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Gaussian Process Morphable Models
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Abstract—Models of shape variations have become a central component for the automated analysis of images. An important class of
shape models are point distribution models (PDMs). These models represent a class of shapes as a normal distribution of point
variations, whose parameters are estimated from example shapes. Principal component analysis (PCA) is applied to obtain a
low-dimensional representation of the shape variation in terms of the leading principal components. In this paper, we propose a
generalization of PDMs, which we refer to as Gaussian Process Morphable Models (GPMMs). We model the shape variations with a
Gaussian process, which we represent using the leading components of its Karhunen-Loéve expansion. To compute the expansion,
we make use of an approximation scheme based on the Nystrom method. The resulting model can be seen as a continuous analog of a
standard PDM. However, while for PDMs the shape variation is restricted to the linear span of the example data, with GPMMs we can
define the shape variation using any Gaussian process. For example, we can build shape models that correspond to classical spline
models and thus do not require any example data. Furthermore, Gaussian processes make it possible to combine different models. For
example, a PDM can be extended with a spline model, to obtain a model that incorporates learned shape characteristics but is flexible
enough to explain shapes that cannot be represented by the PDM. We introduce a simple algorithm for fitting a GPMM to a surface or
image. This results in a non-rigid registration approach whose regularization properties are defined by a GPMM. We show how we can
obtain different registration schemes, including methods for multi-scale or hybrid registration, by constructing an appropriate GPMM.
As our approach strictly separates modeling from the fitting process, this is all achieved without changes to the fitting algorithm. To
demonstrate the applicability and versatility of GPMMs, we perform a set of experiments in typical usage scenarios in medical image
analysis and computer vision: The model-based segmentation of 3D forearm images and the building of a statistical model of the face.
To complement the paper, we have made all our methods available as open source.

Index Terms—Statistical shape modeling, Gaussian processes, image analysis, non-rigid registration

1 INTRODUCTION

THE automatic interpretation and analysis of objects in an
image is at the core of computer vision and medical
image analysis. A popular approach is analysis by synthesis
[1], which asserts that in order to explain an image, we need
to be able to synthesize its content. This is achieved by fit-
ting a probabilistic model to an image such that one-to-one
correspondence between the model and the image is estab-
lished. The image can then be explained using the model
information. The better the model represents the structure
of the objects to be analyzed, the easier it becomes to fit the
model. For this reason statistical shape models have become
very popular. An important class of statistical shape models
are point distribution models (PDMs). PDMs represent
object boundaries by their point positions. These are statisti-
cally analyzed using principal component analysis (PCA).
Well known types of PDMs include the Active Shape Model
[2] and the Morphable Model [3]. In its original formulation,
the Active Shape Model represents the object boundary
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using a few manually defined landmark points. In the
Morphable Model, the boundary is represented by a dense
set of points, for which the correspondence is automatically
determined by a registration algorithm. A variety of other
statistical shape models focus on higher-order geometric
features and/or analysis by statistical techniques that recog-
nize the benefit of understanding shape relations in popula-
tions as being nonlinear [4]. We refer the reader to the
survey paper of Heimann et al. [5] for a detailed overview
of statistical shape models.

The focus of this work are point distribution models.
PDMs are linear, parametric models and hence are mathe-
matically convenient and easy to incorporate in image-
analysis algorithms. Since they can represent only shapes
that are in the linear span of the given training examples,
they lead to algorithms that are robust towards artifacts and
noise. The downside of this specificity is that to learn a
model that can express all possible target shapes, a lot of
training data is needed.

The main contribution of this work is that we introduce a
generalization of PDMs, which we refer to as Gaussian Pro-
cess Morphable Models (GPMM). We model a shape as a
deformation u from a reference shape I'p C R3;ie, a shape
s can be represented as

s ={z+u(x)|lz € Tr},

for some deformation u : Q) — R3, with Q D I'y. We model
the deformations as a Gaussian process v ~ GP(u, k) where
w:Q — R3 is a mean deformation and k: Q x Q — R>? a
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covariance function or kernel. Note that in contrast to classi-
cal PDMs, our definition allows for the possibility to define
the boundary I'z continuously. The core idea behind our
approach is that we obtain a parametric, low-dimensional
model by representing the Gaussian process using the r
leading basis function ¢; : Q) — R?® of its Karhunen-Loeve
expansion

u:,u-ﬁ-zai\/)\TQ% a; € N(0,1), 1
=

(here, ); is the variance associated with each basis function
¢;). As we usually assume strong smoothness of the def-
ormations when modeling shapes, it is often possible to
achieve good approximations using only a few leading basis
functions, which makes the representation practical. The
main difficulty of this approach is to efficiently compute
the leading eigenfunction/eigenvalue pairs. To this end, we
propose to use a Nystrom approximation and make use of
a recently introduced computational approach which is
able to use a large number of input points for computing
the approximation [6].

The biggest advantage of GPMMs compared to PDMs is
that we have much more freedom in defining the covariance
function. As a second main contribution we will show in
Section 3 how expressive prior models for registration can be
derived by leveraging the modeling power of Gaussian pro-
cesses. By estimating the covariances from example data our
method becomes a continuous version of a PDM. When we
have no or only little training data available, arbitrary kernel
functions can be used to define the covariances. In particular,
we can define models of smooth deformations using spline
models or radial basis functions, which are frequently used
in registration approaches. We show how a simple registra-
tion approach, whose regularization properties are defined
in terms of a GPMM, allows us to use these models for actual
surface and image registration. Besides these simple models,
GPMMs also make it possible to combine different covari-
ance functions (or kernels) to mimic more sophisticated reg-
istration schemes. We show how to construct priors that
have multi-scale properties or can incorporate landmark
constraints. We will also show how to combine models
learned from training data with analytically defined covari-
ance functions in order to increase the flexibility of PDMs
in cases where not sufficient training data is available.
Although in contrast to PDMs, GPMMs model deformations
defined on a continuous domain, we can always discretize it
to obtain a model that is mathematically equivalent to a
PDM. This makes it possible to leverage the modeling flexi-
bility of GPMM s also in classical shape modeling algorithms,
such as for example the Active Shape Model fitting [2] algo-
rithm or the coherent point drift method [7].

To show the versatility and effectiveness of GPMMs we
performed experiments in two typical application scenarios
of GPMMs in medical image analysis and computer vision.
The first application scenario considers the model-based
segmentation and registration of CT images of the forearm.
We discuss how to build a model which is specifically tai-
lored to the task of forearm registration. In a second experi-
ment we performed Active Shape Model fitting and show
how combining the learned model with an analytically
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defined prior can improve the segmentation accuracy. Fur-
ther, we present an application of GPMMs for 3D image-to-
image registration and compare the result to the popular B-
spline registration method implemented in Elastix [8]. In
the second application scenario, we discuss how GPMMs
give rise to a new strategy for building face models, which
can make better use of the available data and can reduce the
need for tedious manual annotations. Finally, we show on a
qualitative example how GPMMs can improve an existing
face models to better fit faces that are not represented in the
original model.

As supplementary material, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2017.2739743, to
this article we provide a study of the approximation proper-
ties of our numerical methods and discussion how the
approximation quality is influenced by different choices of
covariance functions. Furthermore, we discuss how to
choose the parameters of our method in order to reach a
given approximation quality. All our methods are imple-
mented as part of the open source software Statismo [9] and
Scalismo [10].

1.1 Related Work
Our work can be seen as the unification of two different con-
cepts: On one hand, we extend PDMs such that they become
more expressive. On the other hand we model prior distribu-
tions for surface and image registration. There are works
from both the shape modeling and the registration commu-
nity which are conceptually similar or have the same goals
as we pursuit with our approach. Most notably, the work of
Wang and Staib [11], which aims for extending the flexibility
of shape models, and the work by Grenander et al. [12], who
use Gaussian processes as priors for registration are very
close in spirit to our model. The idea of Wang and Staib is to
extend the flexibility of a PDM by combining a learned
covariance matrix used in a point distribution model with
covariance matrices that represent other, synthetic deforma-
tions. This corresponds exactly to our idea for combining
covariance functions in the GP setting. However, their
method requires that the full covariance matrix can be repre-
sented, which is only feasible for very coarsely discretized
shapes. In contrast, our method yields a continuous repre-
sentation and allows for an arbitrarily fine discretization
once the prior is evaluated in the final registration procedure.
On the registration side, the use of Gaussian processes for
image registration has been extensively studied in the 90s by
Grenander et al. (see the overview article [12] and references
therein). Similar to our approach, they propose to use a basis
function representation to span the model space. However,
in all these works the basis functions have to be known ana-
lytically [13], or the initial model needs to be of finite rank
[14]. In our method we use the Nystrom approximation to
numerically approximate the leading eigenfunctions, which
makes it possible to approximate any Gaussian process and
thus to allow us to use arbitrary combinations of kernels in
our models. We believe that this modeling flexibility is what
makes this approach so powerful.

Besides the above mentioned works that aim at unifying
the concepts of priors for registration and shape modeling,
there is a huge body of literature on non-rigid registration,
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to which our method is directly relevant. Non-rigid registra-
tion is a fundamental problem in computer graphics, com-
puter vision and medical image analysis [15], [16], [17]. A
comprehensive overview of recent approaches for non-rigid
registration used in medical image analysis is given by Soti-
ras et al. [16]. In computer vision, very similar registration
methods to those used in medical image analysis are used
in optical flow computation [15]. Registration approaches
are also of importance in other areas of computer vision,
such as for example in stereo matching [18] or finding corre-
sponding matching points in images [19]. An important
part of all these methods is to formulate appropriate prior
assumption over the possible deformation fields, and hence
the ideas proposed in this paper are directly applicable.

The space of admissible deformations represented by
GPMMs is defined using a covariance function (or kernel).
Mathematically this space corresponds to a Reproducing
Kernel Hilbert Space (RKHS). There are many other works
that propose to model the admissible deformations for non-
rigid registration by means of a kernel and RKHS. Especially
for landmark based registration, spline based models and
radial basis functions have been widely used [20]. The algo-
rithm for solving a standard spline-based landmark registra-
tion problem corresponds to the MAP solution in Gaussian
process regression [21]. Using Gaussian process regression
for image registration has been proposed by Zhu et al. [22]. A
similar framework for surface registration, where kernels are
used for specifying the admissible deformation was proposed
by Steinke et al. [23]. While they do not provide a probabilistic
interpretation of the problem, their approach results in the
same final registration formulation as our approach. The use
of Reproducing Kernel Hilbert Spaces for modeling admissi-
ble deformation also plays an important role for diffeomor-
phic image registration (see, e.g., [24], Chapter 9). In this
context, it has also been proposed to combine basic kernels for
multi-scale [25], [26] and spatially-varying models [27] for
registration. However, the work focuses more on the mathe-
matical and algorithmic aspects of enforcing diffeomorphic
mappings rather than the modeling aspect.

Besides the work of Wang and Staib [11] there have been
many other works for extending the flexibility of PDMs.
This is typically achieved by adding artificial training data
[28] or by segmenting the model either spatially [3], [29] or
in the frequency domain [30], [31]. The use of Gaussian pro-
cesses to model the covariance structure is much more gen-
eral and subsumes all these methods. Another set of work
gives shape model based algorithms more flexibility for
explaining a target solution [32], [33], [34]. Compared to our
model, these approaches have the disadvantage that the
model is not generative anymore and does not admit a clear
probabilistic interpretation.

This paper is a summary and extension of our previous
conference publications [35], [36], [37]. It extends our previ-
ous work in several ways: 1) It provides an improved pre-
sentation of the basic method and in particular its numeric
implementation. 2) It provides an analysis of the approxi-
mation properties of this scheme. 3) It proposes new combi-
nations of kernels to combine point distribution models
with GPMMs based on analytically defined kernels. 4) It fea-
tures a more detailed validation including surface and
image registration, as well as Active Shape Model fitting.
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2 GAuUssiAN PROCESS MORPHABLE MODELS

Before describing GPMMs, we summarize the main con-
cepts behind point distribution models, on which we will
build up our work.

2.1 Point Distribution Models

The main assumption behind point distribution models is
that the space of all possible shape deformations can be
learned from a set of typical example shapes {I';,...,I',}.
Each shape I'; is represented as a discrete set of landmark
points; i.e.,

T = {z} |z, eR* k=1,...,N},

where N denotes the number of landmark points. In early
approaches, the points typically denoted anatomical land-
marks, and N was consequently small (in the tens). Most
modern approaches use a dense set of points to represent
the shapes. In this case, the number of points is typically in
the thousands. The crucial assumption is that the points are
in correspondence among the examples. This means that
the kth landmark point z and z;, of two shapes I'; and T;
represent the same anatomical point of the shape. These cor-
responding points are either defined manually, or automati-
cally determined using a registration algorithm. To build
the model a shape I'; is represented as a vector s; € R3Y,
where the z,y, 2— components of each point are stacked
onto each other:

R A B iod
s = (:rlm,xly,xlz, . 7xNT7INy7‘TNz)'

This vectorial representation makes it possible to apply the
standard multivariate statistics to model a probability distri-
bution over shapes. The usual assumption is that the shape
variations can be modeled using a normal distribution

s~ N(u,2),

where the mean p and covariance matrix 2 are estimated
from the example data

Z 5; (2)

LS @ -9)E -9 ®)
=1

As the number of points N is usually large, the covariance
matrix 3 cannot be represented explicitly. Fortunately, as it
is determined completely by the n example data-sets, it has
at most rank n and can therefore be represented using n
basis vectors. This is achieved by performing a Principal
Component Analysis [38]. In its probabilistic interpretation,
PCA leads to a model of the form

S:§+Z(¥i\/djjﬁ1;, (4)
i=1

where (u;,d;), i = 1,...,n, are the eigenvectors and eigenval-
ues of the covariance matrix S. Assuming that o; ~ A(0,1) in
(4), it is easy to check that s ~ N (3, S). Thus, we have a effi-

cient, parametric representation of the distribution.
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2.2 Gaussian Process Morphable Models

The literature on PDMs usually emphasizes the shapes that
are modeled. Equation (4) however, gives rise to a different
interpretation: A point distribution model is a model of
deformations ¢ = S ai/dit; ~ N(0,S) which are added
to a mean shape 5. The probability distribution is on the
deformations. This is the interpretation we use when we
generalize these models to define Gaussian Process Morph-
able Models. We define a probabilistic model directly on the
deformations. To stress that we are modeling deformations
(i.e., vector fields defined on the reference domain I'), and
to become independent of the discretization, we model the
deformations as a Gaussian process.

Let 'z C R® be a reference shape and denote by ) C R? a
domain, such that I'r C ). We define a Gaussian process
u € GP(u, k) with mean function  : Q — R? and covariance
function k:Q x Q — R*3. Note that any deformation @
sampled from GP(u, k) gives rise to a new shape by warp-
ing the reference shape I'p

I'={z+u(z)|xz € 'r}.

Similar to the PCA representation of the PDM used in
(Equation (4)), a Gaussian process GP(u, k) can be repre-
sented in terms of an orthogonal set of basis functions

{#:}2
u(e) ~ ) + S @A), @ ENOD, 6

where ()\;, ¢;) are the eigenvalue/eigenfunction pairs of the
integral operator

Tof() = [ K. )f(@) do(e).

and p(x) denotes a measure. The representation (5) is
known as the Karhunen-Loeve expansion of the Gaussian
process [39]. Since the random coefficients «; are uncorre-
lated, the variance of u is given by the sum of the variances
of the individual components. Consequently, the eigenvalue
A; corresponds to the variance explained by the ith compo-
nent. This suggests that if the \; decay sufficiently quickly,
we can use the low-rank approximation

a(x) ~ u(z) + i(xi\/xiqﬁi (), (6)
=1

to represent the process. The expected error of this approxi-
mation is given by the tail sum

i=r+1

The resulting model is a finite dimensional, parametric
model, similar to a standard statistical model. Note how-
ever, that there is no restriction that the covariance func-
tion k£ needs to be learned from examples, as is required
for the sample covariance matrix in (2). Any valid posi-
tive definite covariance function can be used. As we will
show in Section 3 this makes it possible to define power-
ful prior models, even when there is little or no example
data available.
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2.3 Computing the Eigenfunctions

The low-rank approximation (6) can only be performed if
we are able to compute the eigenfunction/eigenvalue pairs
(¢, \i)i_,- Although for some kernel functions analytic solu-
tions are available (see, e.g., [12], [13]), for most interesting
models we need to resort to numeric approximations. A
classical method, which has recently received renewed
attention from the machine learning community, is the
Nystrom method [21]. The goal of the Nystrom method is to
obtain a numerical estimate for the eigenfunctions/eigen-
values of the integral operator

Tuf()i= [ ) f@)dola), ™
i.e., the pairs (¢;, \;), satisfying the equation

Ni(a') = /Q Ko, d)g(x) dp(), Vo' €0, ®

are sought. The Nystrom method is intended to approxi-
mate the integral in (8). This can, for example, be achieved
by letting dp(z) = p(x) dz where p(z) is a density function
defined on the domain (), and to randomly sample points
X ={z1,...,2,},7; according to p. The samples (z;),_,
for 2’ in (8) lead to the matrix eigenvalue problem

JeeeyTU

Kui = /\,;"”tui, (9)

where K;; = k(x;, x;) is the kernel matrix, u; denotes the ith
eigenvector and A/ the corresponding eigenvalue. The
eigenvalue \/"* approximates )\;, while the eigenfunction ¢,
in turn is approximated with

N

¢i(x) = ka(x)ui ~ ¢;(z), (10)

where kx(x) = (k(z1,2),...,k(z,,x)). Note that since the
kernel is matrix valued (k: Q x Q — R%9) the matrices K
and ky are block matrices: K € R">" and ky € R™>?,
Clearly, the quality of this approximation improves with
the number of points n that are sampled (see the supple-
mentary material, available online, for a detailed discus-
sion). As n becomes larger (i.e., exceeds a few thousand
points), deriving the eigenvalue problem (9) might still be
computationally infeasible. Following Li et al. [6], we there-
fore apply a random SVD [40] for efficiently approximating
the first eigenvalues/eigenvectors without having to com-
pute the eigenvalues of the full N x N matrix. Theoretical
bounds of the method [40], as well as its application for the
Nystrom approximation [6], show that it leads to accurate
approximation for kernels with a fast decaying spectrum.
For our application, the error induced by the random SVD
is negligible compared to the approximation error caused
by the low-rank approximation and the Nystrom method.

2.3.1 Accuracy of the Low-Rank Approximation

It is clear that our method depends crucially on the quality of
the low-rank approximation. Ideally, we would like to see
the low-rank model as a convenient reparametrization of the
original process, which would not affect the shape variations
that are spanned by our model. This is indeed the case when
there are strong correlations in the deformations, which is
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Fig. 1. The 3D face surface used to illustrate the effect of different models.

for example the case when the modeled deformations are
smoothly varying over the domain. Fortunately, in shape
modeling it is usually justified to make strong smoothness
assumptions, and thus the approximation works well in
practice. However, if we want to model very small, local var-
iations, the quality of the low-rank approximation starts to
deteriorate. In order not to digress from the main theme of
the paper, we have put a detailed discussion of these issues
into the supplementary material, available online.

2.3.2 Computational Complexity and Practical
Implementation

From Equation (6) we see that for evaluating a deformation u
at a point z, the sum over the r eigenfunctions evaluated at x
needs to be computed. This in turn requires n evaluations of
the kernel function to compute the nd—vector ky(z) in (10).
For a fixed covariance function the complexity is clearly
linear in r and n. In shape modeling applications, we often
need to compute the deformations for all the points of a
densely represented surface, which might have hundred-
thousands of points. Depending on the kernel and the num-
ber of eigenfunctions to be computed, the computation
might take several minutes. An effective strategy in such
cases is to discretize the mean function x and eigenfunctions
¢;,1=1,...,71in an offline step for all the points of interest.
We note that for a fixed discretization Q = {z1,...,zy} we
can define the vectors

5=

(I’L(‘Tl)x’ I’L(xl)y7 /"(xl)zv ] /’L(mN)xv /’L(‘TN);/? /’L(mN)z)Tv

and
U; =

(¢i(21),, ¢’71(1’1)y7 ¢i(21),, - di(@N),, ¢7:(xN)ya ¢7:($N)Z)T7
and arrive at a model of the same mathematical form as the
classical point distribution model defined in (4). Conse-
quently, it can be used as a replacement in any algorithm
that uses classical point distribution models, and it has
exactly the same runtime complexity.

3 MODELING WITH KERNELS

The formalism of Gaussian processes provides us with a
rich language to model shape variations. In this section we
explore some of these modeling possibilities, with a focus
on models that we find most useful in our work on model-
based image analysis and in particular surface and image
registration. Many more possibilities for modeling with
Gaussian processes have been explored in the machine
learning community (see, e.g., Duvenaud, Chapter 2 [41]).
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Fig. 2. Samples using a Gaussian kernel with scale factor s = 10 and
bandwidth o = 100 mm.

To visualize the shape variations represented by a model,
we define a GPMM on the face surface (see Fig. 1) and show
the effect that randomly sampled deformation from this
model have on the face surface.' Using the face for visualiz-
ing shape variations has the advantage that we can judge
how anatomically valid a given shape deformation is.

3.1 Models of Smooth Deformations

A simple Gaussian process model is a zero mean Gaussian
process that enforces smooth deformations. The assumption
of a zero mean is typically made in registration tasks. It
implies that the reference surface is a representative shape
for the class of shapes which are modeled or, in other
words, that the shape is close to a (hypothetical) mean
shape. A particularly simple kernel that enforces smooth-
ness is the Gaussian kernel defined by

ky(,y) = exp(—lz —y|* /o),

where o defines the range over which deformations are
correlated. Hence the larger the values of o, the more
smoothly varying the resulting deformations fields will be.
In order to use this scalar-valued kernel for registration, we
can define a matrix valued kernel as

k('xv y) =S IJXJkl](xv y)7

where the identity matrix 3.3 signifies that the z,y, 2 com-
ponent of the modeled vector field are independent. The
parameter s € R determines the variance (i.e., scale) of a
deformation vector. Fig. 2 shows random samples from the
model for two different values of o. This construction can
be generalized by defining the matrix valued kernel as

k(z,y) = Aky(z,y) AT, A € R, (11)

which allows us to introduce anisotropic scaling and corre-
lations between the components.

Besides Gaussian kernels, there are many different ker-
nels that are known to lead to smooth functions. For regis-
tration purposes, spline models, Elastic-Body Splines [43] B-
Splines [44] or Thin Plate Splines [45] are maybe the most
commonly used ones.

3.2 Point Distribution Models

An ideal prior for the registration of faces would only allow
valid face shapes. This is the motivation behind PDMs [2], [3].
The characteristic deformations are learned from a set of typi-
cal examples surfacesI'y, ..., I',. More precisely, by establish-
ing correspondence, between a reference I'; and each of the

1. This face is the average face of the publicly available Basel Face
Model [42].
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Fig. 3. Samples using a sample covariance kernel, which is learned from
200 training faces. All the random samples look like valid faces.

training surfaces, we obtain a set of deformation fields
{ur, ..., un},u; : Q — RY, where u;(z) denotes a deformation
field that maps a point on the reference = € I'y to its corre-
sponding point u;(z) on the ith training surface. A Gaussian
process GP(uppar, kppm) that models these characteristic
deformations is obtained by estimating the empirical mean

13 ue

MPD\I

and covariance function

1

kppn(z,y) = (ui(z) = pppm () (wi(y) — MPDM(?/))T-

n—1l4
(12)

We refer to the kernel kppy\; as the sample covariance kernel or
empirical kernel. Samples from such a model are depicted
in Fig. 3, where the variation was estimated from 200 face
surfaces from the Basel Face Model [42]. In contrast to the
smoothness priors, all the sampled face surfaces represent
anatomically plausible faces. The model that we obtain
using this sample covariance kernel is a continuous analog
to a PCA based shape model.

3.3 Combining Kernels

The real power of modeling with Gaussian processes comes
to bear if the “simple” kernels are combined to define new
kernels, making use of a rich algebra that kernels admit. In
the following, we present basic combinations of kernels to
give the reader a taste of what can be achieved. For a more
thorough discussion of how positive definite kernels can be
combined, we refer the reader to Shawe-Taylor et al. [46]
(Chapter 3, Proposition 3.22).

3.3.1 Multiscale Models

If ki,... .k, : QxQ— R™ are positive definite kernels,
then the linear combination

!
2) = Z(xiki(x,x'), a; €R,
=1

is positive definite as well. This provides a simple means of
modeling deformations on multiple scale levels by sum-
ming kernels that model smooth deformations with kernels
for more local, detailed deformation. A particularly simple
implementation of such a strategy is to sum up Gaussian
kernels, with decreasing scale and bandwidth

x—a
ks (2, 2") Z stsexp< ” (/i) ” )
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Fig. 4. Samples using a kernel defined on multiple scales. The random
sample show large deformations which change the overall face shape,
as well as local, detailed shape variations.

where s determines the base scale and o the smoothness and
l the number of levels. As shown in Fig. 4, this simple
approach already leads to a multiscale structure that models
both large scale deformations as well as local details.

3.3.2 Reducing the Bias in Point Distribution Models

Due to the limited availability of training examples, point dis-
tribution models are often not able to represent the full shape
space accurately and thus introduce a bias towards the train-
ing shapes into model-based methods [34]. One possibility
to avoid this problem is to provide an explicit bias model,
which is added to the point distribution model. Denote by
kppat : Q x Q — R the sample covariance kernel and let
kg : Q1 x ) — R be a Gaussian kernel with bandwidth param-
eter o. A simple model to reduce the bias would be to use a
Gaussian kernel with a large bandwidth; i.e., we define
ky(z,2") = kppm(z, o) + sLixsky(x, 2'),

where the parameter s defines the scale of the average error.
This parameter could, for example, be estimated using
crossvalidation. This simple model assumes that the error is
spatially correlated; i.e., if a model cannot explain the struc-
ture at a certain point, its neighboring points are likely to
also show the same error.

3.3.3 Localizing Point Distribution Models

Another possibility to obtain more flexible models is to make
models more local by breaking the global correlations. Recall-
ing that the kernel function k(z,2’) models the correlation
between the points = and «'. Setting the correlation k(z, z’) to
0 for z # 2’ decouples the points and hence increases the flexi-
bility of a model. Such an effect can be achieved by a multipli-
cation of two kernel functions, which again results in a
positive definite kernel. A simple example of a local model is
obtained by multiplying a kernel with a Gaussian kernel with
small bandwith o. For example, by defining

ky(z,2") = kppm(z, 2') © Iyxsky(z, 2'),

(where ©® defines element-wise multiplication), we obtain a
localized version of a point distribution model. Samples
from such a model are shown in Fig. 5. We observe that the
samples locally look like valid faces, but globally, the kernel
still allows for more flexible variations, which could not be
described by the model, and which may not constitute an
anatomically valid face.

3.4 Posterior Models

In many applications we have not only information about
the correlations but know for certain points exactly how
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Fig. 5. Random samples form a localized point distribution model.
Whereas the variations look anatomically valid locally, there are no
global correlations anymore, which makes the model more flexible.

they should be mapped. Assume for instance, that a user
has clicked a number of landmark points on a reference
shape Lp = {l},...,l%)} together with the matching points
on a target surface Ly = {l},...,l%)}. From the landmarks
we can compute the deformation 4’ for each point I, of the
reference shape

L={(lp, 17 = lg), -, (G, 17 — Up)}
= (), ., (L @)}

Let u ~ GP(u, k) be a Gaussian process model and assume
further that the observations 4 are subject to Gaussian noise
€ ~ N (0,01l343). It turns out that the distribution ull}, ..., [,
ol . an s again a Gaussian process GP(,up,k:p) whose
mean /i, and covariance k, are known in closed form. This
construction is known as Gaussian process regression. We
refer to [21], Chapter 2, and [35] for the mathematical
details. Fig. 6 shows random samples from such prior,
where the points shown in red were fixed by setting (4’ =
Ty .
(0,0,0)"),i=1,...,n).

4 REGISTRATION USING GAUSSIAN PROCESS
MORPHABLE MODELS

In this section we show how we can use GPMMs as prior
models for surface and image registration. The idea is that
we define a model for the variability of a given object
Or C R? and fit this model to a target object Or C R?, which
is either represented as a surface or an image. Our main
assumption is that we can identify for each point zp € Oy, a
corresponding point zr € Or of the target object Or. More
formally, it is assumed that there exists a deformation
u : Q — R? such that

Or ={z + u(z)|z € Og}.

The goal of the registration problem is to recover the defor-
mation field u, which relates the two objects. To this end,
we formulate the problem as a MAP estimate

arg max p(u)p(Or|Or, u), (13)

u
where p(u) ~ GP(u, k) is a Gaussian process prior over the

admissible deformation fields and the likelihood function
p(O7|ORr, u) is defined as

1
p(Or|Op,u) = Eexp(fn_lD[OR, Or,u)).

Here D is a metric that measures the similarity of the objects
Or and Og, 11 € R is a weighting parameter and Z a normali-
zation constant. In order to find the MAP solution, we refor-
mulate the registration problem as an energy minimization
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(a) s = 10,0 = 30mm

Fig. 6. Random samples from a posterior model, which has been obtained
by taking the Gaussian process model shown in Fig. 2, and applying
Gaussian process regression to keep the points shown in red fixed.

problem. Taking logs in (13) we arrive at the equivalent mini-
mization problem

arg min D[Og, Op,u] — nlnp(u). (14)
Using the low-rank approximation (Equation (6)) we can
restate the problem in the parametric form

eyl

arg min D OR,OT,//L-FZOQ\/Xid)i + n'Za?, (15)
o =1 =1

where we used that the coefficients « in (6) are independent
and hence p(u) x exp(— Y i_; &?).

The final registration formulation (15) is highly appeal-
ing. All the assumptions are represented by the eigenfunc-
tions ¢;,i =1...,r, which in turn are determined by the
Gaussian process model. Thus, we have split the registra-
tion problem into three separate problems:

(1) Modeling: Specify a model for the deformations by
defining a Gaussian process model for the deforma-
tions u ~ GP(u, k)

(2)  Approximation: Approximate the model by replacing
in parametric form @ = u + Y1, aiv/Nig; ~ GP(u, k),
in terms of its eigendecomposition.

(3)  Fitting: Fit the model to the data by minimizing the
optimization problem (15).

The separation of the modeling and the fitting step is
most important, as it allows us to treat the conceptual work
of modeling our prior assumptions independently from the
search of a good algorithm to actually perform the registra-
tion. Indeed, in this paper we will use the same, simple fit-
ting approach for both surface and image fitting, which we
detail in the following.

4.1 Model Fitting for Surface and Image
Registration
To turn the conceptual problem (15) into a practical one, we
need to specify the representations of the reference and target
object O, Or and define a distance measure D between them.
We start with the case where the object O, Or corre-
spond to surfaces I'p,I'r C R3. A simple measure D is the
mean squared distance from the reference to the closest tar-
get point, i.e.,

D[Cs, T 4] :/

I'r

(CPr,(z + u(x)))’ da,

where CPr,, is the distance function defined by

CPr,(z) = ||z — arg min ||z — 2/||||.
' elp
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Hence, for the case of surface registration, the registration
problem (15) becomes

arg min/ CPr, (x + Z%\/XL@(JC)) dr +n Za?. (16)
ry i=1 i=1

o

Note that for surface registration, we are only interested in
deformations defined on I'y. It is therefore sufficient to com-
pute the Nystrom approximation using only points sampled
from the reference I'y.

The second important case is image registration. Let
IR, It : ) — R be two images defined on the image domain
Q). In this case, we usually choose D such that it integrates
some function of the image intensities over the two images
(see, e.g., [16] for an overview of different similarity meas-
ures). In the simplest case, we can use the squared distance
of the intensities. The image registration problem becomes

2
arg min/ |:IR(£E') —Ir (x + Zaﬂ/&@(m)) dx +n Za?.
o Q i=1 =1

(17

Note that to be well defined, the Gaussian process needs
to be defined on the full image domain (). Therefore, we
sample points from the full image domain ) to compute the
Nystrom approximation.

Independently of whether we do surface or image regis-
tration, we can easily obtain a hybrid registration scheme
by including landmarks directly into the model using a pos-
terior model (cf. Section 3.4). Furthermore, besides these
straight-forward algorithms for surface and image registra-
tion, we can also directly make use of any algorithm that is
designed to work with classical PDMs, such as for example
the Active Shape Model fitting method [2]. This is possible
because the model (6) is of the same form as a PDM, with
the only difference that we have continuously defined basis
function. As discussed in Section 2.3.2 we can obtain the
same representation as a classical PDM by discretizing the
basis functions for a given set of points.

5 RESULTS

In this section we illustrate the use of GPMMs in typical
application scenarios from medical image analysis and com-
puter vision.

5.1 Model-Based Segmentation of Forearm CT
Images

We start with a discussion on how to build an application-
specific prior model of the ulna bone using analytically
defined kernels. We use this model to perform surface registra-
tion in order to establish correspondence between a set of ulna-
surfaces, and thus to be able to build a point distribution
model. In a second experiment we use this model to perform
Active Shape Model fitting and show how increasing the mod-
el’s flexibility using a GPMM improves the results. Finally, we
also show an application of GPMMs for image registration.

5.1.1 Experimental Setup

Our data consists of 36 segmented images of the right fore-
arm bones (ulna and radius). For 27 of these bones we have
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(b) Surface

(a) CT Image Slice

Fig. 7. A slice through a CT image of the forearm (left) and the extracted
bone surface from a ground-truth segmentation.

the original CT image. Using the 36 given segmentations,
we extracted the ulna surface using the marching cubes
algorithm [47]. We chose an arbitrary data-set as a refer-
ence and defined on each ulna surface 4 landmark points
(two on the proximal, two on the distal part of the ulna),
which we used to rigidly aligned the original images,
the segmentation as well as the extracted surfaces to the
reference image [48]. Fig. 7 shows a typical CT image
and the forearm bones.

We integrated GPMMs in the open source shape model-
ing software libraries Scalismo [10] and Statismo [9]. We
used Scalismo for model-building, surface registration and
Active shape model fitting. For performing the image regis-
tration experiments, we used Statismo, together with the
Elastix toolbox for non-rigid image registration [8].

5.1.2 Building Prior Models

The first step in any application of GPMMs is building a
suitable model. In the first two examples, we concentrate on
the ulna. We know from prior experience that the deforma-
tions are smooth. We capture this by building our models
using a Gaussian kernel

k) (2,2) = sTyegexp(— |l — 2| /o),

where s determines the scale of the deformations and o the
smoothness. The simplest model we build is an isotropic
Gaussian model defined using only a single kernel k{!*10%)
(z,2"). The next, more complex model is an (isotropic) multi-

scale model that models deformations on different scale levels

ks (2, 2') = Z kél()[)/i,l()()/i)(m7x/).

3
i=1

In the third model, we include the prior knowledge that for
the long bones, the dominant shape variation corresponds to
the length of the bone. Using the construction given in Equa-
tion (11) we can define the anisotropic covariance function

kams(x, SL'/) _ RSkngO,lOO) (x’ :Z'/)STRT
+ KOO0 (@, 2f) + K (7)),

where R € R**3 is the matrix of the main principal axis of
the reference and S = diag(1,0.1,0.1) € R** is a scaling
matrix. Multiplying with the matrix SR has the effect that
the scale of the deformations in the direction of the main
principal axis (i.e., the length axis) is amplified 10 times
compared to the deformations in the other space directions.
We compute for each model the low-rank approximation,
where we choose the number of basis functions such that 99
percent of the total variance of the model is approximated.
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(a) Gauss (b) Multi-Scale (c) Anisotropi‘c

Fig. 8. The effect of varying the first two modes of variation for each
model.

Fig. 8 shows the first mode of variation of the three models.
We observe that for the anisotropic model, the main varia-
tion is almost a pure scale variation in the length axis, while
in the other models it goes along with a bending of the bone.

Following Styner et al. we evaluate these three models
using the standard criteria generalization, specificity and
compactness [49]. Generalization refers to the model’s abil-
ity to accurately represent all valid instances of the modeled
class. We will discuss it in the next section. Specificity refers
to the model’s ability to only represent valid instances of
the modeled bone. It is evaluated by randomly sampling
instances of the model and then determining their distance
to the closest example of a set of anatomically normal train-
ing examples. Compactness is the accumulated variance for
a fixed number of components. This reflects the fact that if
two models have the same generalization ability, we would
prefer the one with less variance. Table 1 summarizes the
specificity and compactness for these models. We evaluated
both measures once consider only the first component, and
once with the full model. We see the anisotropic model is
more specific and more compact than the other models,
which means that it should lead to more robust results in
practical applications.

5.1.3 Surface Registration

To evaluate the generalization ability, we need to determine
how well the model can represent valid target shapes, by fit-
ting the model to typical shape surfaces. To fit the model,
we use the surface registration algorithm presented in
Section 4.1. Fig. 9 shows a boxplot with the generalization
results. We also see that the multi-scale and the anisotropic
model lead to similar results, but both outperform model
where only a simple Gaussian kernel was used. That the
anisotropic model can fit the models with the same accuracy
as the multi-scale model, despite being much more com-
pact, means that it is clearly better targeted to the given
application. We we will see in the last experiment, this is a
big advantage in more complicated registration tasks, such
as image to image registration.

TABLE 1
The Specificity and Compactness Values Computed
for Each of the Three Models

Model Specificity Compactness
1st PC Full model 1st PC Full model
Gauss 2.6 5.8 50.6 299.1
Isotropic Multi-Scale 2.3 6.1 51.1 317.0
Anisotropic Multi-Scale 1.9 2.9 51.1 137.1

The lower the specificity and compactness the better.
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Fig. 9. Generalization ability measured by fitting the different models to
all ulna surfaces.

5.1.4 Generalized Active Shape Model Fitting

The well known Active Shape Modeling approach [2] can be
interpreted as a special case of Gaussian process registration
as introduced in Section 4, where the model is a classical
PDM (i.e., the sample mean and covariance kernel (12) are
used) and an iterative algorithm is used to fit the model to
the image. Active Shape Model fitting is a very successful
technique for model-based segmentation. Its main draw-
back is that the solution is restricted to lie in the span of the
underlying point distribution model, which might not be
flexible enough to accurately represent the shape. In our
case, where we have only 36 datasets of the ulna available,
we expect this to be a major problem.

To build an Active Shape Model, we use the fitting
results obtained in the previous section together with the
original CT images as training data. Besides a standard
ASM, we use the techniques for enlarging the flexibility of
shape models discussed in Section 3, to build an extended
model with additive smooth deformations (cf. Section
3.3.2), and a “localized” model (cf. Section 3.3.3). In the first
case, we use a Gaussian kernel kg:a,mo) to model the unex-
plained part. Also for localization we choose a Gaussian
kernel kgl'wo), but this time with scale 1, in order not to
change the variance of the original model. In both cases, we
approximate the first 100 eigenfunctions. Fig. 10 shows the
corresponding fitting result from a leave-one-out experi-
ment. We see that both the extended and the localized
model improve the results compared to the standard Active

2.0 T T T 12

T

1

1.8f g !
100 !

1

1.6 .
1

1

1.4
+

-
€12 __ P ’
1
1.0f - - p a4k
o 1
0.8} o i -
T ™ L

0.6

:

Localized  Extended
Hausdorff distance

Localized  Extended Global

Average distance

Global

Fig. 10. Accuracy of the active shape model fitting algorithm for three
different models.
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Fig. 11. Accuracy of the active shape model fitting algorithm for three
different models, when 4 landmarks at the proximal and distal ends were
used to make the models more robust.

Shape Model. We can also observe that by adding flexibility,
the model becomes less robust and the number of outliers
(i.e., bad fitting results) increases.

We can remedy that effect by incorporating landmark
constraints on the proximal and distal ends, by computing a
posterior model (see Section 3.4). This has the effect of fixing
the proximal and distal ends and prevents the model from
moving away too far from the correct solution. Fig. 11
shows that this has the desired effect and the combination
of including landmarks and increasing the model flexibility
leads to clearly improved results.

5.1.5 Image to Image Registration

In the next experiment we show that our model can also be
used to perform 3D image to image registration, using the
full forearm CT images. We choose one image as a reference
and build a GPMM on the full image domain. In the appli-
cation of GPMMs to image registration, we have to be care-
ful about the image borders, as the basis functions are
global, and hence values at the boundary might strongly
influence values in the interior. We therefore mask the
images and optimize only on the bounding box of the bones.
We use a simple mean squares metric and a stochastic gra-
dient descent algorithm to optimize the registration func-
tional (17). To evaluate the method, we warp the ground-
truth segmentation of the forearm bones with the resulting
deformation field and determine the distance between the
corresponding surfaces. Fig. 12 shows the results for the
same three models as used in the first experiment. In this
example, where the optimization task is much more diffi-
cult, we see that the anisotropic model, which is much more
targeted to the application, has clear advantages.

We also compared our method to a standard B-Spline reg-
istration method [50], which is the standard registration
method used in Elastix. First, we use a B-spline that is only
defined on a single scale level. As expected, since B-Splines
are not application-specific, the registrations are less robust
and the accuracy is worse on average (see Fig. 12). In its stan-
dard setting, Elastix uses a multi-resolution approach, where
it refines the B-Spline grid, in every resolution level. This
corresponds roughly to our multi-scale approach, but with
the important difference that new scale levels are added
for each resolution level. This strategy makes the approach
much more stable and, thanks to the convenient numerical

Average distance Hausdorff distance

Fig. 12. Accuracy of image to image registration results performed with
different models, compared on a ground-truth segmentation of the bones.

properties of B-Splines, allows for arbitrarily fine deforma-
tions. As shown in Fig. 13 in this multi-resolution setting,
the B-Spline registration yields more accurate results on
average than our method, but, as expected, is less robust. It
is interesting to compare the two strategies in more detail.
While our model has 500 parameters, the final result of the
B-Spline registration has 37,926 parameters. Thanks to the
convenient numerical properties of B-Splines, more could
be added if to increase the model’s flexibility even further.
This explains why the B-Spline approach can yield more
accurate solutions than GPMMs. With GPMMs, the number
of parameters is limited by the number of eigenfunctions
we can accurately approximate. If the image domain is large
compared to the scale of the features we need to match, this
quickly becomes a limitation. We refer to the supplemen-
tary material, available online, for a more detailed discus-
sion of the approximation quality.

5.2 Face Modeling Using GPMMs

Point distribution models of the face, such as the Basel Face
Model [51] or the Large Scale Facial Model [52], are of great
importance in computer vision. As humans perceive even
tiny errors in the registration as unnatural, these models are
usually learned from manually cleaned face scans, where
all the salient points are annotated with landmarks. In this
experiment we show a strategy for model building using
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Fig. 13. Accuracy of image to image registration results performed with
our best model, compared to a single-level and multi-level b-spline
registration method implemented in Elastix.
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(a) Reference

(b) Example scan (c) Example scan

Fig. 14. (a) A reference face with annotated landmarks and a masked
out region (in red). The mask region determines an area where the data
quality is particularly bad, and special treatment in the registration algo-
rithm is required. (b) and (c) Two example scans of the BU3D with anno-
tated landmarks. Note that the number of annotated landmarks in the
scans varies depending on the data quality.

GPMMs, which can make better use of the available data
and requires less annotation. The idea is to build a point dis-
tribution model already once a few scans are registered.
This core model is extended with an analytically defined
prior and used in subsequent registration. Since this new
prior already contains scans where the right correspond-
ences has been enforced, we expect that it leads to better
correspondence.

To test this hypothesis, we use 100 face scans from the
publicly available Bu3D database [53]. The reference face
and two example scans are shown in Fig. 14. The scans are
manually annotated with landmarks. The number of land-
marks differs, depending on the quality of the scan, but all of
them have at least the lips, nose tip and eye corners anno-
tated. We compare three different strategies for registration.
In the first, we perform a basic registration using no land-
marks. In the second, we use all the annotations. In the third,
we use 10 of the registration results that were obtained using
the landmarks, to build the core model. The basis for all three
registrations is the following prior model, which is a sum of
Gaussian kernels defined on different scale levels

P SO G ' v VRN
ms(z,2') = ;icxl) —W) 3x3- (18)
To include the landmarks in the second strategy, a poste-
rior model is built (Cf. Section 3.4). The extended model
is built by adding to the sample covariance kernel kppu,
computed from the registered surface scans, a scaled ver-
sion of the multi-scale kernel skms. The scaling factor s
was determined by computing the maximal reconstruction
error € over all the scans and then choosing s such that
34y/skms(z,x) = €. The reference shape (Fig. 14a) is regis-
tered onto the target scans using the surface registration
algorithm described in Section 4.1.%

Fig. 15 shows the average error of the registration for the
three different strategies. All three strategies lead to an accu-
rate fit with an average surface distance to the ground-truth
scan of less than 0.3 mm. The quality of the correspondence
however, greatly differs. Fig. 15b shows that the distance at

2. To make the optimization robust to the missing data in the scans
(Figs. 14b and 14c), we exclude points in the ear region (marked in red)
and those whose closest point in a target shape is a boundary point of
the target mesh.
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Fig. 15. (a) shows that all three models accurately fit the target surface.
(b) The correspondence, however, is improved if we use a core model.

the annotated landmarks points. As expected, the registration
that explicitly includes all the landmark constraints is clearly
best. The average error in this case corresponds to the mod-
eled uncertainty for the landmarks. More interestingly, we
see that including the registered example scans into the prior
clearly leads to improved correspondences.

As a final experiment, we show how increasing the flexi-
bility of the model can be used to work around limitations
of already existing high quality face models, such as for
example the Basel Face model (BFM) [51]. The BFM was
built using mainly young people, and hence does not gener-
alize well when registering older faces. To work around this
limitation, we extend the shape variations modeled by the
BFM with smooth deformations given by a Gaussian kernel
with a very small scale:

— / 2
k(x,x’) = kBFM(-T, 213/) + 1.0exp (—%) 5

Since we choose the scale of the added deformation small,
the model variation is dominated by the variation in the
Basel face model and hence samples of the new model still
look realistic (Fig. 16). Yet, the model is much more expres-
sive and better generalizes to unseen faces. This is illus-
trated in Fig. 17 where the best reconstruction obtain with
the BFM is compared to the best reconstruction obtained
using the extended model.

6 CONCLUSION

We have presented Gaussian Process Morphable Models,
a generalization of classical point distribution models.
GPMMs extend standard PDMs based on object boundary

Fig. 16. Three sample from the Basel Face Model, extended with addi-
tional variability using a Gaussian kernel with small variance. Even
though synthetic variation was added, the samples still correspond to
anatomically valid face shapes.
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Fig. 17. Best reconstruction of a target face (a) with the Basel face model
(b) and the extended model (c).

positions in two ways: First GPMMs are defined by a Gauss-
ian process, which makes them inherently continuous and
do not force an early discretization. More importantly,
rather than only estimating the covariances from example
datasets, GPMMs can be specified using arbitrary positive
definite kernels. This makes it possible to build complex
shape priors, even in the case where we do not have many
example dataset to learn a point distribution model. Similar
to a PDM, a GPMM is a low-dimensional, parametric
model. It can be brought into the exact same mathematical
form as a PDM by discretizing the domain on which the
model is defined. Hence our generalized shape models can
be used in any algorithm that uses a standard shape model.
To make our method easily accessible, we have made the
full implementation available as part of the open source
framework Statismo [9] and Scalismo [10].

Our experiments have confirmed that GPMMs are well
suited for modeling prior shape knowledge in registration
problems. As all prior assumptions about shape deforma-
tions are encoded as part of the GPMM, our approach
achieves a clear separation between the modeling and opti-
mization. This separation makes it possible to use the same
numerical methods with many different priors. Further-
more, as a GPMM is generative, we can assess the validity
of our prior assumptions by sampling from the model. We
have shown how the same registration method can be
adapted to a wide variety of different applications by sim-
ply changing the prior model. Indeed, Gaussian processes
give us a very rich modeling language to define this prior,
leading to registration methods that can include many types
of different prior knowledge, including models learned
from examples. From a practitioner’s point of view, the
straight-forward integration of landmarks may also be a
valuable contribution, since it enables to develop efficient
interactive registration schemes.

The most important assumption behind our models is
that the shape variations can be well approximated using
only a moderate number of leading basis functions. As
shape deformations between objects of the same class are
usually smooth and hence the deformations between neigh-
boring points highly correlated, this assumption is usually
satisfied. Furthermore for most anatomical shapes, fine
detailed deformations only occur in parts of the shape.
GPMMs give us the modeling power to model these fine
deformations only where they are needed. Our method
reaches its limitations when very fine deformations need to
be modeled over a large domain, as it is sometimes required
in image registration. In this case the approximation scheme
becomes inefficient and the approximations inaccurate. An
interesting extension for future work would be to devise a
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hierarchical, multi-resolution approach, which would parti-
tion the domain in order and perform separate approxima-
tion on smaller sub-domain. In this way, the modeling
power of GPMMs could be exploited to model good priors
for image registration, while still offering all the flexibility
of classical image registration approaches.

We hope with this work to bridge the gap between the so
far distinct world of classical shape modeling, where all the
modeled shape variations are a linear combination of the
training shapes, and the word of registration, where usually
overly simple smoothness priors are used. We believe that
it is the middle ground between these two extremes, where
shape modeling can do most for helping to devise robust
and practical applications.
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