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Abstract—In order to solve large-scale lasso problems, screening algorithms have been developed that discard features with zero

coefficients based on a computationally efficient screening rule. Most existing screening rules were developed from a spherical

constraint and half-space constraints on a dual optimal solution. However, existing rules admit at most two half-space constraints due

to the computational cost incurred by the half-spaces, even though additional constraints may be useful to discard more features. In

this paper, we present AdaScreen, an adaptive lasso screening rule ensemble, which allows to combine any one sphere with multiple

half-space constraints on a dual optimal solution. Thanks to geometrical considerations that lead to a simple closed form solution for

AdaScreen, we can incorporate multiple half-space constraints at small computational cost. In our experiments, we show that

AdaScreen with multiple half-space constraints simultaneously improves screening performance and speeds up lasso solvers.

Index Terms—Lasso, screening rule, ensemble

Ç

1 INTRODUCTION

IN modern applications of machine learning, data sets with
a large number of features are common. Examples include

human genomes [3], gene expression measurements [6],
spam data [28], and social media data [13]. Given such data,
one of the fundamental challenges inmachine learning is fea-
ture selection, that is, given input features (e.g., genetic var-
iants) and an output variable to predict (e.g., disease status),
select a subset of the input features that is relevant to the
output. Among the many feature selection techniques, the
lasso [22] has been very successful at solving the feature
selection problem under the assumption that most features
are irrelevant to the output [22]. However, solving the lasso
problems on very high dimensional data (e.g., billions of fea-
tures) still remains a computational challenge. In other
words, either it takes too long to solve such big lasso prob-
lems, or the input data are too large to store inmemory.

To address the computational problem, researchers have
developed screening algorithms that can be used as a pre-
processing step to efficiently discard features irrelevant to
the output from the lasso model. The key idea is that after
the screening step the input feature set is reduced, and we
can use any lasso solver to solve the lasso problem on the
reduced set. If the screening can be performed efficiently,
and the resulting reduced feature set is small enough, we
can obtain a lasso solution efficiently. Existing screening

rules include the safe feature elimination (SAFE) rule [7],
the sphere tests [31], the strong rule [23], the dome test [26],
[29], efficient dual polytope projection (EDPP) rule [25], the
two hyperplane test [27], the Sasvi rule [16], safe rules for
the lasso [11], and GAP Safe screening rules for sparse
multi-task and multi-class models [19]. Except for the strong
rule, all screening rules are safe (i.e., features discarded by
screening are guaranteed to be excluded in an optimal lasso
solution). Recently, screening rules for graphical lasso [18]
and L1 logistic regression have been developed [24]; further,
Bonnefoy et al. [1] proposed a dynamic screening, where
features are discarded in every iteration of an optimization
algorithm if a certain condition is met. In this paper, we
limit ourselves to lasso screening algorithms used before
applying the optimization algorithms. A summary of exist-
ing lasso screening rules is shown in Table 1.

We note that the screening algorithms described in this
paper are different from sure-screening algorithms [8], [9],
[10], which, instead of discarding features with zero coeffi-
cients in a global optimal solution of the lasso problem,
aims at discarding features irrelevant to the output (features
uninvolved in the true model). Also, consistency of the lasso
model [33] is beyond the scope of this paper.

While screening techniques have been successful in
enabling us to solve big lasso problems efficiently, they
become ineffective in discarding irrelevant features as lasso
optimal solutions become non-sparse. The reason for this
degradation is that most screening methods rely on finding
a region containing the optimal solution that is as small as
possible. For a non-sparse optimal solution such a region
typically is difficult to estimate, resulting in low screening
efficiency. One can incorporate multiple half-space con-
straints into a screening rule to mitigate the problem, but
for existing screening algorithms the advantage of this is
substantially reduced due the increased amount of compu-
tation needed to evaluate the screening rule.

In this paper, we present an adaptive screening rule
ensemble for the lasso, referred to as AdaScreen. We first
propose an adaptive screening rule ensemble that can
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include any one sphere and multiple half-space constraints
on a dual optimal solution (it is adaptive in the sense that
any constraints can be chosen). Then we derive a closed-
form solution for AdaScreen, which allows us to efficiently
evaluate multiple half-space constraints. The contributions
of this paper are as follows: (1) We provide an adaptive
screening rule ensemble with an efficient closed-form solu-
tion; and (2) we provide several instances of AdaScreen
with different choices of constraints on a dual optimal solu-
tion. We note that AdaScreen offers a framework to combine
multiple screening rules, rather than a novel screening rule.
In our experiments, we confirm that AdaScreen can incor-
porate any sphere and any multiple half-space constraints,
each resulting in novel screening rules. Furthermore, across
a range of datasets we show that AdaScreen with multiple
half-spaces can reject significantly more features with zero
coefficients than existing screening rules. Note that
AdaScreen is the first screening framework that allows us to
improve screening performance, taking advantage of multi-
ple half-space constraints. While in principle any half-space
constraints could be used to achieve a computational speed-
up, AdaScreen leads to safe screening iff all constraints are
derived from safe screening rules. We further experimen-
tally confirmed that the proposed screening rules are safe.

Notations. In the following, upper case letters denote
matrices, boldface lowercase letters denote vectors, and
italic lowercase letters denote scalars. Subscript denotes col-
umn index of matrices or element index of vectors. A super-
script asterisk (*) denotes an optimal solution.

2 BACKGROUND: LASSO SCREENING

The lasso [22] is defined as a linear regression from a set of J
feature vectors fxjgJj¼1 to a target vector y 2 RN , where N is
the sample size, with a squared loss and L1 norm penalty

min
bb

1

2
y� Xbbk k22þ� bbk k1; (1)

where X 2 RN�J is a design matrix, where each column rep-
resents a feature, bb 2 RJ is a regression coefficient vector,
and the regularization parameter � controls the sparsity of
bb. Lasso screening rules aim at discarding features with
zero coefficients at a global optimal solution by computing
simple, computationally inexpensive tests for each feature.

We can obtain a screening rule from a Lagrangian of the
lasso problem in (1) [25], given by

Lðbb; uu; zÞ ¼ 1

2
zk k22þ� bbk k1þ�uuT ðy� Xbb� zÞ; (2)

where uu is a dual variable. By introducing an auxiliary vari-
able z ¼ y� Xbb, we can obtain (2) from (1) using the
method of Lagrange multipliers [2]. Taking a subgradient of
(2) with respect to bj, we get xTj uu

� ¼ sj, where sj is a subgra-
dient of the L1 norm, defined by: if bj 6¼ 0, sj ¼ signðbjÞ;
otherwise, sj 2 ½�1; 1�. Based on this, we can derive a
screening rule

b�j ð�Þ ¼ 0 if xTj uu
�ð�Þ

��� ��� < 1: (3)

However, use of (3) is impractical because uu�ð�Þ is
unknown. Instead, we estimate the region where uu�ð�Þ
exists, denoted by uu�ð�Þ 2 QQ, and then, use the following
rule to identify zero coefficients

b�j ð�Þ ¼ 0 if supuu2QQ xTj uu
��� ��� < 1: (4)

From (4), we can see that screening rules can be developed
by finding QQ and a solution for supuu2QQjxTj uuj. Furthermore,
screening efficiency (i.e., the proportion of rejected features
to all features) increases as the size of QQ decreases, making
the left-hand side in (4) smaller. Screening time increases as
the time to solve supuu2QQjxTj uuj increases; thus, a closed-form
solution is desirable.

2.1 Screening via Dual Polytope Projection

So far, we have shown how screening rules are developed in
general. In this section, we review dual polytope projection
(DPP) screening [25]. Screening rules are derived from a
dual form of the lasso (See [25])

sup
uu

1

2
yk k22�

�2

2
uu � y

�

��� ���2
2
: xTj uu
��� ��� � 1; 8j

� �
; (5)

where uu is the dual variable. The optimal parameters in the
primal (1) and the dual (5) are related via uu�ð�Þ ¼
y�Xbb�ð�Þ

� [25], where we have made the dependence on the
regularization parameter explicit. Furthermore, in (5), a
dual optimal solution uu� can be found by projecting y

� onto

TABLE 1
Summary of Lasso Screening Algorithms with Their Sphere and Half-Space Constraints (Seq. Column Shows Whether Sequential

Screening Is Supported or Not)

Algorithm Sphere Const. (center) Sphere Const. (radius) Half-space Const. Reference Seq.

Sasvi 1
2 fy�þ uu�ð�0Þg 1

2 k Xbb
�ð�0Þ
�0
þ ðy�� y

�0
Þk2 huu�ð�0Þ � y

�0
; uuð�Þ � uu�ð�0Þi � 0 [16] Yes

Two hyperplane test adaptive adaptive adaptive up to two half-space const. [30] Yes

EDPP uu�ð�0Þ þ 1
2 v
?
2 ð�; �0Þ 1

2 kv?2 ð�; �0Þk2 (see Sec. 2.1) None [25] Yes

DOME uu�ð�maxÞ kyk2ð1�� 1
�max
Þ xT� uuð�Þ � 1, x� ¼ argmaxx2f	xjg x

Ty [26], [29] Yes

Strong rule uu�ð�0Þ 2ð1� �
�0
Þ None [23] Yes

Sphere test uu�ð�maxÞ � ð�max
� � 1Þx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kyk22
�2max
� 1

r
ð�max

� � 1Þ xT� uuð�Þ � 1, x� ¼ argmaxx2f	xjg x
Ty [31] No

SAFE rule uu�ð�maxÞ kyk2ð1�� 1
�max
Þ None [7] No

AdaScreen adaptive adaptive adaptive up toK half-space const. ours Yes
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the constraints C ¼ fjxTj uuj � 1; j ¼ 1; . . . ; Jg. In other words,
uu� is the vector closest to y

�, which satisfies C because it mini-
mizes the objective function in (5) while satisfying all the
constraints. We represent this projection as PC

y
�

� �
, where

the projection operator is defined as

PC wð Þ ¼ argmin
uu2C

uu �wk k2:

In DPP, the QQ in (4) is obtained using the
“nonexpansiveness” property of the projection operator
PCð
Þ [17]

PCðw2Þ � PCðw1Þk k2� w2 �w1k k2; 8w1;w2: (6)

Using (6), a range of uu�ð�Þ 2 QQ can be estimated by

uu�ð�Þ � uu�ð�0Þk k2 ¼ PC
y

�

	 

� PC

y

�0

� �����
����
2

� 1

�
� 1

�0

����
���� yk k2;

(7)

where we used the fact that uu�ð�Þ ¼ PCðy�Þ and uu�ð�0Þ ¼
PCð y�0Þ. Let us now assume that � < �0 and uu�ð�0Þ are
given, which shall be discussed in Section 2.2.

This provides us a region that contains uu�ð�Þ, that is,
QQ ¼ Bðo; rÞ, which represents a sphere centered at o with
radius r, where o ¼ uu�ð�0Þ and r ¼ 1

�� 1
�0

��� ��� yk k2 from (7).
Further, using the spherical region QQ ¼ Bðo; rÞ, uu�ð�Þ can be
represented as

uu�ð�Þ ¼ oþ v; (8)

where vk k2� r. Using (3) and (8), we can derive a basic DPP
lasso screening rule as follows:

xTj uu
�ð�Þ

��� ��� � xTj uu
�ð�0Þ

��� ���þ xTj v
��� ��� < 1; and (9)

xTj uu
�ð�0Þ

��� ��� < 1� xj
�� ��

2
r; (10)

where we used jxTj vj � kxjk2kvk2 � kxjk2r by the Cauchy-
Schwarz inequality.

Different screening rules use differently estimated
regions for QQ. Based on DPP, Wang et al. [25] developed
enhanced DPP (EDPP) that achieves a smaller QQ than
that of DPP via projections of rays and the “firmly non-
expansiveness property” of the projection operator PCð
Þ.
Specifically, EDPP uses a spherical region QQ ¼ Bðo; rÞ,
where

o ¼ uu�ð�0Þ þ 1

2
v?2 ð�; �0Þ & r ¼ 1

2
v?2 ð�; �0Þ

�� ��
2
; (11)

where v?2 ð�; �0Þ ¼ v2ð�; �0Þ � v1ð�0Þ;v2ð�;�0Þh i
v1ð�0Þk k22

v1ð�0Þ, and v1ð�0Þ
and v2ð�; �0Þ are defined by

v1ð�0Þ ¼
y
�0
� uu�ð�0Þ; if �0 2 ð0; �maxÞ

signðxT� yÞx�; if �0 ¼ �max

(
(12)

v2ð�; �0Þ ¼ y

�
� uu�ð�0Þ; (13)

where x� ¼ argmaxxj
jxTj yj. In comparison to DPP, EDPP

uses smaller r, yielding more efficient screening. We refer
readers to [25] for the details of EDPP.

2.2 One-Shot and Sequential Screening

Here we describe how screening rules are used in two dif-
ferent scenarios: the first is one-shot screening, and the sec-
ond is sequential screening. One-shot screening is for when
we want to solve lasso problems for a single � parameter. In
sequential screening, we want to solve lasso problems for a
given sequence of � parameters in descending order,
L ¼ f�1; . . . ; �Tg. Typically, �1 ¼ �max, where �max is the
smallest � that sets bb�ð�maxÞ ¼ 0. In this setting, we discard
features based on a screening rule for �t given bb�t�1 ðt � 2Þ
and then run a lasso solver on the unscreened features,
resulting in bb�t . Subsequently, based on bb�t , we keep iterating
screening and the lasso solver until the lasso solution for
desired � is achieved. It is called sequential screening due
to its sequential nature. Throughout this paper, we assume
a sequential screening setting; thus we denote �0 by the pre-
vious � parameter (i.e., �0 � �t�1) and � by the current one
(i.e., � � �t). Note that one-shot screening can be easily
obtained by setting �0 � �max.

It is well known that screening efficiency degrades as the
gap between � and �0 increases [25]. Thus, when desired � is
small, sequential screening is more appropriate than the
one-shot version because it may include intermediate
parameters between �max and �. However, even sequential
screening becomes more ineffective as the lasso solution
becomes dense. This phenomenon can be explained as fol-
lows. Suppose that we solve lasso problems with a sequence
of geometrically spaced � parameters, that is, � ¼ a�0, where
0 < a < 1. Then for both DPP and EDPP, as �0 decreases, r
increases. For DPP, r ¼ kykj 1�� 1

�0
j ¼ kyk 1�a

a
j 1�0; for EDPP,

r ¼ kykj 1�� r
�0
j þ uu�ðr� 1Þ ¼ kykj 1�ar

a
j 1�0 þ uu�ðr� 1Þ, where

r ¼ v1ð�0Þ;v2ð�;�0Þh i
v1ð�0Þk k22

. Obviously, as the sphere radius of r

increases, the screening efficiency degrades. The same argu-
ment can be applied to linearly or logarithmically spaced �
sequences. Note that other screening rules have the same
issue because they also rely on the spherical region contain-
ing uu�ð�Þwith the radius of r (see Table 1).

3 ADASCREEN: ADAPTIVE LASSO SCREENING

RULE ENSEMBLE

In this section, to improve the screening efficiency for small
� parameters, we present AdaScreen, an adaptive form of
lasso screening that can take any one sphere constraint, and
any multiple half-space constraints on uu�ð�Þ. Note that
AdaScreen can also be viewed as a general lasso screening
framework, which can be instantiated with any sphere and
half-space constraints; the whole space of AdaScreen
remains to be explored.

Recall that lasso screening rules are derived based on the
estimation of the region QQ that includes a dual optimal solu-
tion uu�ð�Þ. Given a sphere constraint uu�ð�Þ � ok k � r, one can
represent uu�ð�Þ ¼ oþ v, where o is a fixed center of a sphere,
and v is a free vector with vk k � r. Furthermore,K half-space
constraints on uu�ð�Þ are represented by aTk uu

�ð�Þ � bk or
aTk ðoþ vÞ � bk, k ¼ 1; . . .K. Nowwepropose AdaScreen
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b�j ð�Þ ¼ 0 if maxðSþj ; S�j Þ < 1; (14)

where Sþj and S�j are defined by

Sþj � xTj oþ sup
v: vk k2�r; faTk ðoþvÞ�bkg2D

xTj v ; and

S�j � �xTj oþ sup
v: vk k2�r; faTk ðoþvÞ�bkg2D

� xTj v :
(15)

HereD is a set of user-defined half-space constraints on uu�ð�Þ.
One can easily see that AdaScreen is derived as follows:

xTj uu
�ð�Þ

��� ��� < 1, sup
v: vk k2�r; faTk ðoþvÞg�bk2D

xTj ðoþ vÞ
��� ��� < 1

, sup
v: vk k2�r; faTk ðoþvÞg�bk2D

max xTj ðoþ vÞ;�xTj ðoþ vÞ
n o

<1

,max Sþj ; S
�
j

	 

< 1:

Note that Sþj and S�j can be solved in the same way except
that we replace xj by�xj. Thus, without loss of generality, we
restrict the presentation to a closed-form solution for Sþj only.

AdaScreen has the following unique properties: first, one
can incorporate any sphere or half-space constraints into (15),
resulting in a new lasso screening rule. Second, AdaScreen
directly estimates supxTj v (or sup�xTj v) for achieving a better
boundwithout resorting to only the Cauchy Schwarz inequal-
ity. Both help us achieve a better screening rule. The former
makes QQ smaller by allowing us to add more constraints; the
latter gives us a smaller feasible region for a half-space con-
straint considering the angle between xj and v. We start with
a closed-form solution for AdaScreen with a single half-space
constraint in D and a single sphere constraint. Then, we will
extend it to the case for multiple half-space constraints, fol-
lowed by the discussion on the choice of the constraints.
AdaScreen is summarized inAlgorithm 2.

3.1 Closed-form Solution with One Sphere and One
Half-Space Constraint

To efficiently compute Sþj , we first derive a closed-form
solution given one sphere and one half-space constraint. In
fact, Sasvi [16] derived a closed-form solution for the same
problem when one sphere and one half-space come from
variational inequality constraints. Here we seek a different
closed-form solution based on geometry, which satisfies the
following requirements. First, we need a general solution

that allows any sphere and any half-space constraints; sec-
ond, we need a solution that admits additional half-space
constraints with negligible computational overhead.

In Sþj , x
T
j o is a constant, thus solving Sþj boils down to

optimizing the following problem:

max
v

xTj v

subject to aTk oþ aTk v � bk;

vk k2� r:

(16)

Here we assume that (16) includes a non-empty feasible
region. A sphere constraint can be provided by any existing
screening methods such as EDPP, and the candidate half-
space constraints shall be discussed in Section 3.3.

One can view (16) as the problem of finding a hyperplane
xTj v ¼ z with the maximum of z such that two constraints in
(16) are satisfied. Since xTj v is linear in v, its maximum can
be obtained in the following two extreme cases: (1) xTj v ¼ z
is tangent to the sphere vk k2� r at the contact; (2) xTj v ¼ z
meets the intersection between the half-space and the
sphere. Below, we show that for all cases, a solution is given
by the following closed-form

sup
v: vk k�r; aT

k
oþaT

k
v�bk

xTj v ¼ xj
�� ��

2
r0; (17)

where r0 is a constant, determined by each case.

We define cosa ¼ xT
j
ak

xjk k2 akk k2
, where a is the angle between

xj and ak, and r ¼ bk�aTk oj j
akk k2 , i.e., the distance between

aTk oþ aTk v ¼ bk and the origin. Hereafter, let us consider the

case when 0 � a � p (if p < a � 2p, the same derivation

can be applied by setting a 2p� a).
In the first case, xTj v ¼ z meets the sphere constraint at its

boundary, and thus we disregard the half-space constraint.
Using Cauchy Schwarz inequality, the maximum of xTj v is
given by supv; vk k�rxTj v ¼ kxTj kr. Thus, r0 ¼ r. The geometry
in Fig. 1a shows that if cosa � r

r
, we use this case. Note that

if p
2 < a � p, cosa < 0) cosa � r

r
; thus, for the next case,

the range of a should be 0 � a � p
2.

In the second case, xTj v ¼ z meets the intersection between
the half-space and the sphere constraint. We define sina ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos 2a
p

, which is non-negative because 0 � a � p
2 for

this case. Let us consider the following two sub-cases.

Fig. 1. Graphical illustration for three different cases, where z is maximized in xTj v ¼ z. (a): the case where xTj v ¼ z is tangent to the sphere at its con-
tact, and meets the half-space constraint; (b): the case where bk � aTk o � 0, and the hyperplane xTj v ¼ z meets the intersection between the sphere
and the half-space constraint; (c): the case where bk � aTk o < 0, and the hyperplane xTj v ¼ z meets the intersection between the sphere and the
half-space constraint.
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(1) Sub-case with bk � aTk o � 0. The geometry of this case
is depicted in Fig. 1b, where v0 is the vector on the
hyperplane xTj v ¼ z with the direction

xj

xjk k2 and the
length r0, given by

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p
� r tana

	 

cosa

n o2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p
cosa� r sina

	 
2
r

: (18)

Plugging v0 ¼ r0 xj

xjk k2 into xTj v
0, we get the maximum

of the objective in (17).

(2) Sub-case with bk � aTk o < 0.The geometry of this case
is depicted in Fig. 1c, where v0 is the vector on the
hyperplane xTj v ¼ z with the direction

xj

xjk k2 and the
length r0, given by

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p
cosaþ r sina

	 
2
r

: (19)

The maximum z is obtained by plugging r0 into (17).
Summarizing the above results, we have the following

condition for r0

r0 ¼

r if cosa � r
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p
cosa� r sina

	 
2
r

if cosa > r
r
and

bk � aTk o � 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p
cosaþ r sina

	 
2
r

if cosa > r
r
and

bk � aTk o < 0:

8>>>>>>>>>>><
>>>>>>>>>>>:

(20)

3.2 AdaScreen with Multiple Half-Space Constraints

Solving (16), we showed how to compute the maximum of
xTj vwith one sphere and one half-space constraint. However,
we want to use multiple half-space constraints, denoted by
D. Here we show that an upper bound on xTj v with multiple
half-space constraints can be found by solving (16) multiple
times ( Dj j times) and taking the minimum among them, as
follows:

sup
v: vk k�r; faT

k
ðoþvÞ�bkg2D

xTj v � sup
v: vk k�r; aT

k
ðoþvÞ�bk2D

xTj v; 8 k (21)

, sup
v: vk k�r; faT

k
ðoþvÞ�bkg2Dg

xTj v � min
k2f1;...;Kg

sup
v : vk k2� r;

aTk ðoþ vÞ � bk 2 D

xTj v

0
BBBB@

1
CCCCA:

(22)

In Algorithm 1, we summarize a closed-form solution for Sþj
with a sphere and multiple half-space constraints. We note
that AdaScreen is safe given a sphere and half-space con-
straints from safe screening rules, as shown below.

Proposition 1. AdaScreen never discards non-zeros in bb�ð�Þ,
given sphere and half-space constraints obtained from safe
screening rules.

Proof 1. Suppose that we are given sphere and half-space
constraints from safe screening rules. From (14), a safe
lasso screening rule is b�j ð�Þ ¼ 0 if maxðSþj ; S�j Þ < 1,

where Sþj ¼ xTj oþ supv: vk k2�r; faTk ðoþvÞ�bkg2D
xTj v. Here, we

show that AdaScreen computes an upper bound on Sþj ,
leading to a safe screening rule. S�j can be shown in a simi-
lar fashion. Since the first term xTj o is a constant, let us
consider the second term. When a single half-space con-
straint is given, AdaScreen takes a closed-form solution
for the second term, given by (17); when multiple half-
space constraints are given, AdaScreen takes an upper
bound on Sþj , given by (22). Therefore, AdaScreen takes an
upper bound on maxðSþj ; S�j Þ, and it is a safe lasso screen-
ing rule. tu

Algorithm 1. A Closed-Form Solution for AdaScreen

1: Input: qj; r; faTk uu�ð�tÞ � bk; hk; rk; cosajk; sinajkgKk¼1
2: Output: Sj

3: Find r0jk based on the conditions in (20), 8k ¼ 1; . . . ;K
4: r00j  mink r

0
jk

5: Sj  qj þ kxjk2r00j

Algorithm 2. Sequential Screening with AdaScreen

1: Input: X; y;L ¼ f�1ð¼ �maxÞ; �2; . . . ; �Tg, �t�1 > �t, for t � 2;

Hglobal ¼ faTk uu�ð�tÞ � bkgLk¼1
2: Output: bb�ð�2Þ; . . . ;bb�ð�T Þ
3: cosajk ¼

xT
j
ak

xjk k2 akk k2
; 8j; k ¼ 1; . . . ; L

4: sinajk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos 2ajk

p
, 8j, k ¼ 1; . . . ; L

5: uu�ð�1Þ ¼ y
�1

6: for t ¼ 2 to T do
7: Find local half-spaces: Hlocal ¼ faTk uu�ð�tÞ � bkgKk¼Lþ1 (see

section 3.3)
8: cosajk ¼

xT
j
ak

xjk k2 akk k2
, 8j, k ¼ ðLþ 1Þ; . . . ;K

9: sinajk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos 2ajk

p
, 8j; k ¼ ðLþ 1Þ; . . . ; K

10: Given uu�ð�t�1Þ and �t, find a sphere constraint, repre-
sented by o and r

11: qj ¼ xTj o, 8j
12: hk ¼ aTk o, 8k
13: rk ¼ bk�hkj j

akk k2 , 8k
14: for j ¼ 1 to J do
15: Sþj  Algo1(qj; r; faTk uu� � bk; hk; rk; cosajk; sinajkg)
16: S�j  Algo1(�qj; r; faTk uu� � bk; hk; rk;� cosajk; sinajkg)
17: end for
18: U ¼ fj : Sþj � 1 or S�j � 1; 8jg
19: Obtain bb�ð�tÞ, solving lasso with U

20: uu�ð�tÞ ¼ y�Xbb�ð�tÞ
�t

21: end for

3.3 Selection of Half-Space Constraints

So far, we presented how to solve AdaScreen, assuming that
one sphere and K half-space constraints are given by users.
Here we discuss how to select half-space constraints that
may increase the screening efficiency.

The following set of half-space constraints can be useful
to increase the screening efficiency:

xTk ðoþ vÞ�� �� � 1 : b�kð�0Þ 6¼ 0; 8k
 �
; (23)

LEE ET AL.: ENSEMBLES OF LASSO SCREENING RULES 2845



y

�0
� uu�ð�0Þ

� �T

oþ vð Þ � y

�0
� uu�ð�0Þ

� �T

uu�ð�0Þ: (24)

The set of constraints in (23) is originated from dual lasso
constraints; (24) stems from variational inequality [16],
proven to be useful. We propose that useful global and half-
space constraints can be selected in the pool of constraints
in (23) and (24).

Here we claim that the half-spaces in (23) can be useful
for screening. To achieve a small r0 < r in (20), we need
cosa > r

r
, and thus small r is desirable. Let us denote

uu�ð�Þ ¼ oþ v� (v� is a fixed unknown vector). By dual lasso
constraints, xTk ðoþ v�Þ�� �� � 1, 8k. Thus, xTk ðoþ v�Þ � 1 and

�xTk ðoþ v�Þ � 1, 8k, that lead to the following: maxðx
T
k
v�

kxkk ;
�xT

k
v�

kxkk Þ � r, where equality holds when b�kð�Þ 6¼ 0. Thus, for

each feature, r is smallest when b�kð�Þ 6¼ 0. Furthermore,
Proposition 2 shows that fb�kð�Þg can never be discarded by
an independent screening rule if fb�kð�0Þ 6¼ 0g; thus, (23)
give us nontrivial constraints.

Proposition 2. Suppose that we are given �0 and � (�0 > �).
For all j ¼ 1; . . . ; J , if b�j ð�0Þ 6¼ 0, then xj can never be dis-
carded by any independent screening rules with �.

Proof 2.We assume that b�kð�0Þ 6¼ 0, that is,

xTk uu
�ð�0Þ

�� �� ¼ 1: (25)

Suppose that there exists an independent screening rule
which can discard xk at �, that is

xTk uu
�ð�Þ�� �� < 1: (26)

Note that a screening rule estimates the region of uu�ð�Þ
based on uu�ð�0Þ as follows: uu�ð�Þ ¼ uu�ð�0Þ þ v, vk k � r.
By plugging it into (26), we get

sup
v: vk k�r

xTk uu
�ð�0Þ þ xTk v

�� �� < 1 (27)

) xTk uu
�ð�0Þ

�� �� < 1: (28)

However, (28) contradicts to the assumption (25), and
thus the proof is completed. tu
For half-space constraints, one may use (24) by setting

�0 ¼ �max and/or a subset of constraints in (23) using the
following procedure. Following the � sequence, we start
solving a lasso problem using screening with only one
sphere constraint (lasso can be solved efficiently with large
�). When the number of nonzero coefficients is larger than a
user-defined threshold at �t, we generate half-space con-
straints based on (23). From �tþ1, we use the half-space con-
straints for screening.

We note that combination of (23) and (24) generates a fea-
sible set for uu�ð�Þ because the former is a feasible set for
uu�ð�Þ by the dual form of the lasso (5) and it has been proven
that the latter is a feasible set for uu�ð�Þ [16]. Therefore,
AdaScreen is safe if combination of (23) and (24) and a
sphere constraint from a safe screening rule are used.

3.4 Analysis of Screening Time Complexity

The half-space constraints can be divided into global and
local constraints. The global half-space constraints (Hglobal)
refer to the half-space constraints which are used for all fea-
tures and all � parameters. The local half-space constraints
(Hlocal) are generated for each �, but applicable to all
features.

Here we analyze the screening time complexity under
two different scenarios: AdaScreen with (1) K global half-
space constraints, and (2) K local half-space constraints. Let
us first consider the screening complexity of AdaScreen
when K global half-spaces are used. In such a case, the time
complexity of AdaScreen is OðJN Lj j þ JNK þ JK Lj jÞ,
where OðJN Lj jÞ stems from a sphere constraint, and
OðJNK þ JK Lj jÞ stems from K half-space constraints.
Thus, if K < < Lj j and K < < N , K half-space constraints
barely affects the screening speed. When using K local half-
space constraints, the time complexity of AdaScreen is
OðJNK Lj jÞ. Therefore, approximately, use of local half-
space constraints is K times more expensive than use of
global half-space constraints. For sparse data, depending on
screening rules, the time complexity can be reduced. For
example, for each feature vector, given DPP and a local
half-space in Eq. (23), the time complexity of AdaScreen is
OðmaxðN 0; Q0ÞK Lj jÞ, where N 0 is the number of nonzeros in
the feature vector of interest and Q0 is the number of non-
zeros in the normal vector of the local half-space constraint.
In Algorithm 2, we summarize AdaScreen with one sphere
constraint, L global half-space constraints, and K � L local
half-space constraints. In practice, a small number of local
half-space constraints (e.g., 5 half-spaces) is sufficient to sig-
nificantly benefit from the constraints.

4 EXPERIMENTS

We systematically evaluate the screening performance in
simulations and several real world datasets. To get a broad
comparison of existing screening rules, we chose DPP [25],
DOME [29], SAFE [7], strong rule [23], EDPP [25], and
Sasvi [16], covering both classical as well as recent methods.
For the classical ones including DOME and SAFE rules, we
used one-shot screening, while for the others, we used a
sequential screening setting. We settled for three instances
of AdaScreen that incorporate constraints from the
advanced techniques EDPP and Sasvi. Each instance uses
EDPP sphere constraint with (a) Sasvi half-space in (24) as
global half-space constraint (EDPP+Sasvi); (b) 100 half-
spaces in (23) as local half-space constraints (EDPP + Dual-
Lasso(100)); and (c) all half-space constraints in (a) and (b)
(EDPP+Sasvi+DualLasso(100)).

We evaluated screening performances based on the fea-
ture rejection ratio, defined by

# of discarded features by screening

# of features with true zero coefficients
;

and the runtime used to solve the lasso problems over a
sequence of � parameters. Throughout the experiments, we
use the standard coordinate descent algorithm [12], imple-
mented in scikit-learn [20], with tolerance of 10�4. We use a
geometrically spaced sequence of 65 � values and step
length 0.9, starting from �max to � 10�3�max. Experiments
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were run on a single machine with 48 2.1 GHz AMD cores
and 384 GB RAM.

4.1 Simulation Study

We first investigate screening performance over different
degrees of feature correlations in the simulated data. Note
that as more features are correlated with each other, the
lasso takes longer to converge. This can be seen by inspec-
tion of the coordinate descent update rule [12]: b

ðtÞ
j  

SðxTj y�
P

k 6¼j x
T
j xkb

ðt�1Þ
k ; �Þ, where Sðbj; �Þ � signðbÞ bj j � �ð Þ.

If xTj xk ¼ 0, 8j 6¼ k (i.e., all features are completely indepen-

dent), the update rule becomes b
ðtÞ
j  SðxTj y; �Þ, and then

the optimal j-th coefficient can be found by a single update.
When features are highly correlated, multiple iterations are
needed to converge the lasso objective because the update
of one coefficient affects optimal values of other coefficients.
We generated simulation data with 250 samples and 10,000
dimensions as follows: x1  r and xj  cxj�1 þ ð1� cÞr for
j � 2, where r 2 R250 is a random vector drawn from a uni-
form distribution unifð0; 1Þ, and c represents the degree of
feature correlations in the simulated data.

4.1.1 Effects of Feature Correlations on Screening

Fig. 2 shows the rejection ratio and runtime of the screening
methods on simulated datasets with the degree of feature
correlation (c) set to 0.1, 0.5 and 0.9. Here we did not have the
case c ¼ 0 (all features are independent from each other)
because it is a trivial case for lasso optimization and existing
sequential screening methods (e.g., EDPP) and AdaScreen
perform equally well. In all settings, AdaScreen with local
half-space constraints achieved better rejection ratio and run-
time than all the other methods. Notably, the performance
gap between AdaScreen with local half-spaces and others
wasmore substantial when the degree of feature correlations

was high (e.g., c = 0.5 & c = 0.9); further, AdaScreen’s rejec-
tion ratiowas barely affected by the degree of feature correla-
tions. It demonstrates that when features are highly
correlated, local half-spaces effectively reduce the region QQ,
resulting in high rejection ratio. We also observed that recent
methods (AdaScreen, Sasvi, EDPP) dramatically outper-
formed the classical methods (DPP, DOME, SAFE). In Fig. 2
(second and third column), AdaScreen’s rejection ratio
dropped when � ¼ 0:9�max decreased from �max because
there exist no local half-spaces to be used (i.e., (23) is the
empty set because b�kð�maxÞ ¼ 0; 8k); after that, the rejection
ratio increased taking advantage of local half-spaces.

4.1.2 Effects of Local Half-Space Constraints on

Screening

Fig. 3 (third column) shows the impact of increasing the
number of local half-space constraints in (23), in terms of
the rejection ratio. As expected, the more half-space con-
straints are taken into account, the higher the rejection
ratios. Interestingly, AdaScreen with five local half-spaces
showed substantially better rejection ratio than AdaScreen
with one local half-space, and the benefits were quickly sat-
urated when we allowed � 5 local half-space constraints.

4.1.3 Comparison between AdaScreen and Trivial

Combination of Screening Rules (BagScreen)

Here we show that AdaScreen provides a non-trivial way of
combining multiple constraints for screening. To this end,
let us compare AdaScreen with BagScreen. BagScreen sim-
ply tests multiple screening rules, and then discards the j-th
feature if any of them discards it. To ensure fair comparison,
for AdaScreen, we used the EDPP spherical constraint, and
Sasvi and DOME half-spaces as global half-space con-
straints; for BagScreen, we combined EDPP, Sasvi, and
DOME rules. Fig. 3 (first column) shows the rejection ratios

Fig. 2. Rejection ratio and runtime of various screening methods on simulated datasets with the feature correlations of 0.1 (first column), 0.5 (second
column), and 0.9 (third column) (see text for details) given a sequence of � parameters. Two AdaScreen instances with 100 dual lasso half-space
constraints outperformed the other methods in terms of both rejection ratio and runtime.
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by AdaScreen and BagScreen given the simulated data with
feature correlation c ¼ 0:5 and step length 0.85 for the geo-
metric sequence. AdaScreen maintained > 0:1 rejection
ratios throughout all �s, but BagScreen discarded no features
for most �s. It is because AdaScreen generated an efficient
screening rule with a sphere and multiple half-space con-
straints, while BagScreen is a set of weaker screening rules
with a sphere and a half-space constraint. Here high rejection
ratios were unachievable by AdaScreen because we did not
use local half-spaces. The experimental results clearly dem-
onstrate that AdaScreen combines multiple constraints in a
non-trivial way, resulting in high screening performance.

4.1.4 Comparison between AdaScreen and

Strong Rule

The strong rule has been developed as a screening algo-
rithm for lasso-type problems such as lasso and L1 logistic
regression. It is developed based on an assumption that
given � and �0, correlation between xj and the residual (i.e.,
xTj ðy� Xbb�Þ) does not change more than �� �0j j. Therefore,
the strong rule is not safe, meaning that it may discard fea-
tures whose coefficients are nonzero in a global optimal
solution. In Fig. 3 (second column) we compare the rejection
ratios by strong rule, AdaScreen, Sasvi, and EDPP in
the simulated data with the feature correlation c ¼ 0:5 for
1,000 samples; we used step length 0.75 for the geometric
sequence. Notably, AdaScreen substantially outperformed
the strong rule, and the strong rule was significantly better
than Sasvi and EDPP. This result shows that with multiple
half-spaces, we can obtain safe screening rules that are even
superior to the strong rule.

4.2 Experiments on Real Datasets

We performed experiments on real world datasets includ-
ing PEMS [4], [15], Alzheimer’s disease [32] and PIE [21]
datasets. The PEMS input data contains 440 samples (daily

records) and 138672 features (963 sensors by 144 time-
stamps) describing the occupancy rate of multiple car lanes
in San Francisco; the PEMS output data consists of the day
of the week. The input from the Alzheimer’s disease dataset
contains 540 samples (270 disease and 270 healthy individu-
als) and 511997 features (genetic variants); its output data
contains the expression levels of a randomly selected gene.
The PIE dataset (11554 examples and 1024 features) is a face
recognition dataset that contains 11554 gray face images of
68 people under various conditions and expressions. For
the output of PIE dataset, we randomly chose one feature in
PIE images, and then generated input data by concatenating
all features except the selected feature for output. We note
that PEMS and Alzheimer’s disease are large-scale datasets
for a single machine setting; for example, it took more than
3 hours for coordinate descent lasso solver implemented in
scikit-learn with the DPP screening rule to solve the lasso
problem on the full Alzheimer’s disease dataset.

4.2.1 Screening Efficiency and Runtimes against

Baseline Competitors

Fig. 4 shows our main result on real-world data sets, namely
rejection ratio and runtime by AdaScreen, Sasvi, EDPP, DPP,
DOME, and SAFE rules on PEMS, PIE, and Alzheimer’s dis-
ease datasets. For PEMS dataset, AdaScreen with 100 local
half-space constraints maintained very high rejection ratios
(> 0:9) throughout all � parameters, and it also showed sig-
nificantly better runtime than all the other methods. For
Alzheimer’s disease and PIE datasets, AdaScreen with local
half-spaces also showed the best screening performance for
all � parameters. These results confirm that multiple local
half-spaces employed by AdaScreen are truly useful to
improve the rejection ratio at a low computational cost; as a
result, we achieved a speedup in runtime compared to the
screening rules without local half-space constraints.

Fig. 3. Rejection ratio (first row) and runtime (second row) for comparison between AdaScreen and BagScreen (first column); comparison between
AdaScreen and strong rule (second column); and demonstration of the effects of local half-spaces on screening (third column) on simulated datasets
with the feature correlation of 0.5 given a sequence of � parameters.
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4.2.2 Speed-Up Comparison over Path-Solver without

AdaScreen

So far, experiments showed screening rejection ratios and
accumulated runtime behavior. While runtime behavior is a
very informative measure to know exactly how much time it
takes to get to this �, it obfuscates the driving reason on
where the optimization benefits the most from screening,
i.e. where the difference in computation time is the highest.
Fig. 5 shows the expected accumulated speedup when com-
paring the path-solver with screening against the path-
solver without screening. As can be seen in the figures, all
three experiments gain the most in the beginning of the �
sequence. This is partially due to high screening ratios as
well as longer distances between consecutive �’s where the
path solver needs more iterations to reach a sufficient opti-
mum. Experiments have been repeated 10 times and mean
speedup values are reported.

4.2.3 Accuracy Assessment and Impact of

Regularization

We are interested in solving a specific problem and hence,
interested in reaching a specific � for which the problem is

solved sufficiently accurate. To assess the accuracy of lasso
with �s tested in our experiments, we divided the data into
training (80 percent) and test sets (remaining 20 percent).
Fig. 6 shows the accuracy on the test sets in mean squared
error (MSE) for the three real-world datasets PIE, PEMS, and
Alzheimer. The experiment was repeated 10 times andmean
accuracies are reported. For PEMS and PIE, accuracies seem
to reach a plateau for decreasing �, as more and more fea-
tures get activated. For Alzheimer on the other hand, a mini-
mum error is reached for a low number of features early on
in the � sequence. It demonstrates that the range of � parame-
ters tested includes practically useful �. We also note that in
applications for feature selection [14], lasso solution is useful
even when the test error is not minimal because the goal is to
find a small feature set associatedwith outputs.

4.2.4 Solver Comparison

Fig. 7 shows the speedup performance on PIE dataset com-
paring various path-solver using AdaScreen against the
corresponding path-solver without screening. We chose
5 distinct solvers demonstrating the usefulness of our
approach among different types of optimization techniques.

Fig. 5. Speed-up comparison of a variety of screening algorithms on PEMS (left), Alzheimer’s disease (center), and PIE image (right) dataset.

Fig. 4. Rejection ratio and runtime on PEMS (first column), Alzheimer’s disease (second column), and PIE image (third column) datasets by three
instances of AdaScreen, Sasvi, EDPP, DPP, DOME, and SAFE rules given a sequence of � parameters.
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Among those is our standard method used throughout the
experiments, a coordinate descent solver (implementation
used from scikit-learn), a LARS solver, a coordinate descent
solver with active set selection (based on scikit-learn coordi-
nate descent solver), proximal gradient descent solver, and
accelerated proximal gradient descent solver. We repeated
the experiments 10 times and report the means of the mea-
sured speedup. Fig. 7 demonstrates that AdaScreen is able to
achieve significant speed-up (> 100�) for a wide range of �s
with various solverswith different optimization algorithms.

5 SOFTWARE & PRACTICAL CONSIDERATIONS

Previous sections dealt with the principal properties of
AdaScreen for ensemble screening. In this section, we will
introduce our PYTHON software package which is easily
extendable for other solvers, screening rules, and settings.

5.1 Implementation

We developed our screening framework in the PYTHON pro-
gramming language and it can be freely downloaded
at http://nicococo.github.io/AdaScreen/ or conveniently
downloaded and installed automatically, using the PYTHON

pip command. An UML (Unified Modeling Language) dia-
gram of our implementation is shown in Fig. 8. It is
designed to efficiently implement various screening rules
without changing the lasso path solver (e.g., scikit-learn
lasso solver [20], cf. Table 2). Even though different screen-
ing rules require different constraints and equations, they

all share common data structures; thus, we wrap all of them
into a single framework. An advantage of this approach is
that the lasso path solver needs to interact with only one
abstract class for screening rules.

Algorithm 3. Lasso Path Solver

1: Input: X; y; f�1ð¼ �maxÞ; �2; . . . ; �Tg, �t�1 > �t, for t � 2
2: Output: bb�ð�2Þ; . . . ;bb�ð�T Þ
3: aj ¼ �1, 8j and uu�ð�1Þ ¼ y

�1
4: for t ¼ 2 to T do
5: aj  given uu�ð�t�1Þ, b�j ð�tÞ ¼ 0 based on a screening rule, 8j
6: U  fj : aj > �t; 8jg
7: Obtain bb�ð�tÞ, solving lasso with U

8: uu�ð�tÞ ¼ y�Xbb�ð�tÞ
�t

9: end for

To systematically manage data structures involved in
screening, we divide them into GLOBALS and LOCALS. GLOBALS

refer to variables that do not change over the lambda path
(e.g., the inputsX, y, �max). In contrast, LOCALS refer to varia-
bles that change over the lambda path (e.g., the previous
regularization parameter �0 or the solution bb�ð�0Þ from the
previous �0).

Furthermore, we designed our screening framework in
such a way that all screening rules can be derived from the
abstract base class. Screening rules with a single sphere
constraint can be implemented by overloading the GET-

SPHERE function. For more advanced rules, corresponding
functions need to be overloaded. For example, to imple-
ment AdaScreen with EDPP sphere constraint and Sasvi
local half-space constraint, we first instantiate EDPP, SASVI,
and ADASCREEN. Then in ADASCREEN, we simply call SET-

SPHERERULE(EDPP) and ADDHALFSPACE(SASVI).

6 DISCUSSIONS

We presented an adaptive lasso screening rule ensemble,
AdaScreen, which can include any sphere and multiple
half-space constraints. AdaScreen takes advantage of multi-
ple half-spaces based on a simple, computationally efficient
closed-form solution. We experimentally validated that
AdaScreen benefits from multiple half-spaces and com-
pared the rejection ratio and the runtime performance
against a set of state-of-the-art competitors as well as a na€ıve
implementation of the screening ensemble (BagScreen).
Further, we provide a PYTHON software package, which
includes various screening methods, solvers, and settings.

Fig. 7. The speed-up for various solvers using AdaScreen when com-
pared against the corresponding solver without screening.

Fig. 6. Accuracy in mean squared error (MSE) for varying regularization parameter � on PEMS (left), Alzheimer’s disease (center), and PIE image
(right) dataset.
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Some datasets consist of a large number of categorical or
binary features with only few entries set to non-zero values.
In those cases, it would suffice to use single sphere con-
straint based screening rules (e.g. EDPP). Naturally, those
datasets only maintain a weak correlation structure with
features or examples being orthogonal (i.e. hxi; xji ¼
0; i 6¼ j) frequently. Fig. 2 shows that the gain of using
AdaScreen with multiple halfspace constraints decreases
when the correlation structure is less prominent.

It is worthwhile to mention that we considered lasso
problems with a sequence of � parameters. However, we
often solve a lasso problem with a fixed �. To this end, data
adaptive sequential screening (DASS) has been developed
whose key idea is to choose a feedback-controlled sequence
of � parameters to reach �, which attempts to increase
screening efficiency across a � sequence. A promising direc-
tion of future research for AdaScreen would be to use a �
sequence suggested by DASS, rather than a fixed one.

Furthermore, one interesting direction of research is to
develop distributedAdaScreenwith a parallel lasso algorithm
to solve very large problems. For such a parallel screening,
MapReduce [5] would be an appropriate framework because
screening rules are embarrassingly parallel. Furthermore,

extensions of AdaScreen that deal with different loss func-
tions such as logistic loss or hinge losswould be an interesting
research direction. We are also interested in incorporating
AdaScreen in the lasso optimization procedure, along the
lines of Bonnefoy et al. [1] to further improve rejection ratio
and runtime.
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