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Color Homography: Theory and Applications
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Abstract—Images of co-planar points in 3-dimensional space taken from different camera positions are a homography apart.
Homographies are at the heart of geometric methods in computer vision and are used in geometric camera calibration, 3D
reconstruction, stereo vision and image mosaicking among other tasks. In this paper we show the surprising result that homographies
are the apposite tool for relating image colors of the same scene when the capture conditions—illumination color, shading and device—
change. Three applications of color homographies are investigated. First, we show that color calibration is correctly formulated as a
homography problem. Second, we compare the chromaticity distributions of an image of colorful objects to a database of object
chromaticity distributions using homography matching. In the color transfer problem, the colors in one image are mapped so that the
resulting image color style matches that of a target image. We show that natural image color transfer can be re-interpreted as a color
homography mapping. Experiments demonstrate that solving the color homography problem leads to more accurate calibration,
improved color-based object recognition, and we present a new direction for developing natural color transfer algorithms.

Index Terms—Color homography, illumination estimation, color correction, color indexing, color transfer

1 INTRODUCTION

N image formation there are two important parts, the geom-

etry of how points in space map to image locations and the
photometry of how illumination, surface reflectances and
camera sensors combine to form the colors in an image.
Broadly, the mathematical tools underlying our understand-
ing of image geometry are non-linear reflecting the non-linear
perspective nature of image formation. Important non-linear
concepts include “solving for the homography” (e.g., relating
subsequent frames in panorama stitching [1]) and epipolar
geometry in stereo vision [2]). In contrast, the majority of
methods in color/photometric computer vision are linear
which, at least for simplified scenes such as the eponymous
Mondrian world [3], [4] (the world consists of a patchwork of
flat co-planar reflectances), reflects the physics of how images
are formed. Linear color problems include, color correc-
tion [5], [6], [7] (e.g., mapping RAW colors from camera to dis-
play RGB) and modeling illuminant color change [8] e.g., for
color object recognition [9].

In Fig. 1a, we illustrate a homography as the term applies
in geometric computer vision. Here 7; might denote the
image—a perspective projection—of a plane (in 3-dimen-
sions) and 7, denotes the same plane viewed in a second
image. The homography H relates the two planes.

In Fig. 1b, Ball 1 is the image of the side-view of a 4-color
ball where the ball is lit from behind the camera with a
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white light. The same ball is lit from above with a bluish
light, image Ball_2. The images are carefully registered so
they are in pixel-wise correspondence. In an attempt to
color correct panel Ball_2 to match Ball_1, we, naively, carry
out a linear regression—for locations where both images
have non-zero response—and find the best 3 x 3 matrix M
mapping the corresponding pixels. The result of the regres-
sion results in image Ball 3. Notice that while the color cast
due to the bluish light appears lessened, viewed closely, the
colors are incorrectly mapped. In particular, notice that the
red color segment looks wrong. Now, we now transform
Ball 2 image to the image Ball 4 using the correct linear
transform H.

In this paper, we propose that to map one photometric
view to another we must map the colors correctly indepen-
dent of shading. Since shading only affects the brightness,
or magnitude, of the RGB vectors we wish, in effect, to find
the 3 x 3 map which maps the color rays (the RGBs with
arbitrary scalings) in one photometric view to correspond-
ing rays in another. We note that this “ray matching” is pre-
cisely the circumstance in geometric computer vision when
co-planar points in an image are mapped, via a homogra-
phy, to corresponding points in a second image [2]. In anal-
ogy to the geometric case, at least 4 non-coplanar rays are
required to solve for a color homography.

An RGB measurement without shading can be encoded as
the (r,g) chromaticity coordinate: »r = R/(R+ G + B) and
g = G/(R+ G + B) (since the vector [R G B]' has the same
orientation as [r g1 —7r—g|'. In Fig. 1c, the 4 reflectances
from the ball correspond to 4 points in an rg-chromaticity dia-
gram and these define the quadrilaterals shown in the left and
right of the panel (for respectively for the images Ball 2 and
Ball 1). Assuming the illumination color change is linear, the
mapping between the two chromaticity diagrams is precisely
a homography (a fact we formally prove later).

We apply color homographies to help solve problems in
three applications. In Fig. 2a, we show the picture of an

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/


https://orcid.org/0000-0002-7628-8165
https://orcid.org/0000-0002-7628-8165
https://orcid.org/0000-0002-7628-8165
https://orcid.org/0000-0002-7628-8165
https://orcid.org/0000-0002-7628-8165
https://orcid.org/0000-0001-6860-9371
https://orcid.org/0000-0001-6860-9371
https://orcid.org/0000-0001-6860-9371
https://orcid.org/0000-0001-6860-9371
https://orcid.org/0000-0001-6860-9371
mailto:
mailto:
mailto:

FINLAYSON ET AL.: COLOR HOMOGRAPHY: THEORY AND APPLICATIONS

a) b)

@/Hw

Homography H, Least-squares M

Fig. 1. Top left, panel (a), images of two planes are related by a homog-
raphy. Right, panel (b), 4 images of a colored ball are shown. Ball_1 is
the reference image where the illumination color is white and placed
behind the camera. Ball_2 is the object illuminated with a blue light from
above. Respectively, Ball_3 and Ball_4 are the least-squares mapping
and the homography match (in both cases the aim is to correctly undo
the illumination color) from Ball_2 to Ball_1, Bottom right, panel (c), the
chromaticities from Ball_2 matched to corresponding chromaticities in
Ball_1.

image in the RAW RGB space of a camera and the corre-
sponding reproduction when the colors are corrected for
display (where both images are also tone mapped for print-
ing in this paper). In computer vision, the idea that per-
vades color correction is that all we need to do is find the
best least-squares transform mapping the color checker
shown in the RAW image to pre-measured correct display
RGBs with some of the problem focus directed towards
automatically finding the checker in the image [11], [12].
However, consistent with other recent work [13], [14], we
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found that the illumination intensity could vary signifi-
cantly over the image of a checker. When shading varies,
the color correction transform is found by solving for the
homography relating the colors from the RAW to reference
display RGBs.

Consider that we have a database of colorful objects where
the color content of each image is represented by its chroma-
ticity distribution. By matching color distributions we can
obtain surprisingly accurate color object recognition [15], [16].
However, object recognition performance degrades when the
light color changes [17]. The role of homographies in color
object recognition is summarized in Fig. 2b. Clearly, image I;
matches image I, (it is of the same object) but image I3 is an
image of a different object. The distribution of rg chromatic-
ities for image I; is shown in purple in both chromaticity dia-
grams in the middle of Fig. 2b. The rg distribution of images
I, and I are overlaid in green. Notice, however, that the dis-
tributions do not match in either case. Indeed, even though
images I; and I are of the same object their chromaticity dis-
tributions don’t match because images /> and I3 are taken
with respect to a warmer illumination color.

Our hypothesis is that the chromaticity distributions for
the same scene lit by two different lights but where the
image shading might change will be related by a homogra-
phy. In the last row of Fig. 2b, we show the output of
homography matching for chromaticity distributions for I;
matched to /> and I; matched to I5. We see the chromaticity
distribution of H(/y,/3) (the colors in I; homographically
transformed to match those in /) now overlap and we can
conclude the two images plausibly have the same color con-
tent. In contrast H(/;, ;) fails to match the chromaticity
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Fig. 2. a) Color correction (mapping RAW to display sRGB [10]) is a homography problem. b) The top contains 3 images of colorful objects. Histo-
gram matching of chromaticity distributions of images I; with I, and I; with I3 are shown in the middle (chromaticity distribution for I; is in purple and
for I, and I is in green). Solving for the color homographies best mapping I; to I, and I, to I5 (respectively, H(I;, I) and H(Iy, I3)) results in the his-
tograms shown in the bottom row. The distributions for I; and I, now match and the object is correctly identified. c) Color transfer for matching the
colors of an input image ! to the colors of a target image J can be reinterpreted as a simple color homography mapping H(7, O).
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distributions. Note this latter match is poor (even poorer
than the input) due to the mechanics of how the match is
made which we discuss in Section 3.2. The matching
method in this case actually informs us that no good match
is possible, but for purposes of illustration, we show the
weak match that was found.

Finally, we consider color homographies in the context of
image color transfer. Automated color transfer is often
required in professional photo editing. Artists can choose a
desired target picture and manipulate another picture to
match its color styles to the target. In Fig. 2c, Image I has its
colors transferred to map those shown in Image J and the
result of the method [18] is denoted O = f(1, J). Using our
color homography theorem, we can approximate the color
transfer result O by a color homography model which produ-
ces a close approximation image O' = H(Z, O) (I mapped by a
homography to approximate O). By enforcing color space
homography the resulting image can be physically inter-
preted as being an image of the same scene as the input image
but under a different illumination. We can re-interpret most
color transfer effects using a color homography model. This
result is useful because, unlike many of the color transfer algo-
rithms, color homographies can be computed quickly. Indeed
we have found that we can run a computationally expensive
algorithm on a thumbnail image, compute the homography
and then apply the homography to the full-resolution image.
Another benefit of our homography-based model is that we
often remove the artifacts introduced by some color transfer
algorithms. That is, we run a color transfer algorithm (whose
output has artifacts) and approximate it as a homography.
Because of the simpler transfer that is enforced by the
homography many of the spatial artifacts either disappear
or are mitigated.

Experiments demonstrate the power of our color space
homography idea. Regarding color correction we report a sig-
nificant improvement in color accuracy compared to the com-
monly used color correction methods. For object recognition
on the Amsterdam Object Image Database [19] (> 100000
images encompassing a range of capture conditions), homo-
graphically matching chromaticity distributions supports
state-of-the-art color-based object recognition. Finally, we
found that existing color transfer algorithms can be re-inter-
preted as a color homography mapping.

In Section 2, we review the homography problem from
geometric computer vision and relate this to linear image for-
mation in color/photometric vision. Section 3 presents the
color homography theorem together with a discussion on
how to, in practice, solve for a color homography. Experi-
ments in color correction, color object recognition and color
transfer are reported in Section 4. We discuss application of
homographies to non-RAW images in Section 5. The paper
concludes in Section 6.

2 BACKGROUND

2.1 Geometry

For the geometric planar homography problem, we write
ar hit hig hiz z'
oy | = | ha he hsl| |y | 2z=H(E). (eY)
o hsi hss hsz] |1
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In Equation (1), (z,y) and (2’,y) denote corresponding
image points—the same physmal feature—m two images. In
homogeneous coordinates the vector [ab¢]’ maps to the
coordinates [a/c b/c]" and so, in Equation (1), the scalar o
cancels to form the image coordinate (z,y). For all pairs of
corresponding points (z,y) and (2’,v’) that lie on the same
plane in 3 dimensional space, Equation (1) exactly charac-
terises the relationship between their images [2]. To solve
for a homography (e.g., for image mosaicking), we need to
find distinctive feature points in pair of images, match them
to find candidate corresponding points, then solve for the
best homography and finally warp the image to bring one
image into the coordinate frame of the other [20], [21].
Homographies are at the heart of geometric methods in
computer vision and are used in geometric camera calibra-
tion [22], 3D reconstruction [23], stereo vision [24] and
image mosaicking [25] amongst other tasks.

2.2 Color

A physically accurate model of Lambertian image formation
where the illumination impinging on a scene is a single
color is written as

o / E(N)S*(NQ(

where respectively E()), S*(A\) and Q(A) denote the spec-
tral power distribution of the light, the spectral reflectance
of a surface, and the vector of R-, G- and B-spectral sensi-
tivities of the camera. And, the integral is taken over the
visible spectrum . The superscript * denotes spatial
dependency and «” is a scaling factor encoding brightness
changes due to the relative interplay between where the
lights are positioned and the orientation of the surface in
the scene (e.g., Lambert’s law) and the quantity of light
(e.g., to model extended light sources). It is well estab-
lished [26], [27], [28] that surface reflectance can often be
written to a tolerable approximation as the weighted sum
of three basis functions

A)dA, @)

3
~ Y Si(Noy. ®3)

=1

When o” =1 (so we can ignore spatial dependency) we
have the so-called Mondrian-world [3]. There we have no
shading in images and this simplifies consideration of how
colors change with illumination and/or imaging device.
Under the Mondrian-world assumption, we write

_ AFOQ

g
4
/ NS NQ ()N, @

In Equation (4), image formation is a 3 x 3 linear matrix
A multiplying a 3 x 1 weight vector . Two important
results follow from Equation (4). First, that the 3 x 3 matrix

AE2 [AEl (A ]71 , (5)

maps colors viewed under illuminant E; () to those recorded
under [5;(\) assuming the same camera sensitivities Q(\).
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Second that the 3 x 3 transform relating colors recorded by
cameras with the respective sensitivities @ () and Q,()) is
written as

AFDQOAFNQ )1, ©)

assuming the same illuminant E(\).

Of course it is well known that Equation (3) is only
approximate. Indeed, illuminant metamerism [29]—the
phenomenon that two surfaces look the same under one
light can look different under another—cannot be described
by a 3 x 3 matrix of illuminant change. Yet, metamerism
(illuminant or sensor) is rare. Moreover Marimont and
Wandell [30] extended the linear model formalism to incor-
porate image formation into the derivation of the optimal
linear basis and found that 3 x 3 matrices could well
account for illuminant and sensor change. A similar result
was reported by Funt et al. [31], [32]. While most of the lit-
erature assumes a single global illuminant, other recent
work are also proposed to solve multi-illuminant color con-
stancy [33], [34], [35], which is an emerging and challenging
area of research.

That illumination (or device) colors map across images
using a linear transform is a common assumption and is
widely reported in the literature including, in color correc-
tion [5], [6], [7] color object recognition [9], [36] and illumi-
nant estimation [4]. However, the Mondrian-world does not
generally hold. Indeed, color intensity can and does vary on
a per-pixel basis due to the relative position of light and sur-
face and also due to the quantity of light varying across a
scene. When illumination color is held fixed then a chroma-
ticity representation of color can be used to factor out per
pixel shading variation e.g., [37].

To deal with a changing light color, the so-called
“diagonal” model of image formation is often employed
with respect to which color change across images is modeled
as a diagonal matrix [38], [39] multiplying the image colors.
The diagonal model is at the heart of the “comprehensive
color image normalization” [40] and the m1m2m3 coordinate
system [41] both of which are light color plus shading invari-
ant image features. Further, specially chosen spectral band
ratios (for example, R/G and B/G) have an analogous diago-
nal property (the 2-d band ratios are mapped across illumi-
nation by a 2 x 2 diagonal matrix). This property is exploited
in illuminant color and shading-independent histogram
matching for object recognition [42] and illuminant estima-
tion [43], [44].

Of course moving to a chromaticity representation means
one of the 3 degrees of freedom measured in an RGB image
has been lost. In calibrated color correction—mapping the
RAW RGBs recorded for a known color chart to a standard
color space—it is possible to find the full 3 x 3 matrix map-
ping the orientation of input color vectors to the orientation
of output colors by a searching strategy [13]. Alternately,
in [14], solving for the best shading while simultaneously
finding the color correction matrix was formulated as an
Alternating Least-squares approach. Both these methods
deliver significantly lower correction error compared with a
shading blind linear least-squares optimization. In display
calibration [45] it was shown that 4 chromaticities sufficed
for color calibration.
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Let us map an RGB p' to a corresponding RGI (red-green-
intensity) ¢ using a 3 x 3 matrix C

/_)TC:QT
T
R||1 0 1 R )
Ggllo 1 1| = G :
B[00 0 1 R+G+B

interpreting the right-hand-side of Equation (7) as a homo-
geneous coordinate (e.g., here, as chromaticities) we see that

B R B G
“R+G+B YT RYGTB

coc[r g 117, r ®
In the following proof it is useful to represent 2-d chromatic-
ities by their corresponding 3-d homogeneous coordinates.

Theorem 1 (Color Homography). Chromaticities across a
linear change in capture condition (light color, shading and
imaging device) are a homography apart.

Proof. First we assume that across a change in illumination or
a change in device where the shading is the same (e.g., for
the Mondrian-world) the corresponding RGBs are related
by a linear transform M (i.e., Equations (5) and (6) hold).
Clearly, H = C~'MC maps colors in RGI form between
illuminants. Due to different shading, the RGI triple under
a second light is represented as ¢" = ac' H, where o
denotes the unknown scaling and " denotes transpose.
Without loss of generality let us interpret ¢ as a homoge-
neous coordinate i.e., assume its third component is 1.
Then, chromaticity coordinates ¢ and ¢ are a homogra-
phy apart. O

In geometry, homographies are applied for mapping spa-
tial coordinates in one image to correspondences in another.
In color homography we are also interested in this 2D-2D
match problem (chromaticity to chromaticity mapping).
However, for some applications—e.g., color transfer—the
homography that maps 3D colors to 3D color matches (in a
shading independent way) is the apposite tool.

3.1 Color Homography Estimation by Alternating
Least Squares

Suppose A and B denote respectively n x 3 matrices of n
corresponding pixel RGBs with respect to two images of the
same scene where the illumination changes (and, also possi-
bly the camera properties). The color change is modeled as
a linear transform (Equations (5) and (6)) but because of the
relative positions of light and surfaces there might also be
per-pixel shading perturbations. Assuming that the Lam-
bertian image formation is an accurate physical model, the
relationship between A and B is written as

DAH ~ B, )

where D is an n x n diagonal matrix of scalar shading factors
and H is a 3 x 3 homography color correction matrix. If both
D and H are applied to A, then we call this a shading homogra-
phy. We can solve Equation (9) by using Alternating Least-
Squares (ALS) [14], [46], [47] described in Algorithm 1. There
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||.|l - denotes the Frobenius norm. And, at iteration i, H* and
D' are found using the closed form Moore-Penrose inverse.
The least squares fit of A to Bis equal to (AT A) "' AT B. Each
scalar component at the jth diagonal element of D' is the
result of a least squares fit of the jth row of A""! to the jth row
of B (where again we use Moore-Penrose inverse). The effect
of the individual H' and D' can be combined into a single
matrix D =[], D" and H = [], H' (where the product is taken
by post-multiplying matrices). That is, DAH ~ B. ALS con-
verges to a local minimum [48].

Algorithm 1. Homography from Alternating Least-

Squares

1 ¢ =0, minpo HDOA — B}

2 repeat

3 i=i+1;
min, ||ATH — BHF;
miny, | DIATIHY — B
Ai — DiAi—lHi;

unit |[A"— A7 <

0_1n04y.
o AV =D0A;

4
5 ﬁ
6
7

Finally, note how we initialize the matrix A° to be the
closest least-squares fit of the rows of A to the rows of B.
This initialization is performed for two reasons. First, we
find slightly better visual results if we applied D before H.
Second, it simplifies the proof of Theorem 2.

To motivate the theorem below we know from geometric
computer vision that given the images of the two planar
regions each enclosed by 4 corner points in two views
(assuming certain assumptions) there is a unique homogra-
phy and that this can be found directly [2]. In Theorem 2,
we capture the conditions where the ALS method can find
the unique homography given 4 pairs of colors captured
across viewing conditions.

Theorem 2 (ALS Uniqueness). The ALS method finds the
homography—unique, up to a scalar multiplier—when there
are 4 pairs of corresponding non-collinear colors A and B each
of which is a 4x3 full-rank matrix (ie., rank(A)=
rank(B) = 3) and the null space—which is represented by the
4-vector v'—of (A" — B) at convergence is not sparse. A vec-
tor v' is sparse if 1, 2 or 3 (but not all 4) of its entries are 0.

Proof. In this case, A and B are 4 x 3 matrices. Because the
elements of A and B are strictly positive and full rank, the
3 x 3 cross product matrices A" A and A" B are also full
rank. We point this out because this in turn implies that
at every time we calculate D' and H' in the ALS method
that these matrices themselves are full rank. That is, so
long as A and B begin as full rank matrices the matrices
A, B, D' and H' are all themselves full rank i.e., we never
encounter the circumstance where an individual least-
squares fit introduces rank deficiency.

Now let us suppose that, the stopping condition of the
ALS procedure is met in the 7th iteration. To prove Theo-
rem 2, we need to first prove the following lemma. 0

Lemma 1. When the ALS algorithm converges at step i then
D =Ty and H' = T3,3 where T denotes the identity matrix.

Proof. Let us assume Lemma 1 is false then when the algo-
rithm converges it must follow we can write DA™ 1 H = A’
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(where here D and H are respectively a 4 x 4 diagonal
matrix and an arbitrary 3 x 3 linear transform). This can
only be true if the rows of A"~ are row Eigenvectors of
H. This cannot be the case because then two of the rows
of A”! would be the same (up to a scalar) i.e., collinear
and in the statement of the theorem this was assumed not
to be the case (i.e., to get to A’ involves multiplying A by
a series of full rank matrices. If the rows of A are not col-
linear then neither are the rows of A?). ad

Let us now prove Theorem 2 by contradiction. We will
show that if the alternating least-squares procedure has con-
verged and the unique homography has not been found
then the assumption of convergence cannot hold (and, yet,
we know the algorithm converges [48]).

Let us assume that A’ # B. It follows that
v A =0,

B=A touw" st

where respectively v and w are 4 x 1 and 3 x 1 vectors, and
v spans the column null-space of A’. From Lemma 1, on con-
vergence, both D' and H' are identity matrices. Let us con-
sider the final step in the algorithm (step 5 just before the
algorithm stops). By Assumption the algorithm converges
and A’ # Band H' = T3,3 (from Lemma 1):

A4 vw' =B=DA'H = D'A'T.

The least-squares per-row scalar returned in Line 5 of Algo-
rithm 1 can be written in closed form (we are simply using
the Moore-Penrose inverse)

D — a; (¢; +vjw) _ || +vja] w
b
7 aja; la,|*

where the jth row of A‘, denoted QJ.T, has a magnitude
HQJ-H > 0, because A’ has full rank and no two points are
collinear. It can be shown that the scaling of the jth row of
A' that best matches the jth row of B in a least-squares sense
can be written as

) Vi
P J T
D]-j =1 +7”a HQQ]- w,

=j

which implies D7H =1 a;w=0. Because A’ is assumed
to be full rank, it is possible that three of its four rows
can satisfy QJT w = 0. However, this can not hold for the
fourth row otherwise A is not full rank. And by our
assumption of non-sparsity all elements of v are either
non-zero or zero. If they are all non-zero i.e., the algo-
rithm has not converged (when by assumption it has).
We have a contradiction that D’ # Z.

Of course the reader will have noticed a sleight of hand on
our part. We made a non-sparsity assumption on the null-
space of A" — B at convergence. Albeit rarely, we found the
alternating least-squares procedure might terminate with a
sparse null space vector and in this case with A’ # B (the algo-
rithm stops but we do not find the unique homography).

To investigate convergence empirically, we uniformly
randomly generated 4 x 3 matrices A (matrix elements in
the interval [0, 1] to 2 decimal places) and then randomly
generated matrices D (elements chosen uniformly and
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Image />
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Fig. 3. Top: ASIFT [21] can match the chromaticity distributions of
images I; and I,. Bottom: ASIFT cannot match the chromaticity distribu-
tions of image I; to image I; (images I, I> and I3 shown in Fig. 2b).

randomly from [0, 1]) and H (elements chosen from the stan-
dard normal distribution N(0,1)). Then, we compute
B = DAH. The matrix B created in this way could plausibly
be matching colors under different lights or different devi-
ces. We then ran the ALS procedure to solve for the homog-
raphy, to discover D and H.

Over 10,000 runs the ALS procedure converged to the
correct answer (the non-sparsity condition was satisfied)
over 96.5 percent of the time. For the remaining 3.5 percent
of the cases that did not converge we mapped A and B to
new matrices A’ and B according to

A = DAAH?, B = DPAHP,

where D4 and D are randomly chosen positive matrices
(entries in [0,1]) and H* and H” are 3 x 3 matrices with ele-
ments drawn from N(0,1). We then run our procedure a
second time. Assuming convergence to the correct answer
i.e., we find matrices D' and H’ such that D'A'H’ = B'. It fol-
lows that D= [DP|'D'DA and H = HAH'[H?]"". In all
cases, this kind of random perturbation sufficed to make
ALS converge to the correct answer. In all cases (even with-
out the perturbation), the % difference |[DAH — B||/|B||
between the actual and fitted homography, between DAH
and B was less than 0.5 percent (and usually orders of mag-
nitude smaller). Indeed, we have not found a compelling
visual example where the output of the ALS procedure—
when it converges to the wrong answer—appears different
from the overall best answer (zero error for the 4 point
homography fitting). In Appendix A we present a numeri-
cal example where the 4 point ALS minimization fails to
solve for the homography.

Finally, in thinking about solving for a homography by
mapping the original matrices A and B to counterparts
(which, for ALS then converges correctly) we were, as a
side-effect, able to write the homography calculation
directly as a simple matrix computation (see Appendix B).
While wholly equivalent to the “direct method” [2], the
form of the equation appears novel.
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3.2 Homography-Based Chromaticity Matching

In geometric computer vision we find the homography
relating two images in three steps. First, we find distinctive
features, second we find candidate matching locations by
pairing distinctive features which also have similar underly-
ing image structure and third, we find the best homography
match accounting for as many of our paired image points as
possible. See [20] for a general discussion for finding corre-
sponding feature points between two images. Here, we treat
the chromaticity distributions as images and seek to find and
match these distributions analogously to the geometric case
(i.e., we find and match interest points found for chromatic-
ity distributions). An interesting technical issue is that we
would, ideally, like to be able to find the same feature points
robust against the image transformation we are trying to
discover. The ASIFT [21] algorithm is a methodology for
matching images that is fully invariant to affine image mod-
ification. In the top of Fig. 3, we show the ASIFT match for
the color distributions of images /; and I, from Fig. 2. Visu-
ally, we see that structurally similar (corresponding to the
shape of the chromaticity distribution) points are found in
both images. Pairs of correspondences found by RAN-
SAC [2] matching are also shown (as the lines joining the
ASIFT points in the two distributions). Among other popu-
lar feature point matching algorithms, such as SIFT [20],
MSER [49], SURF [50], and Harris corner feature [51], we
found ASIFT delivers the best chromaticity matching result.

The result of solving for the homography relating
matched points is shown in the chromaticity diagram
shown bottom left of Fig. 2b. There the green distribu-
tion shows the chromaticities of image /> and in purple
the homographically transformed chromaticities from
image [;. The distributions, and so the images, match.
The result of applying the best homography relating the
distributions for images I; and I3 (based on the matched
points shown in the bottom of Fig. 3), does not match
the chromaticity distributions (see bottom right, Fig. 2b).
We can conclude that the object in image /; does not
match the object in image I5.

While there are many ways of matching color distribu-
tions we found that a simple structural match score—a mea-
sure of how well a homography matches ASIFT points—
provided a powerful way to determine whether one chro-
maticity distribution matched another. Suppose ASIFT
returned N and M points of interests from a pair of chroma-
ticity distributions and that (via RANSAC) we found that
we could match m pairs of points by finding the best
homography. Then, our structural match is defined as

structural_match = L. (10)

vVMN

A structural match score of 1 means all ASIFT points found
in both chromaticity distributions are, placed in correspon-
dence, a homography apart. Section 4.2 shows an applica-
tion of object recognition which adopts this structural
match score as a measure of image similarity. Later we will
see that the number of ASIFT points extracted from a chro-
maticity distribution—which we call its structural complex-
ity—can be used to predict whether a homography-based
distribution match will, in fact, be possible.
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TABLE 1
Errors for Color Correction (X-Rite Classic Color Checker)
Method Mean Median 95% Max
AE (Lab)
Least-Squares 6.16 5.67 12.27 13.83
Root-Polynomial 5.67 4.67 14.60 16.97
ALS 3.71 3.27 8.24 9.02
Homography 3.40 2.59 9.20 10.28
AE (Luv)
Least-Squares 7.02 6.63 14.23 15.55
Root-Polynomial 6.69 5.46 16.88 19.19
ALS 4.17 3.70 8.93 9.89
Homography 3.88 2.97 9.97 10.76
AE RGB (x1072)
Least-Squares 7.58 6.34 19.07 30.11
Root-Polynomial 9.07 7.21 24.72 30.60
ALS 4.36 3.16 14.01 26.05
Homography 4.01 2.82 14.62 24.44

It is known that ASIFT is about 13.5 times the cost of
SIFT [21]. Importantly, efficient implementations of SIFT
exist including in real-time on mobile devices. Also, in gen-
eral SIFT operates on large (> 1 megapixel) images. In con-
trast, though we use the more expensive ASIFT to match
thumbnail images: our “images” are small: chromaticity dis-
tribution that have just 320 x 320 bins. Thus, despite the 13.5
x cost multiplier compared to SIFT, the cost of ASIFT in
matching chromaticity distributions is similar to running
SIFT on full size images.

4 EXPERIMENTS

4.1 Color Correction
4.1.1  Color Correction Using a Color Chart

In color correction—mapping RAW RGBs to a display color
space—the target RGBs are known to vary in intensity.
Indeed, serious photographers will take a picture of a color
target (such as the Macbeth color checker [52] shown in
Fig. 2a) and a second picture of a uniform gray target with
same size in the same location. By dividing the RGB image
of the checker by the image of the gray-target the shading is
removed and then the shading corrected RGBs can be
mapped to known reference display color coordinates using
simple least-squares. However, in computer vision, and
even for the vast majority of photographers, this two-step
approach to calibration is rarely taken (e.g., see [11], [12]). If
nothing else it is invasive and in some cases cannot be done
at all (e.g., in an on-going surveillance situation). However,
the photographic “best practice” allows us to measure use-
ful data to evaluate homography versus linear least-squares
color correction. We can find the best least-squares 3 x 3
matrix mapping the non-shading corrected checker to a ref-
erence target and then apply this matrix to the shading
corrected target. Or, we transform the target using a homog-
raphy. This experimental methodology is described in detail
in [13].

Because the display RGBs are measured in coordinates
relevant to human vision, e.g., SRGB [10], the color error can
be converted to the CIE Lab, CIE Luv, RGB error metrics.
The CIE formulas [29] return a AE error of 1 if two patches

VOL. 41,

NO. 1, JANUARY 2019

Fig. 4. Two example images with non-uniformly shading used for color
correction test.

are just discernible from each other. The AE RGB error
between two RGB vectors p and ¢ is calculated as ||p — q||.
Similarly, AE in Table 1 is also for the Luv and Lab repre-
sentations. In Fig. 2a, we show the RAW and rendered
(JPEG) images of one of our images. Two examples contain-
ing outdoor and indoor lighting conditions for our color
correction evaluation are shown in Fig. 4. In total, we cap-
tured 13 images at Norwich cathedral and around the Uni-
versity of East Anglia campus. Our image set contains both
indoor and outdoor illumination. To calculate the best
homography we randomly chose 4 matching colors (accord-
ing to the known correspondences) and using RANSAC,
chose the homography that minimized correction error (AE
Luv). The mean, median, 95 percent quantile and max AE
errors calculated over the 13 images are reported in Table 1
where we compare performance to simple least-squares,
root-polynomial [53], and ALS [14] (which is shown to be
improved on [13]). Compared with the ALS color correction,
all mean errors are improved by about 9 percent, and all
median errors are improved by about 21 percent, at the cost
of getting a slightly higher 95 percent quantile error and
maximum error (except for RGB metric). Compared to the
least squares and root-polynomial methods—which are
shading dependent—the advantage of using the homogra-
phy based formalism is quite significant (e.g., the median
errors—for all 3 error metrics—are halved).

4.1.2 Color Correction for Single Color Objects

The solution for a color homography requires at least 4 non-
collinear chromaticities. For a perfect convex-shaped mono-
chrome Lambertian surface viewed under a single light
source, the resulting chromaticity distribution—in the ideal-
ized case—will comprise a single point. However, most
objects are not perfectly Lambertian—there is a highlight
component—and are not convex and so there could be
inter-reflections. Both specular highlights [54], [55] and
inter-reflections [56], [57], [58] lead to the chromaticity dis-
tribution of a single object being more than a single point.
Indeed, in the presence of specular highlights and inter-
reflections we expect a spread of points in 3D RGB space
and a spread (not all collinear) points in chromaticity space.

In columns A and B of Fig. 5 we show, respectively, 4
monochrome objects viewed in 2 viewing conditions (differ-
ent colored light in different positions). In column C we
show, in green, the chromaticity distributions of images in
column A and in pink the chromaticities of the images in B.
Clearly, there is a spread in chromaticities in both viewing
conditions. If we are to match chromaticity distributions by
solving for a homography then it is a necessary condition
that the images (and their chromaticities) in columns A and
B are related by a homography. Using the ALS method (the
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Fig. 5. Given pixel-wise correspondence between Images A and B, a
color homography is solved for to convert Image A to Images D (with
shading correction) and E (without shading). Image F is the worse con-
version result when linear least-squares is adopted. Image C shows the
rg chromaticity spread (Image A in green, Image B in pink).

pixels are in correspondence) we solve for the best 3 x 3
matrix and shading correction that relates the images in col-
umn A to counterparts in column B. Mapping the images in
A with the solved shading and color corrections results in
the fitted images, shown in column D. Visually, the fit is
excellent. In column E we apply just the 3 x 3 homography
matrix (no shading correction) to the inputs from A. Now
we have the object mapped to viewing condition B but the
original shading preserved. Finally, in column F we find a
pixel-wise least-squares fit. Here the wrong 3 x 3 matrix is
found (since it is attempting to best compensate shading
and colour correction in a single matrix).

4.2 Color Object Recognition

The Amsterdam Object Image Database [19] is a large 1,000
object database widely used to benchmark color-based
object recognition. Importantly, each object in the database
has its image captured with respect to 72 rotational views
(range from 0° to 355°, at 5° resolution) and 24 illumination
angles, and 12 illuminant color temperatures (2175K to
3075K). In total the ALOI dataset comprises in excess of
100,000 images. We match objects by matching their under-
lying distributions. Simply, in color-distribution-based
object recognition, if two images have similar underlying
color distributions then this is taken as evidence of a possi-
ble object match.

We wished to evaluate how well homography-based
chromaticity matching would support color-based object
recognition. In our approach we use the ASIFT procedure to
find distinctive points in the chromaticity distributions of
all the images in the database. Then, for each testing condi-
tion (viewing angle, illumination angle or illumination
color), we use a standard reference dataset and use the
remaining images as query images. The standard reference
capture condition is: frontal view (i.e., 0 degree of rotation),
frontally lit and the light has a 3075K yellow color.

We compare the homography-based color object recogni-
tion (H) with Swain’s color indexing algorithm which uses an
rg-chromaticity space [15] (rg), comprehensive color image
normalization [40] (CN) and Gevers and Smeulders’ [41]
mlm2m3 approach. The Comprehensive Normalization and
mlm?2m3 techniques are chosen both because they explicitly
incorporate shading invariance into their formalisms and
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TABLE 2
Average Match Percentile Results for All 1,000 Objects

Test rg mlm2m3 CN H  Hybrid H
Viewing Angle 98.8 95.3 96.8 97.3 97.0
INlumination Angle 92.2 88.3 948 93.8 95.1
Illumination Color 87.3 98.2 98.0 97.2 98.2
Average 92.8 93.9 96.5 96.2 96.8

also they supersede early work (e.g., Comprehensive Nor-
malization delivers better results than aligning chromaticity
distributions by matching their means with a diagonal
matrix [38], [39]).

The recommended bin sizes for rg and CN are 16 x 16.
The recommended bin size for m1m2m3 is 32 x 32 (note the
distribution of these bins is non-linear with the partition
found by a calibration procedure [41]). For our ASIFT-based
chromaticity distribution match, a 320 x 320 histogram is
used. For all methods we assess recognition performance
using the simple Average Match Percentile (AMP). An aver-
age match percentile of 99 percent informs us that the cor-
rect matching answer is in the top 1 percent of matches.

We run the recognition experiment given all 1,000 objects
where, relative to the standard viewing condition, either the
viewing angle, illumination angle or illumination color are
individually varied. As shown in Table 2, the pure homog-
raphy-based chromaticity matching supports the second
best performance for viewing angle and illumination angle
tests. Of course, as alluded to in the color correction section,
to match chromaticity histograms using homographies the
underlying distributions need to have sufficient 2-dimen-
sional structure. Visually, we found that ~ 80% objects in
the ALOI dataset are comprised of objects with 3 or fewer
reflectance colors and we know we need 4 points to solve
for a homography. This said, the overall performance of the
homography-based method is good i.e., it performs well for
many objects with fewer than 3 colors present. Potentially, a
good match remains possible because the effect of specular
highlights and inter-reflection increase the dimensionality
of the RGB signal recorded for a single object (see discussion
at the end Section 4.1.2).

Intrinsic to our ASIFT based matching is the notion of
color structural complexity which is simply defined as the
number ASIFT points found for a given chromaticity distri-
bution. We hypothesize that, empirically, we can find a
threshold of the structural complexity to determine whether
color homography indexing is likely to work (e.g., there is
sufficient structure in the chromaticity distribution to find
matches using homographies in a database).

To test this hypothesis, for the “Illumination Color” test,
in Fig. 6, we plot the percentiles of the structural complexity
(i.e., we rank images according to the number of ASIFT
points found in their chromaticity distributions) and plot
against the corresponding match percentiles. Clearly, there
is a good correlation between the two measures and this
indicates that as structural complexity increases so the
homography-based measure delivers better object recogni-
tion. We find a similar positive correlation for the m1m2m3
and comprehensive normalization approaches.

In this example, assuming we wish to find the correct
match in the top 1 percent of a database we need to use a
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Fig. 6. Plot of color structure complexity percentile and matching percen-
tile. The result is filtered by a moving Gaussian convolution kernel (width =
10 percent of total color structure complexity span, o = 1/6 kernel width).
The dashed line indicates the threshold, over which homography-based
method works better.

threshold structural complexity as defined by the 75th
percentile image. For our test the 75th percentile image and
above have a structural complexity of at least 520 points.
Importantly, notice, that in this top quantile range, the
homography match is better than either the CN and
mlm2m3 methods. Note that a threshold of 75 percent for
the color structural complexity means that only 25 percent
of the query images, can be homographically matched.

Suppose, we seek to match only the chromaticity distri-
butions with 520 or more ASIFT points. We report the
results in Table 3. The percentage shown are the number of
chromaticity distributions in the database that have more
than 520 ASIFT points. Note this is less than 25 percent
(compared to our test in Fig. 6). Because under some illumi-
nation and viewing angles, there are fewer object colors so
fewer ASIFT points. For images whose chromaticity distri-
butions have sufficient structural complexity, the homogra-
phy method delivers better results compared with
competing techniques. In the last column of Table 2, we
show the performance of a Hybrid method (Hybrid H): if
the chromaticity distribution has more than 520 ASIFT
points then homography-based matching is used. Other-
wise, we adopt the CN method. The hybrid method delivers
the best results for the illuminant colour and illumination
angle test conditions and the best result overall.

4.3 Color Transfer

Color transfer is an image editing process that adjusts the
colors of an input image / to match the palette of a target
image J. Instead of adopting often computationally costly
non-linear color mappings (e.g., [59]), we investigate
whether color transfer can also be interpreted as a simple
linear color homography mapping which re-visualizes an
image with respect to real physical scene changes (e.g.,
from summer to autumn) and/or illumination. Our experi-
ment is a continuation of our previous work [60] which is
built on recent research [61]. The recent work [61] has dem-
onstrated that it is possible to find a simple 3D similarity
transform to linearly approximate some of the effects of
color transfer.

There are three important reasons for visualizing color
transfer as possibly being a color homography. First, if true,
it would indicate a surprising result. Specifically, color
transfer, though defined quite generally, tends to generate
images which have a real-world physical interpretation.
Second, the homography formulation is simpler compared
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TABLE 3
Average Match Percentile Results for Query Image
with Color Structure Complexity

Test rg  mlm2m3 CN H
Viewing Angle (12%) 98.6 94.8 96.3 974
Ilumination Angle (19.4%)  91.5 90.1 948 96.3
Ilumination Color (24.4%)  92.1 9.1 99.3  99.5
Average 93.4 94.3 9%.4 977

Numbers in bracket indicate percentage of color-homography-compatible
queries.

with some of the transfer algorithms. This simplicity
means that spatial artifacts are less likely to be introduced
(a fact borne out by our experiments). Lastly, the homog-
raphy calculation is fast. As we will show below, we can
calculate an expensive color transfer on a thumbnail, cal-
culate the homography and then apply the result to a full
resolution image.

We start with the color transfer output Image O and try
to approximate its color transfer result by color homogra-
phy. An example is shown in Fig. 2c where Image O’ is the
color transfer approximation result. In the discussion that
follows it is useful to think of the image I (or O) being a sim-
ple n x 3 matrix of RGB pixels, which can be reconstituted
into an image grid for display purposes. Mathematically,
we write

O =H(I,0) = O. (11)
To solve Equation (11) using our ALS algorithm, we respec-
tively convert the images I and O images to the correspond-
ing n x 3 matrices A and B. Further, the ALS computed
output DAH mapped back to an image is denoted O'. Here,
the homography matrix H can be understood as a global
chromaticity shift and distortion, the matrix D can be inter-
preted as shading change factors which simulate the change
of surface reflectance or position of illuminant.

The visual results of color transfer approximations of
four color transfer methods [18], [62], [63], [64] are shown in
Fig. 7. In our experiments, the number of ALS iterations is
set as 10. As can be seen, the global 3D Similarity map-
ping [61] does not perfectly reproduce the shading adjust-
ments of color transfer. Our homography-based method
offers a closer color transfer approximation.

We can also quantify this visual closeness by calculating
the error between the color transfer approximation result
and the original color transfer result. We adopt three error
metrics:

PSNR (Peak Signal-to-Noise Ratio). PSNR 1is the ratio
between the maximum possible value (power) of a signal
and the power of distorting noise that affects the quality of
its representation. Acceptable values for wireless image
transmission quality loss are considered to be over 20
dB [65].

SSIM (Structural SIMilarity) [66]. SSIM is a model that
considers image degradation as perceived change in struc-
tural information. SSIM can be used to assess the artifacts of
color transfer. A SSIM value “1” indicates a perfect match.

HI (Histogram Intersection) of ¥rgb Chromaticities. This is a
score for measuring the similarity between two rgb
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Fig. 7. Visual result of color transfer approximations (in the order of [18], [62], [63], [64]). The images in Column 4 (Homography) are generally more

similar to those in Column 2 than those shown in Column 3 (3D Similarity).

chromaticity distributions, which is also shading-indepen-
dent. A similarity score “1” indicates a perfect match.

We show the average color transfer approximation result
in Table 4 (see the supplementary material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/ TPAMI.2017.2760833
for the complete table and their visual results). The quanti-
tative test is based on 7 classic color transfer image pairs
and 4 color transfer methods [18], [62], [63], [64]. Our color
homography transfer produces the best results overall for
the PSNR and SSIM tests. For the chromaticity mapping test
(HI), our color homography approximation performs better
for Pouli and Reinhard [63], [64].

We note that both the PSNR and SSIM metrics operate on
the images output from our method. But, the histogram
intersections are on the chromaticities of the original and
matched images. The chromaticity mapping takes all RGBs
and scales them so they sum to 1. This has a dramatic effect

TABLE 4
Errors of Color Transfer Approximation

Ngu. [18] Pitie [62] Pouli [63] Rein. [64]
PSNR (Peak Signal-to-Noise Ratio)

3D Similarity [61] ~ 26.85 26.04 26.92 28.49

Homography 34.05 31.91 37.28 36.31
SSIM (Structural SIMilarity)

3D Similarity [61] 0.91 0.85 0.84 0.88

Homography 0.94 0.91 0.97 0.98
HI (Histogram Intersection)

3D Similarity [61] 0.87 0.75 0.75 0.81

Homography 0.78 0.71 0.76 0.87

especially for dark pixel values. Yet, these values are pre-
cisely those that are de-weighted in the ALS method (which
operates by least-squares). They are also the pixels in the
image that we cannot see.

To reduce the computational cost, it is also possible to
estimate the shading homography (i.e., H and D) from the
down-sampled images. In addition to the original ALS, we
also upsample the smaller shading matrix returned by ALS
(from the downsampled input images) by using Joint Bilat-
eral Upsampling [67] (guided by the chromaticity-trans-
ferred result AH). We find that image down-sampling
barely affects the color homography mapping quality. In
Fig. 8, we show an example corresponding to the result of
Row 1, Fig. 7. This can be useful because we can run a com-
putationally costly color transfer algorithm on thumbnail
images, extract the color transfer effect from the down-
sampled results, and apply the extracted effect to a full-reso-
lution source image. For some computationally costly color
transfer algorithms (e.g., [18], [62], [63]), this offers a similar

Original Approximation ~ 50% Downsampling 2-4 Downsampling

PSNR: 32.68; SSIM: 0.96; HI: .88 PSNR: 32.49; SSIM: 0.96; HI: 0.88 | | PSNR: 32.43; SS1M: 0.96; HI: 0.38

Fig. 8. Color transfer approximation for [18] from downsampled images.
The sizes of source images and target images (i.e.,  and J) are reduced
by the corresponding factors. The original color transfer (MATLAB) takes
about 3.630s. The 3 evaluation measurements and the total estimation
time with down-sampling are shown over the images. As it is shown,
image down-sampling barely affects the color transfer approximation
quality. And, it takes less time to color transfer an image by using our
down-sampling trick.


http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2760833
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2760833

30 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41,

P 1

-S‘éuf‘qe'_jlmage

— )

Original Color Transfer

»

- []

Shading Smoothing

Direct RGB Smoothing

Fig. 9. Color transfer enhancement. A source image is color transferred
by [63] with some noticeable imperfections (on the clouds). This issue is
fixed by approximating the original color transfer effect with a shading-
smoothed shading homography. Visually, the enhanced result also pre-
serves more texture details compared with the result obtained by directly
smoothing the original approximation RGB.

quality color transfer result but requires a reduced amount
of processing time.

Color homography is also useful for color transfer
enhancement. Fig. 9 shows an example where the original
color transfer result contains some obvious artifacts. These
artifacts are usually caused by sharp image gradient
changes. Since a color homography transform barely modi-
fies the original image gradient, the decomposed shading
component absorbs most of the artifacts (e.g., original shad-
ing in Fig. 9). By spatially smoothing the original noisy
shading component with a bilateral filter [68], we can
remove the gradient artifacts in the shading component
(e.g., smoothed shading in Fig. 9). The original color transfer
result is improved by applying the modified shading
homography (i.e., original color homography + smoothed
shading).

When we proved the Unigueness theorem—that the ALS
procedure could be used to find the homography for the 4
point case—we introduced the idea of perturbing the data
to find the unique homography. The data was perturbed
when, albeit very rarely, the ALS procedure did not con-
verge to the unique homography (see discussion after the
proof of Theorem 2 in Section 3). For the color transfer prob-
lem we explored perturbing the input image by a random
homography to investigate whether, overall, a better color
transfer (a better fit) is found. We did not find that this was
the case. This result is perhaps not surprising since for the 4
point case when the ALS procedure converged to the wrong
answer the fitting error was, empirically, very good (typi-
cally less than 1 percent).

5 RAW VERSUS RENDERED IMAGES

That a color homography is a tool for describing color
change across viewing conditions appears, at first glance, to
hold only for RAW linear images. Empirically, our work on
color transfer also indicates we can apply the homography
method to non-linear (rendered) images. An example of
RAW-to-rendered mapping approximation by our shading
homography is shown in Fig. 10 where the approximation
result is visually close to the rendered—actual camera out-
put—image where the RAW and rendered pair is drawn
from the Middlebury dataset [69]. But, why should a shad-
ing homography relate a RAW input to a camera output?
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Fig. 10. RAW-to-JPEG Approximation. Left: The non-linear mapping
from a RAW image to its rendered camera output image can be well
approximated by a shading homography. Right: RMSE between estima-
tion and ground truth using our shading homography model of the 24
RAW-capable cameras in the Middlebury dataset [69].

To a first approximation that an n x 3 matrix of pixels, 4,
are captured under RAW (i.e., linear conditions) and that a
corresponding sRGB image B, to a tolerable approxima-
tion [70]—for real cameras—can be represented as

B~ f(AH), (12)

where H is a 3 x 3 matrix and f() is monotonically increas-
ing function (a camera curve). This formalism is similar to
the homography formalism. Indeed the form of f is far from
arbitrary. If Q,T = a; H (the color corrected jth pixel value),
then one of the requirements for f() is that

f(b;) = v,b;, (13)
where y; is a scale factor. That is, the function f() changes
the magnitude of the vector but not its direction. If this was
not the case then, as the same object is seen at different
brightness levels in the same image, its color will change
significantly. If we map RAW to rendered using a homgra-
phy then

f(bj) = J/jbj- (14)

In [69], for a series of 24 cameras, several RAW and sRGB
images (with intensities in [0, 255], for different illuminants),
of a 140 patch Macbeth SG color checker are captured.
Chakrabarti et al. analyzed the RMSE error between the pre-
dicted sSRGB images and those actually recorded where f()
in Equation (12) is a monotonically increasing 5th order
polynomial. We repeat the same experiment for our homog-
raphy-based approach and RMSE errors are reported in
Fig. 10 where for convenience we sort the cameras from
lowest to highest error. The reader is referred to Fig. 4 in
[69] for comparison.

Broadly, the errors we found by homography fitting are
on the same order as those found in the antecedent
work [69]. However, some camera data is fit with lower
error (e.g., the Canon Powershot P1 has a mean RMSE of 7.1
for the homography-based method but 12 using [69]). In
contrast for the Olympus E500, the homography error is
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larger (6.9 compared with 2). However, overall the range of
fitting error of the homography based method and [69] is
about the same (both have an overall RMSE of ~ 5).

6 CONCLUSION

In this paper, we demonstrated the surprising result that
colors across a change in viewing condition (changing light
color, shading and camera) are well related by a homogra-
phy. We apply color homographies to color correction
(mapping RAW RGBs to display counterparts), color object
recognition and color transfer. Our homography-based
color correction algorithm delivers improved color fidelity
compared with the state-of-the-art. Matching chromaticity
distributions using homographies delivers leading color-
based object recognition. Re-interpreting color transfer as
color homography mapping inspires a new direction for
natural color transfer algorithm development.

APPENDIX A
NUMERICAL ALS CONVERGENCE TO THE WRONG
ANSWER

The matrices A and B defined below are—when rows are
interpreted as “rays” as a consequence of the Planar
Homography theorem [2]—a homography apart. Equiva-
lently, there exists a 4 x 4 diagonal matrix D and a 3 x 3 lin-
ear transform H such that B = DAH. Suppose,

5 5 8 7 76 96
6 9 2 107 82 71

A= 1 7 3 B= 531 270 423 (15)
4 7 10 87 74 111

Let us find a matrix K = DAH ~ Busing ALS to find D and
H. On convergence, to 2 decimal places, we find K

7831 76.23 96.41
109.33  56.28  85.89

K= 532.63 276.44 421.57 (16)
8§7.37 73.94 111.62

The % error (||K — BJ|/||B||) between K and B is almost 4
percent. According to our Theorem 2, when we converge to
the wrong answer the null-space vector of B — K should be
sparse (1, 2, or 3 of the elements should be non-zero but not
all 4). For this example, the unit length vector v which is
orthogonal to A — B, again to 2 decimal places is: v=
[—0.74 0 0 0.68]" (as a numerical check, v" (A — B) =
[0 0 0], to2decimal places).

APPENDIX B
CLOSED-FORM HOMOGRAPHY

Here we present a new closed form solution for solving for
the Homography matrix A that maps 4 points in one view
to corresponding points in a second view. Let us denote the
paired matching points in the 4 x 2 matrices A and B (the x
and y coordinates are in the first two columns). Moving to
homogeneous coordinates—we add a vector of 1’s to each
matrix—to make 4 x 3 matrices A and B. Let the operator
diag(v) return a diagonal matrix with components of v
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along its diagonal. Let M;.3; denote the first 3 rows of a
matrix and that M, is the kth row vector.

Theorem 3 (Closed-Form Homography). The Homography
matrix H relating the 4 x 3 matrices A and B (for the 4 x 2
matched A and 1B, where no three points in either matrix are
collinear) can be written in closed-form as: H = [A];g]ildiag
(A4[A1;3]71)71diag(B4[BL3]71)BLg.

Proof. From the non-collinearity assumption A;.3 and B3
are full rank 3 x 3 invertible matrices. We define X:

X =AlA5] 7" = [A4[/11;:3]1]

Xdlag(A4 [Alg] _1)_1 dlag(B4 [BIJ] _1)

_ diag(A4[Ars) ") diag(Bi[Bis] )
Bi[Bis] ™" '

Let D denote a 4 x 4 diagonal matrix such that the upper
left 3 x 3 sub-matrix (first 3 rows and columns) is

diag(By[B3] ") 'diag(As[A1s] "),

and the 4th component along the diagonal of D is 1. We
define Y’

Y = DXdiag(A4[A15]"") " diag(By[Bis] )

B {34[311:3}_1}’

which follows that YB;.3 = Bi.e., the matrix B. Substitute
for Y and X and post-multiply by B .3, we can write

A[A1:3]71diag(A4[A1:3]71)71diag(B4[Bltg]71)BL3 = DB.

Dividing by the first two columns of DB by the third we
end up with the original point set 5. O
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