excluded
from the actual analysis.

Since we are only interested in the beginning and end of
the anomalies, the point-wise scores are not used directly,
but the centralized gradient filter �1 0 1½ � is applied to
the scores for reducing them in areas of constant anoma-
lousness and emphasizing changes of the anomaly scores.

The evaluation in Section 3.3 will show that the interval
proposal technique can speed-up the MDI algorithm signifi-
cantly without impairing its performance.

3 EXPERIMENTAL EVALUATION

In this section, we evaluate our MDI algorithm on a quanti-
tative basis using synthetic data and compare it with other
approaches well-known in the field of anomaly detection.

3.1 Data Set

In contrast to many other established machine learning tasks,
there is no widely used standard benchmark for the evalua-
tion of anomaly detection algorithms; not for the detection of
anomalous intervals and not even for the very common task
of point-wise anomaly detection. This is mainly for the reason
that the notion of an “anomaly” is not well defined and varies
between different applications and even from analyst to ana-
lyst. Moreover, anomalies are, by definition, rare, which
makes the collection of large-scale data sets difficult. How-
ever, even if a large amount of data were available, it would

Fig. 6. Two exemplary synthetic time-series along with the corresponding Hotelling’s T 2 scores and their gradients. The dashed black line indicates
the mean of the scores and the dashed blue line marks a threshold that is 1.5 standard deviations above the mean. Time-delay embedding with
k ¼ 3; t ¼ 1 was applied before computing the scores.
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be nearly impossible to annotate it in an intersubjective way
everyone would agree with. But accurate and complete
ground-truth information is mandatory for a quantitative
evaluation and comparison of machine learning techniques.
Therefore, we use a synthetic data set for assessing the perfor-
mance of different variants of theMDI algorithm.

All time-series in that data set have been sampled from a
Gaussian process GPðm;KÞ with a squared-exponential

covariance function Kðxt; xt0 Þ ¼ 2p‘2ð Þ�1=2� exp � xt�xt0k k2

2‘2

� 	
þ

s2 � dðt; t0Þ and zero mean function mðxÞ ¼ 0. The length scale
of the GP has been set to ‘2 ¼ 0:01 and the noise parameter
to s2 ¼ 0:001. dðt; t0Þ denotes Kronecker’s delta. Different
types of anomalies have then been injected into these time-
series, with a size varying between 5 percent and 20 percent
of the length of the time-series:

meanshift: A random, but constant value g 2 ½3; 4� is added
to or subtracted from the anomalous samples.

meanshift_hard: A random, but constant value g 2 ½0:5; 1� is
added to or subtracted from the anomalous samples.

meanshift5: Five meanshift anomalies are inserted into the
time-series.

meanshift5_hard: Five meanshift_hard anomalies inserted
into the time-series.

amplitude_change: The time-series is multiplied with a
Gaussian window with standard deviation L=4 whose
mean is the centre of the anomalous interval. Here, L is
the length of the anomalous interval and the amplitude
of the Gaussian window is clipped at 2.0. This modified
time-series is added to the original one.

frequency_change: The time-series is sampled from a non-
stationary GP, whose covariance function Kðxt; xt0 Þ ¼
‘2ðtÞ � ‘2ðt0Þð Þ1=4� ‘2ðtÞþ‘2ðt0Þ

2

� ��1=2
� exp � xt�xt0k k2

‘2ðtÞþ‘2ðt0Þ

� 	
þ s �

dðt; t0Þ uses a reduced length scale ‘2ðtÞ ¼
10�2 if t =2 ½a; bÞ;
10�4 if t 2 ½a; bÞ

�
during the anomalous interval

I ¼ ½a; bÞ, so that correlations between samples are
reduced, which leads to more frequent oscillations [25].

mixed: The values in the anomalous interval are replaced
with the values of another function sampled from the
Gaussian process. 10 time-steps at the borders of the

anomaly are interpolated between the two functions for
a smooth transition. This rather difficult test case is sup-
posed to reflect the concept of anomalies as being
“generated by a different mechanism” (cf. Section 2.2).

The above test cases are all univariate, but there are as well
similar multivariate scenarios meanshift_multvar,
amplitude_change_multvar, frequency_change_-

multvar, and mixed_multvar with 5-dimensional time-
series. Regarding the first three of these test cases, the corre-
sponding anomaly is injected into one of the dimensions,
while all attributes are replaced with those of the other
time-series in the mixed_multvar scenario, which is also a
property of many real time-series.

This results in a synthetic test data set with 11 test cases,
a total of 1100 time-series and an overall number of 1900
anomalies. Examples for all test cases are shown in Fig. 7.

3.2 Performance Comparison

Since the detection of anomalous regions in spatio-temporal
data is rather a detection than a classification task, we do not
use the Area under the ROC Curve (AUC) as performance cri-
terion like many works on point-wise anomaly detection
do, but quantify the performance in terms of Average Preci-
sion (AP) with an Intersection over Union (IoU) criterion
that allows an overlap between 50 and 100 percent.

Hotelling’s T 2 [4] and Robust Kernel Density Estimation
(RKDE) [3] are used as baselines for the comparison. For
RKDE, a Gaussian kernel with a standard deviation of 1.0
and the Hampel loss function are used. We obtain interval
detections from those point-wise baselines by grouping con-
tiguous detections based on multiple thresholds and apply-
ing non-maximum suppression afterwards. The overlap
threshold for non-maximum suppression is set to 0 in all
experiments to obtain non-overlapping intervals only. To be
fair, MDI also has to compete with the baselines on the task
they have been designed for, i.e., point-wise anomaly detec-
tion, by means of AUC. The interval detections can be con-
verted to point-wise detections easily by taking the score of
the interval a sample belongs to as score for that sample.

Fig. 8 shows that the performance of the MDI algorithm
using the Gaussian model is clearly superior on the entire
synthetic data set compared to the baselines by means of
Mean AP and even on the task of point-wise anomaly detec-
tion measured by AUC. The DKLðpI; pVÞ polarity of the KL
divergence has been used in all experiments following the
argumentation in Section 2.5.3. In addition, the performance
of the unbiased variant DU�KLðpI; pVÞ is reported for the
Gaussian model. The parameters of time-delay embedding
have been fixed to k ¼ 6; t ¼ 2 which we have empirically
found to be suitable for this data set. For KDE, we used a
Gaussian kernel with bandwidth 1.0.

While MDI KDE is already superior to the baselines,
it is significantly outperformed by MDI Gaussian, which
improves on the best baseline by 286 percent. This discrep-
ancy between the MDI algorithm using KDE and using
Gaussian models is mainly due to time-delay embedding,
which is particularly useful for the Gaussian model, because
it takes correlations of the variables into account, as opposed
to KDE. As can be seen in Fig. 9, the Gaussian model would
be worse than KDE and on par with the baselines without
time-delay embedding.

Fig. 7. Examples from the synthetic test data set.
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Considering the Mean AP on this synthetic data set, the
unbiased KL divergence did not perform better than the
original KL divergence. However, on the test cases mean-

shift5, meanshift5_hard, and meanshift_hard it
achieved an AP twice as high as that of DKLðpI; pVÞ, which
was poor on those data sets (see Fig. 10). Since real data sets
are also likely to contain multiple anomalies, we expect
DU�KL to be a more reliable divergence measure in practice.

Another interesting result is that cross entropy was the
best performing divergence measure. This shows the advan-
tage of reducing the impact of the inner distribution pI ,
which is estimated from very few samples. However, it may
perform less reliably on real data whose entropy varies
more widely over time than in this synthetic benchmark.

The Jensen-Shannon divergence performed best for the
KDE method, but worst for the Gaussian model. This can be
explained by the lack of a closed-form solution for the JS
divergence, so that it has to be approximated from the data,
while the KL divergence of two Gaussians can be computed
exactly. This advantage of the combination of the KL diver-
gence with Gaussians models is, thus, not only beneficial
with respect to the run-time of the algorithm, but also with
respect to its detection performance.

The differences between the results in Fig. 8 are
significant on a level of 5 percent according to the permuta-
tion test.

3.3 Interval Proposals

In order not to sacrifice detection performance for the sake
of speed, the interval proposal method described in Section
2.6 has to act as a high-recall system proposing the majority
of anomalous intervals. This can be controlled to some
degree by adjusting the threshold u ¼ mþ # � s applied

to the point-wise scores, where m and s are the empir-
ical mean and standard deviation of the point-wise
scores, respectively. To find a suitable value for the hyper-
parameter #, we have evaluated the recall of the proposed
intervals for different values of # 2 ½0; 4� using the usual
IoU measure for distinguishing between true and false posi-
tive detections. The results in Fig. 11a show that time-delay
embedding is of a great benefit in this scenario too. Based
on these results, we selected # ¼ 1:5 for subsequent experi-
ments, which still provides a recall of 97 percent and is
already able to reduce the number of intervals to be ana-
lyzed in detail significantly.

The processing of all the 1100 time-series from the
synthetic data set, which took 216 seconds on an Intel
CoreTM i7-3930K with 3.20 GHz and eight virtual cores
using the Gaussian model and the unbiased KL diver-
gence after the usual time-delay embedding with
k ¼ 6; t ¼ 2, could be reduced to 5.2 seconds using inter-
val proposals. This corresponds to a speed-up by more
than 40 times.

Though impressive, the speed-up was expected. What
was not expected, however, is that the use of interval pro-
posals also increased the detection performance of the entire
algorithm by up to 125 percent, depending on the diver-
gence. The exact average precision achieved by the algo-
rithm on the synthetic data set with a full scan over all
intervals and with interval proposals is shown in Fig. 11b.
This improvement is also reflected by the AUC scores not
reported here and is, hence, not specific to the evaluation
criterion. A possible explanation for this phenomenon is
that some intervals that are uninteresting but distracting for
the MDI algorithm are not even proposed for detailed
analysis.

Fig. 8. Performance comparison of different variants of the MDI algorithm and the baselines on the synthetic data set.

Fig. 10. Performance of the original and the unbiased KL divergence on
test cases with multiple or subtle anomalies.

Fig. 9. Effect of time-delay embedding with k ¼ 6; t ¼ 2 on the perfor-
mance of the MDI algorithm and the baselines on the synthetic data set.
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4 APPLICATION EXAMPLES ON REAL DATA

The following application examples on real data from vari-
ous different domains are intended to complement the
quantitative results presented above with a demonstration
of the feasibility of our approach for real problems.

4.1 Detection of North Sea Storms

To demonstrate the efficiency of the MDI algorithm on long
time-series, we apply it to storm detection in climate data:
The coastDat-1 hindcast [26] is a reconstruction of various
marine climate variables measured at several locations over
the southern North Sea between 51
 N, 3
 W and 56
 N,
10.5
 E with an hourly resolution over the 50 years from
1958 to 2007, i.e., approximately 450,000 time steps. Since
measurements are not available at locations over land, we
select the subset of the data between 53.9
 N, 0
 E and 56


N, 7.7
 E, which results in a regular spatial grid of size
78� 43 located entirely over the sea (cf. Fig. 12). Because
cyclones and other storms usually have a large spatial
extent and move over the region covered by the measure-
ments, we reduce the spatio-temporal data to purely tempo-
ral data in this experiment by averaging over all spatial
locations. The variables used for this experiment are signifi-
cant wave height, mean wave period and wind speed.

We apply the MDI algorithm to that data set using the
Gaussian model and the unbiased KL divergence. Since
North Sea storms lasting longer than 3 days are usually con-
sidered two independent storms, the maximum length of
the possible intervals is set to 72 hours, while the minimum
length is set to 12 hours. The parameters of time-delay
embedding are fixed to k ¼ 3; t ¼ 1.

28 out of the top 50 and 7 out of the top 10 detections
returned by the algorithm can be associated with well-known
historic storms. The highest scoring detection is the so-called
“Hamburg-Flut” which flooded one fifth of Hamburg in Feb-
ruary 1962 and caused 340 deaths. Also among the top 5 is the
“North Frisian Flood”, which was a severe surge in Novem-
ber 1981 and lead to several dike breaches inDenmark.

A visual inspection of the remaining 22 detections
revealed, that almost all of them are North Sea storms as
well. Only 4 of them are not storms, but the opposite: they
span times of extremely calm sea conditions with nearly no
wind and very low waves, which is some kind of anomaly
as well.

A list of the top 50 detections and animated heatmaps of
the three variables during the detected time-frames can be
found in the supplemental material, available online and at:
http://www.inf-cv.uni-jena.de/libmaxdiv_applications.
html.

Processing this comparatively long time-series using 8
parallel threads took 27 seconds. This time can be reduced
further to half a second by using interval proposals
without changing the top 10 detections significantly. This
supports the assumption, that the novel proposal method
does not only perform well on synthetic, but also on
real data.

4.2 Spatio-Temporal Detection of Low Pressure
Areas

As a genuine spatio-temporal use-case, we have also
applied the MDI algorithm to a time-series with daily sea-
level pressure (SLP) measurements over the North Atlantic
Sea with a much wider spatial coverage than in the previous
experiment. For this purpose, we selected a subset of the
NCEP/NCAR reanalysis [27] covering the years from 1957
to 2011. This results in a time-series of about 20,000 days.
The spatial resolution of 2:5
 is rather coarse and the loca-
tions are organized in a regular grid of size 28� 17 covering
the area between 25
 N, 52.5
 W and 65
 N, 15
 E.

Again, the MDI algorithm with the Gaussian model and
the unbiased KL divergence is applied to this time-series to
detect low-pressure fields, which are related to storms.
Regarding the time dimension, we apply time-delay embed-
ding with k ¼ 3; t ¼ 1 and search for intervals of size
between 3 and 10 days. Concerning space, we do not apply
any embedding for now and set a minimum size of

Fig. 12. Map of the area covered by the coastDat dataset. The
highlighted box denotes the area from which data have been aggregated
for our experiment.

Fig. 11. (a) Recall of interval proposals without time-delay embedding and with k ¼ 6; t ¼ 2 on the synthetic data set for different proposal thresholds.
(b) Effect of interval proposals on the Mean Average Precision of different variants of the MDI algorithm on the synthetic data set.
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7:5
 � 7:5
, but no maximum. 7 out of the top 20 detections
could be associated with known historic storms.

A visual inspection of the results shows that theMDI algo-
rithm is not only capable of detecting occurrences of anoma-
lous low-pressure fields over time, but also their spatial
location. This can be seen in the animations in the supplemen-
tal material, available online or on our web page: http://
www.inf-cv.uni-jena.de/libmaxdiv_applications.html.

It is not necessary to apply spatial-neighbor embedding
in this scenario, since we are not interested in spatial out-
liers, but only in the location of temporal outliers. We have
also experimented with applying spatial-neighbor embed-
ding and it led to the detection of some high-pressure fields
surrounded by low-pressure fields. Since high-pressure
fields are both larger and more common in this time-series,
they are not detected as temporal anomalies.

Since we did not set a maximum spatial extent of ano-
malous regions, the algorithm took 4 hours to process this
spatio-temporal time-series. This could, however, be redu-
ced to 22 seconds using our interval proposal technique,
with only a minor loss of localization accuracy.

4.3 Stylistic Anomalies in Texts of Natural
Language

By employing a transformation from the domain of natural
language to real-valued features, the MDI algorithm can
also be applied to written texts. One important task in
Natural Language Processing (NLP) is, for example, the
identification of paragraphs written in a different language
than the remainder of the document. Such a segmenta-
tion can be used as a pre-processing step for the actual,
language-specific processing.

In order to simulate such a scenario, we use a subset of
the Europarl corpus [28], which is a sentence-aligned parallel
corpus extracted from the proceedings of the European Par-
liament in 21 different languages. The 33,334 English sen-
tences from the COMTRANS subset of Europarl, which is
bundled with the Natural Language Toolkit (NLTK) for
Python, serve as a basis and 5 random sequences of between
10 and 50 sentences are replaced by their German counter-
parts to create a semantically coherent mixed-language text.

We employ a simple transformation of sentences to fea-
ture vectors: Since the distribution of letter frequencies varies
across languages, each sentence is represented by a 27-
dimensional vector whose first element is the average word
length in the sentence and the remaining 26 components are
the absolute frequencies of the letters “a” to “z” (case-insen-
sitive). German umlauts are ignored since they would make
the identification of German sentences too easy.

The MDI algorithm using the unbiased KL divergence is
then applied in order to search for anomalous sequences of
between 10 and 50 sentences in the mixed-language text
after sentence-wise transformation to the feature space.
Because the number of features is quite high in relation to
the number of samples in an interval, we use a global
covariance matrix shared among the Gaussian models and
do not apply time-delay embedding.

The top 5 detections returned by the algorithm corre-
spond to the 5 German paragraphs that have been injected
into the English text. The localization is quite accurate,
though not perfect: on average, the boundaries of the

detected paragraphs are off by 1.4 sentences from the
ground-truth. The next 5 detections are mainly tables and
enumerations, which are also an anomaly compared with
the usual dialog style of the parliament proceedings.

For this scenario, we had designed the features specifi-
cally for the task of language identification. To see what else
would be possible with a smaller bias towards a specific
application, we have also applied the algorithm to the 1st

Book of Moses (Genesis) in the King James Version of the
bible, where we use word2vec [29] for word-wise feature
embeddings. word2vec learns real-valued vector represen-
tations of words in a way, so that the representations of
words that occur more often in similar contexts have a
smaller euclidean distance. The embeddings used for this
experiment have been learned from the Brown corpus using
the continuous skip-gram model and we have chosen a
dimensionality of 50 for the vector space, which is rather low
for word2vec models, but still tractable for the Gaussian
probability density model. Words which have not been seen
by themodel during training are treated asmissing values.

The top 10 detections of sequences of between 50 and
500 words according to the unbiased KL divergence are pro-
vided in the supplemental material, available online. The
first five of those are, without exception, genealogies, which
can indeed be considered as anomalies, because they are
long lists of names of fathers, sons and wives, connected by
repeating phrases. The 6th detection is a dialog between
God and Abraham, where Abraham bargains with God and
tries to convince him not to destroy the town Sodom. This
episode is another example for stylistic anomalies, since the
dialog is a concatenation of very similar question-answer
pairs with only slight modifications.

Due to the rather wide limits on the possible size of
anomalous intervals, the analysis of the entire book Genesis,
a sequence of 44,764 words, took a total of 9 minutes, where
we have not yet used interval proposals.

4.4 Anomalies in Videos

The detection of unusual events in videos is another impor-
tant task, e.g., in the domain of video surveillance or indus-
trial control systems. Though videos are already represented
as multivariate spatio-temporal time-series with usually 3
variables (RGB channels), a semantically more meaningful
representation can be obtained by extracting features from a
Convolutional Neural Network (CNN).

In this experiment, we use a video of a traffic scene from
the ViSOR repository [30]. It has a length of 60 seconds
(1495 frames) and a rather low resolution of 360� 288 pix-
els. The video shows a street and a side-walk with a varying
frequency of cars crossing the captured area horizontally in
both directions. At one point, a group of two pedestrians
and one cyclist appears on the side-walk and crosses the
area from right to left at a low speed. Another sequence at
the end of the video shows a single cyclist riding along the
side-walk in the opposite direction at a higher speed. Alto-
gether, 26 seconds of the video contain moving objects and
34 seconds just show an empty street. The nominal state of
the scene hence is not unambiguous.

We extract features for each frame of the video from the
conv5 layer of CaffeNet [31], which reduces the spatial res-
olution to 22� 17, but increases the number of feature

BARZ ETAL.: DETECTING REGIONS OF MAXIMAL DIVERGENCE FOR SPATIO-TEMPORAL ANOMALY DETECTION 1099

http://www.inf-cv.uni-jena.de/libmaxdiv_applications.html
http://www.inf-cv.uni-jena.de/libmaxdiv_applications.html


dimensions to 256. This rather large feature space is then
reduced to 16 dimensions using PCA and the MDI algo-
rithm is applied to search for anomalous sub-blocks with a
minimum spatial extent of 10� 5 cells and a length between
3 and 12 seconds. The time-delay embedding parameters
are fixed to k ¼ 3; t ¼ 4 for capturing half a second as con-
text without increasing the number of dimensions too
much. We apply the MDI algorithm with both the unbiased
KL divergence and cross entropy as divergence measures.
The Gaussian distribution model is employed in both cases.

The results (some snapshots are shown in Fig. 13) exhibit
an interesting difference between the two divergence meas-
ures: The KL divergence detects a sub-sequence of approxi-
mately 10 seconds where absolutely no objects cross the
captured area. Thus, car traffic is identified as normal
behavior and long spans of time without any traffic are con-
sidered as anomalous, because they have a very low
entropy and the KL divergence penalizes the entropy of all
other intervals, as opposed to cross entropy which does not
take the entropy of the detected interval into account.
Another detection occurs when the group of pedestrians
enters the area. The localization, however, is rather fuzzy
and spans nearly the entire frame. Cross entropy, on the
other hand, seems to identify the state of low or no traffic as
normal behavior and yields two detections at the beginning
and the end of the video where the frequency of cars is
higher than in the rest of the video. It detects the pedestrians
too, but with a better localization accuracy. This detection,
however, does not cover the entire side-walk, since the
pedestrians are moving from right to left and the algorithm
is not designed for tracking moving anomalies.

Without using interval proposals, the comparatively high
number of features combined with the large spatial search
space would result in a processing time of 13 hours for this
video. This can be reduced to 5 minutes using our novel
interval proposal technique.

5 SUMMARY AND CONCLUSIONS

We have introduced a novel unsupervised algorithm for
anomaly detection that is suitable for analyzing large multi-
variate time-series and can detect anomalous regions not
only in temporal but also in spatio-temporal data from vari-
ous domains. The proposed MDI algorithm outperforms
existing anomaly detection techniques, while being compar-
atively time efficient, thanks to an efficient implementation
and a novel interval proposal technique that excludes unin-
teresting parts of the data from in-depth analysis. Moreover,
we have exposed a bias of the Kullback-Leibler (KL) diver-
gence towards smaller intervals and proposed an unbiased

KL divergence that is superior when applied to real data.
We have also investigated other divergence measures and
found that the use of cross entropy can result in improved
performance for data with a low variability of entropy.

Various experiments on data from different domains,
including climate analysis, natural language processing and
video surveillance, have shown that the algorithm proposed
in this work can serve as a generic, unsupervised anomaly
detection technique that can facilitate tasks such as process
control, data analysis and knowledge discovery. These
application examples emphasize the importance of interval-
based anomaly detection techniques, and we hope that our
work is able to motivate further research in this area.

For processing data with a large spatial extent or a high
number of dimensions, a full scan over all possible sub-
blocks of the data would be prohibitively time-consuming.
To this end, we have introduced a novel interval proposal
technique that can reduce computation time significantly.
However, interval proposals usually lead to less accurate
detections, which is particularly noticeable with regard to
spatial dimensions. Future work might hence investigate
applying in-depth analysis not only to the proposed intervals
themselves, but also to their neighborhood. An alternative
might be a hierarchical approach of successive refinement.

Other open problems to be addressed in the future
include efficient probability density estimation in the face of
high-dimensional data, the automatic determination of suit-
able parameters for time-delay embedding, and tracking
anomalies moving in space over time. Furthermore, it is
often necessary to convince the expert analyst that a
detected anomaly really is an anomaly. Thus, future work
will include the development of an attribution scheme that
can explain which variables or combinations of variables
caused a detection and why.
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